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more readily thaIl radial correlation. ""The Coulomb
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hole of an electron in an orbital q„& with n ) 1 and
l ) 0 may have a very complicated structure which
will require an expansion in 0» as well as r» and
which may not be rapidly convergent.
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N the ground state of helium, it is well known that
the greatest part of the electronic repulsion is

taken into account by giving to the nucleus an effec-
tive charge such that each electron moves inde-
pendently in a screened Coulomb central field. The
wave function is then a, product of two exponentials,
the variables being only the distances r& and r& of the
two electrons from the center of forces. Finer de-
tails on the correlation of the electrons and better
values of the computed energy can be gained by
multiplying by a power series, where the interelec-
tronic distance r» plays a dominant part. The screen-
ing constant is then replaced by an adjustable pa-
rameter. This is the way opened by the classical work
of Hylleraas with considerable numerical success.
Another way is the so-called method of superposition
of configurations which has been discussed in par-
ticular by Lowdin and Shull' and combined with the
first by Lowdin and H,edei. ' These authors have a,iso
studied the correlation between the electrons and we
shall follow their notations. YVe intend to give here
some results on the correlation as it appears after the
recent developments along the Hylleraas line of
thought. The unnormalized wave function has the
form

1( = exp [—s(r, + r2)]p .

~ is not an adjustable parameter but has the value

(—E)'*, E being the energy eigenvalue. &p is not at,

first a power series but a, series of polynomials. In
the work of Pekeris, ' the va, riables are the linear com-
binations s(r. + res —r, ), e(rz + rn —r,), 2s(r, + r,
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—r~s). In our own work' the variables entering into
the polynomials are

x 2E( lr+ rz) p r12/(rl + r2)

7 = (r, —r, )/(rg + r..) .

y is called the correlation factor. It modifies the
global properties of the wave function. Table I gives
some mean values computed with q and without p in
our 27-term approximation. For the comparison of
the norms, we have defined the arbitrary factor in q

by the condition

cp(xpr) =1 for z=p= 7 =0.
The exponential of the 27-term approximation or
of approximations of any rank is not the best way to
express an independent-electron model. The best ex-
ponential is known to be exp [—Z'(r, + r&)) with
Z' = 27/16. The difference with our exp [—e(r&+ r,)]
is not very great, the computed total energy being
-2.8477 instead of —2.8474.

To get a more detailed idea of the correlation ef-
fect, we have to study the local properties of the
function p and then of the function P. We meet here
with a, diS.culty of convergence. It is true that by
the Pekeris method and by our own method, one
gets an "exact solution" of the Schrodinger equa-
tion, in the sense that the substitution of the series
Of polynomials results in recurring linear equations
~vith a limited number of terms. The linear system is
solvable within any degree of accuracy. But for
isolated va, lues of the variables the series can be only
semiconvergent or perhaps divergent. For instance,
the solution of Pekeris is certainly not absolutely
coIlveI'gent for t'1 = f'2 = p» = 0, because no power

Pluvinage, S. Phys. RadIum, 1u, 675 (1955); C.
Munschy and P. Pluvinage, J. Phys. Radium, 18, 552 (1957),
and 23, I84 (1962).
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Fre. 1. The correlation factor y for the electrons in line
with the nucleus, one electron. being fixed at the distance c
atomic units(1 a. u. = 0.529 A).

Fr@. 2. Lines of equal P in a plane containing the nucleus
and one electron fixed in P at the distance 0.50 a. u. from
the nucleus. Relative values.

series in these variables is a formal solution. An in-
spection of our own numerical results' shows that the
convergence of our q for the value p = 1 is at least
weak.

Kith this restriction in mind we have computed
the values of our 42-term approximation of q in the
following conditions: the position of the erst electron
is fixed on an axis Ou at the distance r, = c from the
nucleus. The second electron varies along the axis.
In this configuration the correlation effect is clearly
the strongest. Figure 1 shows four curves for

c = 0, 0.25, 0.50, 0.75 a.u.

For each value of c except zero, we see three re-
gions:

RegionI. u ~(0, x = 2s(c —u), p =1,
r = (a + u)/(a —u) .

p varies slowly. It seems that there exists a relative
minimum if c is great enough. The branches of the
curves are dotted, because the weakness of the con-
vergence makes the numerical values somewhat un-
certain.

shortly because the convergence in x becomes soon
too weak.

The three branches are separated by abrupt
changes of slope. This feature is easily explained by
the form of the derivatives. Thus we get a partial
quantitative description of the "Coulomb hole" at
the place occupied by the fixed electron.

In Fig. 2, we have selected the value c = 0.50, be-
cause it is not, too far from the most probable value
of r& and because the convergence in x is still strong
enough. The second electron varies in the plane. Its
polar coordinates are r2 and the angle 0&2, which is the
angle between r~ and the Ou axis. We have com-
puted the relative values of P and drawn some lines
of equal values in the upper half of the plane. The
lower half is symmetric. Without correlation, the
curves would be circles with their centers at 0. %ith
correlation, the curves are stretched in the direction
opposite to the Axed electron; this feature is most
marked when r& and r2 are of the same order of mag-
nitude.

RegionII. 0~(u~(a, x=2s(a+u),
p = r = (a —u)/(a+u).

The curves are nearly straight lines with negative
slopes. For c = 0 the branch disappears. Table II
gives the values of p at the limits of the region.

Reg2onIII. c~(u, x =26(c+u),
p = —r = (u —a)/(c+u).

0.1

0 p 0,

The curves are also nearly straight hnes but the Fxo. 3. Lines of equal Probability of Presence of the second
electron at a position defined with respect to the erst electron

slopes are positive. They are interrupted rather located at P. Relative values.
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To get an exact idea of the probability of presence
of the second electron, one must think of this graph
as of the meridian section of a repartition around the
Ou axis. Furthermore we have to compute P and to
mu1tiply by the weight function r2 sin 0». The lines
of equal probabilities are represented in Fig. 3. %ith-
out correlation, they would be symmetric with re-
spect to the axis 0» = 90'. YVith correlation, the re-
pelling action of the fixed electron is obvious. The
conversion factor from relative to absolute values is
a product

without & with &

norm
potential energy
(pi

—I)
(7I2 ')
kinetic energy
total energy
(r )

0.40312—5.7511
1,7040
1.0650
2.9037—2.8474
0.8803

0.53551—5.8074
1.6883
0.9458
2.9037—2.9037
0.9298

TABLE I. Mean values in atomic units without MId with
correlation in a 27-term approximation,

10 'X '8s'c- exp (—2sc) = 0.67,

where 10 ' stands for the scale of the graph, Ã ' for
the normalization, 8~' for the angular coordinates of
the rirsr» triangle in space, and a' exp (—2su) for the
density of probability of the first electron.

%e thank G. Faivre for assistance in preparing
Table I.

0.25 0.50 0.75

1.053
0.894

l. ill
0.820

1.175
0.763

TABIE II. Maximum and minimum of the correlation factor
for different positions of the first electron (a is in atomic units

of length).

Discussion on The Hartree-Pock Approximation
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Lowoix: I would like to comment on some peculiarities with respect to the symmetry proper-
ties. In the original atomic Hartree calculations [D. R. Hartree, Proc. Cambridge Phil. Soc. 24,
89 (1928); Repts. Prog. Phys. 11, 113 (1948); Calculation of Atomic 8tructures (John Wiley
4 Sons, Inc. , New York, 1957)] it was assumed that the resulting orbitals would be symmetry-

adapted and, in the calculations, the corresponding self consistent field potentials would always
be replaced by their spherically symmetric part. The scheme was essentially refined when Slater
[J. C. Slater, Phys. Rev. 35, 210 (1930)] and Fock [V. Fock, Z. Physik 61, 126 (1930)]suggested
that the total wave function + should be approximated by a single determinant built up from
spin-orbitals, and the application of the variation principle lead then to the famous Hartree —Fock
equations [V. Fock, Z. Physik 61, 126 (1930)].It seems to have been generally assumed that, if
the total Hamiltonian II for the many-electron system had a certain symmetry property then the
Hartree —Fock functions will also automatically be symmetry-adapted.

Delbriick [M. Delbriick, Proc. Roy. Soc. (London) A129, 686 (1930)]proved that, if the total
system is spherically symmetric and one requires the total determinant to have '8 character, then
the associated orbitals are eigenfunctions of the orbital angular momentum and of the spin. In
the case of more general types of symmetry occurring in molecular and solid-state systems, it has
later been proven [C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960);P. O. Lowdin, J. Appl.
Phys. Suppl. 33, 251 (1962)]that the assumption that the Hartree —Pock functions are symmetry-
adapted, i.e., form a basis for the irreducible transformation, is always self consisfenf and cor-re-

sponds to a specific minimum of the total energy. The question I would like to raise is whether
this is really an absolute minimum or not?

The question whether the extreme values of (H) associated with the variation principle are
maxima, minima, or terrace points has been studied in some detail [D. J. Thouless, Nuclear Phys.
21, 225 (1960); W. H. Adams, Phys. Rev. 12/, 1650 (1962)]. Adams uses the term "absolute
minimum" to denote a point where the second variation of the total energy is positive definite,
whereas we have here used the term to denote the lowest one of all possible minima. So far, how-

ever, there has not been found any simple criterion which guarantees the occurrence of an absolute
minimum lower than any other possible minima.


