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A Method for the Analysis of Many-Electron Wave Functions*
OKTAY S INANOGLUt

Sterling Chemistry I aboratory, Yale University, %em Haven, Connecticut

&HIS article gives a method by which: (a) a given
trial function g of arbitrary form of a many elec-

tron system can be analyzed into various correlation
effects, if the Hartree —Fock wave function (Qc) of
that system is also available. One can then compare
this new form in which various effects are explicit
with the form of the exact many electron wave func-
tion given and discussed before. ' By taking out the
spurious terms which the comparison would reveal
and by putting in the effects inadequately repre-
sented in lt the trial function can be improved. (b) If
one has a, good many electron trial function P, but
not the Hartree —Fock wave function $c of that sys-
tem, the Hartree —Fock pc can be obtained directly
from P without necessitating a separate variational
calculation.

The method involves only partial integrations.
Many computations on atoms and molecules using

computers have yielded wave functions containing
arbitrary forms and variational parameters. The
method described allows one to sort out of such func-
tions the various correlation effects such as intershell,
intrashell, and those involving different numbers of
electrons. This not only shows the reason for the suc-
cess or failure or a trial function in yielding a good
energy, but also, by separating the various physically
and chemically meaningful terms contained in it,
makes it suitable for semiempirical use. One isolates
for instance the portions that would be about the
same in related ions or molecules.

Many such trial functions aim at getting a good
energy. Sometimes they "bypass" a Hartree —Pock
calculation. But Hartree —I'ock orbitals are useful in
themselves. They provide the basis for the simple
"orbital picture" so useful in discussing the spectra
and structure of molecules. "' lt is desirable there-
fore to have both pc and an energy E[gj corrected for
correlation. Fortunately, the one and the same P
yields both, without two separate variational cal-
culations.
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THE METHOD OF "SUCCESSIVE PARTIAL

ORTHOGONALIZATIONS"

The form of the exact many electron wave func-
tion of a closed-shell system was given before. ' This
form is derived most simply by what may be called
the method of successive partial orthogonalizations.

Consider an X-electron system with the exact wave
function g. Suppose there is an orbital approxima-
tion &g to this. qg is a Slater determinant' of X spin-
orbitals i' for this closed-shell case.

y.'= e(l'2'O' . X') .

The best orbital function' representing f will be the
Hartree —Fock one.

y. = 0, (123 X) . (2)

X = f —($,$0)po = f —
Qo .

The arbitrary normalization of P has been chosen
such that

O'A) = 1; ie, (4A') = 1+ (x,x)

with (y„yc) = l.
Next "orthogonahze'" x to spin-orbital products

obtained from pc by dropping one of the spin-orbitals
each time, e.g. , to (23 .Ã), (134 X), etc. The re-
sulting y' is a smaller portion of x'.

s For notation see ref. 1(a).
s In Eqs. (1) and (2) we assume the usual closed-shell

determinant with each orbital doubly occupied. One could
also let the spatial part of say I and 8 be different (e.g. ,
lsnls'P) and then use a projection operator more general
than [e/(N!) ~ ] to pick out say the S component, p. f"Split
Shell" method, see e.g. , P. O. Lowdin, in Advances in ChemicaL
Physics, edited by O. Prigogine (Interscience Publishers, Inc. ,
1959) Vol. II, pp. 207 ff.].Such a @ however may be considered
a trial function p which "by-passes" the usual Hartree —Fock
@,. The analysis described in text then applies to it and splits
its p, and "correlation" parts.

Let us find the detailed form of f in terms of what
would be left over were it approximated by p,'. To
simplify the notation let us do this with Qp with the
understanding that formally the same results apply
with io as with i.

Schmidt-orthogonalize P to @&&. This gives all that
remains in f after g& is taken out. If g&& is the H. F.
wave function, then the remainder is the correlation
wave function.
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y,
' = x —gdet

where

(128. 7) ' (128 X)
(z) (z)

Each 0' is antisymmetric and satisfies equations
similar to (11)

(0;;4....,k) = 0 (k = 1,2, . z,j,k. n, . 7) . (14)

det —= (Xl) 'o', ,

and (x, (128 X)/(i))' means integration over all co-
ordinates except x;, the one missing from the orbital
product along with spin-orbital i.

Each integral ( )' in Eq. (5) gives a function of x;
only and defines

f;(x;) —= (F!)*(x,[128 (z —1)(z + 1) Ãj)' . (6)

The "det" in Eq. (5) antisymmetrizes this with the
remaining orbitals, (128 Ã)/(i).

So far we get

From Eq. (6) and Qo, x) = 0, it also follows' that

(f;,k) = 0 (k = 1,2,8, . z, X) . (8)

Equation (7) is continued each time giving a new
part of P, by the Schmidt "orthogonalization" of the
remainders x', x", . to the products of fewer and
fewer spin-orbitals out of g&. Thus

(128 X) ' (128 X)
(zj)

and'

(0;;,k) = 0 (k=12 . z .g. . S)
In this way one derives the complete f

+ I U'2s" ~j,
where, e.g. ,

'jk

(12)

(128 . .X)
(8!)l zgk

(18)

4Equation (6) is simply a partial integral over (X —1)
spin-electron coordinates. One could evaluate (po, x) by doing
these (X —1) partial integrations first; integration over the
remaining y; would then give (@„g)= 0. Thus diferent
partial integrations out of Q „~)define the various terms of p.

The form Eq. (12) was arrived at in different ways
before. ' The method just presented shows in addition
that

i, ii (128 X)
(15)

(zjk . n)

a q-electron "cluster'" function is obtained from the
(q —1)th remainder x" ".

These results, Eqs. (12) and (15), formally apply
not just with the Hartree —Fock orbitals of po but
with any qg, Eq. (1).The magnitudes and meanings
of each term however differ depending on what the
initial orbitals are. It was shown previously' that in
the particular case when g& is the Hartree —Fock wave
function the remaining terms are particularly simple
and most of them are of negligible magnitude. The
main terms that remain are the pair functions 6";,.

The derivation above is for a closed-shell case. A
similar derivation can be carried out for a nonclosed
shell system too using a projection operator 6 that
turns an orbital product into the desired symmetry
function instead of [0',/(X!) '*j in Eq. (1).The deriva-
tion of this general case, however, will not be at-
tempted here.

APPLICATION TO THE ANALYSIS AND

IMPROVEMENT OF TRIAL FUNCTIONS

Above derivation has been given for an exact
many-electron function f The same .type of analysis
can be carried out on any many electron function.
The results of many computations on many electron
atoms and molecules are trial functions if which do
not show the various correlation effects as in Eq. (12)
but instead contain various convenient functional
forms and variational parameters. The method de-
scribed above can be used to analyze such a P and
write it in the form of Eq. (12). Then it becomes
possible to see what effects are represented by P and
to gain much more information from it.

In addition to such detailed interpretation this
method also gives a means for the improvement of
trial functions. Consider the case of a many electron
atom or molecule for which in addition to a trial func-
tion P the Hartree —Fock wave function g, is known.
Suppose that using Eqs. (15) various terms f, , U,';,
0,';z have been obtained from these. Now ac-
cording to the general many electron theory' certain
terms such as f,, U„',&, etc. are expected to be small in
well-defined cases" '. Suppose however the trial
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function P comes out with one of these terms large.
Then if the general conclusions of the theory are cor-
rect, it must mean that such a term has been intro-
duced as a spurious effect just because of the poor-
ness of the trial function. But then, removal of
spurious terms must yield a better trial function as
judged by an improved variational energy.

Such a procedure has in fact been applied to sev-
eral systems in examining whether 1; are indeed
small. " The same procedure applies to terms like
~ jk

If the trial function comes out not to contain
enough of the terms which are expected to be large
then a similar improvement should result by modify-
ing just those terms.

It would be interesting to analyze for example the
"alternant orbital" wave functions' on conjugated
systems, also the wave functions of Harris and
Taylor' on small diatomic molecules like LiH, in the
way described above.

APPLICATION TO OBTAINING HARTREE-FOCK WAVE

FUNCTIONS DIRECTLY FROM MANY ELECTRON
TRIAL FUNCTIONS

Consider now an atom or molecule for which a good
trial function f has been obtained directly by a
method which "by-passes" the Hartree —Fock cal-
culation. It is stiB desirable to have the Hartree —Fock
orbitals both for the interpretation of f and because
they are of intrinsic interest. "'

The H.F. pc can be obtained directly by the above
method without a separate variational calculation,
if g is close to P. One starts with some very simple
orbitals i which in general will be available. For in-
stance in molecules these could be simple LCA.O-
MO's, in atoms single Slater orbitals.

Taking these as the qg, Eq. (1), one calculates ac-
cording to Eq. (6) and in the way demonstrated by
some examples" the corrections f'o to theseorbitals
i . Now if the g; [corrections to the H.F. orbitals i]
that would have appeared in the exact wave function
Eq. (12) starting with the Hartree —Fock p, are in-
deed negligible then the new f', obtained will be only
the corrections to i' which try to turn them into the
Hartree —Fock orbitals i. In fact a good approxima-
tion to a Hartree —Fock orbital i in this case would be
obtained just by

.0 "0i +f; 16a(1+ (f',f'))'
5 R. Pauncz, J. De Beer and P. O. Lowdin, J. Chem. Phys.

36, 2242, 2257 (1962); J. Deneer, J. Chem. Phys. 37, 2078
(1962); R. Pauncz, J. Chem. Phys. 37, 2789 (1962).

~ F. E. Harris and H. S. Taylor, J. Chem. Phys. (to be pub-
lished).

f'(x') = (&')'(x 1 2 ' '[t 1] [z+ 1] '& )

(16b)

(16c)

The new orbital has been renormalized to unity. Note
also that the normalization of P changes depending
on what qg is [Eq.(4)].

Kestner' did such a calculation on helium atom.
His trial P was a three term Hylleraas function con-
taining r» and his starting orbital i a single Slater ls.
Then with just one integration [(U»,i )] he obtained
a Hartree —Fock 18 orbital very close to the analytic
Hartree —Fock function of Clementi and Roothaan. '
Orbitals thus obtained could be further improved by
more iterations corresponding to the repeated use of
Eq. (16) each time using a better i'.

In this way one avoids two separate variational
problems, one for the Hartree —Fock pc another for the
total f for methods which "by-pass" Hartree —Fock
calculations. Again the alternant orbital wave func-
tions and the small molecule calculations mentioned
above,"would be other interesting cases on which
to try this procedure.

DISCUSSION

The method described above shows also how one
could obtain the orbitals of various generalized SCF
methods, such as Brueckner's. ' " In fact orbitals ob-
tained at each iteration of Eqs. (16), after approach-
ing the H.F. orbital, would, if iterations are contin-
ued, approach the generalized SCF one [see Eq. (17)
below]. In general there will not be any need to cal-
culate the f"; beyond H.F. however, since it has been
shown' "that the difference between the generalized
SCF and H.F. orbitals should be negligible in closed
shells. There are cases on the other hand inter-
mediate between closed and nonclosed shells" for
which one needs to go beyond the appropriate H.F.
p, and get the additional f;

It is desirable to use Hartree —Fock orbitals as the
basis of an orbital picture as much as possible in-
stead of generalized ones. Hartree —Fock orbitals can
be obtained either by the usual independent varia-
tional method or from the given trial f in the way
described above. For the generalized SCF orbitals on

7 N. R. Kestner, J. Chem. Phys. (to be published).
8 We are indebted to C. C. J. Roothaan and to E. Clementi

for making their analytic Hartree —Pock programs available
to us.

9 K. A. Brueckner, in The 3/Zany-Body Problem, edited by
C. DeWitt and P. Nozieres (John Wiley 4 Sons, Inc. , New
York, 1959).» P. O. Lowdin, J. Math. Phys. 3, 1171 (1962).

u J. C. Slater, Phys. Rev. 91, 528 (1958).
~2 E. R. Davidson and L. L. Jones, J. Chem. Phys. 37, 2966

(1962).
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the other hand there is no independent way; to get
them one must have essentially the exact many
electron function P to sta, rt with.

The orbitals obtained by adding the further f; to
the H.F. orbitals approach the generalized SCF or-
bitals ig. They are also close to the first natural spin
orbitals i...as shown by Davidson and Jones."

( ~)
(1 + (f',f'))'

Their calculations on the ground state of H2 at the
equilibrium distance showed the first natural orbital

to be very close to the Hartree —Pock orbital.

CONCLUSION

A method has been given which shows how a many
electron trial function P of arbitrary functional form
and many parameters can be analyzed into physically
and chemically meaningful terms and improved by
the examination of these terms. It is also shown how

from a trial P which bypasses the Hartree —Fock
method, the Hartree —Pock orbitals can be obtained
just by partial integrations without requiring a sep-
arate variational calculation.

Discussion on Atomic Spectra

J. C. SrxTzR, Chairman

MuRRzLL: Can anything further be deduced from Rydberg defects for molecules concerning
the eBects of penetration or polarization?

MxeK: Edlen's forthcoming IIandbuch, der Physik monograph has a pertinent discussion.
HozxK: Some years ago, I made calculations of x-ray states like 18(2s)'(2p)' '8 using the

Morse —Young —Haurwitz analytical wave functions (Z. Horak, Czech. J. Phys. 8, 271, 1958). In
connection with this research an interesting problem arose.

The question is: If you apply the variational principle, you have to orthogonalize —as every-
body suggests —to lower lying states of the same symmetry. But what to do here? Let's analyze
what we do in practice. We forget about our "orthogonality catastrophe" and look simply for the
extremum of the variational functional, 8 I P Her. No doubt, such extremes exist; this means
also that the extremization should be useful even for ordinary excited states like (132s) '8, which.

was actually the case. Evidently in the case of extremization the advantage of the variation
principle E &~ E..„t is now lost.

The question is: why don't we substitute in atoms the variation principle by the Z perturbation
expansion? Especially in x spectra, everybody knows that the Moseley-like formulas of the type
1/n' (Z —8)' or simply three-term formulas aZ'+ bZ + c fit the experimental data very well.
The problem is in the calculation of c, but if we start with the second-order perturbation formula

g; [)H;,
~
/(E; —E;)] (including the continuum), we can calculate energy differences directly.

We thus avoid taking small differences between two big quantities as the HF-method does (a
particularly outstanding feature in x-ray spectra) a procedure which Professor Coulson character-
ized as "weighing of the captain of the ship by weighing the ship when he is or is not on board. "

LownrN: Just a word of warning from the mathematical side: orthogonality (q»~y&) = 0 is
not sufhcient to ensure the existence of an upper bound to the energy; one needs also the non-
interaction property (p&~Htq, ) = 0.

McWzzNv: In some recent work [R. McWeeny and Y. Ohrn, Technical Report, No. 60,
15 Feb. 1961, Quantum Chemistry Group, Uppsala University, Uppsala, Sweden (unpublished)],
Yngve Ohrn and I investigated systems with a single-series electron, using an approximate wave
fuIlctlon

Here @ is an arbitrary wave function (possibly an exact wave function for the positive ion), p
describes the series electron, and 8 is an antisymmetrizer. It is then possible to formulate a
one-body eigenvalue equation to determine p, all core penetration effects (including nonorthogo-
nality) being absorbed into an effective one-body Hamiltonian, containing certain pseudopoten-
tials which ensure that a variational q will not "collapse" into the core. The energy of the whole
system is then E = E,...+ E„„„andif E,...is sensibly constant for different series electron states


