
PAIR CORRELATION ENERGIES

The contribution to the 1s-orbital energy is five to
ten times greater than that to the 2s-orbital energy.
For single electrons in doubly filled orbitals, the
relativistic corrections are approximately:

E,.i(ls) = 0 11.6sn (Z —.534) ) (9a)

E,.i(2s) = 0.0402n (Z —2.1c), (9b)

E,.i(2p) = 0.0402n'(Z —6.65) . (9c)

These values appear in Table VII together with the
results of Pekeris" and Scherr et Ot." from which
they were derived. (These contain the implicit
assumption, only true to first order, that the cor-
rection for an inner electron is independent of the
presence of an outer one. )

The additivity of pair correlation effects here
demonstrated by the analysis of instrumental and
computational experiments on atomic systems is of
first importance to contemporary formulations of the
many-electron problem in atoms and molecules. The
traditional method of configuration interaction is
most efFiciently carried through and interpreted
under the assumption of additivity. " In addition to

z' R. E. Nesbet, Proc. Roy. Soc. (London) A230, 812
(1955); Rev. Mod. Phys. 33, 28 (1961).

other factors, successful utilization of the recent
formulations of Sinanoglu, ""Szasz," and Tsang"
depends upon the separability and additivity of pair
correlations. A description of correlation in terms of
opposite spin pairs is also inherent to the method of
spin-correlated orbitals. "Further, it seems evident
that, in the generalized self-consistent-field theory
of McWeeny, 36 the localized electron groups which
are to be treated exactly should be groups of two
orbital partners. The present analysis also suggests,
for calculations in the near future, the additional ap-
proximation of neglecting all correlations except
those between orbitally paired electrons. Such a
treatment would account for more than 80% of the
total correlation energy.
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1. INTRODUCTION

I
W

~

NE of the most fundamental approximations' of
the theory of molecular structure consists of

separating the nuclear motion and in computing only
the electronic wave functions and energies for fixed
positions of the nuclei. This is the socalled adiabatic

~ Supported in part by the National Science Foundation.
$ Permanent and present address: Institute of Nuclear Re-

search, Polish Academy of Sciences, Warsaw, Poland.
r M. Born and R. Oppenheimer, Ann. Phys. 84, 457 (1927).

approximation which is applicable, if the motion of
the nuclei is much slower than that of the electrons.
In the mathematical formulation of this approxima-
tion, the total wave function is assumed in the form
of a product both of whose factors can be computed
as solutions of two separate Schrodinger equations.

In most applications the separation is valid with
suKcient accuracy, and the adiabatic approach
is extremely valuable, especially if the electronic
properties of molecules are considered. However, as



474 W. EOE, OS AND L. WOLNIEWICZ

is shown in the next section, the method becomes
rather impracticable if the vibrational wave functions
are needed, and it seems that in these cases a direct
computation of the complete electronic —vibrational
wave function is more appropriate. This happens
when one is interested in computing expectation
values of the operators which explicitly depend on
the nuclear coordinates, e.g., the internuclear dis-
tances, moments of inertia, etc. The vibrational wave
functions are also needed in accurate computations
of those quantities which parametrically depend on
the nuc1ear coordinates. Suppose, for example, that
we want to compute the dipole or the quadrupole
moment of a diatomic molecule. In the adiabatic ap-
proximation, one has first to compute the moment as
a function of the internuclear distance and then to
average it over the zero-point vibrations. The aver-
aging can obviously be performed if the vibrational
wave function is known, however, one can avoid the
intermediate step and compute the moment directly,
if a complete electronic —vibrational wave function is
available.

There are also some important cases in which the
adiabatic approximation does not yield sufFiciently
accurate energy values. Thus the approximation is
certainly inadequate when employed to the p-mesonic
molecular systems, or to the hydrogen molecule for
which the experimental measurements, ' as well as the
theoretical clamped nuclei computations, ' have re-
cently reached such a high degree of precision that a
refinement of the theory is undoubtedly desirable. ln
addition, a nonadiabatic energy calculation has the
advantage of giving directly the observable dissocia-
tion energy of the molecule and not the potential
energy curve.

In the following section the adiabatic approxima-
tion is brieQy discussed, and its defects are pointed
out. A nonadiabatic method of treating diatomic
molecules is developed in Sec. 3, and, in the subse-
quent section, the method is applied to two-electron
molecules, i.e., to four-particle molecular systems.
Methods of this type have been previously employed'
to three-particle systems, such as the electronic and
mesonic hydrogen ions. The last section contains
some numerical results obtained in the nonadiabatic

s G. Herzberg and A. Monfils, J. Mol. Spectr. 5, 482 (1960).
~ W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219

(1960).
4 W. Kolos, C. C. J. Roothaan, and R. A. Sack, Rev. Mod.

Phys. 32, 178 (1960); H. Diehl, S. Flugge, U. Schroder, A.
Volkel, and A. Weiguny, Z. Physik 162, 1 (1961);H. Diehl and
S. Flugge, Z. Physik 162, 21(1961);S.Fliigge and U. Schroder,
Z. Physik 162, 28 (1961};A. Froman and J. L. Kinsey, Phys.
Rev. 123, 2077 (1961).

approximation for the ground state of the hydrogen
molecule.

2. THE ADIABATIC APPROXIMATION

In the theory of molecular structure the adiabatic
approximation can be obtained in two diA'erent ways,
yielding difFerent results. The first method is due to
Born and Oppenheimer' and the second has been
given later by Born.' Iet us briefly discuss both
methods, as applied to diatomic molecules.

As is well known the Born—Oppenheimer approach
is a consequent perturbation treatment based on the
smallness of the electron Inass m with respect to the
masses of the nuclei, and on the assumption that the
expansion parameter ~ satisfies the relation ac
where a is the linear dimension of the molecule, and
b the amplitude of the nuclear vibrations. Hence,
tc = (m/tt) l, where tt denotes the reduced mass of the
two nuclei. '

By expanding the wave function and the energy of
the molecule it has been shown' that in this approach
the adiabatic approximation is valid only up to
terms of the order of ~' in the wave function, and of
the order of f(.

" in the energy. In the case of large p,

(i.e., small tt) this accuracy is obviously sufficient,
however, the main defect of the Born—Oppenheimer
procedure consists in the practical impossibility of in-
creasing the accuracy of the calculations, which is of
importance if p is relatively small, or if high accuracy
of the results is desired.

Now let us sum up the main points of the Born
method. The exact Hamiltonian of the molecule in
the center of mass system' is separated into two
pal ts

II = IIc+ H',

where Ho denotes the Hamiltonian in the clamped
nuclei approximation including the nuclear repulsion,
and H' describes the kinetic energy of the relative
motion of the two nuclei, as well as the coupling be-
tween the electronic and the nuclear motions. '

s M. Born, Nachr. Akad. Wise. Gottingen 1 (1951); M.
Born and E. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1956).

6 Since Born and Oppenheimer were interested only in es-
timation of the orders of magnitude of the various corrections
they took p, as any one of the nuclear masses or their mean,
and the actual choice was immaterial for the estimation.

7 The separation can also be performed in other coordinate
systems, cf. D. W. Jepsen and J. Q. Hirschfelder, J. Chem.
Phys. 32, 1828 (1960); A. Froman, J. Chem. Phys. 36, 1490
(1962}.

8 For the H2 molecule the diagonal elements C have been
computed, although not very accurately, by J. H. Van Vleck,
J. Chem. Phys. 4, 327 (1936);A. Dalgarno and R. McCarroll,
Proc. Roy Soc. (London) A237, 888 (1956); A239, 418 (1957);
W. Eolos and L. Wolniewicz, Acta Phys. Polon. 20, 129 (1961).
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where

= —g C„„X„(R),
I

n Wn

(5)

C„'. = P. (x,R)H'P. (x,R)dx .

The operators C..have the form

C.; = A.;,(R) + (1 —a;)B.;(R)V, ,

Now, if one neglects the right-hand side of (5), one
gets the adiabatic approximation, + = f.X„, and a
Schrodinger-type equation for the vibrational wave
function

6„+U„'(R) —E X„(R) = 0. (6)
2p

The diagonal element C„„,which is a function of R
only, can be interpreted as a correction to the poten-
tial energy U„(R), due to the coupling between the
electronic and the nuclear motions, ' and therefore, in

(6), C„„has been incorporated into U„'(R). If, in the
adiabatic approximation, the vibrational wave func-
tions are needed one has to solve Eq. (6) with
the troublesome numerical potential U„'(R) [or U„(R)
in the Born—Oppenheimer method].

The main advantage of the Born method, as com-
pared with the original Born—Oppenheimer approach,
consists, in our opinion, in the fact that it enables us
to compute the correction term C„„and thus the
"best possible" potential energy curve for nuclear
vibrations. In addition, contrary to the earlier Born-
Oppenheimer approach, the method avoids the as-
sumption that the amplitude of vibrations is small
compared to the internuclear distance. Unfortu-

The electronic problem

H,p.(x,R) = U.(R)P.(x,R) (2)

is assumed to be solved. In (2) x represents the co-
ordinates of all electrons in the molecule, R = ~R~,

and R is the relative position vector of the nuclei. The
electronic wave functions P„(x,R) are chosen to be
real and normalized for all values of the parameter
B. Obviously they form a complete set in the space
ef x. Now one looks for the solution of the problem

(H, + H')0'( x, R) = E+(x,R)

in the form of the expansion

@(x,R) = Q„X„(R)P„(x,R), (4)

which gives the following rigorous set of equations for
the functions X„(R)

g2
A„+ U„(R) + C„„—E X.(R)

3. THE SCHRODINGER EQUATION FOR
THE RELATIVE MOTION

In this section we give the Schrodinger equation
for the relative motion of the electrons and nuclei in
a, diatomic molecule, after separating off the center
of mass motion and the rotations.

Let us denote the coordinates and masses of the
two nuclei in a axed reference system by R&, R&, and
3II~, 3f~, respectively, and the electronic coordinates
by (;(i = 1,2, ,X), X being the number of elec-
trons. The separation of the center of mass motion is
straightforward. In the center of mass system 8',
with space fixed axes X', Y',Z', the Hamiltonian, in
atomic units, reads

H = H +OH',

Ho= —-,'g, A,, +V, (7)

H' = — -A„— —
I &V,, I—R 8„( . 'j) VR QV,j,

2@~

3IIg3SIgg
p 3fg + 3II~'

3IJg3f gg

p~ 3IIg —3II~ '

nately, the separation of the wave function is not
uniquely defined, ' and, in the practically soluble
adiabatic approximation, the accuracy of the method
is not well determined. It is obvious that this ap-
proximation is valid, if there is no overlap between
the electronic wave functions f.(x,R); however, in a
general case, it is not possible to estimate quanti-
tatively the accuracy of the method,

The criticism applies especially to the computation
of the wave function, which, when assumed in the
form of the product O' = P.X., may appreciably
deviate from the accurate solution of the problem. It
is true that in both methods discussed above one can,
in principle, solve the problem accurately, however,
the computation would be prohibitively complex and
laborious, and neither of the methods is practical for
high-accuracy computations. In both cases the com-
plete set of the electronic wave functions P.(x,R)
would be needed and, e.g. , in the Born method, one
would have to solve the set of Eqs. (5).

Thus, in our opinion, if one is interested in more
accurate results than those which can be obtained in
the adiabatic approximation, one should not try to
improve this approximation. Instead one should
rather drop from the very beginning the idea of
separation of the electronic and nuclear motions, and
start with the exact Schrodinger equation for all the
particles involved. This approach has been adopted
in the present work.
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and the coordinates are:

R = Rg —Rs, r, = (, ——,
' (R~ + Rs) .

To separate the rotations, let us consider the fol-
lowing operators:
K'—the square of the angular momentum of the sys-

tem in 8',
K, —the component of K in the direction of a fixed

axis Z )

(1/B)RK—the component of K in the direction of
the molecular axis, which will be called the Z
direction.

Since

K= —iRx VR+L,
where L, is the electronic angular momentum

system 8, specified as follows: The Z axis has the
direction of R, the F axis is perpendicular to both Z,
and the Axed direction Z', and X is perpendicular to
V and Z, and XFZ form a right-handed system.

Now if we denote by x,', y,'-, z,' and x;, y;, z, the com-
ponents of r; in 8'. and 8, respectively, the trans-
formation from 8' to 8 is:

(x;) /cos0cosq, cos0sinp, —sin0I (x,''I
y, I

= —sincp, coscp, 0 I I y,' I,
~z, ~ ~sin 0 cos y, sin 0 sin ic, cos 0 ~ ~z,'~

(11)

B, 0, y remaining unchanged. It is obvious, that
(ll) leaves the Hamiltonian (7) unaltered, except the
operators AR and VR PV... which now read

one finds

L= —ig, r, xV'.. .

(1/It,')RK = Is.

, + — +, —,+cot0-B 2 B 1 B B

BB' ~ B~ R' B0'

1 0

sin 00'
Prom the axial symmetry of the problem it follows

that the orthonormal eigenfunctions of the operators
K', Kz and I, are the wave functions of a symmetric
top. Let us denote these functions by Q~KK ~ where K,
2lIIK and A. are the eigenvalues of the K', Xz a,nd L z

operators, respectively. It is well known' that a,ny
solution of the equation

(9)

with definite quantum numbers K and MK can be
represented by

+ — Ls —L'L —cot '0L's
g2

. cot0 B—2i . Lz-
sin 0 By

l + B Z+ —,L" ——+ cot 0Ls+g' B0 sin 0 By

+ —,L —+ cot 0Ls+ . —, (12)
1 B B

g' B0 sin 0 By

08 28
B 2

(10)

tive + P

(P'L —P L')K

0M rc ) AitA
)i=—K

Z ——cot 0Lz
sin 0 By

B + cot c), g
sin 0 By

(13)

where the functions u~~ depend only on the rela
positions of the particles. On substitution of (10) into
(9), one can eliminate from the Schrodinger equation
the rotational degrees of freedom. The set of equa-
tions for the u$ functions which will be obtained in
this way describes the internal motions of the mole-
cule. This procedure is obviously equivalent to a
transformation of the Hamiltonian (7) to a repre-
sentaI;ion in. which the operators K', Kz and L z are
diagonal. Since I z does not commute with II', the
Hamiltonian in this representation will have a non-
diagonal form.

To perform the operations indicated above it is
convenient to express 8 in the polar coordinate sys-
tem R, 0, y) and to introduce a rota, ting reference

B+ —P —+2B B0

where

Lr —Llx ~ zL/ Y ) P = PX ~ ZPY)

9 E. Wigner, Croup Theory and Its A @plication to the
Quantum iVechanics of Atomic Spectra (Academic Press Inc. ,
New York and London, 1959).

LrY Lz and P~ &Y Pz are the components
of the electronic angula, r momentum, and of the im-
pulse operator P = i P; V—„.respectively in the
rotating reference system 8.

Note, that in (12) and below the differentiation
with respect to 0 or y means a differentiation with
fixed x)) g)) 8).

Now we choose for simplicity the electronic co-
ordinates in such a way, that the angle P, describing
a simultaneous rotation of the electrons around Z is
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0 „,~ ———e™"e'8,~(8) .2'
The explicit form of 8~K,~, and its properties, which
will be needed in the following are put together in the
Appendix A.

Now we can easily eliminate from (9) the angles y,
8, and P. Since H is diagonal in K and 1II~ it will be
convenient to drop these indices, and the matrix ele-
ments will be simply written in the form

(K,3fg&, A'iHiK, M~, A) =—(A'iHiA) =—Hg ~.
Keeping in mind the well-known properties of the
operators L and P one easily sees, that the only non-
diagonal terms in II are those, which are propor-
tional to one (and only one) of the four operators
I+, I'~. Next, since the matrix elements of these op-
erators vanish unless A' = A ~ 1, one has

Hg'g = 0 if A' W A and A' W A & 1. (16)

The nonvanishing elements can be found by making
use of (7), (12), (13), and of the properties (A.l),
(A.2), (A.3) of the functions 8@~,~.

H„= --; g, (A~A, ,~A)+ V+ (A~P'~A)

2 8 K(K+ 1) —A(A+ 1)
B 8B g2

m

2p ()g

an independent variable [see (19a)], and we get

I ~ —— i (8—/8P) .

Obviously, p, 8, f are the Eulerian angles of the
molecule. So Q&», , ~ can be written in the form'

—gj) NJj ~ —
'Jl. j) Z)

I 1

To And the conditions to be fulfilled by u~ to assure
a definite parity of the sta,te with respect to I, we shall
describe for definiteness the positions of the electrons
in 8 by means of the elliptic coordinates $;, g; with
respect to B, and the azimuthal angles P; (i
= 1,2, ,X). Thus, the internal coordinates occur-
ing in u~ can be chosen a,s

B, P;, q ;(i = 1,2, . ,N),
andy, (j = 1,2, .

,N —1), (19)

where&, = P; —f,+„and the simultaneous rotation
of the electrons is described by

tronic operators it is seen from (16) and (17) that the
exact Schrodinger equation of a diatomic molecule
with definite K is given by a set of 2K + 1 equations
for the 2K + 1 components u~ of the wave function:

lfAA&A + HA, A—1&A—I + HA, A +1+4 +I ~&A

A = K, ——K+1, ,K.
This is the required equation for the internal mo-

tion. Obviously both, the eigenvalue E and the com-
ponents go~ depend on the angular momentum K

A AK ) tEg QA )

and u~ are functions of the internuclear dist, ance Pi, ,
a,nd of the 3X —1 electronic coordinates.

As yet, the solutions of (18) are not uniquely de-
Aned, as there exists a,n operator, which commutes
with both, the Hamiltonian II, and the angular mo-
mentum K. This is the inversion I

——,(A~I,'J. )A)

2@~ BR 2R
P, —+ —(A~P'L,

——I I,'(A)-
H~, i,~ = [(K+ A+ 1)(K —A)]'

1~'rom (ll) it, is seen, that in the moving reference
system 8, the inversion I reads:

R~B, 8 —+~ —8, v ~~+ v,

4 ~ —+j ) gj ~ ~A ) ~j ~ ~j )

, (A + 1~L,'[A& — '
2pR 4P re

,~ = [(K+ A)(K —A+ 1)]'

A+1~P (A) and remembering the definition of the elliptic co-
ordinates we can, write it as

, (A —1~1,-~A) + ™
(A —i~P ~A)

2pg 4IJ~B

'1 he matrix elements of the electronic operators, e.g. ,
of (A'~P+~ A), are operators acting on the internal co-
ordinates of the molecule, and obviously their form
depends on the choice of these coordinates. For the
specia, l two-electron case we give them explicitly in
the Appendix B.

However, independently of the form of the elec-

R-+R, 8 —+m —8, q ~sr+ q,

Thus, due to (10) and (15), we have

I+~,~ (8 v 4;B)k' n' 4»)

= —e' ~" Q (—1) ~' Mp(R, (;,q;, —y;)2

X e
'

8&g~g(m —8) . (2o)
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I+»M» ——(—1) @»,v», I+»&s» ———(—1) +»~r»

and make use of (A..5) we get from (20) the following
conditions for ug and ug:

ug(R, );,rl;, y, ) = (-1) u'g(R, &;,rl;, —y, ),
u', (R,~, ,~;,@,) = —(—1)'u', (Rg;,~;, —y, ) . (21)

To the end of this section we shall briefly discuss
the wave function of a molecule with iden. tical
nuclei. In this case the Hamiltonian is additionally
invariant on the inversion I.of the nuclei alone. "

In terms of the coordinates (19) this inversion
reads:

R~R 1 9~7I —8& p~7l+ &p,

If we now define the symmetric +~M„, and antisym-
metric +&M~ fun. ctions by

where, cf. (7), (17) and (B.3),

H =Hp+Hg+H. +Ha,
H, = —-', (~, +S,)+V=T.+V,
H, = —(m/8p)(s, y ~, + 2v, v, ),
II = —(m/2~)(0I ~RI0)

H3 (iit/2p )(0~+R(+r + +r ) ~0)

(24)

(25)

The trial wave functions will be expanded in the
form

according to (21) has a definite symmetry with re-
spect to the transformation @~ —p, where p is the
relative azimuthal angle of the two electrons. Thus,
if we drop for simplicity the index A = 0, the follow-
ing equation is to be solved

&Vith the definition (26)

In +»~» = (=1) +»s»,

I„'%»ir———( —1) ' +»~r»,

one finds now

'ug(R, );,g;,y, ) = 'u p(R, &;, —g;, —y, ),
'uJ, (R,P;,g;,qb, ) = 'u g(R,—&;, —g;, —P;) . (22)

Combining (21) and (22) we get readily

Since the electronic functions g; may contain the in-
terelectronic distance, e.g. , in the form of the usual
factor 2r,2/R, we shall assume

(27)

and the product 8"'p„,. will be treated as an 8-inde-
pendent function of the electronic coordinates x,', y,',
z,' in a space-fixed reference system. Thus the follow-
ing relations are valid:

*up(R, );,ri;, @,)

«(R,~;,~„~,)
' '(R,&;,~;,~,)

ug(R, (;,g, ,@,)

( —1)"»(R5', —~',4»),

( —1)' u(R, ~, ,
—~„y,),

—(—1)'u~(R, 5', —~',e ),
—(—1)'u~(R, E', —n', 0 ),

(23)

(28)

+AR+dv. Id'.2d A

= Q c;„+R pp;d „R 'g;k. dr, dr, d'R . (29)
where, for example, 'u~ is a component of a wave
function, which is symmetric with respect to I. and
antisymmetric with respect to I.

The relations (21)—(23) facilitate the choice of the
trial functions, if the exact Eqs. (18) are to be solved
numerically.

4. DIATOMIC TWO-ELECTRON MOLECULES

The theory presented in the preceding section will
now be applied to perform a variationa, l calculation
for the ground sta, te of a diatomic two-electron mole-
cule. From the set of Eqs. (18) one gets for K =- 0
one equation for the wave function" 4 = u0, which,

All g; functions in the expansion (26) have obvi-
ously the same symmetry with respect to the permu-
tation of the two electrons, so that + represents
either a singlet or a triplet. Since we do not want to
restrict our analysis to the homonuclea, r case we shall
only assume that ea,ch of the component functions g;
has a definite symmetry with respect to the permuta-
tion of the nuclei, but no restriction is imposed on the
symmetry of the tota, l wave function with respect to
this transformation.

To solve the variational problem

O'II%'dr&d~&d 8 = 0 „ (30)

with H and 4' given by (25) and (26), respectively,

» Obviously it is also invariant under the electronic in-
version I„however, I, is deIiendent on I end 1„:I, = E I„. .

I~ The-constant value of QO, 0- being. dropped.
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1

(32)

where

R" h.hl. —Ii,',h.,)dR,I~„,.= —,
'

'
h h'„'+ h."h )dR,

h' = dh/dR, h" = d h dR .

(37)
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0
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4x

S";g

(83)

where

K' = R*+h h dR.nrn he two e

& „=0 VRg"p„= 0,v, + V,,)R"p„= O, R1 (39)an (8.4) we also obtainOn applying (29) an

8'I ~'~- —I:()1 —P' 8"(H8)'8 =—

+ 2 F;8 —Pl ;)]L„,„.
&8;+ B;8[X;8 + X8; + &;1 +

B8;+ 2(P8&;8+ P;&8;

2 ()1'+ p'*+ 6p+ 5(Y;8+ &8;)

6P; —14)8,'8]K. . 3

r '
of H8),"~" is possible if we as-A slml ar

th l tif nctiono erisonlya unsume that Jt; p„
Thenlectrons.(34) tion of t

(H8)V
2 d27l.m g R8+P„h

dR

Z'+Pka. ——Z -Pk—47k 8

+ (2B;8; -P 21';8 —4&;8+ 2X'8

R'h. h dR

and we get

(H8)'8 =—

where(35)

411'rii
I (Z Z )L

—I:8 (p —p*)(Z' —' '—Z8;)

X, X,.;+ (ZY);8+ (ZY 8;18

(AB);8 + (AB)8~]K...I,

where 71dT2 )Zik = PPi PPkgiZygkl 1

l)Xig8dridr8
&

'8 R pPipP8g~ (51 + g)l 1ik
+~i ki8 — 'PPkgi$1'gl lg k(&1(&2 )ppi

Ppi i ding 72,'Ppkg i ~1gkd71

—6
(ZY);8 = R '~ ~2gk~71~T2 )PpiPI kgi ~1

-6
P;k = 8 g F2ggfV pe'2,PPiPPkgi 1 2

—6
(AB);8 = R COS gIgA 1B8gadrldr8 . .PpiPPkgi C (41)

. Cos @B1B8g8dridr8,PpiPPkgi C

ments of II3 do notthe matrix elemen sIt is clear that e
if the functions g;, gkvanish only a
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metrics with respect to the permutation of the
nuclei, whereas the remaining terms of the Hamil-
tonian contribute only if the symmetries of g; and gf,

are the same.
The vibrational functions were assumed in the form

x'e *BC.(x)X (x)dx,

and since the well-known recurrence formula for the
Hermite polynomials gives

8 s—1 qs —1F,. =- mP„, , + —, P„,„„,
all integrals over 8 can be expressed in terms of F„',.
The evaluation is straightforward and elementary
and will not be given here. The evaluation of I ' is
also simple. We have

e "K,.(x)3'. (x)dx

where a = pB,. Applying the definition of the Her-
mite polynomials one gets

09 )l.

F„',„= (—1)" X„.(x) e *'dx.
—a gg

Integrating (43) by parts, and applying the recur-
rence relation

—3C.(x) = 2nSC„, (x)
d
x

the following result is obtained:
2n k

E.' = m. e Q -, ,—(
SC,„ Ir( —a)X„g ~( —a)

I,-=-p (I —A') .

u, &m,
2n —1

F'„, = m!e
"' Q,

)
K,. g( —a)3C.. ~ i(—a)

7„;=0 pQ k e

+ 2"*m. e *dx. (44)

Since for the hydrogen molecule the optimum
value of c turns out to be about e = 6.0, the prob-
ability integral in (44) can be repla, ced by 2ti without
losing accui acy.

a„(Z) = Z-'exp ——~a —A.)' X„(p~a —R.)),2
(42)

where p and 8, are variation parameters, and X de-
notes the nth Hermite polynomial. The 8 ' factor in
(42) cancels 8' in the electronic volume element.

If the functions (42) are employed, the K'„„„L„
and Ã„ integrals, (34) and (37), can readily be ex-
pressed in terms of F'„,

5. NUMERICAL RESULTS AND DISCUSSION

Numerical computation for the ground state of the
hydrogen molecule was carried out using the wave
function (26) with vibrational functions, h„, given by
(42). The electronic functions g; were assumed in the
forn1

g; = exP [—a/& + 4)] I 5'ni"6"'212" + 4'qi Y2'n2' I

(45)

Using (45) in (26) and puttin. g h. = const, one gets
the well-known expansion of the electronic wave func-
tion in elliptic coordinates. "The exponent n in this
expansion is known to be a function of the inter-
nuclear distance B.However, for simplicity, we have
treated n as an 8 independent variation parameter
with a constant value for the whole range of the zero-
point vibrations.

The method of computation of the integrals over A'

has been given at the end of the preceding section.
All integrals over the electronic coordinates can be
expressed in terms of the following integrals:

exp (—2~(b+ 4)l(&' —n') '(5: —n:)
'

X (1'914'g2r12dTldt2 )

which can be computed using the method given by
Kolos and H,oothaan. 13

The computation was carried out on the IBM 704
computer at Argonne National Laboratory, using an
eighty-term wave function (26). The wave function
was built up of 40 different electronic terms (45) and
of 4 h„(B) functions (0 ~( n ~( 3).The 40 electronic
terms were the same as those used by Kolos and
Roothaan' in their computation of the ground state
potential energy curve for II2. All 40 terms were
coupled with ho, a selected set of 18 terms with h, , 16
with h2 and 6 with h3. The selection was made after
some test runs in which, for given values of the non-
linear parameters, we gradually increased the length
of the expansion. Xo energy depression was obtained
by adding terms containing h4. The energy has not
been accurately minimized with respect to the non-
linear parameters n, p, Ii,.

In Table I we show the results obtained with
n = 0.95, PB. = 6.0 and B.= 1.4. In addition to thc
dissociation energy Do, we have computed the ex-
pectation value of the internuclear distance, and the

'2 H. M. James aIId A. S. Coohdge, J. Chem. Phys. 1, 825
I,'1938).

» W. Eolos and C. C. S. H.oothaaII, Rev. Mod. Phyq. 32,
205 (1960).



NON AD I AHA TI C THEO' Y FOB, D INTO MI C MOLE GULES 48 I.

YxsI z I. Dissociation energy, expectation value of the inter-
nuclear distance and the inverse square root of the expecta-
tion value of 8 2 for the ground state of the II2 molecule.

Do(cm ')

theoretical 36 091
experimental 86 113

(&)(a u ) &o = (R-')-l(a.u. )

l. , 4481 1.4191
1.4193

inverse square root of the expectation value of 1/R'.
The latter can be compared with the experimental
value" obtained from the rotational constant Bp for
the zeroth vibrational level. It should be pointed out,
however, that the experimental value of Bp is not

Bo —Bo,o = (R ')m/2p, (49)

where (R ') means the mean value computed with
the exact ground-state wave function.

In a similar way it can. be shown that if the correc-
tion to Bp,p, due to the nondiagonaI part of the
Hamiltonian is computed, one gets

and «o~ is the solution of (48) with K = 0, correspond-
ing to the lowest eigenvalue Ep,~.

It is easily seen from (17) and (48) that in the case
of a g state (i.e., A. = 0) «o is identical with the solu-
tion of the exact Schrodinger Eq. (18), and we have

B, = B.,(1 —a), (50)

quite the same as the t,heoretical one computed in
the present work. The experimental Bp is obtained by
measuring several rotational lines and by calculating,
from these results, the coeKcients in the energy
formula for a vibrating rotator. Obviously, the the-
oretical evaluation of Bo should be performed simi-

larily, i.e., from the theoretical values of the rota-
tional energy levels. However, up to terms of the
relative order of m/p, (R ')m/2p is a good approxima-
tion for Bp, which can be shown by the perturbation
method. For this purpose, let us separate the exact
H 'lto i t t op t

II = Ho+ H',

where Hp is the diagonal part of II,

(~ IHol~) = H«or'r,

with H«defined by (17). Now, after neglecting II',
we get the Schrodinger equation

IIp'k = Ep'k . (46)

The solution ot (46) obviously has the form

'I'urer= «r. «rr,„,~(o,p,p)

and u~ satisfies the equation

(47)

Bo,r, = — R l«g Qr8 R
2p

&40. Herzberg and I. I.. Hoxve, Can. j. Phys. 3V,. 636
(1959).

(H« I'K, i)«r. = 0 ~ (48)

In (48) we can treat (m/2p) tK(K + I)/R'] as a
perturbation, and And E~,,~ in the form of the ex-
pansion

I"~,r, = Eo,~+ Bo,r,K(K+ 1)

+ Do, K'(K+ 1)'+
where

where 5 is positive and of the order of m/p. Now
from (50) and (49) it is seen that the relation be-
tween the theoretical and experimental values of Rp is

(Ro)o, = (Ro)...~(1 —&)'.

Thus, the error in the theoretical value of 8'p, shown
in Table I, has the correct order of magnitude and
the correct sign.

The discrepancy between the theoretical and ex-
perimental value of the dissociation energy, which
amounts to 22 cm ', can be attributed to the follow-

ing factors, which are listed in the probable order of
decreasing importance: (a) nonoptimum values of
the nonlinear parameters; (b) R independence of the
electronic exponent n, (c) truncation of the expan-
sion; (d) relativistic effects. The factors (b) and (c)
are obviously interrelated, since in the case of a com-
plete set t,he value of 0. becomes immaterial. It may
be pointed out, that the expectation value of 8 differs

significantly, as expected, from the so called equi-
librium internuclear distance 8, = 1.4014 a.u.

It should be also pointed out that in the method
applied in this work all integrations over the inter-
nuclear distance can readily be performed and the
computation is practically not more laborious than
the computation of the correction (;„„in Eq. (6), in
spite of the fact that our approach gives the complete
electronic —vibrational wave function.
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APPENDIX A

The functions 8K«K,~ fulfi/1 the following relations
which are useful in the evaluation of the matrix ele-
ments (17):

X' = (5' —n')
' —(5': —1)—

&B);
'

B$;

Bg' BB sin |) sin'g
I' = (5' —n')

'
~k'(5' —1)—

+K(K+ 1) B',„., A =0, (A.1)

~~IK A-——Acot8+
sin 0

= [(K+ A+ 1)(K —A)]'B,.i,g,i,

= [(K+ A)(K —A+ I)]'B.~a~, z i,

(A.2)

(A.3)

n (k —1)—
Bf;

+ 5'(1 —n')
B

After some elementary manipulations one gets in this
notation the matrix elements in the form":

1 (2K+ 1)(K+ 3l )!
2(K —A)!(K+ A)!(K —lV )!

X (1+*) ',
where x = cos 0,

(A.4)

(A 5)

A . 8

These, and other similar relations have been given by
Gelfand et (xt." It is to be noticed however, that our
8~«q(B) differs from the functions up~A(B) used by
Gelfand et O,t. by a factor:

B"„„,,(B) = (—1) i "'~"' [2(2K+ 1)]'u'„',
,,(B) .

APPENDIX B

'The explicit form of the operators occuring in (17),
in the case of a two-electron molecule, will now be
given. Por this purpose we shall use the internal co-
ordinates (19):

To abbreviate the notation let us introduce the op-
erators:

(A —1IP IA) =

&5 I. M. Gelfand, R. A. Minlos, and Z. Ya. Shapiro, Pred-
8tavleniya grnpi vrashchenii i grupi Iorentsa, ikh primeneniya
(Fizmatgiz, Moskva, 1958).

M For K = 0 and 4 = 0 (8.4) hae been given by W. Eoios
and L, Wolniewicz tActa Phys. Polon. 20, 129 (1961)t; how-
ever there are some misprints in those formulas.
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+ (i/2) $
e 2

A

2 Bp

[(5' —&) (& —
n ))'-

A—+i—
2 8(t

[(5' —&) (~ —n')) '-
(8.2)

2——.(~1Y2+ ~2Y1) —
2 I&»1(~l~;I~)

+ ~2~2(~l~„lA) I —,A,B, + A,B,2 cos (t

~ + [(&' —l)(l —~')) '

X
Bit 4

8 . 8 A
X ——i~ ————

8@ 4

Ilail + $202

[(5' —&) (& —n') (&' —&) (& —n')) '

8 2 Sill (t) Bl + $g'g2A}

[(&' —l) (& —n:)) '

B2 + $»,A2 iA .8

[(&', —
& ) (& —~')) '

(B.5
(Il.3) 4 4 sin p

(h. ~V„V„~11)= —,cos (t)A A

3 2 l9 2+ —A —2, + —,Y1Y,
BqP- 8

——,(Y, + Y'2) 1+ j}!2

+ l ((&'+ n' —&)(~l~.l~)

8 . A

[(r' —&) (& —~')1

8 A.
X cosg —+—

2

[(&' —&) (& —n')) *

+ (}.+ s. —1)(A}1,.}A)} + —,(sos' 2 2.
2

$1915292

[(&' —l) (& —n') (&' —&) (& —~:)1'

$1211B2 iA. 8

-[(5' —l) (l —n')) '

$2q281 iA 8

[(5' —&) (& —n2))
'

Since

P' = —~ri —~r~ —2&ri&r2

(& 6)

the formulas (B.l)—(B.6) together with the relations
(l7) give the Hamiltonian in the angular-momentum
representation.


