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~~N an occasion like the present we should look
backward aC the earlier stages of our science,

and perhaps I may be pardoned for putting more
emphasis in this talk on the earlier history of the de-
velopment of the electronic theory of atomic struc-
ture, rather than on the later advances which are
familiar to the younger workers in the field. Let me
start, then, not merely with the development of
Hchrodinger's equation in 1926, but six years earlier,
in 1920, which happens also to be the year when I
started my graduate work, and began to be ac-
quainted with the new atomic theory which was
growing up. This was the year, too, in which the
Zeitschrift fur Physik began publication. If a modern
reader looks over those early volumes, he will be
struck with the many famous papers and famous
names which he will find in their pages. Very close to
the beginning, we see the first steps toward the
modern theory of electronic structure of atoms.

Sommerfeld, several years earlier, in, the various
editions of his "Atombau und Spektrallinien, "which
formed the bible for all graduate students of that
period, had made it clear that Bohr orbits in a central
but non-Coulomb field would lead to energy levels
approximately satisfying H,ydberg's formula, E =
—1/(n + d)' Rydbergs. No effort had been. made to
set up a central field leading to actually observed
energy levels, however. On.e of the first such attempts
was made by Schrodinger, ' in an early volume of the
7~eitschrift. Schrodinger, who in those days before
the invention of wave mechanics was just another
physicist, tried to investigate Bohr orbits for the
valence electron of sodium and showed that the orbit
would have to penetrate within the core of the atom,
if we assigned to the latter a reasonable radius. At
that time, it was not even known what was the prin-
cipal quantum number of the valence electron, and
Schrodinger could not go very far toward finding its
value.

The whole picture of the quantum numbers of the
electrons in an atom was illuminated in a fIash by
Bohr's theory of the periodic system of the elements.
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This theory, first presented in a lecture before the
Danish academy, was published in the Zeitschrift'
soon after Schrodinger's paper quoted above, and for
the first time we knew that in sodium the ls, 2s, and
2p orbits were occupied by the inner electrons, while
the valence electron was a 3s, which could be excited
to higher s states, or to 3p, 3d, etc. , by absorption of
light. The physicist who did not live through that
period can hardly imagine the excitement felt by a
new graduate student, picking up Number 1 of Vol-
ume 9 of the Zeitschrift, and there reading for the
first time the complete explanation of the periodic
system of the elements. In that paper Bohr made it
clear that Chere must be a central field for sodium in
which the inner orbits, corresponding to ls, 2s, and

2p, lay entirely inside the atom, while the 3s orbit
was partly outside, partly inside. Obviously it was a
matter of the greatest interest to see whether a cen-
tral field could be found in which the orbits had this
behavior, and in which, furthermore, the energy lev-
els of the states matched the experimentally known
x-ray and optical energy levels of sodium.

%'ork was already going on to answer this question,
before Bohr's paper came out. Fues' and Hartree'
were trying independently, and by different methods,
to work backward from the observed terms to find a
potential having the required properties, and each
found that it was possible to find the potential,
capable of reproducing the energy levels with errors
of only two or three percent, and verifying Bohr's as-
signment of quantum numbers. Hartree stated his
potential in terms of a charge distribution which
would lead to it and was surprised to find that a
smooth continuous distribution of charge was indi-
cated, extending out beyond the radius which we
shouM ordinarily expect for Bohr orbits. This charge
distribution was substantially the same which we now
know is actually found in the sodium atom, though it
was found before wave mechanics, and Hartree
checked it by computing x-ray scattering from it,
getting results in good agreement with experiment.
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I"ues and Hartree realized that somehow the charge
distribution resulting in this potential must come
from the electrons in the atom, but with the current
ideas that the electrons moved in sharply defined
orbits, it was hard to see how a smooth distribution
of the type which they found could be produced from
these orbits. This diKculty did not prevent one
straightforward attempt to carry through a self-con-
sistent calculation, deriving a charge from a spherical
average of the Bohr orbits, and requiring that the
orbits themselves be those appropriate to this po-
tential. Such a calculation was carried through, again
for sodium, by Lindsay, ' snd it represents the closest
approach to a self-consistent field calculat, ion which
was attempted on the basis of the old quantum
theory.

It is clear fram these items of history that Hartree
was thinking directly along lines leading to the pres-
ent self-consistent field method before wave mechan-
ics was invented, and it is not surprising that he v as
able to propose his method as we now know it very
promptly after Schrodinger published his papers re-
garding wave mechanics in 1926. Hartree's method, "'

reasonable in an intuitive way, of course assumed
that each electron moved according to wave mechan-
ics in a central field computed from the nuclear
charge, and the spherically averaged charge distribu-
tions of all other electrons, and it took essentially a
complete form with his first papers. It yielded elec-
tronic wave functions, from which the charge dis-
tribution in the atom could be found, leading to more
accurate checks with charge densities as found by x-
ray methods than had been obtained earlier. Also it
yielded the energies of the one-electron problems,
which showed a close resemblance to the energies of
the electrons in the atom, that is, to the negatives of
the various ionization potentials, x-ray and optical.
At last the suggestion of Bohr was put on a quanti-
tative basis.

The idea of Hartree was almost entirely intuitive
in its origin. The first step in fitting it into the wider
picture of wave mechanics was taken approximately
simultaneously by Gaunt' and the present author. '
They showed that one could set up a many-electron
wave function for the atom, as a product of one-elec-
tron functions for the various electrons. This function
of course was not an exact solution of the many-elec-
tron Schrodinger equation. However, each of these
authors investigated the nondiagonal matrix com-
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ponents of the Hamiltonian bet ween wave functions,
set up in this way for different states of the whole
atom, and showed that if the one-electron functions
were set up according to Hartree's prescription, the
nondiagonal matrix components became smaller than
if any other assumption were made for the one-elec-
tron functions. This furnished a valid theoretical ex-
planation for the success of Hartree's method.

In addition, these two authors investigated the
energy differences between the energy of the com-
plete atom, and of an ion lacking one of its electrons,
and showed that these calcu1ated ionization poten-
tials equalled Hartree's one-electron energies (with
changed sign), except for small first- and second-order
perturbation corrections, which were of the order of
magnitude of the errors found in Hartree's calcula-
tions. These treatments were an anticipation of the
later derivation of the same sort of results from the
Hartree —Fock method by Eoopmans. ' As pointed out
by both Gaunt and the present author, the correc-
tions are such as to explain the observed fact that the
ionization potentials determined by Hartree's method
are, in fact, more accurate than the calculated differ-
ences between the energies of atom and ion.

Soon after these papers, it occurred to the present
author" and to Fock" that there should be another
approach to a demonstration that Hartree's method
was a valid application of wave mechanics. If we set
up a many-electron wave function as a product of
one-electron functions, we should be able to use the
variation principle, varying the one-electron func-
tions so as to make the energy stationary. In the two
papers mentioned above, it was pointed out that this
requirement resulted in equations which were essen-
tially equivalent to Hartree s, differing only slightly,
in that they did not include the spherical averaging
of the potential which Hartree used.

During the period between the papers of Gaunt
and the present author in 1928, and those of the
present author and Fock in 1930, our knowledge of
the method for handling the requirement of antisym-
metry of the wave function had advanced through
the suggestion of the present author" of the method
of combining the determinantal form of the wave
function, which had been proposed by Heisenberg"
and Dirac, "with the Pauli treatment of the electron
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spin, " to give the determinantal method as v e now
know it. Before that time, the more cumbersome
group-theoretical methods based on the permutation
group" formed the only method of treating the sym-
metry of wave fun. ctions. These earlier methods were
used by Gaunt and the present author in their 1928
papers.

In the 1930 papers of the present author and of
Fock, it was realized that the simple product wave
function, which was assumed in the derivation of
Hartree's equations, was not correct as far as sym-
metry was concerned, and that Hartree's equations
should properly be replaced by more complicated
ones arising by the application of the variational
method to a properly antisymmetrized combination
of one-electron functions. The present author did not
set up these more complicated equations, since his
main. purpose was to show that Hartree's original
method was a good approximation to the correct pro-
cedure. Fock did set up the more elaborate formula-
tion now known as the Hartree —Fock method, but
since he was not familiar with the determinantal
method, he used the more dificult techniques of the
permutation group, thereby making his paper quite
complicated to read. The simplification arising from
deriving the Hartree —Fock equations from a de-
terminantal wave function was emphasized by
Hartree, "when he came to formulate the method for
actual calculation.

The work which we have been describing all as-
sumed that the one-electron functions were to be de-
termined by numerical integration of a radial differ-
ential equation, the results being presented as tables
of values. Very early, however, it was realized that
for many purposes it was desirable to have the func-
tions approximated in an analytical way. Among the
earliest papers along these lines were those of
Guillemin and Zener, " and of Eckart)" in 1930.
Frenkel had earlier included in his textbook on wave
mechanics an example of the variation principle, in
which the wave function of the helium atom was
written in the simple form e-'"&+"2', a function which
of course forms the starting point of Hylleraas's
treatment of helium, and Frenkel had varied the
parameter a to minimize the energy, resulting as is
well known in a fairly good approximation to the
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helium wave function. Guillemin and Zener, in the
paper quoted above, extended this method to three-
electron atoms, and Zener applied it to the atoms up
to neon, arriving at quite acceptable wave functions.
The present author" used these wave functions of
Zener as a basis for suggesting similar analytic wave
functions for heavier atoms. This method of analytic
approximation to the one-electron functions has been
extended from 1930 to the present, with more and
more elaborate analytic functions, until the latest
beautiful results of E. Clementi (unpublished) for the
lighter atoms, and similar results available in various
laboratories for heavier atoms, are fully as accurate
as the numerical calculations, and are far more de-
sirable for calculation of the various integrals needed
in evaluating the energy of the atoms, as well as far
better adapted for molecular applications.

From the beginning it was realized that the Har-
tree and Hartree —Fock methods were of only limited
accuracy. The first test of course was in helium,
where the error in total energy of the atom, as cal-
culated by the self-consistent Beld, is nearly 1.5 jo.
As accurate Hartree —Pock calculations have been
made for more of the light atoms, for which the ex-
perimental energies are known with great accuracy,
it has been found that most of the errors run in the
neighborhood of a percent. The explanation of the
error was straightforward and was understood from
the first. The method of the self-consistent field as-
sumes that the various electrons move independently
of each other, either completely independently (the
Hartree method), or affecting each other only
through the requirement of antisymmetry of the
wave function (the Hartree —Fock method). On the
other hand, it seems intuitively obvious that two
electrons, repelling each other by Coulomb repulsion,
will be less likely to be found at the same point of
space than at points separated from each other. En

other words, there should properly be included in the
calculation an effect of the correlation of the motion
of the various electrons. It has become customary,
following the lead of Lowdin, to refer to the energy
difference between the Hartree-Fock energy (as cor-
rected for relativistic effects) and the experimental
energy as the correlation energy. Obviously the at-
tempt to improve the Hartree —Fock method must be
an attempt to include the effect of correlation in the
calculation.

Here, the lead has come almost entirely from the
work on helium. There are two methods which have
proved particularly fruitful for including a correla-

2c J. C. Slater, Phys. Rev. 36, 57 (1930).
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tion correction, and both come from the early work
of Hylleraas. First" is the method now known as con-
figuration interaction. Hylleraas set up, not a single
determinantal function, but in principle an infinite
set, formed by replacing the one-electron functions,
which we now know as spin-orbitals, by any one of a
complete set of funcI ions. The resulting complete set
of determinantal functions forms a suitable basis set
for expressing the true wave function of the problem
as a linear combination, and Hylleraas investigated
the accuracy of a linear combination of a finite set of
determinantal functions, as an approximation to the
helium wave function. He realized that the spin-
orbitals should include functions belonging to the
continuum, if we used Hartree —I~'ock functions for
the excited states as spin-orbitals. To avoid this, he
used radial functions formed from Laguerre functions,
having the peculiarity that they form a complete set
without having any continuum. Hylleraas found a,

rather slowly-convergent series, which discouraged
him from proceeding further with this method. Ho~v-

ever, Lowdin and Shull" have since shown that this
method can be easily extended to enough terms to
give a quite good approximation to the true wave
function of helium. While this is not the best method
which we have available for helium, it has been used
for some heavier atoms, notably beryllium, "where it
gives as good results as have so far been obtained for
atoms heavier than helium.

The second method for handling correlation, which
has proved more successful for the helium problem,
was also suggested by Hylleraas, "slightly after the
paper Inentioned earlier. Hylleraas noted that the
wave function for the ground state of helium can be
regarded as a function of only three variables, rj, r&,

the distance of the two electrons from the nucleus,
and r», the distance between electrons. It is the de-
pendence on r» which expresses the correlation. He
suggested handling this dependence by a procedure
which, in its simplest expression, amounts to multi-

plying a function like e '"&+"2', the simplest form of
product wave function, by a factor like 1 + br», de-
scribing the way in which the wave function in-
creases with increasing r». By extending this factor
to the form of a series of terms each of which is a
product of a power of r1, a power of r2, and a power
of F12 Hylleraas secured the excellent agreement with
experiment with which everyone is familiar.

The use of the term in r» in the wave function has
a sound theoretical justification, as was pointed out

2i E. Hylleraa, s, Z. Physik 48, 469 (1928).
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by the present author" in papers appearing before
Hyllera, as's work. The author pointed out that the
true wave function had to depend on r», in the limit
of very small r», like a factor e'"», which of course
can be expanded in a power series 1 + r»/2 +
This cusplike behavior of the wave function, which
increases linearly when one electron moves away
from coincidence with the other in any direction, is
shown more and more accurately as we get to more
and more accurate approximations to the true wave
function. The greater success of wave functions em-
ploying direct dependence on r», as compared to the
configuration interaction method, arises because in
the configuration interaction we are trying to expand
this cusplike behavior in Fourier series, a relatively
slowly-convergent expansion.

This method of including r» explicitly in the wave
function was very successful for helium, but it has
proved a very slow process to adapt it for heavier
atoms. This is not a result of difhculties in principle,
but of the practical problem that the number of
terms that must bc handled increases extremely
rapidly with increasing numbers of electrons. We
still do not have successful examples of the applica-
tion of the method to atoms heavier than lithium.
However, work now in progress using similar meth-
ods by O. Sinanoglu and L. Szasz on beryllium is
very hopeful, and leads us to the feeling that by
using modern computing methods to their limit, we
shall be able to achieve a satisfactory treatment of
correlation, for atoms appreciably heavier than
helium. Furthermore, study of the empirical correla-
tion energies, at the hands of various present workers
in the field, making use of the accurate Hartree —Fock
energies of Clementi, is leading to empirical gen-
eralizations, showing that the largest terms in the
correlation energy seem to come from the interaction
of two electrons in the same orbital, but with op-
posite spins. If such generalizations can be justified
by more accurate calculations, the problem of han-
dling correlation energy analytically may prove to be
less formidable than has been generally thought.
Progress in this field seems to be more rapid now than
at any time during the last 40 years, and one may
well hope that in a few years we shall have solutions
of the atomic problem of adequate accuracy, by
which one means errors small compared to chemical
binding energies. This is the goal, which has not yet
been reached for any case except the two-electron
atom and ions, where the brilliant work of Hylleraas
pointed the way so many years ago.
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