
QUANTUM MECHANICS OF TYVO-ELECTRON ATOMS

his home and main duties in Leningrad. On present-
ing me a nice book, he told me that he would be
happy to have the privilege of calling me "his old
friend, "and to this I consented on the condition that
this be a reciprocal sort of privilege.

This was V. Fock, the second father of the famous
Hartree —Fock method, whose range is far beyond the
two-electron problem. The former one, Douglas R.
Hartree, I shall never forget, as being one of the
kindest persons I ever met, and whose premature
death I sincerely regretted. The words he used of his
own father, the other Hartree whose name appears
in some joint publications, that he was the most
wonderful artist in numerical calculations he ever
know, may well be turned toward himself.

It is a sad thing to observe friends and colleagues
and pioneers of the Atomic Age passing away. Among
the nearly half a hundred persons I have touched
upon in this review half of them are no longer alive
and quite a number of them did not reach the normal
length of a life. The latest, fairly normal cases, I
know of are those of Niels Bohr and Charles Darwin.

In this sense my review, although unintentionally,
may still be called a little piece of history.

Above all we have to remember the giants of early
atomic research in our century like Planck, Einstein,
Rutherford, Bohr, and Sommerfeld, to mention only
a few, and to these I should like to add as one of the
most venerable representatives still alive from that
time, Max Born of Gottingen, now, after twenty
years of exile, living peacefully in the nearby Bad
Pyrmont. His eightieth birthday was recently cele-
brated at the Physics Institute in Gottingen, on
which occasion I had letters from him. Although his
health is perhaps not the strongest, his mind is un-

usually active, and, in his memory, as I personally
have learned from him, he holds a store of valuable
reminiscences, particularly from early days in Berlin
together with Albert Einstein.

You will forgive me that, if my lecture has turned
too much towards early days in Gottingen, it has
been rather to the honor of my dear friend and first
teacher in theoretical atomic physics, Max Born.
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I. INTRODUCTION

~HE first paper of the present series, ' hereafter
referred to as I, investigated the ground state

(I'8) of the two-electron atomic species via a pertur-
bational approach. The calculations have now been
extended to include the 2'8, 2'8, 2'P, and 2'P states
of the same system.

For purposes of definition, let the Hamiltonian H
be written as

H = Hp + PH'.

When the Hamiltonian for the X-electron atom is
written in appropriate units, ' it is of this form with X

*This work was supported by a grant from the National
Aeronautics and Space Administration.

I R. E. Knight and C. W. Scherr, Phys. H,ev. 128, 2675
(1962).

Units of length, Zao, units of energy 2BhcZ are used
unless it is explicitly indicated that atomic units are being
used. These latter are units of length ao, units of energy 2Bhc.

equal to the reciprocal nuclear charge Z ', and II'
to the electron interaction terms. Thus, the atomic
wave function for a given state is obtained as an
expansion in inverse powers of the nuclear charge Z:

f= Q„f„Z
where summation to a particular n is called the nth-
order wave function. Similarly, the energy is given by

Z = g.s.Z",
where c„ is referred to as the nth-order perturbation
energy coeKcient. For each state of an X-electron
system, sp sy and Pp are known exactly. The pro-
cedure used in the present series is a variational
perturbation procedure due to Hylleraas. ' It fur-

s E. Hylleraas, Z. Physik 05, 209 (1980); also see H. A.
Bethe and E. E. Salpeter, in IIandbuch, der Physik, edited by
S. Fliigge (Springer —Verlag, Berlin, 1957), Vol. 35, Part 1, p.
2086.
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TxsLE I. Perturbation energy coeKcients in atomic units.

State

ep

61
62

Number
of terms
in $1

1'S'

—1
5/8—0.157666254
0.008698679

70

2'S

—5/8
169/729—0.11447618
0.00941508

60

23S

—5/8
137/729—0.047409192—0.004871842

60

21P

—5/8
1705/6561—0.15702123
0.02612431

23P

—5/8
1481/6561—0.072992604—0.016558519

a From the K wave function of I.

II. METHOD

The variational equation for e& is"

p2(i(1) = drlpl (Hp pp)lt'1 + 2 drlpl (H p)lllpt1

(3)
where p, is the variational trial function for $1. An
estimate of e3 is then obtained from

pp Q,') = d+,'(H' —p, )P,' —2pp (lit',') dnP, 'Pp . (4)

Equations (3) and (4) are applicable to any state of
the system, provided, of course, that the pp, pl, and leap

appropriate to that system are used (v.i. and Ap-
pendix II).

For the 2'8 and 2'8 states, an expansion of the
for m

—-'-ks

P, = e
*" Al, .s'u"t

l, m, n&0
(5a)

was used, where a, t, and u are the well-known
Hylleraas variables, and Ic is a variational parameter.

4 R. E. Knight and C, W. Scherr, J. Chem. Phys. 37, 2503
(1962).

5 C. W. Scherr and R. E. Knight, third paper of this series,
Rev. Mod. Phys. 35, 436 (1963), following paper.

6 Throughout this paper all +„are chosen real.

nishes an upper bound to the value of e2 via a varia-
tionally determined approximation to lit l. The calcula-
tion also gives an estimate for pp. Knight and
Scherr4' have extended the procedure to include ap-
proximations to the fp, and thus obtain estimates of
the energy coefIicients through thirteenth order. The
sixth-order wave function was sufIicient to give an
estimate of the total ground-state energy of the
helium atom that is comparable in accuracy to the
best previously, purely variationally, obtained re-
sults. The success of these calculations suggests an
extension of the procedure to excited states. In the
present paper p2, „pnad/, are calculated for the 2'8,
2'8, 2'P, and 2'P states of the two-electron atomic
species.

The m is either even or odd as the state is either the
singlet or the triplet. Initially, a form of lt, was tried
for the 2'8 state in which k't was included in the ex-
ponent of the exponential factor. When optimization
was attempted, k' became very small and seemed to
make no significant difference in the results. Since
considerable computational difFiculties are intro-
duced when k' is small, this factor was dropped from
the expansion. For the P states, P, has the form'

= rlG cos 01 —r2G cos 02 1

G(s, t,u) = aG(s, —t,u),

(6a)

(6b)

where the upper sign corresponds to the singlet and
the lower, to the triplet. The function G was taken
as an expansion of the form

G = e
*"* Q Bl. ..s'u"t"

l, na, m+0
(5b)

where the expansion included both even and odd m.
The expansions in Eq. (5) are both of the Hylleraas
type, i.e., only positive powers of the metric variables
are included.

The values of the 60 ~1 E2 and e3 obtained for each
of the states investigated as well as the previously re-
ported 1'8 values are presented in Table I. Table I
also reports the number of terms used in the ex-
pansions of Eq. (5).

Alternately, it is possible to use a variational wave
function that is constructed from an expansion in
Legendre polynomials. For the 8 states,

$1 gl lt 1 l (rl lr2)Pl (COS 012)

and for the P states,

(7a)

G = +1G (r, ,r, )Pl (cos0»), (7b)

where Pl(z) is the tth Legendre polynomial and 0» is
the angle between the position vectors of the two
electrons. When the summation is cut off at l
= 0, 1, 2 . the sets are referred to as the 8, P, B
sets. The best limiting e2 that can be obtained from
an infinity termed 8 is called an s limit (p,); from an

1 G. Breit, Phys. Rev. 35, 569 (1960).
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TxsLE II. The s, p, and d limits in atomic units.

]1+a
2~8
2IP
23P

~0
2

—0.12588198—0.045817648—0.14684854—0.070480500

—0.15177807—0.047219787—0.15465166—0.072670892

2
2

—0.15589043—0.047855088—0.15556727—0.072792279

total

—0. 15766625—0.047409192—0.15702128—0.072992603

2
~2/e2

1.0146
1.0011
1.0093
1.0028

a From the S, P, D. . . sets of I.

infinity termed I', a p limit (e,); etc. The notation is
the same as that used in I. Table II displays ~&, e2,

and e2 for each of the states considered except the
2'8

The first-order expectation value of an operator,
Q, may be obtained from a knowledge of f& as follows
[cf. I, Eq. (2)]:

(Q)p + Z (Q)g = dngoQPo + 2Z drtfoQPy ~ (8)

Table III presents (Q), for a number of operators of
interest.

III. DISCUSSION

In discussing the convergence of these variational
perturbation calculations, it is necessary to distin-
guish two kinds of convergence. The first, which
might appropriately be called the perturbational con-
vergence, applies to the question of how far must the
summations in Eqs. (1) and (2) be carried out in
order to be assured of a desired degree of accuracy.
This question is common to all perturbational ap-
proaches. The second kind of convergence, which
might appropriately be called the variational con-
vergence, is peculiar to a variational approach. It ap-
plies to the question of how well converged a par-
ticular set of s2, ss, and P& have been obtained from
Eqs. (3) and (4), or, more generally, a set of e2;, ss;yl,
and P; from the appropriately modified form of Eqs.
(3) and (4).'

In order to estimate the variational convergence it
is desirable to have some exactly known (Q)i. Un-
fortunately, aside from a number of values of (Q)i for
the ground state, ' almost nothing is available. It is
shown in Appendix I that

sl (Ti + 72 )l. .
The relevant data are entered in Table IV. Since this
operator is most sensitive to the form of the wave
function in the same regions of space as those to
which the energy is most sensitive, the accuracy of
agreement shown in Table IV is most likely a good
estimate of the accuracy to be claimed for e2. The e2

values reported in Tables I and II, with the exception
of the 1'S values, have been arbitrarily rounded to 8
signi6cant figures, and the e3 values have been
rounded to the same number of decimal places as
their corresponding e2.

The perturbational convergence can provisionally
be estimated from the data of Table V. In Table V
the result of summing Eq. (2) through third order is
compared with the very accurate results of Pekeris' "
for the total energy of a number of states of the
hydrogen minus atom, helium atom, and singly
ionized lithium atom. A more definitive discussion
of the perturbational convergence is more appropri-

8 See I, and earlier references there.
s C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216

(1959); 126, 143, 1470 (1962).
&0 C. L. Pekeris, B. Schiff, and H. Lifson, Phys. Rev. 126,

1057 (1962).

Tannz III. Some (0)& in atomic units.

Qorei 1'S 21P 23P

62

63—~Z-Q(r, )
7i Z—

2g(l-12 )
T
—1 T

—I
1 2

Z'(T1 + T2)
~'(rl + rs)

2 T12—Z cos 012
Z T12—Z311 I'2

0.157666254
0.008698679
0.667689614b
0.2429172
0.625b
1.125b
4.78125b

&2

0.133293412
1.02968827
0.378616569

0.047409192-0.004871842
0.1057962
0.0
0.187928476
8.299712678
45.4739771
0.047409192
0.047363870
3.19960728
0.501450559

0.15702128
0.02612431—0.0105701
0.0398114
0.259865405
5.88797786
64.6788400
0.157021230
0.265193693
5.59459327
1.63029965

0.072992604—0.016558519
0.0486486
0.0
0.225724037
8.91000750
47.0805829
0.072992604—0.045474060
3.64759916
0.08907800

& The 1'S values are either exact or taken from the K wave function results of I.
b Exact value.
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T+BLz IV. The calculated values of (r, + r&')1 compared to the exact values.

-(7' '+ 7' ')1
&1

0.624999812.
0.625

2'S

0.231809458
0.2318244170

23S

0. 187928476
0.1879286694

21P

0.25986405
0.259868922

23P

0.225724037
0.2257277854

a Computed from the II set of I.

TABLE V. Third-order energies compared with the Pekeris' results in atomic units.

11Sb 23S 21P 23P 21S

Es(Z = 1)
Pekeris
Es(Z = 2)
Pekeris
E3(Z = 3)
Pekeris

—0.52396758—0.527751014—2.90331692—2.90372438—7.27976670—7.27991341

—0.48935237—0.4993-2.17398777—2, 17522938—5. 11024713—5. 11072737

—2. 12422123—2. 1238429—4.99370636

—2. 12981629—2. 1331641—5.02632875

—0.49602800 —0.48882334 —0.49823668—0.4981—2. 14611980—2. 14597404—5.04086457—5.04087673

a C. L. Pekeris, reference 9 (extrapolated values) and reference 10.
b From the E wave function of I.

ately left to a later paper in the present series where
the results of calculations to higher order will be
presented. In connection with Table V it is inter-
esting to note that for the excited states the sums of
the energy terms through third order are higher than
Pekeris' values for the triplet states, but lower for
the singlet states. "It may be of some use to tabulate
the third-order energies. Table VI lists the third-
order energies for each of the states considered for Z
values from 1 to 10 inclusive. The entries in Table V
are presented to an arbitrary 8 decimal places, but
the entries in Table VI have been rounded to con-
form to the accuracy indicated by the agreement in
Table IV.

The behavior of these first-order wave functions
near the nucleus, interesting in itself, is also relevant

11 P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill Book Company, Inc. , New York,
1953), p. 11196, claim that energies through odd orders are
upper bounds. These authors do not take the higher order
terms into account properly, and so the theorem is not estab-
lished. A similar claim by O. Sinanoglu, Phys. Rev. 122, 493
(1961) is also in error. A correct discussion is given by P. O.
Lowdin, S. Math. Phys. 3, 979 (1962).

in connection with the above discussions. Thus, " in
atomic units

$(1'8) 1 —1.1124Z ' —(1 —1.1485Z ')Zs

+ 0.4630u +.
f(2'8) 1 —1.7119Z ' —(1 —1.7718Z ') Zs

+ 0.4042u + . . . ,

P(2'S) ~ (1 —1.7801Z ')Z'st
—

~ (1 —0.2540Z ')Z's't

+ —,', (1 —1.4685Z ')Z'ts + 0.0326Zut
—0.0411Z'u't + 0.1914Z'sut +

(r(2'P) 1 —2.6955Z ' —
4 (1 —2.7676Z ')Zs

—-', (1 —2.4103Z ')Zt + 0.3946u +
G(2'P) 1 —1.7874Z ' ——,

' (1 —1.8269Z ')Zs
—

~ (1 —1.7426Z ')Zt + 0.2086u +
where s = r& + rs, t = rs —ri, and u is res. In the

1~ The results previously reported in I for the 11S state con-
tain a misprint in the coefBcient of s.

T&BLz VI. Third-order perturbation energies in atomic units.

System/state

H
He
Li+
Be~+
B3+
C4+
N5+
p6+
F7+
Nes+

—0.5239676—2.9033169—7.2797667—13.6554916—22.0309265—32.4062165—44. 7814236—59.1565789—75.5316997—93.9067964

21S

—0.4982367—2. 1461198—5.0408646—9.1848247—14.5784711—21.2219605—29. 1153602—38.2587040—48.6520103—60.2952905

23S

—0.4893524—2. 1739878-5.1102471—9.2969125—14.7337402—21.4206492—29.3576045—38.5445888—48.9815925—60.6686097

21P

—0.496028—2. 124221—4, 993706—9.111014—14.477452—21.093454—28.959207—38.074804—48.440298—60.055720

23P

—0.488823—2. 129816—5.026329—9.174221—14.572665—21.221386—29. 120264—38.269240—48. 668282—60.317371
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limit of infinite Z, the coefFicients of the terms not in-
vo»ing u approach their exact theoretical values.

The ~, p, d limits, of little apparent interest in
themselves, are presented in Table II because ex-
pansions of this type have been discussed previously

T&&&K VII. Comparison with the results of Sharma
and Coulson.

used. The result is general and convenient, as main-
tenance of orthogonality in an ordinary variational
calculation frequently makes the calculation im-
practical.

Work is in progress on the extension of some of the
above results to higher-order approximations. In
addition, where practical, the calculations are being
performed to a greater number of signi6cant figures
("double precision").

2'S S and C'
K and Sb

238 S and C'
K and Sb

—0. 112990—0. 11447618
—0.047330—0.047409192

' C. S. Sharma and C. A.. Coulson, reference 16.
b This paper.

+0.004094
+0.00941508
—0.005040-0,004871842
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in connection with the computation of e& values";
they have also been used occasionally for the con-
struction" or analysis" of total wave functions.
Usually the authors have been concerned with the
ground state, and their conclusions are that the
process is slowly convergent. However, a generaliza-
tion may be misleading here, as the results in Table
II seem to indicate that for different states the rate
of convergence can vary greatly. Thus, the con-
vergence seems to be more rapid for the triplets than
for the singlets.

Sharma and Coulson" have previously calculated
es and ee for the 2'8 and 2'8 states. Their results are
compared with the present results in Table VII.
Since Sharma and Coulson used only 12 terms in
their calculations, their results should not be so well

converged as the present values. In this connection,
it is well to note, as has already been pointed out by
Sharma and Coulson, that the perturbation ap-
proach is not encumbered by the requirement of
orthogonality between state functions. It is shown
in Appendix II that Eq. (3), as it stands, is indeed a
variational expression for the e& of any atomic state
if the ep ei and fo corresponding to that state are

ie C. Schwartz, Phys. Rev. 126, 1015 (1962).
4 L. C. Green, C. D. Chandler, and P. P. Rush, Phys. Rev.

104, 1598 (1956); P. J. Luke, R. E. Meyerott, and W. W.
Clendenin, Phys. Rev. 85, 401 (1952); and H. Shull and P. 0.
Lowdin, J. Chem. Phys. 30, 617 (1959).

I5 L. C. Green, M. M. Mulder, P. C. Milner, M. N. Lewis,
J. %. Woll, E. K. Eolchin, and D. Mace, Phys. Rev. 96, 319
(1954).

ie C. S. Sharma and C. A. Coulson, Proc. Phys. Soc. (Lon-
don) 80, 81 (1962). Note added in proof Quite recently, R. .
Perrin and A. L. Stewart, Proc. Phys. Soc. (London) 81, 28
(1963), have published results for the same states as are con-
sidered by us, basing their calculations on an F-type wave
function that uses a basis set of about 25 terms. Their results
are more poorly converged than ours, of course, but are other-
wise in satisfactory agreement, particularly for the s limit
values.

APPENDIX I. AN EXACT &Q)g

From the virial theorem,

E = -', (V),
where V is the potential energy operator. I et the
perturbation be purely a potential energy term. The
Hamiltonian can be written as

H = Te+ V, +)H',
where Vo is the potential energy part of Ho and XH'

is the perturbation. Then to first order

eo + Xel s (Ve)0 + s X(V0)1 + 2 X(H )0 .

Further,
e, = (H'),

so that

"= l(V),

~ = l(V.)
For the special case of the N-electron atom

N

i=1 ri
(AI.1)

APPENDIX II.
AN IMPORTANT ORTHOGONALITY THEOREM

Coulson and Sharma" have stated an orthogonality
theorem without proof that can be put somewhat

The extent of agreement of the directly calculated
sum on the right of Eq. (AI. I) with the exactly
known value of e& constitutes both an indication of
the extent to which fi satisfies the virial theorem,
and also an independent check on the numerical ac-
curacy of the calculations.
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more generally as follows: The approximate first-
order wave functions obtained via Eq. (3) auto-
matically satisfy the same orthogonality conditions
as the exact first-order wave functions. In order to
present a proof, define

(Q,QQ) = dnp*QQ,

Insertion of Eqs. (AII.2) and (A.II.3) into Eq.
(AII.1) yields that

(Ail.4)

must hold if the theorem is to be true. Set P,", say,
into the variational equation, Eq. (3), and form the
variance with respect to aI„".It follows that

(0e) =

(For the particular case of an X-electron atomic sys-
tem, X = Z ', of course. ) The orthogonality condi-
tion that two states, p and q, must satisfy is given by

(ki4) + 804) = o.
Let P', " be an approximation to P"„and let

(All. l)

lj/g Q af,

leap

a", ,P', + qf, , (A&&.2)

and let the total wave function for a state p have the
following perturbation expansion

ay, = (Po,H ft) (eo eo)

and likewise, by starting with P,',

a,',„= (P,',H' P",)(e'. —et) '.
A comparison of these last two equations shows that
Eq. (AII.4) is valid, and hence that the theorem is
established.

It is interesting to note to what extent the present
1'8 and 2'8 approximate first-order wave functions
fulfill Eq. (AII.l). For the choice p = I'S, q = 2'S,
the computed values are

Q~o, p&') = —0.336939,
Q'i~, fo) = +0.336968,

so that

and likewise

Q'&»(g) = 0

pl —g al, a/0 —al, yt//0 + $1

(tt'0, (g) = 0. (AII.3)

which sum to 2.9 )& 10 '. The exact magnitude of
these integrals may be computed from elementary
perturbation theory, and is 0.3369789 - . Since the
~2 values are regarded as converged to only six or
seven decimal places, the extent of agreement ob-
tained is satisfactory.
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I. INTRODUCTION

N the two earlier papers of this series" the varia-
tional perturbation procedure of Hylleraas has

been applied in first order to the ground state and to
some of the lower lying excited states of the helium
atom isoelectronic series. The straight (i.e., nonper-
turba, tional) variational treatment, of these systems

*This work was supported by a grant from The National
Aeronautics and Space Administration.

I R.E.Knight and C. W. Scherr, Phys. Rev. 128, 2675(1962).
2 R. E. Knight and C. W. Scherr, Rev. Mod, Phys. 35, 481

(1963), preceding paper.

has been carried out to astonishing lengths by
Pekeris' and others, 4 furnishing estimates of energy
eigenvalues which are in some cases converged to as
much as nine or more significant figures, and furnish-
ing expectation values for other operators than the
Hamiltonian with corresponding precision. With this
background in mind it seems clear that for a pertur-
bation treatment of X-electron atoms to be more than

3(a) C. L. Pekeris, Phys. Rev. 112, 1649 (1958); (b) 115,
1216 (1959);(c) 125, 148 (1962); (d) 125, 1470 (1962).

4 (a) T. Kinoshita, Phys. Rev. 105, 1490 (1957);(b) 115, 366
(1959).


