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2. DEPARTURE FROM ORTHOGONALITY

We consider as an example the 1sns o8 states of the
helium sequence. Denoting the Is, ns radial functions

by u, v which may be assumed without loss of gen-
erality to be orthonormalized, we may write the com-
plete (spatial) eigenfunction as

P, (lsns) = (1/42) Iu(1)v(2) —u(2)v(1) I (1)

and the corresponding energy

r(1sns) = (ulHI«) + (vlHlv) + (uulvv) —(uvluv),

(2)

where

d I d ZIl = ——
dr r dr r

r 00

(abl = — a(t)b(t)t'dt g a(t)b(t)tdt, '

and

(ablcd) = (able(r)d(r)r'di .

1. INTRODUCTION

HARMA and Coulson' have shown that to first
~ ~

order in Z ', Z being the nuclear charge, the
Hartree —Fock wave functions of a pair of states of
the same symmetry are orthogonal, and they have
conjectured that the result is true to higher order.
We shall show that, in fact, a departure from ortho-
gonality occurs in second order.

and

Hu'+ (wwlu' —(u'wlw = p'(»)u'

Hw y (u'u'Iw —(u'wlu' = o(ms)w .

We now expand

u = up+Z ui +'''

so that

'l,nd

c = pp+Z ey+'''

(ab
I

= Z '(a,b,
I +

8= Sp+Z'8, +
and derive the following zero-order equations:

(H —eo(ls))up = 0 )

(H —pp(ns))vo ——0 f
(II —ot(ls))uo = 0

(H —po(ms))wp = 0
(10)

~ = I( I ')("I ) —(.Iw.)("lu')I. (»)
We see that 'Mp vp wp al'e simply hydrogenic solu-

tions for the states Is, ns, ms with corresponding
hydrogenic eigenvalues, and it is clear that

and its overlap with f& is

8 = j(ulu')(vlw) —(ulw)(vlu') I .

If u and v are varied in (2) without further restric-
tion, we obtain the pair of Hartree —Fock equations

Hu+ (vvlu —(uvlv = .(1s)u )
Hv + (uulv —(uvlu = .(ns) v (

and similarly for the state ls'ms '8,

Xow collslder son1 otheI'state) say 18 les. . . 8) wllose

orbitals are n, ',w. The complete eigenf&mction for this
state will be

uo = uo, op(ls) = pp(ls), (12)

so that we may drop the primes from these zero-order
quantities. The functions up, vp, wp, automatically

Po(ls'ms) = (1/42) Iu'(1)w(2) —u'(2)w(1) I (4) satisfy the orthonormality conditions
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(uoluo) =- (VolVo) = (WolWo) =

(uplvo) = (volwo) = (wpluo) = 0

so that Sp ——0.
The first-order equations may now be written
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dowll: with

(H Eo(18))u1 + (Vovolup (uovolvo El(18)uo 1

(14)
(H Ep(ns))vi + (uo'Mplvp (upVpl'Mp = E1(ns)vp, 1

(H Eo(18))ui + (wpwoluo (uowolwp = Ei(18)uo,

(II —Ep(ms))tvi + (upuplwp &upwofuo = 01(ms)wii,

(15)

f &uo I
uo) [&vo I'N1) + &v11'No) 1

+ [(u lu', ) + (u, lu.)](v.fw, )

QP tUP V0 Q1 V1 Q0

—[&u.lw, ) + (u,, Iw, )](v.lu.) I

= [&v lw) + (v lw)) (16)

on account of (10).
The first-order solutions are arbitrary to within

additive multiples of the corresponding zero-order so-
lutions, and we choose those solutions which yield
functions normalized up to first order. This is equiva-
lent to the conditions

H =Hii+H, , (22)

and that we have two eigenfunctions of IIp satisfying

and

Hollo = Eo'Mo

IIOA = &0~0 )

(23)

(24)

AQy = Qi, —
%bi .

That a departure from orthogonality does occur is
not unexpected for P, and P, are eigenfunctions of dif-
ferent Hamiltonians. Although the departure, being
of second order, will usually be smalP it may be seri-
ous in calculations of the probabilities of weak transi-
tions.

It is obvious that wave functions obtained by solv-
ing the Schrodinger equation by perturbation meth-
ods will be automa, tically orthogonal to any given
order, but an explicit demonstration may be in-
structive.

Suppose that the Hamiltonian H is decomposed
according to

&uoltt1) = (volv1) = &uoluI) = &wolw1) = 0 (17) such that

Now from (14) and (15), using the Hermitean
property of II as well as (9) and (10), we have

It follows that
,p (ns) —,p (ms) 1&Up I w, ) = &upvp

I upwp) —(upup I vpwp)

and

+0 «O.

80 = &uo fvo) = 0,

[Eo(ms) EO (ns)](» I wo) = (uovo luowo) (uouo
I
vowo)

(18)

and we shall prove that

8. —= Q(u;IV, . ;) = 0 (26)

[Ep(ms) Ep(ns)][(VQIW1) y (V1IWQ)] = 0 . (19)

For m 4 n, this establishes that 81 ——0 for every
pair of con6gurations 1s ns '8 and 1s' ms '8 in agree-
ment with Sharma and t oulson.

It may be shown by straightforward analysis that
orthogonality breaks down at second order; in fact,

~0 = {[&VOIWQ) + &V1IW1) + &V. IWQ).l

—[&u lw) + (u lw)][&V lul&+ &' lu.)H, (2o)

which may be written alternatively as

&0 = {[Eo(ms) —Eo (18)][Eo(ns) —
Eo (»)][(uoVo I

Wo &ul)

+ (uotvolvo+ut) —2(vo'Noluo+ut&]

[Ep (ms) Eo (n8) ][(upwp lvpwp) (upvp I tvpu10) 1

X [(uovo
I
vowo) (uowo

I
vovo)] ]

/ f [.,(ms) —E.(18)][E.(ns) —E.(18)]

X [Eii(ms) —E,(ns)] I (21)

for each n in turn.
We write the general perturbation equations in the

form

alld

n

Houii + Kus-1 Q Esus —s
.S=O

(27)

n

IIovs + Hivs 1= Q Eivs i-i-
5=0

(28)

alld adopt the coIlvelltloll that u s
=- v; = 0('L ) 0).

I&'rom (27) with n = i and (28) with n = n —i, we
have

'B

(v,. ;fH. fu, ) + (V. ;fH, fu;, ) = QE,,(v„, ;fu, ,) (2g)
sS=P

2 Dr. C. Froese (private communication, ]l.963) finds that
($1, p2) is 9 X 10 4 for the sodium configurations 182 2s22p6 3s

1g2 2~2 2@6 48 and 5 g 10 4 for 182 232 2p6 3p
132 2s2 2@6 lp.
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n —s

(u, lII.lvu, & + (u, lII, I;. . .&
= Q.,&u, lv„, ,&; (30&

t=0

then subtracting (30) from (29), using the Hermitean
properties of IIO and II&, and summing over i from 0
to n, we have

n

o = Z Z E (v.-'lu'- &
—Z Z e (u'lv--'- & (»)

These finite double sums may be rewritten so that
(81) becomes

8=0 i=O

and (26) follows by induction.
This result is valid only for the exact solutions

u„,v of the perturbation equations; if the Eqs. (27)
and (28) are solved by the variation technique u. and

v are not exact solutions and the orthogonality con-
dition (26) may not be satisfied. Condition (26) then

provides an additional criterion of the accuracy of
the procedure and the resulting nth-order corrections
to the eigenfunctions u, v.
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1. THE STATISTICAL FIELD EQUATION

(T. F. EQUATION)

Y 1925 some effective electric fields inside atoms
had been calculated to fit observed data. ' The

Bohr—sommerfeld theory' gave orbits in a spherically
symmetrical field with definite energies for the series
electron and for inner electrons. Pauli's equivalence
principle" requiring that there are never two electrons
in an atom with all their quantum numbers the same,
coupled with the discovery of electron spin, ' allowed

just two electrons with opposite spins to occupy an
orbit in the field. The field could then be adjusted to
give, using Bohr's frequency condition, for outer
normally unoccupied orbits, a,nd for inner normally
occupied orbits, respectively, approximations to the
optical spectrum and to the x-ray spectrum.

The Bohr—Sommerfeld orbits correspond to suc-
cessive discrete values of action variables, differing
by Planck's constant h, which, with their conjugate
phases, give a canonical mapping of the phase-space
of the electron. Thus if each orbit is occupied by two
electrons, these a,re distributed rather uniformly at
two for each h' of six-dimensional configuration—
momentum space. WVe Ileed now suppose only that
the electrons present fill the orbits of lowest energy

D. R. Hartree, Proc. Cambridge Phil. Soc. 21, 615 (1924);
E. Fuee, Z. Phyeik 11, 369 (1922).

2 N. Bohr, Phil. Mag. 26, 1 (1918); A. Sommerfeld, Ber.
Akad. (Miinchen) 425 (1915).

3 W. Pauli, Z. Phyeik 31, 766 (1926).
4 G. Uhlenbeck and 8, Goudsmit, Natunvissenschaften, 95t

(Nov. 1925).

in the effective field, so that if V is the potential in
that field, measured from a suitable zero, electrons
may have momentum up to (2 meV) '=, where m and e

are electron mass and charge, and may occupy vol-
ume 3 v (2 meV)r of momentum space, to obtain the
value for the charge density at a place with potential
V,

2 4
p = —e —,—m(2meV)'.h' 3

Assuming also Poisson's equation, we have

7 V = —4+p = 4~e —,—v (2 meV)',2 4

as an approximate equation for the potential of the
effective electric fieM in an atom. ' For a neutral atom
we will expect V ~ 0 as r —+ ~ and Vr —+ Z, the
nuclear charge, as r ~ 0, as boundary conditions a,t
infinite and zero radius r.

This field gives the structure of the periodic table,
the total binding energies of a,toms, their spectra, and
atomic scattering cross sections —all in rough quali-
tative agreement with observa, tion. Its advantage is
its simplicity, one integration suKcing by scaling for
all neutral atoms. Its disadvantage is its roughness.

In atomic units, "h = 2x, e = 1, m = 1, we have
the T.F. equation

~ L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927);
F. Fermi, Z. Phye~ik 48, 73 (1928).


