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INTRODUCTION

" T has been pointed out by Fock' that a one-de-
terminant, many-electron wave function is invari-

ant with respect to unitary transformations among
its molecular orbitals. It is completely determined by
the finite-dimensional function space spanned by
these orbitals and does not depend on the basis chosen
within this space. In particular, the orbitals resulting
from the Hartree —Fock equations represent only one
of the many possible unitary bases in the self con-
sistent field sp-ace, defined by the minimization of the
energy integral. While they seem to be convenient for
describing spectral transitions and ionization poten-
tials, it appears likely that for an analysis of the
intrinsic properties of a particular state, for example,
the ground state, another unitary basis in the self-
consistent-Geld space may be more effective.

This fact was used by Coulson' who, in discussing
the dipole moment of the C-H bond, transformed the
symmetry molecular orbitals of methane into local-
ized molecular orbitals along the four bonds, which

he called equivalent molecular orbitals. Later, the
possibility of constructing equivalent orbitals in the
presence of a general symmetry group was system-
atically analyzed by Lennard-Jones and Hall. '
Whereas the Hartree —Fock orbitals belong to irre-
ducible representations (as long as the Hartree —Fock
operator is invariant), the equivalent orbitals span
reducible representations: Certain symmetry opera-
tions transform one equivalent orbital into another.

Lennard-Jones and J. A.. Pople, ' furthermore,
pointed out that the equivalent orbitals presumably
maximize the sum of the orbital self repulsion terms -in

the electronic interaction energy and, therefore, mini-

mize the "nonclassical" off-diagonal exchange terms.
Because of this property, they can be considered as
that unitary orbital basis in the self-consistent-6. eld
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space which exhibits maximum "localization. " This
characterization is of interest, because it furnishes a
criterion which is applicable beyond the scope of the
equivalent orbita, ls, namely, ~ithin one symmetry
species as well as in the absence of any symmetry. '

Finally, Lennard-Jones and Pople' also suggested
that such localized orbitals might be the most suit-
able ones for extending the wave function to take
into account correlation. For, it seems reasonable to
expect that they would exhibit a minimum of inter-

orbital correlation, so that intra-orbital correlation
would remain the essential correction. ' Thus, Hurley,
Lennard-Jones, and Pople' proposed to replace each
doubly filled localized molecular orbital by a pair
function.

In view of this interest in localized orbitals, it is re-
markable that no attempts have been made to de-

velop a method for finding them without the help of
symmetry. An opinion that considerable difFiculties

stand in the way seems to prevail. Boys' has sug-

gested approximating such orbitals by what he terms
"exclusive orbitals. " They are obtained by maximiz-

ing the product of the distances between the centroids
of charg". of all molecular orbitals, a nonlinear process
carried out by consecutive iterations. There are cases,
however, where the procedure is impossible as, for ex-

ample, between various s orbitals on one atom.
Another kind of localized molecular orbital was con-
sidered by H,uedenberg"'"' who defined "valence mo-
lecular orbitals" by extremizing the total overlap pop-
ulation of the individual molecular orbitals. The
method, which involves solution of an eigenvalue
problem, is again not completely general, in as much
as it does not apply within an isolated atom.

In the present paper we describe an exact method
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for finding those molecular orbitals ivhich maximize the

sum of the orbital seLf rep-ulsion energies. While the
process is iterative, its execution is very similar, in
method as well as complexity, to the solution of an
eigenvalue problem by Jacobi's method. We propose
that the name "localized molecular orbitals (LMO's)"
be used for these orbitals. Only in the presence of a
symmetry group can they acquire properties which,
under certain conditions, make them equivalent or-
bitals. If a distinction is required the orbitals de6ned
here may be called "energy localized" orbitals.

Essentially different kinds of localized orbitals
have been considered by G. Wannier and W. H.
Adams. ""'The Wannier transformation necessarily
involves the complete basis of all Bloch orbitals of a
band in a crystal, whereas we admit only the incom-

plete sub-basis of the occupied orbitals, corresponding
to the B/ock orbitals below the Fermi leve/. Adams, on
the other hand, has given equations for finding,
within the self-consistent-field space, an orbital basis
(not necessarily orthogonal) which exhibits loealiza

tionin arbitrarily chosen regions of space, in particular
around atoms, whereas we are interested in those
regions of localization ivhich are intrinsic to a given

SCF basis

DEFINITION OF LOCALIZED ORBITALS

We consider the case of a determinantal wave func-
tion of 2X electrons with X doubly occupied ortho-
normal real ""orbitals plp2 .

q ~, viz. ,

@' = &I( )"'( P)"' ( )" "( t~)""I (1)
as determined by a self-consistent-field calculation.
Actually, the orbitals are not uniquely determined by
C; any unitary transformation between them will

leave the wave function invariant, and we must say
that C is associated with the X-dimensional linear
space subtended by q»

The electron interaction energy of C can be written

where

p(1I'-') = Z-v-(1)z.*(2),
p(1) = p(1I1),

CHARACTERISTICS OF LOCALIZED ORBITALS

(1) Since D(y) can obviously be considered as a
measure of the "over-all localization" of the basis set
q» .q~, the )& )~ represent, in the given linear
space, that orthonormal basis which exhibits "max-
imum localization. "They will be called energy local-
ized orbitals.

(2) Because of the invariance of (; and X under
unitary transformations, maximization of D implies
minimization of

[ffg] = dV, dVgf(1)g(2)/rf2.

Since EI depends only upon C, it is, of course, in-
variant against unitary transformations among the
p's. More specifically, however, the density kernel
p(1 f2) is invariant under such transformations, and
so are, therefore, the "Coulomb term" C and the
"exchange term" I, separately.

Such is not the case, however, for the sum of the
diagonal terms

D(z) = Z- [~-l~-], (6)
which occurs in |,as well as in X. It is, therefore, a
meaningful question to ask for that orthonormal basis

) & in the space spanned by q»A q» which
minimizes D(p). That is, given the basis z» . p&, find

a unitary transformation

)I., (x) = Q.v„(x)T„„,
such that

D()) = Q, [)',fX'„]

is maximum. This maximum principle defines the
energy-localized SCF orbitals.

EI = (Cf gr, ,'fC) = (; —X, (2)

C = -', dV1 dV2r12p 1 p 2

= 2 Z. Z- [~'.I~'-],

X = -', dVi dVsr, g'p'(1 f2),

= Z-Z..[~.z lz.z ], (4)
&sh& Q. ~annier, Phys. Rev. 52, 191 (1937); W. H. Adams,

J. Chem. Phys. 3'7, 2009 (1962).
o ' The generalization to complex orbitals is given in the

last section.

X' = g [) .) „f).) „] .

The expression (," represents the total of all inter
orbital repulsions, and the quantity X' can be con-
sidered as the total of the self-energies of all overlap

charge distributions (p;-q;). These minimum properties
indicate that, in going beyond the SCF approxima-
tions, one is likely to find the smallest correlation cor
rection betioeen different orbitals, if one chooses the
(X&X, ) &) as starting point.
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(3) If it should happen that the minimum X' van-
ishes identically, then this would mean that these

localized orbitals have the properties of orthogonal
Hartree orbitals (as opposed to Hartree Fo—ck orbit-
als).""Due, the localized orbitals 44. 4 are those
basis orbitals in the self-consistent-field space which ap-
proach most closely the behavior postulated for the

IIartree orbitals.

(4) We predict that the localized SCF orbitals are
those orthonormal basis orbitals in the SCF space
which closely approximate the first (X) natural or-
bitals (corresponding to the 6rst 2X natural spin or-
bitals). This conjecture is based on the following line
of reasoning.

Evidence has been accumulating that atomic and
molecular wave functions can be remarkably well
approximated by an antisymmetrized product of
separated pair functions satisfying strong orthogo-
nality conditions between them. Now the space part
of each such pair function can be expressed as a
natural expansion P, P„(x)gs (x') and, using the
strong orthogonality condition, it is easily shown
that each of the orbitals P&(z) is also a natural orbital
of the total wave function. In view of the preceding
remark (2), it is however to be expected that, for
each pair function, the leading term P, (x) is close to
one of the localized SCF orbitals. It follows, there-
fore, that the latter are presumably close to the first
natural orbitals of the total wave function.

(5) The localized orbitals provide a quantitative
basis for the qualitative chemical concepts of "local-
ized electrons" and "delocalized electrons. " Since it
is always possible to construct a delocalized orbital.
basis from a localized orbital basis by a unitary trans-
formation, it is obviously easy to choose many de-

localized bases in a given SCF space. In order to see
to which degree electrons act as localized units, one
ha, s to determine to which degree the SCF orbitals
of maximal localization are restricted to certain
parts of space.

~~ As "orthogonal Hartree orbitals" we define those orbitals
which minimize the energy of a Hartree product of orthogonal
orbitals. The resulting equations differ from the Hartree-
Equations by having off diagonaL Lagr-angian inultipliers li;;.
It can be shown that orbitals which satisfy these modified
Hartree equations also satisfy the condition (9), below, and
hence represent, the localized orbital basis in their function
space (which is, of course, not identical with the Hartree —Fock
space).

I~ Hartree's functions satisfy the equations which result by
discarding the off-diagonal );;mentioned in reference 11.This
introduces some nonorthogonality. But frequently, the Hartree
functions and the orthogonal Hartree functions are not too
different. Both exhibit localized character. This localized char-
acter is entireLy Lost, hou, ever, vf one introduces into the Hartree
equations the common additional averaging process over the elec-
tron-interaction potential. Under these conditions, one obtains
nonlocalized symmetry orbitals.

T;; =b;, +t;, ,

t;; + t,;+ Z„t;„t,„=0.
Hence, one finds, up to first order,

~pn = Zi pirin ) rin + Tmi 0

The corresponding variation of D(y) of Eq. (6) be-
comes therefore

hD = 4 Z. 4-lg-~v"] = 4 Z- h. i~-g'Ir'.

LiD = 4 Z I 4 -lg -g-1 —4 -l g-g.] Ir-
Now, the orthogonal matrix T has isX(X —1) inde-

pendent parameters, and so has the antisymmetric
infinitesimal matrix ~. It is permissible to choose the
elements r .(m ( n) as these independent parameters
and, therefore, Eq. (8) represents an expansion of 5D
in terms of independent variations r,.

For the localized orbitals ) „,D(X) is maximum and,
hence, hD(X) = 0. The localized orbitals satisfy,
therefore, the condition

p'. lh.h.] = p' lh.x.] (9)

for all pairs (n,m). This condition is clearly fulfilled

by "equivalent orbitals" because of the geometrical
symmetry in their definitions.

Equation (9) is, however, also fulfilled by those or-
bitals ll„which minimize D(iL), i.e., the orbitals of
least localization. For example, in the case of one 8

orbital and one p orbital, one finds that
s, p = orbitals of minimal localization,

(8 & p)/ Q 2 = orbitals of maximal localization.
Both sets are seen to satisfy Eq. (9).

Formula (8) for the variation 8D suggests the
following method of steepest ascent for finding the
localized orbitals )..

Since the particular infinitesimal transformation

&tnt' = eFmn = e {[iiinl onym] [yml q11pm] )

guarantees that

6D = Z e(F „)' ) 0,

e&0,,

(10)

CONDITIONS FOR LOCALIZED ORBITALS

An orthogonal transformation changes the basis
functions io.(x) into the functions

to. (x) + bp„(x) = Z; rp;T;„

with

Tin Tin = B,j

Putting
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and then forming

n Fmniink flank 1

construct the orthogonal matrix T = exp (eF). This is
achieved by solving the eigenvalue problem"

[tiliz2Iizliz2] = [qlq2Iqls2] ——', A12 ——', (A12+ B12)

X cos 4(y —n) . (20)

From Eq. (16) it is obvious that D(u) reaches the
same maximum for the values

Then calculate

(13) ymnx = &1 &+ 2 pr1 1x+ pr1 1x+ 2 pr1

and the minimum for the values

(21)

y;. = a + pr/4, 12 + (3/4)pr, a + (5/4)pr,

n+ (7/4)pr.
D (e) Z'~' F21 [&'&1'I&2&1]T;„T~T2„T1„

as functions of the parameter e. Because of Eq. (11),
this function will first increase in value. Find that The values of D(u) at the extrema are
new set of orbitals

(22)

ek = ge 112nTn2 (e) (14)
D~.(u) = D(y) + A12+ (A»+ B„)*, (23)

for which D(e) is maximum. Then determine the new

antisymmetric matrix

PI 2 2
6j6P —6j CjCIc

and start all over again.
The method described in the subsequent section is,

however, simpler.

DETERMINATION OF LOCALIZED ORBITALS

Two-Dimensional Space

The localization problem can be solved explicitly
in the two-dimensional case. Let the transformation
from (ip1,p2) to another basis (M1,u2) be given by

B1(X) = COS yy, (x) + Slli 'yq&2(x),

u2(x) = —sin yq, (x) + cos yp2(x) .

D;.(u) = D (y ) + A 12
—(A,'2 + B,',)

* . (24)

The localized orbitals )&, A2 are conveniently de-
termined by the transformation

)11 = COS Crp&p1 + Sin 1xpp2,

—Siii o!pp1 + COS (xp(p2,

where 1zp ls tillat one of the four angles of Eq. (21),
which lies between 0' and —', pr. (The other three angles
merely correspond to changing the sign of )%,1 and/or
) ..)

The calculation of cos np and sin op from the en-

ergy integrals (17), (18) is conveniently done as fol-
lows. First calculate cos 4np and sin 4122 according to
Eq. (19).Next find

x' = -', Il ~ [1 —-', (1 —cos4n)]1},

and
It is readily found that, in this case,

x = +(x')*, V = +[(1 —*')]*,
D(u) = D(q) + A„+ (A'„+ B,', )' cos4(y —a),

which will yield two pairs (X1,y1) and (xp, y2). Then
one has

where
cos ~p = xk

&
sin 0.'p = @It j

A» = 4'1AIP1V'2] 4 [0'1 —Ã2IP1 —P2] 1 (17)
2 2

B12 = [P1 P2IP1+2]

and 4a is defined by
1

cos 4n = —A»/(A12+ B„)',
Sin 4c2 = B,2/(A', 2+ B,', )
tan 4cz = —B12/A12 ~

(18)

' (19)

Concomitantly, one finds for the exchange integral

js The eigenvalues of the antisymmetric matrix P are
purely imaginary, the eigenvectors complex. However, prac-
tical execution of the calculation indicated by Eqs. (12) and
(13) is easily reduced to diagonalization of the symmetric
matrix E&, which has real eigenvectors and eigenvalues.

where (X2,yp) is that pair which satisfies the further
equation

4X2'gp(xp —i') = Sill 41zp .

N-Dimensional Space

Our method of 6nding the maximum of D(v1) for X
orbitals q» q~ consists of successively maximizing
D for appropriately chosen pair8 of orbitals. Since D
will increa, se each time, this iterative procedure will

converge to the maximum of D in a similar manner as
Sacobi's diagonalization procedure (by a succession
of 2 X 2 diagonalizations) converges to the true
eigenvalue s.
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Each stage of our iteration method consists of the
following two steps.

(1) Find that pair y;, &p; (among all pairs of &p„rp )
which, upon 2 && 2 maximization of D will yield the
greatest increase in D. decoding to Eqs. (28), this is
that pair q;p; for which

here, one replaces the electron repulsion integrals
[X;]t,l4X&] by suitable other integrals I(ij,kt) which
are simpler to calculate but have a similar geometric
behavior. For example, one can replace, in Eq. (5'),
the operator (r» ') by the delta function 8(r, —r,).
This yields the one-electron integrals

D .(ugu, ) —D(q;p, ) = A;, + (A;; + 8;;) ' (26)

is largest, A„; and 8;, being defined by Eqs. (17) and
(18).

(2) Find the corresponding transformation (25),
and thus two new orbitals q';, q,' which now replace
the previous orbitals q;q;.

Writing the total sum in the form

1(ij»l) = d«'(x)A(x)& (x)«(x), (27')

and the localized orbitals are then defined by maxi-
mizing

d«'. (x),

implying the minimization of
D(~) = Z [v'lv'1+ 4'l~']+ h»l~'] (27)

one recognizes that replacing q;, q; by q,', q,' will in-
crease the last two terms, but leave the first (X —2)
terms unchanged. " Thus, each iteration consists of
performing that 2 )& 2 orthogonal transformation
which guarantees the maximum increase in the total

D(q). Convergence is achieved, when all ~i X(iV —1)
quantities of Eq. (26) are smaller than the prescribed
convergence criterion, e.g., the numerical accuracy of
the calculation.

APPROXIMATE LOCALIZED ORBITALS

It is sometimes desired to localize molecular orbit-
als, although the electron-repulsion integrals required
for executing the procedure just described are not
available. This may be the case if reasonably good
approximations to the SCF orbitals have been found
by semiempirical methods, or if SCF orbitals are
taken from the literature. It should be noted that,
according to Eq. (18), the Coulomb and exchange
integrals between MO's, which are adequate for cal-
culating the molecular energy, are not sufhcient for
the ZocaZizat~on procedure. In many cases it would be
of interest to And at least reasonably good approxi-
mations to the localized orbitals without being forced
to calculate the electron-repulsion integrals which
present diKculties in molecular problems.

Such an approximation to our "energy localized"
orbitals can be obtained if, in the method developed

&4 It is also easily seen that the sums

z [0'nv'ml pnsm]
rt(70 gttg iytsg j

remain invariant. Hence, the change in the sum of aLL ex-
change integra!s is equal to the change in [&p;y, lq;y;] alone.

Z ~I [w. (x)v' (x)] .

If, on the other hand, one replaces (r,s ') by the
function —(r, —rs), then the localization criterion
will be somewhat comparable to that of S. F. Boys.'

EXAMPLES OF LOCALIZED ORBITALS

Localization between 1s and 2s Orbitals

As illustration, we apply the procedure to a case
which has been unaccessible to previous approximate
methods, namely, the construction of localized orbit-
als from the ls Slater orbital and the 28 Slater orbital
in oxygen.

These Slater orbitals are

(1s) = [(t-,'/~)]'e "", t, = 7.7,
(2s) = [(f's/8s)]tre "", fs ——2.275. (28)

The conventional orthogonal orbitals are those ob-
tained by Schmidt orthogonalization, viz. ,

(1s') = (ls),
(2s') = [(2s) —S(18)]/(1 —S')&,

(2s') = —0.24008(ls) + 1.02842(28) . (29)

They give rise to the exchange integral

[18'2s'l ls'2s'] = 0.0708(e'/u) = 1.91 eV . (80)

If they are chosen as the basis orbitals (y„p,) for the
construction of an arbitrary orthogonal basis (u&,u&)

according to Eq. (15), then the variation of the ex-
change integral with the transformation angle y, as
given by Eq. (20), becomes (in atomic units, e'/n)

[QlllslQlttg] = 0.4589 —0.4401 cos 4(r + 7'20.5')

(81)

From this equation it follows that the localized or-
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bitals result for y = —7'20.5'. Expressed in terms
of the original Slater orbitals, they become

Inner orbital = is = )I,, = 1.02248(ls) —0.18142(2s),

Outer orbital = os = X& = —0.110822(ls)

+ 1.01998(2e) . (82)

Their exchange integral is

[is os~is os] = 0.0188(e'/a) = 0.876 eV . [(88)

so that localization has reduced the exchange integral
by more than a factor 5.

It is of interest that those orthogonal orbitals which
result from "symmetric orthogonalization, " as pro-
posed by Lowdin, " are very close to the localized
orbitals. In terms of the original Slater orbitals, they
are

(lsi) = a(ls) + b(2s),

(2si) = b(ls) + a(2s),

2a = (1+ S)--:+ (1 —8)-i,

2b = (1+ 8) l —(1 —8):.
Hence,

(1si) = 1.02129(ls) —0.12088(2s),

(2s') = —0.12088(le) + 1.02129(2s), (84)

which corresponds to a value of p = —6'45' in terms
of Eq. (81).Their exchange integral

[1sr2s~~ls~2s~] = 0.0141(e'/a) = 0.884 eV (85)

is only 0.008 eV larger than that of the localized or-
bitals. Since the I owdin orbitals represent that set of
orbitals which "differs least, " in the sense defined by
Carlson and Keller, " from the nonorthogonal Slater
orbitals (28), it is remarkable that the latter have a
considerably larger exchange integral, namely,

[le2s~ ls2s] = 0.1246(e'/a) = 8.89 eV . (86)

Finally, Eq. (81) shows that minimal localization
(maximal delocalization) is reached for y = 87'89.5',
at which point the exchange integral assumes the
maximal value

[u,u&~u&u.],= 0.8940(e'/a) = 24.8 eV . (87)

Discussion

(1) It, can be seen that the low exchange integral
for the localized orbitals (is), (os) comes about be-
cause the 18 orbital is somewhat contracted towards
the nucleus and, more important, because the inner

» P.-O. Lowdin, J. Chem. Phys. 18, 865 (1950).
~68. C. Carlson and J. M. Keller, Phys, Rev. 105, 102

(1957).

loop of the 28 orbital is concomitantly attenuated. I~
view of this observation, one is led to expect that, in
case of 8p, sp', or st hybridization, the exchange in-
tegral between different (2s —2p) hybrid orbitals
will be further reduced if the (ls) orbital is also in-
cluded in the localization process. For, in that case,
the (2s —2p) hybrids would get some le admixture
which would attenuate all of them in the region where
they overlap each other.

(2) As mentioned before, the localized orbitals are
those for which interorbital correlation is expected
to be smallest. That it is possible to reduce the inter-
orbital correlation to a small value is made likely by
the result, s found by Allen and Shull in Be." Their
results suggest that Watson's very accurate con-
6guration interation function can be closely repro-
duced from two separate pair functions. The relation
to localized orbitals is being investigated at present.

These results have some bearing on the concept of
"inner shells" in a many-electron atom, where a
unitary transformation between the orbitals is arbi-
trary. There is no reason why Schmidt orthogonaliza-
tion should define the various "shells. " It seems to
us that, within one symmetry, the localized orbitals
correspond much more closely to the concept of inner
and outer shells.

(8) This definition of inner shells finds further sup-
port in the observation that there seems to be evi-
dence that the Localized inner shell orbitals (is) of an
atom may mix very little with the valence orbitals in
the molecule. Thus, in an analysis of the H&O calcula-
tion of Ellison and Shull, we were led to define cer-
tain "valence atomic orbitals"

(is") = 1.02265(ls) —0.14809(2s) + 0.05(2po),

(os") = —0.0469148(ls) + 0.848818(2e) + 0.5(2po),

(88)

from the molecular wave function. "The inner valence
orbital i8", which is seen to be very similar to the inner
localized atomic orbital (ie) of Eq. (82), was found to
mix very little into the valence molecular orbitals.
This behavior is in strong contrast to that of the
Schmidt-orthogonalized inner shell, i.e., the Slater ls
orbital. [The exchange integral between ls" and os" is
0.0219(e'/a) = 0.595 eV.]

(4) While the foregoing conclusions have been
made on the basis of the oxygen Stater orbitals, we
believe that similar results will emerge when the
Hartree —Fock orbitals are considered. This conjec-

r7 T. L. Allen and H. Shull, J. Phys. Chem. 66, 2281 (1962).
» C. Edmiston and E. Ruedenberg (to be published).
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p = (2@x), p = —s (2px) + s +3(2py),

u. = —l (2') ——:&3(2W) .
Hartree —Fock Slater

ture is based on a comparison of the electron inter- for example
action integrals in the two cases. One finds" (in
atomic units, e'/a)

[Islsi lsls)

[1slsi2s2s]

[2s2si2s2s]

[1s2s/ 1s2s]

4.7421

1.1331

0.7974

0.0767

4.8125

1.1334

0.8039

0.0703

In particular, the similarity in the value of the ex-
change integrals [ls2s~ls2s] makes it likely, that
localization of the Hartree —Fock orbitals would yield
a lowering of the exchange integral similar to that
found for the Slater orbitals.

d~p (x)p (x) = —s, (i & &)

The SCF values are taken from J. C. Slater, Quantum
Theory of Atomic Structure (MeGraw-Hill Book Company,
Inc., New York, 1960), Vol. I, pp. 857—858.

Localization Between 2s, 2px, 2py Oxbitals

From condition (9) it is clear that localization of
the atomic orbitals (2s), (2px), (2py) will lead to the
trigonal hybrids tl, t2, f3,

tI. ——(-', )*(2s) + (-;)i',
where p, , p, , p& are three (2p) orbitals yielding
pairwise the inner product

The orbital triple (2s), (2px), (2py) presents there-
fore a convenient case with known solutions, where
our iteration procedure can be tested.

A. machine program was applied to the Slater or-
bitals of oxygen and the results are exhibited in Table
I. The following observations are of interest:

(1) Although the increasing error in the invariant
total exchange energy X indicates that, after about
fifteen iterations, the calculation is becoming unre-
liable io. the sixth decimal, the individual integrals
as well as the localized orbitals themselves neverthe-
less improve consistently up to the thirty-first
iteration, '

(2) The improvement in D(X) due to the last pair
transformation is always smaller than the total de-
fect in D(X);

(3) The total defect in D(X) is always considerably
smaller than the maximal absolute deviations in the
individual integrals;

(4) The deviations in the individual integrals are
always smaller in absolute value than the maximal
deviation in the localization criterion B».

The last observation is particularly gratifying, if it
can be assumed to hold generally true. For, in prob-
lems where the answer is unknown, the quantities B;,
are the only ones which can be calculated to test the

TxaLK I. Construction of Trigonal Hybrids by Maximization of Total Orbital Self-Energy

Number of
Iterations n=8 n=18 n=18 n =81

[) lz2 Xl) 2].
P,X3 X,Z3]
[X2X3 X2X3]
P 1~1 ~l~l]
P 2&2 X2X2]
[Xshs Xshs]

&12b
&13
823
D() )0
Xd

() l 28)~
(X2 2S)
(X3 2s)

a D(x)

Exact Value

0.062828
0.062828
0.062828
1.002199
1.002199
1,002199

0
0
0

8.006597
8.880588
0.57785
0.57785
0.57785

0.112615
0.112615-0.014885—0.198288—0.111750-0.111750

0
0
0

—0.421789
0

0.42265—0.57785—0.57785

Deviations from Exact Value after n Pair Transformations

0.001792
0.001792
0.009597
0.008152—0.014757—0.014757

—0, 055922—0.055922
0.000000

—0.026862
0

0.12976
0.27785
0.27785

0.0895427

0.000227 0.000055 0.000014 0.000014 0.000008
0.000227 —0.000110 —0.000027 —0.000007 —0.000007-0.000442 0.000055 0.000014 -0.000007 0.000008—0.000665 0.000080 0.000020 —0, 000011 0.000004
0.000819 —0.000168 —0.000041 —0.000011 —0.000011
0.000819 0.000080 0.000020 0.000020 0.000004
0.001641 —0.000411 0.000108 0.000000 0.000026
0.001641 —0.000000 0.000000 0.000051 0.000000
0.000000 0.000411 0.000108 0.000051 —0.000026

—0.000027 —0.000008 —0.000002 —0.000008 —0.000008
0.000001 0 ' 000002 0.000002 0.000008 0.000004

—0.00458 +0.00056 0.00014 —0.00007 0.00004
0.00225 —0.00118 —0.00028 —0.00007 —0.00007
0.00225 0.00056 0.00014 0.00014 0.00004

Improvement in D(X) due to Last Pair Transformation'

1 0.00000965 0.00000060 0.00000008 0.00000001 0.00000000

a [X&X&X&)~] defined by Eq. (5'), energy unit: (e'/a).
b B;~, given by Eq. (18), should vanish according to localization criterion

(9).
o D(X), given by Eq. (6), is to be Inaximized.

d X, given by Eq. (4), should remain invariant.
& Overlap integrals indicating the amount of s-character in the trigonal

hybrids and, hence, characterizing the basis transformation.
f Test parameter determining the interruption of the iterative cycle.
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quality of the localization. It is encouraging that they
seem to provide an upper bound for the deviations of
the individual energy integrals. It is questionable
whether the number of iterations found necessary
here is typical. Our particular case possibly shows a
slower-than-average convergence, since the inde-
terminacy in the p orbitals may favor evasive oscilla-
tions from iteration to iteration.

Localized Molecular orbitals

Examples for energy localized orbitals in molecules
will be given elsewhere.

such a way that the localized SCF orbitals will re-
sult as solutions.

Thus, according to Gilbert, it is to be expected
that there exists an equation

lr(p) + 2(X X ~ ~ X ) }X„(x)= ))„X„(x) (41)

with the following property: If the orbitals ).satisfy
this equation, then they satisfy Eq. (40) as well as
the localization condition (9). Equations which yield
this result we can indeed find. A possible choice for
2 is the integral operator

2f(x) = dV'L(x, x') f(x'), (42)SELF-CONSISTENT-FIELD EQUATION FOR
LOCALIZED ORBITALS

L- = All~'- —l'-ll -l -7} —0-l~ll -), (43')

where A[t) can be any real symmetric function of f

which vanishes for t = 0 and only for t = 0. The
simplest choice is

5(p)(- = s-(-, (39)

where F(p) is the Hartree —Fock operator which, it-
self, is a function of the density matrix p of Eq. (5).
It is natural to ask whether there exists an equation
whose solution yields the localized SCF orbitals di-
rectly without the intermediate of the Hartree —Fock
orbitals. Such "localized SCF equations" can be
found as follows.

An arbitrary real orthonormal basis set f,
in the self-consistent-field space satisfies the general
SCF equations

I..= P'. —x'lx.x 7
—P, isla ). (44)

In order to prove the contention, suppose that
44 . X& are solutions of Eq. (41). Since both 2 as
well as f are Hermitian operators, different functions
X„, X are mutually orthogonal and, hence,

(X.lF + 2lX„) = 0 for (n W m) .

Inserting here the definition for 2, one obtains im-
mediately condition (9). It follows then furthermore
that&(p)P, = +~y,~P. , v, ~ = y~;, (40)

L(x,x') = g X.(x)X (x')L„
In the preceding sections we have constructed the mQn

localized SCF orbitals from the Hartree —Fock SCF the matrix L„being defined by
orbitals which were assumed to have been determined
previously by solving the Hartree —Fock equations

(the density matrix p is assumed invariant with re-
spect to the choice of basis). Arbitrary fixation of
the off-diagonal Lagrangian multipliers y;k de-
termines a specific basis set. The Hartree —Fock or-
bitals result from the choice y, ), = 0(j W k), whereas
our localized orbitals result by adding the conditions
of Eq. (9), which are just sufFicient to fix the off-
diagonal pjk Now, Gilbert" has pointed out that the
fixation of the y,~(j W k), and hence of a particular
basis set f, is equivalent to replacing Eq. (40) by a
pseudo-eigenvalue equation

I~(p) + B}4-= e-'4-,

where g is a suitably defined operator. It should,
therefore, be possible to determine this operator in

20 T. L. Gilbert in Molecular Orbitals in Chemistry, Physics
and Biology. A Tribute to R. 8. MulliA:en, edited by B. Pull-
mann and P. O. Lowdin (to be published). The authors are
grateful to Dr. Gilbert for making available a preprint of this
interesting work, and for a stimulating discussion.

(v+ z)l. = ~~. —g. P..lull. )~.
( mgn)

so that Eq. (41) becomes identical with the general
SCF Eq. (40), with p,7,

——(X, l5'lX)) for j & k.
The solutions of Eq. (41) have to be found by the

iterative process

dl(v)y(v+t)
( )

(v+oy(v+&)
(

where

(R(v) + I
(v)

} @I I
(v)

y
(v)

}

Examination of this process shows the omission of
the diagonal elements ()(„lPlX„) in the definition of
2, Eq. (48'), to be an essential necessity for obtain-
ing convergence towards the localized orbitals. Be-
cause of this omission, the sum of the terms contain-
ing 5 in 2 is not identical with the projection p5p.

Thus, Eq. (41) replaces both Eq. (40) and Eq. (9)
and, in contrast to the Hartree —Fock SCF equation,
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it can be considered as an SCF equation for orthog-
onal energy localized orbitals. Whether, in practice,
it is easier to solve directly for Eq. (41), instead of
first solving for Eq. (39) and then applying the trans-
formations described in the preceding sections, is
questionable. It must also be borne in mind that
Eq. (41) represents not only an equation for the SCF
orbitals of maximal localization, but that it holds for
the SCF orbitals of minimal localization as well.

COMPLEX LOCALIZED ORBITALS

with

L,„=h{[ „*)~.—).*).~X„*)„]I —()1„~5~)~„), (46')

where h. {e}is now any complex function of the com-
plex variable z, satisfying

A. {eI = 0 only for z = 0.
This guarantees that I. is a Hermitian matrix and,
hence, 2 a hermitian operator. The simplest choice is

is the projection, on the space subtended by )&,

)~, of the integral operator with the kernel
[pn pm pmpm {pn pm] [pn pn pmpm~ cpm] 0

p (45)

L. ='[).*).—)*) ~)*.),.] —().t~~).). (47)
Up to now all orbitals were assumed to be real, as

is usually the case in molecules. Moreover the defini- ™ybe note

tion (42, ff) of the operator 2 was purposely chosen
such as to keep all quantities real.

)~(x,x') = i Z )i„(x)X„*(x')[)~„*)~.—)~*X ~)~.*X ]If one abandons the convenience of reality, then
the localization condition (9) becomes

and the transformation to localized orbitals is in gen-
eral unitary. The kernel L(x,x') of the localization
operator 2 of Eq. (42) is now to be defined by

)i(x,x') = i Q),„(x))i„*(x'){U.(x') —U„(x)I,
where

L(x,x') = P X„(x))i„*(x')L„„, (46) U. (x) = dV")i„*(x")),„(x")iix —x"
i
.
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I. INTRODUCTION

EAI IZATION of a practical and easy-to-
interpret theoretical formalism for electron-

correlation effects is today the most actively pursued
goal in the quantum mechanical description of atoms
and molecules. The present article is an attempt to
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abstract from existing numerical data a set of em-
pirical rules which can act as a guide to theoretical
formulations of electron correlation. '

The correlation energy E,.„of an atomic or
molecular system may be de6ned as the difference be-
tween the exact nonrelativistic energy and the
Hartree —Pock energy for this system. ' The non-
relativistic experimental energy can be obtained

For other work on this problem see E. Clementi, J. Chem.
Phys. 38, 2248 (1963).

P. O. Lowdin, Advances in Chemical Phys. , edited by I.
Prigogine (Interscience Publishers, Inc., New York, 1959),
Vol. II, p. 207.


