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more generally as follows: The approximate first-
order wave functions obtained via Eq. (3) auto-
matically satisfy the same orthogonality conditions
as the exact first-order wave functions. In order to
present a proof, define

(Q,QQ) = dnp*QQ,

Insertion of Eqs. (AII.2) and (A.II.3) into Eq.
(AII.1) yields that

(Ail.4)

must hold if the theorem is to be true. Set P,", say,
into the variational equation, Eq. (3), and form the
variance with respect to aI„".It follows that

(0e) =

(For the particular case of an X-electron atomic sys-
tem, X = Z ', of course. ) The orthogonality condi-
tion that two states, p and q, must satisfy is given by

(ki4) + 804) = o.
Let P', " be an approximation to P"„and let

(All. l)

lj/g Q af,

leap

a", ,P', + qf, , (A&&.2)

and let the total wave function for a state p have the
following perturbation expansion

ay, = (Po,H ft) (eo eo)

and likewise, by starting with P,',

a,',„= (P,',H' P",)(e'. —et) '.
A comparison of these last two equations shows that
Eq. (AII.4) is valid, and hence that the theorem is
established.

It is interesting to note to what extent the present
1'8 and 2'8 approximate first-order wave functions
fulfill Eq. (AII.l). For the choice p = I'S, q = 2'S,
the computed values are

Q~o, p&') = —0.336939,
Q'i~, fo) = +0.336968,

so that

and likewise

Q'&»(g) = 0

pl —g al, a/0 —al, yt//0 + $1

(tt'0, (g) = 0. (AII.3)

which sum to 2.9 )& 10 '. The exact magnitude of
these integrals may be computed from elementary
perturbation theory, and is 0.3369789 - . Since the
~2 values are regarded as converged to only six or
seven decimal places, the extent of agreement ob-
tained is satisfactory.
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I. INTRODUCTION

N the two earlier papers of this series" the varia-
tional perturbation procedure of Hylleraas has

been applied in first order to the ground state and to
some of the lower lying excited states of the helium
atom isoelectronic series. The straight (i.e., nonper-
turba, tional) variational treatment, of these systems

*This work was supported by a grant from The National
Aeronautics and Space Administration.

I R.E.Knight and C. W. Scherr, Phys. Rev. 128, 2675(1962).
2 R. E. Knight and C. W. Scherr, Rev. Mod, Phys. 35, 481

(1963), preceding paper.

has been carried out to astonishing lengths by
Pekeris' and others, 4 furnishing estimates of energy
eigenvalues which are in some cases converged to as
much as nine or more significant figures, and furnish-
ing expectation values for other operators than the
Hamiltonian with corresponding precision. With this
background in mind it seems clear that for a pertur-
bation treatment of X-electron atoms to be more than

3(a) C. L. Pekeris, Phys. Rev. 112, 1649 (1958); (b) 115,
1216 (1959);(c) 125, 148 (1962); (d) 125, 1470 (1962).

4 (a) T. Kinoshita, Phys. Rev. 105, 1490 (1957);(b) 115, 366
(1959).
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of didactic interest, the perturbation must be quite
small, or the process must be carried through to
fairly high orders. It may be possible to make some
limited progress in the direction of making the per-
turbation small, but the direction of attack which
seems most promising and most capable of indefinite
extension is the extension to higher orders, assuming
the perturbation process itself converges.

In this report a sixth-order perturbation wave func-
tion is presented for the 1'S ground state of the
helium atom isoelectronic series. A sixth-order wave
function furnishes energy estimates through 13th
order. The energy estimates to 13th order are better,
i.e., more nearly converged to the true values, than
any previously reported energy values obtained by
any procedure including Pekeris' extrapolated values
for Be'+ and higher members of the series, and are
also better than Pekeris' n* values"' for helium and
Li+.

Improved estimates of energy eigenvalues, how-
ever, are not the only reason for extending the per-
turbation theory calculations to higher orders. It has
long been recognized that wave functions constructed
by an energy criterion are often inadequate for the
satisfactory calculation of expectation values of
other operators of interest. It is entirely possible that
the higher-order correction functions for the wave
function are actively concerned with regions of con-
figuration space that are not at all important ener-
getically. Some discussion of this point is presented
in Sec. VII.

The above-mentioned point is particularly appar-
ent in calculations of transition moment probabilities
where there are at least three available procedures for
calculating the same expectation value. All three pro-
cedures would, of course, be in numerical agreement if
exact wave functions were used in the calculations,
but with the available variational wave functions
wide disparities are the rule. Since the perturbation
results should be in close agreement —nearly to the
order of the calculation —it is particularly desirable
to obtain transition moments via higher-order per-
turbation theory. Paper V in this series presents some
excited states to higher order so that these calcula-
tions become feasible.

The authors have previously presented a prelim-
inary report of the calculation of a fifth-order wave
function. ' This paper extends that work both from
fifth to sixth order, and from 70- to 100-term basis
sets.

5 R. E. Knight and C. W. Scherr, J. Chem. Phys. 3'7, 2503
(1962).

II. METHOD

Let the Hamiltonian H be written as'

H = Ho+H',

where e„ is referred to as the nth-order perturbation
energy coefIicient. '
Define

Gp ——IIp —ep,

GI ——II' —e1 .

(II.4)

The familiar equations for Schrodinger perturbation
theory then read'

Gogo = 0,
Gobi+ %go = 0,

Golt'o + 'R4'i &o4'o = 0 i

and in general for all n

(II.6.0)

(II.6.1)

(II.6.2)

n

Godet' + Gilt' i —P cog. o = 0 .
Io=2

It is possible' to arrive at the correct perturbation
variational integral equations by requiring that the
variance with respect to the unknown it„ lead to an
Euler equation identical with one of the Eqs. (7). It
is necessary only to take care that for exact P„ the
equations indeed furnish a correct expression for 62„.

Alternately, it is possible to start from the variational
theorem. The variational theorem states that for any
it meeting well-known, easily satisfied restrictions

dnP*HQ —E dnP*P )~ 0 .

lVote added in proof. Units of length, Zap,' units of energy
2BhcZ~ are used unless it is explicitly indicated that atomic
units are being used. These latter are units of length ap, units
of energy 2@he, where ap is the Bohr radius.

7 H. Bethe and E. E. Salpeter, in IIandbuch der Physik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 35,
Pt. 1, pp. 208 ft'.

where IIp is called the zero-order Hamiltonian, and
H' is called the perturbation. For the X-electron
atom, the conventional choice for H' is (Zr») ', the
electron interaction terms in H. By this choice the
atomic wave functions for a given state of the system
are obtained as an expansion in inverse powers of the
nuclear charge Z:

(II.2)

where the sum to a particular m is called the mth-
order wave function. Similarly the energy is given by
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The derivation in this latter case is presented in the
following paragraph.

Define

Similarly, the coeKcient of Z will furnish an ac-
curate estimate of e& to the extent that Eq. (16) has
furnished an accurate ps. After similar simplifications
as above, this coefFicient is

(nl~llm& = (II.9)
(2IGg I2) —2e2(2I 1) —ea(1

I
1) —2e3(2IO) —2e4(I I0)

where the&„now refer to the approximation functions
which will be furnished by the variational procedure
to be derived below.

Since Pe is known exactly, it follows immediately that

&nlGIO& = O, (II.10)

&OIGilo& = 0. (II.11)

Insertion of Eqs. (2) and (3) into Eq. (8) yields
an infinity of terms that may be viewed as a power
series in Z '. The leading power of Z is Z', whose
coeKcient, (OIGOIO), vanishes by Eq. (10). The co-
eKcient of Z ' is

—eg(OIO) . (II.17)

Now, with the assumption that p& and p, are known
exactly, the coefficients of Z ' and Z ' vanish exactly,
and the coeKcient of Z ' becomes the dominant and
hence necessarily positive term, and will furnish
estimates of gs and es. The coeKcient of Z "will cor-
respondingly furnish an estimate of e7. The process
may be continued to as high an order as is desired. In
general,

&OIO, e.„=&nlG. ln) + 2&nlG, ln —I&

2n —I n

2&IIG Io& + 2&oIG Io& (II.12) —g.„g &il2n —p —i&, (II.18)

which also vanishes via Eqs. (10) and (ll). However,
the coefFicient of Z ' is

&IIGOII& + 2&IIG~Io& —"&oIo& .

(oIo)"-. = &nlG ln)

2n n

(il2n+ 1 —p —i&,
i=n+I-p

(II.19)

III. NORMALIZATION

The expression (13) is necessarily positive for it is
the dominant term for large enough Z, and would
cause Eq. (8) to be violated if it were not positive (or where terms with negative indices are ignored.

zero). Hence,

es(0 lo& ~& (IIGOII) + 2(I IG Io& . (II 14&

This equation is the variational perturbation equa-
tion originally derived and used by Hylleraas in his

great pioneering work."It is this equation which
furnishes the variational criterion for determining |t i

via minimizing an estimate of e2. The coeKcient of
Z ' reads

2&2IGOI I& + 2&2IG~IO& + &IIG~I I& —2es(IIO&

—e.(OIO) . (11.15)

To the extent that Eq. (14) has furnished an ac-
curate p&, the ffrst two terms in this equation will

vanish due to Eq. (6.1).Equation (15) then furnishes
an estimate of ~3, as all the remaining quantities may
now be calculated. With the assumption that gi is
known exactly, the coeKcients of Z ' and Z ' vanish

exactly, and the coefFicient of Z ' is now the dominat-

ing term, and hence is necessarily positive. After
similar simplifications as above, there remains

(2IGol2) + 2(2IG&I1) 2e2&OI2) e2&ll1) 2ea(OI1)
—.,&olo) & o. (11.16)

4' = «4-+ Zh-, A'. (111.1)

When the successive P„are inserted in the successive
perturbation equations there results, by a sequence
of steps that is much simpler to perform than to de-

scribe, a necessary and sufFicient requirement for the
satisfaction of the perturbation equations. This re-
quirement is that the b.„not be a two-index function,
but rather a singly indexed function, indexed in fact
by n —i, so that actually Eq. (1) may be rewritten
as

There are two further requirements on the func-
tions that are furnished by the variational perturba-
tion procedure. The first is that the functions formally
satisfy the perturbation equations, Eqs. (II.6). The
second is that they correspond to a normalized total
wave function.

Let the functions furnished by the variational pro-
cedure be represented by p.. Then it will be sufficient
to write

s E. Hylleraas, Z. Physik 65, 209 (1980). 4 =«4 + Za-A". (III.2)
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The normalization condition

(m.3)

becomes, by insertion of Eq. (II.2),

Then
Qp= 1)

a, = —(110)

(111.6)

(III.7)

(i.e., P&& is normalized and orthogonal to P&), and

2as = —[2(210) + (111)]+ a', ,

2a3 —[2(310) + 2(21 1)] + a, (2as)

a4 = —[2(410) + 2(31 1) + (212)] + a, (2a,) + a,',
2a5 = —[2(510) + 2(411) + 2(312)] + a~(2a4)

+ a&(2a&), (III.S)

2« = —[2(61o) + 2(51 1) + 2(412) + (313)]

+ a, (2a,) + a, (2a,) + a,' .
The a; are characteristic of the basis set employed
and not of the perturbation wave function, and
hence are not listed.

g Z-" g (tl)) = 1, (In.4)

where (il j) is explicitly an integral between the P.,
rather than between the p„which was its actual mean-

ing in the previous section. Since Z is completely
arbitrary, Eq. (4) will be satisfied if and only if

Z (ti) = ~-. (111.5)
t'+) =n

where b. p is the Eronecker delta function. The
validity of Eq. (5) is further discussed below. Equa-
tion (5) is the final condition needed to fix the a„;.
Let

2
3
4
5
6

.7
8
9

10
11
12
13

&n

—0.15766 6405
0.00869 8991—0.00088 8587—0.00103 6372—0.00061 2917—0.00037 2187—0.00024 2872—0.00016 5651—0.00011 6157—0.00008 3281—0.00006 0866—0.00004 5213

0.5914
0.6072
0.6526
0.6821
0.7012
0.7170
0.7309
0.7428

TxsI,K II. The energies in atomic units.

E to 13th order

1
2
8

5
6
7
8
9

10

—0.5275 9152—2.9037 2433—7.2799 1339—13.6555 6622—22.0309 7156—32.4062 4658—44.7814 4513—59.1565 9510—75.5317 1234—93.9068 0649

eluded in the summation) plus enough additional
terms to make up a 100-term expansion. The calcula-
tions were performed in "double precision" (22
decimal figure arithmetic) on a CDC 1604 located on
this campus. The original formulation of Hylleraas
was followed down to the details of the arithmetic.
The calculations were carried through sixth order,
thus furnishing the ~. through thirteenth order. The
e„are tabulated in Table I. The total energies com-

puted from these coeKcients for the erst ten mem-

bers of the helium isoelectronic sequence are tabu-
la,ted in Ta,ble II. The choice of the number of sig-
ni6cant 6gures reported in these tables is discussed
below.

Txaz, z I. The ~„ in atomic units.

IV. PROCEDURE AND RESULTS

The form of P, is of course fixed. Each of the other

p; is of the form
k+3

P; == exp (—-', k~s) g Al, m, m
i

s p

V. TWO IMPORTANT THEOREMS

Two useful sets of relations are as follows:

(V.1)

(IV.1)
where s, p, and q are the Kinoshita variables. ' The k;
are scale factors that are individually varied for each
p;.' The summation was extended to include all the
terms considered by Kinoshita in his 80-term calcula-
tion ' "' (exclusive of l = m = n = 0 which is not in-

9 Selection of the k; to be 2.0 (the hydrogenic value) results
in a loss of two orders of magnitude of accuracy.

(r, '+ rs ')„= (p —2)e„,

where the symbols on the left are defined by

(V 2)

&n)„= g (tlnlj) = g d p*, np, . (v3)

(0), is referred to as the coeKcient of the pth-order
contribution to the expectation value of the operator
Q. A special case of Eq. (2) has already been presented
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in an Appendix to the second paper of this series.
Equation (1) is readily established by forming

g (p + 1 —2i) ding;*6, +, ; = 0,
i=0

(V.4)

where 8„+&;is the terms in the (p + 1 —i) th-order
perturbation equation, i.e., the terms on the left of
Eq. (II.7) when n is set equal to p + 1 —i. In addi-
tion to terms tha, t directly cancel, a number of terms
are also elimina, ted in the summation in Eq. (4) via
the normalization condition, Eq. (III.5). What re-
mains is exactly Eq. (1).

For particles interacting through a Coulomb law
of force, the virial theorem states that

E = —', (V), (V 5)

where V is the potential energy part of the complete
Hamiltonian. When the quantities in Eqs. (II.2) and
(II.3) are inserted into Eq. (6), a power series in Z
arises whose coeKcients may be equated indentically
to zero. This procedure leads directly to

—
s (r$ + rs )„+—, (r„')y—f . (V.6)

Insertion of Eq. (1) into Eq. (6) yields Eq. (2).
Pekeris has already calculated the expectation val-

ues in Eqs. (1) and (2) specifically for the case Z
equals two with his 1078-term variational wave func-
tion. His values are compared with the present val-
ues in Table III.

Txsr, E IV. Comparison of the e„with e„recovered from
variational wave functions.

Present paper 88 HMb

—0.15766 6405
0.00869 8991—0.00088 8587—0.00103 6372—0.00061 2917

-0.1576664
0.0086993—0.000894—0.001012—0.000641

—0.1576575
0.008585—0.00034—0.00082—0.002445

a C. W. Scherr and S. N. SilverInan, S. Chexn. Phys. 37, 1154 (1962).
b E. Hylleraas and J. Midtdal, Phys. Rev. 109, 1013 (1958).

section) or for certain (i~A~ j)„can be obtained" from
theory, and thus similar comparisons for higher or-
ders than the first can be made, and are made in the
next paper in this series. At the moment an estimate
of the convergence of e& can be made by comparing
the total helium energy value computed from the
perturbation coe%cients with the value found by
Pekeris with his 1078-term wave function. It can be
concluded that e& is most likely converged to within
4 units in the eighth decimal place. Since no energy
value can be obtained more precisely than the abso-
lute error in e&, the entries in Table II have been
rounded to eight decimal places. The entries in Table
I, however, a,re given to nine decimals in order to
circumvent a possible loss of accuracy in computing
the expectation values of r&

' and r&s
' via Eqs. (V.2)

and (V.6).

TABLE III. (r& ' + rs ') and (r&s ') in atomic units for He.

Integral
Pekeris
value'

Present values
13th order extrapolated

—', (rI + r2 ) 1.6883 1680 1.6883 1686 1.6883 1689
(r12 ') 0.9458 1845 0.9458 1878 0.9458 1895

' C. L. Pekeris, Phys. Rev. 115, 1216 (1959).

VI. DISCUSSION OF THE e~ AND THE
TOTAL ENERGIES

The first important question to be answered is how
well converged have the e. been obtained. In paper I
of this series the question was answered by a ref-
erence to the extent that the first-order expectation
values obtained there agreed with values known ex-
actly from the perturbation theory of Dalgarno and
Lewis. ""Exact values for certain (0), (cf. previous

'0 A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London)
A233, 70 (1955}.

u A. Dalgarno and A. L. Stewart, Proc. Roy. Soc. (London)
A247, 245 (1958).

's g. W. Scherr (unpublished material). Scherr finds exact
values for operators involving r12. These are useful for es-
timating the degree of convergence of other similar operators
such as the Hamiltonian itself.

Scherr and Silverman" have recovered perturba-
tion energy coeKcients through sixth order from the
data of Pekeris via a differencing process. A com-
parison is presented in Table IV where it can be seen
that the agreement is good. A similar set of coe%-
cients given by Hylleraas and Midtdal" is also
tabulated.

An interesting aspect of the calculated perturba-
tion energy coeKcients, already noted by Knight and
Scherr, ' is that the set of r; defined by r; = e;,je; are
approaching a constant ratio r„as the order consid-
ered becomes higher. The new set of ratios are given
in Table I. They lie on a smooth curve, and probably
extrapolate to some value for r„lying between +0.78
and +0.80. Several interesting consequences follow
if the ratio is indeed approaching such a constant
value. First, since r„ is less than unity, the absolute
convergence of the energy series for Z & r„ is estab-
lished. Second, since r„ is positive, and since all the
e. from e4 onwards are negative, it follows that any
truncated energy summation past third order is nec-

13 C. W. Scherr and J. N. 8ilverman, J. Chem. Phys. 3'7,
1154 (1962}.

r4 E. Hylleraas and J. Midtdal, Phys. Rev. 109, 1018(1958)
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essority on upper limit to the true energy. "Analogous
results follow for (r, ') and (r» '), cf. Eqs. (V.2) and
(V.6). Third, an extrapolation to infinite order en-
ergies is readily accomplished. Thus, suppose, for all
n greater than n', that, r„ is close enough to its limit-
ing value that it is satisfactory to take r. = r„and to
write e„+1 ——r e„. Then it is easily established that
in atomic units

The 13th-order energies listed in Table II are quite
constantly 5 units deeper in the eighth decimal place
than Pekeris' n* energy values in each case except
H and He. They are also 7 to 8 units deeper in the
ninth decimal place than his extrapolated values in
each case except H, He, and I i+. In view of the
italicized statement in the previous paragraph, these
comparisons are a further indication of the high de-
gree of convergence of the sixth-order wave function.

In order to obtain extrapolated values, it is neces-
sary to determine r„. Since the r„ is only approx-
imately converged, knowledge of r at this point ac-
tually would not give an exact extrapolation even if
613 were known exactly. A good estimate is obtain-
able, however, for it seems clear that r&3 is within 0.04
or 0.05 units of r„. In view of these uncertainties, r
is here taken as 0.77914, the value which makes the
computed H energy agree to 8 decimal places with
Pekeris' best extrapolated value. To the number of
figures reported, the extrapolation only affects Z = 1
and 2 as follows (atomic units):

P = 1 —Zs+-', u+ (VII.l)

where s = r, + r, and u is rls. It has already been
pointed out in the first two papers of this series how
poorly first-order perturbation wave functions be-
have near the nucleus. Thus, specifically for Z = 2,
for the ground-state 70-term wave function of the
"Hylleraas type"" considered there,

I5 This statement, of course, requires that the exact e be
used.

I6 V. Fock, Izv. Akad. Nauk SSSR, Ser. I"iz. 18, 161—172
(1954).

I7 That is, only positive powers of the metric variables are
included in the expansion set.

H: —0.5277 5101, He —2.9037 2434 .

VII. BEHAVIOR NEAR THE NUCLEUS

It is known from theory" that the two-electron
atom wave functions for the ground states have a
behavior near the nucleus in atomic units of

p = 1 —1.984448 + 0 47391u + (VII.3)

The behavior of the sixth-order wave function near
the nucleus specifically for the case Z = 2 is

P = 1 —1.98317s + 0.50299u + 0.03163t's '

—0 04513u's ' —0.01728ut's ' + 0 01654u's '
—0.00023t'u ' + (VII.4)

where t = r2 —r&. The last five terms arise because
the basis set contains Einoshita variables. Einoshita
has shown that these "extra terms" are properly
present, and hence they will contribute to the func-
tional behavior near the nucleus, too. In order to
make a qualitative comparison with the theoretical
behavior it is sufhcient to examine the first three
terms in Eq. (4) since the last five terms largely can-
cel themselves out. In order to make a quantitative
comparison with the theoretical values, the actual
numerical values of the terms linear in metric vari-
ables for given values of rI, r2, and r» have to be com-
pared to —Zs + 0.5u for those same values. A con-
venient seI; of coordinates is defined as

X = s&s/gys )

cos g = ly rs/Types, (VII.5)

since, fortunately, the problem can be considered as
a two-dimensional problem: the relative values are
the relevant values. The s»(g») is the smaller (larger)
of r& and r2. The X may be viewed as an "in—out cor-
relation" coordinate, while cos 0 may be viewed as an
"angular correlation" coordinate. Figure 1 abstracts
conveniently the important points to be noted in
this connection. The curve marked P is the locus of
points" where Pekeris' wave function, Eq. (3), gives
exact agreement with the theoretical values; the
curve marked ES is the locus of points where the
sixth-order wave function, Eq. (4), gives exact agree-
ment with the theoretical values; and the curve
marked P—KS is the locus of points where the sixth-
order wave function and the Pekeris' wave function

By equating Eq. (3) to Eq. (1) it is possible to obtain cos
8 as a function of ), and hence to obtain the equation of the
curve P. In fact, the relation is

cos 0 = 0.3221K —0.3557 + 0.3221K ~.
Similar expressions could be found for the other two curves
on Fig. 1, though they were actually plotted from a numerical
calculation.

P = 1 —1.9186s + 1.0433u + (VII.2)

so that the coeKcient of n is in error by more than a
factor of two. The coefFicient of 8 on the other hand
is fairly satisfactory, as is evident if the behavior of
Pekeris' 1078-term variational wave function near
the nucleus is considered:
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have the same relative error, so that everything above
that line is the area where the Pekeris wave function
does better, and everything below that line is the
area where the sixth-order wave function does better.
Thus, the Pekeris wave function is superior in the

+l.0--

oo
Q

0

—I.O -'. 5 ~

FIG. 1. Comparison of the behavior near the nucleus of the
Pekeris 1078-term wave function with the sixth-order wave
function for Z = 2; lines P and XS are the loci of exact agree-
ment of the Pekeris wave function and the sixth-order wave
function, respectively, with theory, and line P —ES is the
locus of exact agreement of the two wave functions with each
other.

doubly dificult region near the point A where both
in —out correlation and angular correlation are most
needed (X = 1, cos 8 = 1). Fortunately, the supe-
riority of the Pekeris wave function in this region is
only marginal. The ratio of values furnished by the

Pekeris wave function to the exact values ranges from
a high of 1.0078 at A to a low of 0.9930 in many
places" including point B. The same ratio for the
sixth-ordet wave function ranges from a high of
1.0084 at A to a low of 0.9942 at B. Thus, in both
cases, the linear terms are not in error by more than
about 0.8'P~.

VIII. CONCLUSION

The ability of a sixth-order wave function to hold
its own against and even surpass the results of the
very best variational calculations extant should lay
to rest the objection that it is incapable of highly ac-
curate development. It seems clear that much useful
work remains to be done, and in this concluding sec-
tion the authors would like once more to emphasize
the simplicity and ease of the calculations.

The work on expectation values of operators with
this sixth-order wave function is nearly completed,
and furnishes the subject matter of the next paper of
this series. Calculations are also underway to treat
various excited states of the two-electron sequence in

higher order.
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~9 Thus, the value 0.9930 is obtained all along the cos 9
= —1 axis, and all along the X = 0 axis.

Discussion on Atomic and Molecular Calculations

Y. J. I'Hard, Chairman

Hvz, Lzaxxs: I found these results quite exciting. Midtdal and I had thought our (24 term)
E2"' value was fairly accurate, possibly to the sixth decimal place. Then, comparison with Pekeris'
values indicated a difference of some units. Now through Knight and Scherr s calculations, the
value has not only been corrected (to 6 decimals), but has actually been given to more decimals.

NESBET: In using (1/Z) expansions, nonintegral values of Z could be used for the basic numeri-

cal work (Pekeris' calculations, for example) with (1/Z) perhaps equal to roots of Chebyshef poly-
nomials, to give better formulas for interpolation and extrapolation.

HvLLEm. xs: I remember a conversation long ago with Ta-You %u, who firmly believed in the
existence of H (18)(2a)'8 as a closed state which I had been unable to produce. In such cases, the
use of Z as a continuous parameter might be helpful, because as long as Z & 1 the state in question
would be closed. In the case of the closed state (2p)' 'I' of H I had tried the values of Z = 1.5,
1.2, 1.1, however, only after the stability of Z = 1.0 had been proved. At an earlier stage the
procedure might perhaps have been of some use.

LowDIN: The coeKcients of the Chebyshef expansion of the energy of the He-like ions in

terms of 1/Z have been evaluated in Uppsala about one year ago by Klaus Appel and myself.
En&: I should like to report on a calculation of the interaction of two He atoms in the ground

state. [Dong-Yun Kim, Z. Physik, 166, 359 (1962)j. Aside from the normal Heitler —London type


