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l. INTRODUCTION

ET P, be the sth eigenfunction of the Hamiltonian
l & II of some physical system and let E, be the cor-

responding eigenvalue. Let p and q be operators. In-
finite summations of matrix elements

8~ = S' (E; —E,)'(0',p4.) (k.,qA)
8+Z

which q = p, so that

8~ = 8' (E' —E)"l(4',p4.)l',
8+4

have appeared in the literature. '
Formula (4) can also be used for negative values of

k. %e introduce the functions X. such that

(~- E,)..+ x. ~
= o,

occur frequently in quantum mechanics and it is the where
purpose of this paper to draw attention to the fact
that 8& can be evaluated directly for all integer values
of k, both positive and negative, from a knowledge of Then
either P, or Pz.

2. THEORY

%e define the more general summation

xo = Ip —(ib;,pP;)}P;.

(x-.-,O;) = o,

8~ = S' (E; —E,)"(P;,pg, )(g„gi),
8+'0

8s ——()t~&[,g+) .
&f 4 = P;, (ll) becomes

(2

where 0 is any eigenfunction and need not belong to
the complete set of eigenfunctions P. of H. For sim-
plicity of presentation, we suppose that all quantities
are real. There are several ways by which the formal
evaluation of 8~ can be achieved. Perhaps the most
Qexible and most simple procedure is that employed
by Dalgarno and Lewis' which is based upon the ob-
vious identity

(O., IE —111'~;)
(E,. —E,)"

It follows immediately that

or, equivalently,

8~ = (x~~i,A'),

where

8~ = (xI~t ~,xI), o&«la},

x| = IV
—(~b', 8') }0',

(~-E)..+.. ~
= o, (14)

(15)

(16)

(4)

Specia1izing to the case when O' = P;, (4) becomes

8~ = (l:E' —II)'(p4'), vP')

or, equivalently,

An alternative procedure for evaluating 8~ for neg-
ative values of k may be more convenient. Let x(cv)
be the solution of the equation

(5) (& —E' —~)x(~) + I p —(k* p4') }0' = o, (»)
such that

8 &(~)
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8~ = (l:E' —IIj' '(p4') (&' —%'(eP'))
0 & t & k. (6) Then

Various special forms of (5) and (6) for the case in

8;,x()) =o.

S (O', P4.) 8",V+) (19),~;(E, —E, + cu)
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can be written simply as '4

~-i(~) = (x(~) c+) (20)

and the summations (2) for negative values of k can
be identified with the derivatives of 8 i(ci) evaluated
at ~ = 0 by the relation

(21)

This development is closely related to the early work
of Podolsky. '

By ingenious use of Laplace transform techniques,
Schwartz and Tieman" have calculated (19) for the
case when p = q is the position vector r of the elec-
tron and iI = P; is an eigenfunction of the hydrogen
atom, and some solutions of (8) have been reported
for the case p = r.' For more complex systems, it is
necessary to use variational techniques. Equation (8)
can be solved by minimizing the functional

Schwartz' has used (23) to calculate the Lamb shift
in helium but the computational labor is formidable
and a simple procedure is necessary for heavier atoms
and for molecules. It is natural to seek an extension
of the Hartree —Fock approximation.

3. THE HARTREE-FOCK SCHEME

The extension of the Hartree —Fock scheme to the
evaluation of infinite summations (2) follows from
the recognition that Eq. (8) with n = 1:

(& —@')x+ I p —(4',pk') }4' = o (24)

is the equation for the erst-order perturbed wave
function resulting from the application of a perturb-
ing potential p to the system described by P;. The
extension of the Hartree —Fock scheme to perturbed
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J. = (x.l& —Klx.) + 2(x„,x. ) (22)

with respect to a selected trial function x., and (17)
can be solved by minimizing the functional

atomic systems is straightforward and has been writ-
ten out explicitly for the case when p is a sum of one-
electron operators. ' "There are two possible exten-
sions, the uncoupled approximation and the coupled
approximation, "of which the former is easier and the
latter more accurate. ' They may be applied system-
atically to the solution of (8) by regarding (x. i/f;)
as a perturbation.

Except for helium, the form of the perturbation be-
comes complicated as n increases. This increasing
complexity can be avoided, though with some loss of
accuracy, by solving (8) with the restriction that

4. VAN DER WAALS COEFFICIENTS

Sum rules provide a means of limiting the error in
calculations which involve summations which are
similar to but not identical with (2). Thus, the lead-

ing term of the interaction potential at large separa-
tions r of a pair of neutral atoms c and 6 in nondegen-
erate states with eigenfunctions it.'and P&, respec-
tively, is —(;/r', and (; may be written' in atomic
units as

C= 12S'S'
s&0 t&0

(E,' —E,) (L7& E&) (E; + Ez —E, —ii)
(26)

where f is th'e oscillator strength of the electric dipole
transition from state 0 to state s

f' = s (&' —E)l(4' Z rA'')I (27)

and E' and f' are, respectively, the eigenvalue and
eigenfunction of the ath state.

Summations of the form (7) with p = g, r, have
been evaluated for a number of systeins using the-
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x. = {1.(ri) + f.(rs) + }0', (25)

the r; being the position vectors of the electrons. The
resulting equation for f„(r) is usually easy to solve. A
similar technique has been used by Pople and Scho-
field" to solve the first-order perturbed equation (24)
appropriate to the dipole polarization of argon.

It should be possible to develop systematic meth-
ods for solving (8) also when it; is represented by the
Thomas —Fermi model.
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oretical calculations and using experimental data on
polarizabilities, refractive indices, and Verdet con-
stants. '4 There are available also theoretical and
measured values of some of the oscillator strengths
occurring in (26). To calculate 0, the available oscil-
lator strengths were extended and modified in such a
way that a large number of sum rules were exactly
satisfied. It was ensured, in particular, that the de-
rived oscillator strengths yielded S & accurately since
the form of (26) is similar to the product of two such
summations. The resulting accuracy is largely de-
termined by the accuracy with which 8 & is known,
8 & being essentially the dipole polarizability. In none
of the cases given in Table I"should the error exceed
20%%u~ and it is usually very much less.

i4 A. Dalgarno and A. E. Kingston, Proc. Phys. Soc. (Lon-
don) A73, 455 (1959); 78, 607 (1961); A. Dalgarno and D.A..
williams (unpublished).

TxsLz I. Values of van der Waals coefFicients C in atomic
units. b

H He Ne Ar H c

H
He
Ne
Ar
H, c

Li
NaI
Rb
Cs

6.5
2.8
5.7

20.2
9.2

67
74
99
100
120

2.8
1.5
3.1
9.9
4.2

22
25
33
34
38

5.7
3.1
6.6

20.6
8.6

48
52
68
69
77

20.2
9 ' 9

20.6
68. 1
29.6
200
210
280
280
320

9.2
4.2
8.6

29.6
13.3
88
96
128
132
148

a The interaction energy is f—C/(r/ao)'][e'/a, ], a, being the Bohr radius.
b Values for additional systems are given in the references. (See reference

14.)
0 The I, values are averages over all orientations.
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S TUDY of the I&l, , s3II4, s Coster —Eronig transition
rates offers a sensitive tool for comparisons of

various atomic wave functions. These transitions are
sensitive to different screening parameters arising
from use of different wave function computations
and also have pointed up several inconsistencies in
tabulated energy-level values. While there are many
transitions of the Coster —Eronig type, ' ' the
LiL2,33f4,5 have the features of large transition rates,
sharp cutoffs at various atomic numbers, and greater
proportion of the very scanty data on such transi-
tions.

This class of transition, first described by Coster
and Eronig in 1935,' is distinguished by the filling of
a deep vacancy in an atom by another electron of the
same shell, but different subshell, with ejection of
another electron of different shell with low energy.
The final doubly ionized state serves as the initial
state for emission of x-ray satellite lines of relatively

i D. Coster and R. Kronig, Physica 2, 13 (1935).
s J. N. Cooper, Phys. Rev. 55, 155 (1944).
3 E. H. S. Burhop, TAe Auger Egect and Other Rcdictionle8s

Transitions (Cambridge University Press, New York, 1952).

high intensity, relative to the parent lines. Because
of the nature of the variations of energy levels with
atomic number, these transitions are energetically
possible only for certain regions of atomic number. ' '
The general features of these transitions and their
consequences have been reviewed by Burhop' and
more recently by Listengarten. 4 The current work is
concerned only with the L&L&,3&4,5 transitions, here-
after called LLM transitions. Only a few previous
calculations have been made of transition rates for
the LLM transitions, including those of Ramberg and
Richtmyer' for Au, based on the Thomas —Fermi field,
of Pincherle' using hydrogenic functions, and of
Rubinstein and Snyder' using a SCF function for Kr.
The present calculations cover the atomic number
region from Sc to Sn.
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