REVIEWS OF MODERN PHYSICS

VOLUME 35,

NUMBER 3 JULY 1963

Interpretation of the Rapid Convergence of
Correlated Wave Functions*

T. L. GILBERT
Argonne National Laboratory, Argonne, Illinois

HE following comments are concerned with the

effect of correlation on the functional form of
the wave function. More specifically, they pertain
to the structure of the Coulomb hole and the question
of why correlated wave functions are better suited
for an accurate description of the Coulomb hole than
a superposition of configurations.

It is a well-known fact, first pointed out by
Hylleraas'? and recently reiterated by a number of
workers,*® that a superposition of configurations
converges much more slowly than a correlated wave
function. The numerical results for the ground state
energy of He serve to emphasize this point. The
correlation energy for He iS Eeorr = Fur — Fexaor =
—2.861680 + 2.903724 = 0.042044 atomic units.”?®
Using a correlated wave function containing only
three terms, Hylleraas was able to recover 96.95%,
of this correlation energy.? Six-, ten-, and fourteen-
term correlated wave functions recover 98.85, 99.71,
and 99.95%,, respectively.2?-1° By contrast, 20 and 35
configurations are required to obtain comparable
results of 97.56 and 98.759, of the correlation, re-
spectively.> !

The greater efficiency of correlated wave functions

* Based on work performed under the auspices of the U S
Atomic Energy Commission.
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has been attributed to the fact that they are better
suited for describing short-range correlation effects,
in particular, to their obvious superiority for repre-
senting the cusp at r, = 037 There is reason for
questioning this interpretation. There is evidence to
support the claim that the contribution to the corre-
lation error from a poor representation of the wave
function in the neighborhood of the cusp is relatively
small and that the superiority of correlated wave
functions is due to the fact that the entire Coulomb
hole (which has a radius comparable to the atomic
radius) has a much simpler structure relative to the
electron than it does relative to a fixed reference
point.

The most convincing part of the evidence may be
found in a paper by Coulson and Neilson.”? They
compute the pair distribution function

f(re) = /!1&(1,2)\2dvldv2/dr;z = wzrlz./ ds

x [ s~ pwa M

for the ground state of He using a number of ap-
proximate wave functions. (The variables in the
second equality are s =7 + 7. and t =17 — 72.)
They find that the relation between the error in the
total energy and the quantity

<7‘12_1> = '/:rl{lf(ru)drm

is approximately linear with a slope which differs by
only a few percent from 0.5 (in the proper units)."
This empirical result implies that the error in the

- electron—nucleus part of the potential energy is neg-

ligible and justifies the use of the quantity A =
f ri2 t A(ri2)drie as a measure of the correlation error,
where A(ri2) = fexaot(r12) — far(ri2) is the difference
between the exact pair distribution function and the
pair distribution function calculated with the Har-

12 C. A. Coulson and A. H. Neilson, Proc. Phys. Soc. (Lon-
don) 78, 831 (1961).

BT am indebted to Professor Coulson for pointing out this
fact and its implications. The argument utilizes the virial

theorem and the fact that both the exact and approximate
wave functions satisfy the virial condition.
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tree—Fock wave function. The forms of the functions
A(ri2) and 727 A(r2) are shown in Figs. 1 and 2.
(Figure 1 is a replot of Fig. 4 in the Coulson—Neilson
article. Figure 2 was calculated from their figure and,
hence, should be regarded as only a qualitative repre-
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Fic. 1. The unweighted Coulomb hole, calculated by Coul-
son and Neilson!? with the six-term correlated wave function
of Hylleraas.

sentation of the true form. The qualitative form is

sufficient for the purpose of this discussion.) The 6-

term correlated wave function of Hylleraas was used

for the “exact” wave function. A strong point of the

argument is that f (r2~7.* when 7, = 0 so that*
limo 7’12——1A<7'12) = 0 .

It is clear from Fig. 2 that the size of the Coulomb
hole is comparable with the dimensions of the atomic
orbital, as pointed out by Coulson and Neilson, and
that the dominant contribution does not come from
the neighborhood of the cusp but from an extended
region which is comparable to the dimensions of the
orbital. Although it may be true that a good cusp is
important for extremely accurate results, it does not
appear to be reasonable to ascribe the more rapid
convergence of correlated wave functions primarily
to the ease with which they can reproduce the
Coulomb hole in the neighborhood of the cusp. A
more likely explanation is that the Coulomb hole
has a rather simple structure when viewed relative
to one of the electrons (so that a description in terms
of the variable r; leads to simple and rapidly con-
verging functions) while it has a rather complex
structure when viewed relative to a fixed set of axes

14T am indebted to Dr. Lars Hedin for bringing this point
to my attention.
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(so that a description in terms of a superposition of
configurations is complicated and slowly convergent).

Additional evidence may be found by examining
the cusps of correlated wave functions. Values of the
cusp for the 10- and 14-term correlated wave func-
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Fia. 2. The Coulomb hole, calculated by Coulson and Niel-
son!? with the six-term correlated wave function of Hylleraas.

tions of Chandrasekhar and Herzberg are given in
Table I. We see that the cusp can be in error by an
appreciable amount even when the total energy is
correctly given to five significant figures.

As a further check of our conjecture that the
Coulomb hole has a simple structure when viewed
relative to the instantaneous position of the electron,

TasLe I. Cusp values for the 10- and 14-term correlated wave
functions of Chandrasekhar and Herzberg.?10 Cusp = 9 log
¥/0r1e| rpmto = (B + X68)/(1 + 85 + es? + x118%) where s
=7y +ry,t =r2 —7r1,and B, §, ¢ Xs, and X;; are numerical
constants. The last column gives cusps for third-degree poly-
nomials fitted to the calculated points of the correlation
function shown in Fig. 3. The exact energy is £ = — 2.903724
atomic units.8 The exact value of the cusp is .

Cusp
14-term 10-term Cubic fit to
s correlated correlated correlation
wave function wave function function
0.5 0.431 0.384
1.0 0.459 0.418 L.
2.0 0.498 0.490 0.372
4.0 0.506 0.619 0.313
6.0 0.462 0.672 0.223
B —2.903701 a.u. —2.903603 a.u. -
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1t is useful to examine the dependence of the correla-
tion function ¢(ri,8,t) = Yexaet(1,2)/¥mr(1,2) on the
variable r, for various values of s and {. Curves
which exhibit this dependence are shown in Fig. 3.
The 10-term correlated wave function of Chandra-
sekhar and Herzberg was used to calculate the points
indicated on these curves. The curves are smooth,
approximately linear, and do mnot change very
drastically as s and ¢t are varied. This simple be-
havior is more precisely demonstrated by the rapid
convergence of simple polynomial approximations
chosen to fit the calculated points of the correlation
function (indicated by crosses). Sample polynomials
are

9(r12,2,0) = 0.68286 + 0.25390r:; — 0.01765177;
— 0.0014687,

g(ri2,4,0) = 0.48900 + 0.15322r1, — 0.013840r%,
-+ 0.000032r3; ,

9(r12,6,0) = 0.22235 -+ 0.049557712 — 0.00444977,
+ 0.00000073; .

These polynomial approximations do not, of course,
15.Q. C. Simpson and D. MeColl (unpublished calculations,

Argonne National Laboratory). I am indebted to Dr. Simpson
for permission to reproduce these curves.

reproduce the structure of the Coulomb hole in the
neighborhood of the cusp where a small dip (not
shown) may be expected. We infer this from the
rather small cusp values obtained from the poly-
nomials (see Table I, third column). However, the
polynomials do reproduce the over-all structure of the
correlation hole within the region where the function
re A(riz) is large and, hence, within the region
where the dominant contribution to the correlation
energy should occur.

In summary, the Coulomb hole in helium extends
over a distance comparable to the atomic radius, is
approximately spherical, smoothly dependent on
position and representable by a rapidly converging
series in ri2. These properties obviously favor a cor-
related wave function, quite independently of the
suitability of correlated functions for representing
the cusp. It should be emphasized, however, that the
simple structure of the Coulomb hole has been dem-
onstrated only for the 1s* configuration. If our argu-
ments are correct, then the success of correlated wave
functions for helium cannot be extrapolated to
heavier atoms. The Coulomb hole for a pair of elec-
trons in a 2s* configuration, for example, will be non-
spherical because angular correlation can occur much
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more readily than radial correlation.’®*” The Coulomb

16 1., Szasz, Phys. Letters 3, 263 (1963).
17 R. McWeeny and B. T. Sutcliffe, Proc. Roy. Soc. (Lon-
don) 273A, 103 (1963).
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hole of an electron in an orbital ¢,;, with n > 1 and
I > 0 may have a very complicated structure which
will require an expansion in 6 as well as r. and
which may not be rapidly convergent.
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N the ground state of helium, it is well known that
the greatest part of the electronic repulsion is
taken into account by giving to the nucleus an effec-
tive charge such that each electron moves inde-
pendently in a screened Coulomb central field. The
wave function is then a product of two exponentials,
the variables being only the distances r, and 7, of the
two electrons from the center of forces. Finer de-
tails on the correlation of the electrons and better
values of the computed energy can be gained by
multiplying by a power series, where the interelec-
tronic distance r:» plays a dominant part. The screen-
ing constant is then replaced by an adjustable pa-
rameter. This is the way opened by the classical work
of Hylleraas with considerable numerical success.
Another way is the so-called method of superposition
of configurations which has been discussed in par-
ticular by LOowdin and Shull' and combined with the
first by Lowdin and Reédei.? These authors have also
studied the correlation between the electrons and we
shall follow their notations. We intend to give here
some results on the correlation as it appears after the
recent developments along the Hylleraas line of
thought. The unnormalized wave function has the
form

¥ = exp [—e(r +12)]e .

eis not an adjustable parameter but has the value
(—E)% E being the energy eigenvalue. ¢ is not at
first a power series but a series of polynomials. In
the work of Pekeris,? the variables are the linear com-
binations e(ry + 712 — 1), €(r1 + 112 — 72), 2e(r1 + 72

1P. O. Lowdin and H. Shull, Phys. Rev. 101, 1730 (1956);
see also Louis C. Green, Marjorie M. Mulder, C. W. Utfford,
E. Slaymaker, Eleanor Krawite, and R. T. Mertz, Phys. Rev.
85, 65 (1952).

2P. O. Lowdin and L. Rédei, Phys. Rev. 114, 752 (1959).
( 3 C.) L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216

1959).

— r12). In our own work* the variables entering into
the polynomials are

T = 26(7'1 + 72) y P = 7'12/(7'1 + 72) )
o= (r, — re)/(r + 12) .

¢ is called the correlation factor. It modifies the
global properties of the wave function. Table I gives
some mean values computed with ¢ and without ¢ in
our 27-term approximation. For the comparison of
the norms, we have defined the arbitrary factor in ¢
by the condition

o,p,7) =1 for 2 =p=71=0.

The exponential of the 27-term approximation or
of approximations of any rank is not the best way to
express an independent-electron model. The best ex-
ponential is known to be exp [—Z'(ry + 72)] with
7' = 27/16. The difference with our exp [— e(r, + 72)]
is not very great, the computed total energy being
—2.8477 instead of —2.8474.

To get a more detailed idea of the correlation ef-
fect, we have to study the local properties of the
function ¢ and then of the function ¥. We meet here
with a difficulty of convergence. It is true that by
the Pekeris method and by our own method, one
gets an ‘“exact solution” of the Schriodinger equa-
tion, in the sense that the substitution of the series
of polynomials results in recurring linear equations
with a limited number of terms. The linear system is
solvable within any degree of accuracy. But for
isolated values of the variables the series can be only
semiconvergent or perhaps divergent. For instance,
the solution of Pekeris is certainly not absolutely
convergent for r, = r, = r, = 0, because no power

4+P. Pluvinage, J. Phys. Radium, 16, 675 (1955); G.
Munschy and P. Pluvinage, J. Phys. Radium, 18, 552 (1957),
and 23, 184 (1962).




