On the Orthogonality Problem for Excited States*

M. Cohen ${ }^{\dagger}$
Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville
AND
A. Dalgarno \dagger
Geophysics Corporation of America, Bedford, Massachusetts

1. INTRODUCTION

SHARMA and Coulson ${ }^{1}$ have shown that to first order in Z^{-1}, Z being the nuclear charge, the Hartree-Fock wave functions of a pair of states of the same symmetry are orthogonal, and they have conjectured that the result is true to higher order. We shall show that, in fact, a departure from orthogonality occurs in second order.

2. DEPARTURE FROM ORTHOGONALITY

We consider as an example the $1 s n s^{3} S$ states of the helium sequence. Denoting the $1 s, n s$ radial functions by u, v which may be assumed without loss of generality to be orthonormalized, we may write the complete (spatial) eigenfunction as

$$
\begin{equation*}
\psi_{1}(1 s n s)=(1 / \sqrt{2})\{u(1) v(2)-u(2) v(1)\} \tag{1}
\end{equation*}
$$

and the corresponding energy
$E(1 s n s)=\langle u| H|u\rangle+\langle v| H|v\rangle+\langle u u \mid v v\rangle-\langle u v \mid u v\rangle$,
where

$$
\begin{align*}
H & =-\frac{1}{2} \frac{d^{2}}{d r^{2}}-\frac{1}{r} \frac{d}{d r}-\frac{Z}{r} \\
\langle a b| & =\frac{1}{r} \int_{0}^{r} a(t) b(t) t^{2} d t+\int_{r}^{\infty} a(t) b(t) t d t \tag{3}
\end{align*}
$$

and
$\langle a b \mid c d\rangle=\int_{0}^{\infty}\langle a b| c(r) d(r) r^{2} d r$.
Now consider some other state, say $1 s^{\prime} m s \ldots{ }^{3} S$, whose orbitals are u^{\prime}, w. The complete eigenfunction for this state will be

$$
\begin{equation*}
\psi_{2}\left(1 s^{\prime} m s\right)=(1 / \sqrt{2})\left\{u^{\prime}(1) w(2)-u^{\prime}(2) w(1)\right\} \tag{4}
\end{equation*}
$$

[^0]and its overlap with ψ_{1} is
\[

$$
\begin{equation*}
S=\left\{\left\langle u \mid u^{\prime}\right\rangle\langle v \mid w\rangle-\langle u \mid w\rangle\left\langle v \mid u^{\prime}\right\rangle\right\} . \tag{5}
\end{equation*}
$$

\]

If u and v are varied in (2) without further restriction, we obtain the pair of Hartree-Fock equations
$\left.\begin{array}{ll} & H u+\langle v v| u-\langle u v| v=\epsilon(1 s) u \\ \text { and } & H v+\langle u u| v-\langle u v| u=\epsilon(n s) v\end{array}\right\}$
and similarly for the state $1 s^{\prime} m s^{3} S$,

$$
\left.\begin{array}{rl}
H u^{\prime}+\langle w w| u^{\prime}-\left\langle u^{\prime} w\right| w & =\epsilon^{\prime}(1 s) u^{\prime} \tag{7}\\
\text { and } \quad H w+\left\langle u^{\prime} u^{\prime}\right| w-\left\langle u^{\prime} w\right| u^{\prime}=\epsilon(m s) w .
\end{array}\right\}
$$

We now expand
and
so that

$$
\left.\begin{array}{rl}
u & =u_{0}+Z^{-1} u_{1}+\cdots \\
\epsilon & =\epsilon_{0}+Z^{-1} \epsilon_{1}+\cdots \\
\langle a b| & =Z^{-1}\left\langle a_{0} b_{0}\right|+\cdots \tag{8}\\
S & =S_{0}+Z^{-1} S_{1}+\cdots
\end{array}\right\}
$$

and
and derive the following zero-order equations:

$$
\left.\begin{array}{r}
\left(H-\epsilon_{0}(1 s)\right) u_{0}=0 \\
\left(H-\epsilon_{0}(n s)\right) v_{0}=0
\end{array}\right\}
$$

We see that u_{0}, v_{0}, w_{0}, are simply hydrogenic solutions for the states $1 s, n s$, $m s$ with corresponding hydrogenic eigenvalues, and it is clear that

$$
\begin{equation*}
u_{0}^{\prime}=u_{0}, \quad \epsilon_{0}^{\prime}(1 s)=\epsilon_{0}(1 s) \tag{12}
\end{equation*}
$$

so that we may drop the primes from these zero-order quantities. The functions u_{0}, v_{0}, w_{0}, automatically satisfy the orthonormality conditions

$$
\left.\begin{array}{l}
\left\langle u_{0} \mid u_{0}\right\rangle=\left\langle v_{0} \mid v_{0}\right\rangle=\left\langle w_{0} \mid w_{0}\right\rangle=1 \tag{13}\\
\left\langle u_{0} \mid v_{0}\right\rangle=\left\langle v_{0} \mid w_{0}\right\rangle=\left\langle w_{0} \mid u_{0}\right\rangle=0
\end{array}\right\}
$$

so that $S_{0}=0$.
The first-order equations may now be written
down:

and

$$
\begin{align*}
S_{1}= & \left\{\left\langle u_{0} \mid u_{0}\right\rangle\left[\left\langle v_{0} \mid w_{1}\right\rangle+\left\langle v_{1} \mid w_{0}\right\rangle\right]\right. \\
& +\left[\left\langle u_{0} \mid u_{1}^{\prime}\right\rangle+\left\langle u_{1} \mid u_{0}\right\rangle\right]\left\langle v_{0} \mid w_{0}\right\rangle \\
& -\left\langle u_{0} \mid w_{0}\right\rangle\left[\left\langle v_{0} \mid u_{1}^{\prime}\right\rangle+\left\langle v_{1} \mid u_{0}\right\rangle\right] \\
& \left.-\left[\left\langle u_{0} \mid w_{1}\right\rangle+\left\langle u_{1} \mid w_{0}\right\rangle\right]\left\langle v_{0} \mid u_{0}\right\rangle\right\} \\
= & {\left[\left\langle v_{0} \mid w_{1}\right\rangle+\left\langle v_{1} \mid w_{0}\right\rangle\right] } \tag{16}
\end{align*}
$$

on account of (10).
The first-order solutions are arbitrary to within additive multiples of the corresponding zero-order solutions, and we choose those solutions which yield functions normalized up to first order. This is equivalent to the conditions

$$
\begin{equation*}
\left\langle u_{0} \mid u_{1}\right\rangle=\left\langle v_{0} \mid v_{1}\right\rangle=\left\langle u_{0} \mid u_{1}^{\prime}\right\rangle=\left\langle w_{0} \mid w_{1}\right\rangle=0 \tag{17}
\end{equation*}
$$

Now from (14) and (15), using the Hermitean property of H as well as (9) and (10), we have
$\left[\epsilon_{0}(n s)-\epsilon_{0}(m s)\right]\left\langle v_{0} \mid w_{1}\right\rangle=\left\langle u_{0} v_{0} \mid u_{0} w_{0}\right\rangle-\left\langle u_{0} u_{0} \mid v_{0} w_{0}\right\rangle$
and
$\left[\epsilon_{0}(m s)-\epsilon_{0}(n s)\right]\left\langle v_{1} \mid w_{0}\right\rangle=\left\langle u_{0} v_{0} \mid u_{0} w_{0}\right\rangle-\left\langle u_{0} u_{0} \mid v_{0} w_{0}\right\rangle$
so that
$\left[\epsilon_{0}(m s)-\epsilon_{0}(n s)\right]\left[\left\langle v_{0} \mid w_{1}\right\rangle+\left\langle v_{1} \mid w_{0}\right\rangle\right]=0$.
For $m \neq n$, this establishes that $S_{1}=0$ for every pair of configurations $1 s n s^{3} S$ and $1 s^{\prime} m s^{3} S$ in agreement with Sharma and Coulson.

It may be shown by straightforward analysis that orthogonality breaks down at second order; in fact,

$$
\begin{align*}
S_{2}= & \left\{\left[\left\langle v_{0} \mid w_{2}\right\rangle+\left\langle v_{1} \mid w_{1}\right\rangle+\left\langle v_{2} \mid w_{0}\right\rangle\right]\right. \\
& \left.-\left[\left\langle u_{0} \mid w_{1}\right\rangle+\left\langle u_{1} \mid w_{0}\right\rangle\right]\left[\left\langle v_{0} \mid u_{1}^{\prime}\right\rangle+\left\langle v_{1} \mid u_{0}\right\rangle\right]\right\}, \tag{20}
\end{align*}
$$

which may be written alternatively as

$$
\begin{align*}
S_{2}= & \left\{[\epsilon _ { 0 } (m s) - \epsilon _ { 0 } (1 s)] [\epsilon _ { 0 } (n s) - \epsilon _ { 0 } (1 s)] \left[\left\langle u_{0} v_{0} \mid w_{0} \Delta u_{1}\right\rangle\right.\right. \\
+ & \left.\left\langle u_{0} w_{0} \mid v_{0} \Delta u_{1}\right\rangle-2\left\langle v_{0} w_{0} \mid u_{0} \Delta u_{1}\right\rangle\right] \\
- & {\left[\epsilon_{0}(m s)-\epsilon_{0}(n s)\right]\left[\left\langle u_{0} w_{0} \mid v_{0} w_{0}\right\rangle-\left\langle u_{0} v_{0} \mid w_{0} w_{0}\right\rangle\right] } \\
& \left.\times\left[\left\langle u_{0} v_{0} \mid v_{0} w_{0}\right\rangle-\left\langle u_{0} w_{0} \mid v_{0} v_{0}\right\rangle\right]\right\} \\
& /\left\{\left[\epsilon_{0}(m s)-\epsilon_{0}(1 s)\right]\left[\epsilon_{0}(n s)-\epsilon_{0}(1 s)\right]\right. \\
& \left.\times\left[\epsilon_{0}(m s)-\epsilon_{0}(n s)\right]\right\} \tag{21}
\end{align*}
$$

with

$$
\Delta u_{1}=u_{1}^{\prime}-u_{1} .
$$

That a departure from orthogonality does occur is not unexpected for ψ_{1} and ψ_{2} are eigenfunctions of different Hamiltonians. Although the departure, being of second order, will usually be small ${ }^{2}$ it may be serious in calculations of the probabilities of weak transitions.

It is obvious that wave functions obtained by solving the Schrödinger equation by perturbation methods will be automatically orthogonal to any given order, but an explicit demonstration may be instructive.

Suppose that the Hamiltonian H is decomposed according to

$$
\begin{equation*}
H=H_{0}+H_{1} \tag{22}
\end{equation*}
$$

and that we have two eigenfunctions of H_{0} satisfying

$$
\begin{equation*}
H_{0} u_{0}=E_{0} u_{0} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{0} v_{0}=\epsilon_{0} v_{0}, \tag{24}
\end{equation*}
$$

such that

$$
E_{0} \neq \epsilon_{0} .
$$

It follows that

$$
\begin{equation*}
S_{0} \equiv\left\langle u_{0} \mid v_{0}\right\rangle=0, \tag{25}
\end{equation*}
$$

and we shall prove that

$$
\begin{equation*}
S_{n} \equiv \sum_{i=0}^{n}\left\langle u_{i} \mid v_{n-i}\right\rangle=0 \tag{26}
\end{equation*}
$$

for each n in turn.
We write the general perturbation equations in the form

$$
\begin{equation*}
H_{0} u_{n}+H_{1} u_{n-1}=\sum_{S=0}^{n} E_{S} u_{n-S} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{0} v_{n}+H_{1} v_{n-1}=\sum_{t=0}^{n} \epsilon_{t} v_{n-t}, \tag{28}
\end{equation*}
$$

and adopt the convention that $u_{-i}=v_{-i}=0(i>0)$.
From (27) with $n=i$ and (28) with $n=n-i$, we have

$$
\begin{equation*}
\left\langle v_{n-i}\right| H_{0}\left|u_{i}\right\rangle+\left\langle v_{n-i}\right| H_{1}\left|u_{i-1}\right\rangle=\sum_{S=0}^{n} E_{S}\left\langle v_{n-i} \mid u_{i-S}\right\rangle \tag{29}
\end{equation*}
$$

[^1]and
$\left\langle u_{i}\right| H_{0}\left|v_{n-i}\right\rangle+\left\langle u_{i}\right| H_{1}\left|v_{n-i-1}\right\rangle=\sum_{i=0}^{n-i} \epsilon_{t}\left\langle u_{i} \mid v_{n-i-t}\right\rangle ;$
then subtracting (30) from (29), using the Hermitean properties of H_{0} and H_{1}, and summing over i from 0 to n, we have
$0=\sum_{i=0}^{n} \sum_{S=0}^{i} E_{S}\left\langle v_{n-i} \mid u_{i-S}\right\rangle-\sum_{i=0}^{n} \sum_{t=0}^{n-i} \epsilon_{t}\left\langle u_{i} \mid v_{n-i-t}\right\rangle$.
These finite double sums may be rewritten so that (31) becomes
\[

$$
\begin{equation*}
0=\sum_{S=0}^{n}\left(E_{S}-\epsilon_{S}\right) \sum_{i=0}^{n-S}\left\langle u_{i} \mid v_{n-S-i}\right\rangle \tag{32}
\end{equation*}
$$

\]

and (26) follows by induction.
This result is valid only for the exact solutions u_{n}, v_{n} of the perturbation equations; if the Eqs. (27) and (28) are solved by the variation technique u_{n} and v_{n} are not exact solutions and the orthogonality condition (26) may not be satisfied. Condition (26) then provides an additional criterion of the accuracy of the procedure and the resulting n th-order corrections to the eigenfunctions u, v.

Statistical Theory of Atoms

L. H. Thomas
IBM Watson Laboratory, Columbia University, New York, New York

1. THE STATISTICAL FIELD EQUATION

 (T. F. EQUATION)BY 1925 some effective electric fields inside atoms had been calculated to fit observed data. ${ }^{1}$ The Bohr-Sommerfeld theory ${ }^{2}$ gave orbits in a spherically symmetrical field with definite energies for the series electron and for inner electrons. Pauli's equivalence principle ${ }^{3}$ requiring that there are never two electrons in an atom with all their quantum numbers the same, coupled with the discovery of electron spin, ${ }^{4}$ allowed just two electrons with opposite spins to occupy an orbit in the field. The field could then be adjusted to give, using Bohr's frequency condition, for outer normally unoccupied orbits, and for inner normally occupied orbits, respectively, approximations to the optical spectrum and to the x-ray spectrum.

The Bohr-Sommerfeld orbits correspond to successive discrete values of action variables, differing by Planck's constant h, which, with their conjugate phases, give a canonical mapping of the phase-space of the electron. Thus if each orbit is occupied by two electrons, these are distributed rather uniformly at two for each h^{3} of six-dimensional configurationmomentum space. We need now suppose only that the electrons present fill the orbits of lowest energy

[^2]in the effective field, so that if V is the potential in that field, measured from a suitable zero, electrons may have momentum up to $(2 \mathrm{meV})^{\frac{1}{2}}$, where m and e are electron mass and charge, and may occupy volume $\frac{4}{3} \pi(2 \mathrm{meV})^{\frac{3}{2}}$ of momentum space, to obtain the value for the charge density at a place with potential V,
$$
\rho=-e \frac{2}{h^{3}} \frac{4}{3} \pi(2 \mathrm{meV})^{\frac{3}{2}}
$$

Assuming also Poisson's equation, we have

$$
\nabla^{2} V=-4 \pi \rho=4 \pi e \frac{2}{h^{3}} \frac{4}{3} \pi(2 \mathrm{meV})^{\frac{3}{2}}
$$

as an approximate equation for the potential of the effective electric field in an atom. ${ }^{5}$ For a neutral atom we will expect $V \rightarrow 0$ as $r \rightarrow \infty$ and $V r \rightarrow Z$, the nuclear charge, as $r \rightarrow 0$, as boundary conditions at infinite and zero radius r.

This field gives the structure of the periodic table, the total binding energies of atoms, their spectra, and atomic scattering cross sections-all in rough qualitative agreement with observation. Its advantage is its simplicity, one integration sufficing by scaling for all neutral atoms. Its disadvantage is its roughness.

In "atomic units," $h=2 \pi, e=1, m=1$, we have the T.F. equation

$$
\begin{equation*}
\nabla^{2} V=\frac{8 \sqrt{2}}{3 \pi} V^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

[^3]
[^0]: * Supported in part by the Air Force Special Weapons Center, Kirtland Air Force Base, New Mexico, under contract No. AF 29(601)-5225.
 \dagger On leave from Department of Applied Mathematics, Queen's University, Belfast, Northern Ireland.
 ${ }^{1}$ C. S. Sharma and C. A. Coulson, Proc. Phys. Soc. (London), 80, 81 (1962).

[^1]: ${ }^{2}$ Dr. C. Froese (private communication, 1963) finds that (ψ_{1}, ψ_{2}) is 9×10^{-4} for the sodium configurations $1 s^{2} 2 s^{2} 2 p^{6} 3 s$ and $1 s^{2} 2 s^{2} 2 p^{6} 4 s$ and 5×10^{-4} for $1 s^{2} 2 s^{2} 2 p^{6} 3 p$ and $1 s^{2} 2 s^{2} 2 p^{6} 4 p$.

[^2]: ${ }^{1}$ D. R. Hartree, Proc. Cambridge Phil. Soc. 21, 615 (1924); E. Fues, Z. Physik 11, 369 (1922).
 ${ }^{2}$ N. Bohr, Phil. Mag. 26, 1 (1913); A. Sommerfeld, Ber. Akad. (München) 425 (1915).
 ${ }^{3}$ W. Pauli, Z. Physik 31, 765 (1925).
 ${ }^{4}$ G. Uhlenbeck and S. Goudsmit, Naturwissenschaften, 957 (Nov. 1925).

[^3]: ${ }^{5}$ L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927); E. Fermi, Z. Physik 48, 73 (1928).

