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n —s

(u, lII.lvu, & + (u, lII, I;. . .&
= Q.,&u, lv„, ,&; (30&

t=0

then subtracting (30) from (29), using the Hermitean
properties of IIO and II&, and summing over i from 0
to n, we have

n

o = Z Z E (v.-'lu'- &
—Z Z e (u'lv--'- & (»)

These finite double sums may be rewritten so that
(81) becomes

8=0 i=O

and (26) follows by induction.
This result is valid only for the exact solutions

u„,v of the perturbation equations; if the Eqs. (27)
and (28) are solved by the variation technique u. and

v are not exact solutions and the orthogonality con-
dition (26) may not be satisfied. Condition (26) then

provides an additional criterion of the accuracy of
the procedure and the resulting nth-order corrections
to the eigenfunctions u, v.
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1. THE STATISTICAL FIELD EQUATION

(T. F. EQUATION)

Y 1925 some effective electric fields inside atoms
had been calculated to fit observed data. ' The

Bohr—sommerfeld theory' gave orbits in a spherically
symmetrical field with definite energies for the series
electron and for inner electrons. Pauli's equivalence
principle" requiring that there are never two electrons
in an atom with all their quantum numbers the same,
coupled with the discovery of electron spin, ' allowed

just two electrons with opposite spins to occupy an
orbit in the field. The field could then be adjusted to
give, using Bohr's frequency condition, for outer
normally unoccupied orbits, a,nd for inner normally
occupied orbits, respectively, approximations to the
optical spectrum and to the x-ray spectrum.

The Bohr—Sommerfeld orbits correspond to suc-
cessive discrete values of action variables, differing
by Planck's constant h, which, with their conjugate
phases, give a canonical mapping of the phase-space
of the electron. Thus if each orbit is occupied by two
electrons, these a,re distributed rather uniformly at
two for each h' of six-dimensional configuration—
momentum space. WVe Ileed now suppose only that
the electrons present fill the orbits of lowest energy

D. R. Hartree, Proc. Cambridge Phil. Soc. 21, 615 (1924);
E. Fuee, Z. Phyeik 11, 369 (1922).

2 N. Bohr, Phil. Mag. 26, 1 (1918); A. Sommerfeld, Ber.
Akad. (Miinchen) 425 (1915).

3 W. Pauli, Z. Phyeik 31, 766 (1926).
4 G. Uhlenbeck and 8, Goudsmit, Natunvissenschaften, 95t

(Nov. 1925).

in the effective field, so that if V is the potential in
that field, measured from a suitable zero, electrons
may have momentum up to (2 meV) '=, where m and e

are electron mass and charge, and may occupy vol-
ume 3 v (2 meV)r of momentum space, to obtain the
value for the charge density at a place with potential
V,

2 4
p = —e —,—m(2meV)'.h' 3

Assuming also Poisson's equation, we have

7 V = —4+p = 4~e —,—v (2 meV)',2 4

as an approximate equation for the potential of the
effective electric fieM in an atom. ' For a neutral atom
we will expect V ~ 0 as r —+ ~ and Vr —+ Z, the
nuclear charge, as r ~ 0, as boundary conditions a,t
infinite and zero radius r.

This field gives the structure of the periodic table,
the total binding energies of a,toms, their spectra, and
atomic scattering cross sections —all in rough quali-
tative agreement with observa, tion. Its advantage is
its simplicity, one integration suKcing by scaling for
all neutral atoms. Its disadvantage is its roughness.

In atomic units, "h = 2x, e = 1, m = 1, we have
the T.F. equation

~ L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927);
F. Fermi, Z. Phye~ik 48, 73 (1928).
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2. THE QUANTUM-THEORY BACKGROUND

When it was discovered that a variational ap-
proach to the solution of the many-electron Schrod-
inger equation, by restricting the Schrodinger func-
tion to be an antisymmetrical sum of products of
one-electron functions, leads directly to the Hartree-
Fock approximate equations which can be regarded
as the quantum-mechanical form of the Hartree-
Fues picture of electrons moving separately in the
average Geld of the other particles, ' it was natural to
att, empt a similar approach to the simpler but rougher
statistical field.

Dirac showed' that the Bargee —Pock equations
could be expressed simply in terms of the density
matrix p(r, , r,) by the condition that

The successive terms of W correspond to kinetic
energy; potential energy of the electrons in the nu-
clear Geld, exchange energy, arising from the second
part of the second term in (a); and potential inter-
action energy. The problem of choosing a function
P(r) to make W a minimum' subject to (e) leads di-
rectly' to either P ) 5/4s. or P = 0 (Jensen's condi-
tion) so that there is a finite boundary at which
P = 5/4s.

Within the boundary P must satisfy the equation

where ) is a multiplier corresponding to condition
(e). We find that the potential V satisfies the equa-
tion

p (rl rs) p (r2 r1) I V (rl r2)drldr2

should be stationary subject to the conditions

p(r, r') p(r', r")dr' = p(r, r") (b)

p(r, r)dr = n. (c)

5 2 Z 3'
3 4 2f'(& —

2 P 1 (&

1 3 31+ 18, P,P2 —dr, drs,
18m ~12

while condition (c) becomes

I f'df = 'Q.
4

3Ã
(e)

~ J. C. Slater, Phys. Rev. 35, 210 (1930); V. A. It'ock, Z.
Physik 61, 126 (1930).

7 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

Here p(r, r ) is a Hermitian matrix, II(r) is the Hamil-
tonian for a single electron in the given nuclear field,
V(r&r&) is the mutual potential energy of two elec-
trons, and n is the total number of electrons. The
integrations are to be interpreted as including sum-
mation over spin.

If each "self-consistent" equation is like a wave
equation for a single particle, we may expect to be
able to approximate near any position r by a set of
plane waves, exp (2si/h)(p r), with values of the
momentum p distributed uniformly within a sphere
of radius say I' at a rate 2, for the two directions of
spin, for each V of phase space. Replace the sum by
an integral, and for deGniteness take I' a function of
—', ~r + r'~, and after some integrations, using atomic
units,

8&2; 1
V V = 4s.p = (V* +,—),3m' &2m'

(2)
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FIG. 1. The total radial charge densities D for C~s+ for

b = — ~, 0, and ~ are compared to the Hartree —Fock
radial charge density. Density curves for b ) 0 lie between the
Thomas —Fermi —Dirac curve and the Thomas —Fermi curve.

3. CRITICISM AND IMPROVEMENTS

The statistical theories should not be expected to
show the shell structure of the atom by maximum

s H. Jensen, Z. Physik, 93, 232 (1935).
Consider a strong variation in which a continuous part of

P & 5/4~ is replaced by P = 5/4s over part of the range,
0 over part.

~0 K. M. King and L. H. Thomas, Phys. Rev. 124, 785
(1951).

to which we add boundary conditions t/'x ~ Z as
r ~ 0, and V = (Z —n)/r = —(15/32s') —X,

(d V//dr) = —(Z —n)/r' at the finite boundary. This
gives the statistical field equation with Dirac s cor-
rection for exchange (the T.F.D. equation), and
Jensen's boundary condition. Different choices of
P(r, ,r,) lead to different fields, " and, in particular,
can give the original statistical-field equation. The
charge distributions for Cu+ are compared with the
Hartree —Fock theory in Fig. l.
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densities at K, I, 3/I, - shell positions, since this is
precisely what was averaged over. The original theory
did not pretend to be accurate, where the field of an
electron, itself, is of the same order of magnitude as
the whole Geld, namely, near the outside of the atom;
the modified theory, which should take care of this
by the exchange term, leads to an unphysical boun-
dary condition. Further, the fields are wrong near the
nucleus, allowing density at very large negative po-
tential energy, " and this is perhaps the principal
reason for the large binding energies obtained for the
whole field.

If we analyze the density matrix actually used, we

hand that we have not only given up the exact condi-
tion (b), which is equivalent to values 0 or 1 for the
characteristic values of p(r, r), corresponding to oc-
cupation numbers 0 or 1 for pure states, but have
actually introduced completely unphysical negative
characteristic values. If, perhaps, condition (b) could
be replaced by a condition that the characteristic
values of p(r, r') should be numbers between 0 and 1,
which could correspond to an actual statistical state,
the theory might well be improved. "

There have been many attempts to improve the
theory while keeping it simple enough to be useful.

» N. M. March and F J. Plaskett, Proc. Roy. Soc. (Lon-
don) A234, 419 (1959).

~2 See discussion with A. J. Coleman below.

The most successful seems to be the adaptation of
March and Plaskett's" derivation of the statistical
Geld equation using the %.E.B. approximation to
Schrodinger's equation rather than plane waves, and
using a more sophisticated approximation to the sum
than an integral over the whole region, as adjusted
by Scott" to fit a Coulomb Geld. In recent work by
Barnes, "V in the expression for p on the right hand
side of (1) or (2) is replaced by V —(a'/2r'), where
a = l; + -'„ l;. being a lowest allowed quantum
number, so long as this is positive, otherwise p = 0.
He obtains a great improvement in the total energy,
for instance, for Z = 8, he obtains energy —2084
eV, as against the experimental value —2043 eV,
while the T.F. field has energy —2678 eV and the
T.F.D. field —2878 eV.

For many extensions to and improvements in the
theory, reference is made to P. Gombas, Die Statis-
tische Theoric des Atoms und ihre Anmendungen

(Julius Springer —Verlag, Wien, 1949); and N. M.
March, "The Thomas —Fermi A.pproximation in
Quantum Mechanics, " Advances in Physics, edited
by N. F. Mott (Taylor and Francis, Ltd. , London,
1957).

» N. M. March and F. J. Plaskett, (see reference 11).
~4 J. M. C. Scott, Phil. Mag. 43, 859 (1952).
&5 J. F. Barnes, Los Alamos Scientific Laboratory, Report,

No. L. A. 2750 (1952) (unpublished).

Discussion on Statistical Theory of Atoms

R. McWEENY, Chairman

McWKENY: Recently there have been efforts, notably by Golden, to extend the method so as
to introduce specifically quantal effects such as shell structure. These proceed roughly as follows:
the one-body density matrix in Hartree —Fock approximations describes a degenerate Fermi —Dirac
ensemble and may be written

p(x* ) = Z lt'(x)4'*'(x')

1
hm g ((g )yI jP (x)g' (x )

where P is determined by the normalization f p(x;x)dx = X and the sum is over aQ one-electron
orbitals of the one-body problem. This may be written in operator form by putting the effective
one-body Hamiltonian K in place of E; (BC working on the unprimed variables only) and an
arbitrary complete set may then be introduced, since p; lt, (x)lt,*(x') is merely the resolution of the
identity. To obtain the Thomas —Fermi type of theory we choose a set of suitably normalized
free-electron functions, Ip, I, and from

1
p(x~x ) lun Q 1+ )(~+ ()(I ~j4'(x)4; (x )


