Parameters in the Simon Equation Relating Pressure and Melting Temperature^{*}

STANLEY E. BABB, JR.

Department of Physics, University of Oklahoma, Norman, Oklahoma

PROBLEM AND PROGRAM

THE first observation of the effects of pressure upon the melting point of a substance was made by Perkins,¹ (see pages 412 to 413 for all references in this article) who stated: "The most remarkable result I obtained was with concentrated acetic acid; which, after compression with a force of 1100 atmospheres, was found to be beautifully crystallized, with the exception of about 1/10 part of fluid, which, when poured out was only slightly acid."

This observation was made at pressures truly phenomenal for 1826, but was apparently completely ignored. The significance of the result was unappreciated, for Clapyeron² did not derive his equation until 1834 and then applied it only to boiling. The first theoretical discussion confined to melting came in 1849, by J. Thomson,³ with experimental confirmation by his brother W. Thomson⁴ (Lord Kelvin), who hailed this as the prediction of a hitherto unobserved effect, in the same year. Clausius⁵ then put the Clausius–Clapyeron equation on a sound theoretical basis in 1850.

These theoretical discussions led to a rash of experimental efforts to determine the effects of pressure upon the melting points of pure substances, and this has been a fairly popular field of research since. To date, the melting curves of over 200 substances have been traced over varying ranges of pressure and temperature. A considerable body of discussion has also been published on the eventual course of the melting curve as the pressure is increased indefinitely, with the result that this has become an almost classic problem in physics.

Numerous investigators have represented their data in equation form, the most successful of which was proposed by Simon and Glatzel.⁶ This equation may be written in the following form:

$$(P - P_0)/a = (T/T_0)^c - 1, \qquad (1)$$

where T_0 and P_0 are the coordinates of the triple

point of the phase in question, and a and c are constants that are substance dependent. For most substances discussed here, P is on the order of thousands of bars and P_0 is on the order of millimeters of mercury, and hence, will be neglected.

Unfortunately, when one starts to evaluate a and c for a given substance for some given experimental data, he is faced with a formidable task, for the equations are transcendental and a nuisance to solve. The additional requirement that the numbers a and c represent a best fit only complicates the arithmetic. Accordingly, until quite recently, few investigators represented their data in this form.

Anticipating a need for fitting a number of sets of experimental data to the Simon equation, the problem was programmed for an IBM 650 computer. Once the program was working, it was decided to re-examine the literature concerning melting curves and fit the Simon equation to those substances for which sufficient experimental data were available.

The object is to minimize the quantity

6

$$S = \sum \left[P - P_0 - ax_i \right]^2, \quad x_i = (T_i/T_0)^c - 1 \quad (2)$$

by variation of a and c, where the sum extends over all experimental points. For any given c, the value of a which will minimize S is given by

$$a = \sum (P_i - P_0) x_i / \sum x_i^2.$$
 (3)

This suggested that c could be artificially varied, a computed, and then S computed. The next step was to guess again at c, and repeat the process until c is known to enough places. After being within 1 of the correct value, the successive changes in c were halved every time. By an examination of three previous values of S which had been computed, it was possible to find the direction of change needed in c, and thus, cut the number of steps to a reasonable figure. When this problem was programmed, the range of accuracy for the values of a and c was unknown, so c was calculated to six places; then the values were rounded to the number of significant figures.

Since this program was to be applied to a largenumber of substances run by different investigators,

^{*} This work was partially supported by the U. S. Office of Naval Research.

it was decided not to weight the measurements. Thus, all measurements have equal weight. A computation of the errors in a and c, is given in Appendix I. For most of these substances, the error in the determination of the pressure far outweighs the errors in the temperature determination, so the temperatures were assumed to be free from error. This assumption is not satisfied in some of the modern experiments, and is discussed below.

The values of the parameter T_0 were taken in most cases from the original investigator, and thus, no attempt was made to evaluate them by least-squares analysis, primarily due to the remarkable insensitivity of S to the values of T_0 . The exceptions are those substances which were reasonably impure. There are few of these which have not been rerun. For these substances values of T_0 were taken from the International Critical Tables'.

In quite a few cases it was not possible to determine the Simon equation constants from the published data. This occurs when this data falls too close to a perfectly straight line. Substances for which this occurred were run through a secondary program which computed the linear least-squares fit and the uncertainty of the slope. It is often possible to fit a second-degree equation to data which will not suffice to determine the Simon constants. Since c appears as an exponent, data for its determination must be either more accurate or more extensive than that which is sufficient to determine both constants in a second-degree expression. When the uncertainty in c approaches its value, the linear fit is used for simplicity.

The melting data are collected in three tables. The normal substances are given in Table I, the abnormal substances in Table Ia, and those substances for which only occasional bits of information are known are listed in Table II, which is incomplete by its very nature.

The columns in the tables are mostly self-explanatory. In Tables I and Ia occasional parentheses are placed about the standard deviations. This signifies that these numbers were given by the original authors, and thus might be on a somewhat different basis than the others. The places where no Simon constants are given and instead "A = ," are those substances for which the Simon constants cannot be evaluated from the given data, and A represents the slope of the melting curve, measured in bars/°K. The column labeled "fit" is the value of $[S_0/(N-1)]^{1/2}$, where S_0 is the minimum value of S.

Quite a number of substances have been determined by several investigators. For this situation, one must either include all of the data, or exercise some criteria to eliminate some data. The latter course has been followed. The numbers therefore represent the "best" values of these parameters.

Any operation of this nature depends to a certain extent upon personal judgment of the person doing the operation, and thus is, to an extent, open to question. Several criteria are used. Higher purity samples are to be preferred, accuracy of temperature and pressure measurement, etc. All other things being equal, the larger the pressure range, the better the values, but all other things are rarely equal.

The work of Tammann, for instance, is open to several objections, chief of which are the facts that his pressure guages were calibrated at the factories where they were constructed, the samples were usually somewhat impure, and the method was not the best. The work of Deffet, on the other hand, is characterized by very pure samples and very careful measurements of pressure and temperature, but an insufficient pressure range. Other investigators vary somewhat in their characteristics. Some attempts were made to combine the data from various authors, but this resulted in no over-all improvement of the constants, and so was abandoned.

This selection of material leads to several oddities in the table. Occasionally the work which appeared best was not to the highest pressure. In this case there appears in the $P_{\rm max}$ column two numbers, one of which is in parenthesis. This latter is the highest pressure to which the substance has been studied. In case a range is shown, P_0 is the lowest number of this range.

In the references, there are two divisions. The first is that from which the data were taken, the second is to other investigations. The aim has been to keep this second column rather complete. No great effort has been expended to find all references for work under 1000 bars or for work earlier than 1900. Any other omissions are pure oversight. The body of references to Tables I and Ia, are alphabetically arranged from number 8 to 121, and to Table II, from 122 to 131. No attempt has been made to include discussion papers where the various data are discussed by various authors. Hamann's listing¹³² is largely superceded by this paper. One could well consult Bridgman's review article,⁷ as well as a very recent review by Bundy and Strong¹³³ in which several errors appearing in former publications are rectified.

Somewhat beyond the scope of this paper are the numerous investigations of the melting curves of He^4 and He^3 in the immediate vicinity of 0°K . Here

Other references	4, 25, 26, 41, 76a	98 2, 89a 2, 68 3, 68	3, 60, 69, 70, 71	80, 98 8, 40, 85 1, 67	$\begin{array}{c} 1, 76a, 99\\ 2, 68\\ 3, 91 \end{array}$	$\frac{7}{3}$, 84, 104, 121	$\begin{array}{c} 1, \ 25, \ 26, \ 42, \ 98, \ 117 \end{array}$	s l, 80, 102, 106	3, 90	3, 89), 91, 104		2, 67 , 12, 35, 54, 68	$\frac{76a}{108}$			5, 47, 103, 107
Reference	$\frac{57}{82}$	72 24 25 25 25 25 25 25 25 25 25 25 25 25 25	855 855 855 855 86 85 86 85 86 85 85 85 85 85 85 85 85 85 85 85 85 85	86 86 16 12 24 24 25 24	22 17 4 88 35 14 27 14 27 14 27 14	$120 \\ 85 \\ 95 \\ 95 \\ 95 \\ 96 \\ 17 \\ 96 \\ 17 \\ 96 \\ 17 \\ 96 \\ 17 \\ 96 \\ 17 \\ 96 \\ 17 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	85 1 _′	85 19 34 34	$19 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 3$	24 72 72	11 11 11 11	$104 \\ 104 \\ 72$	37 72 72 73	82 41 72 37		22 22 74	$\frac{22}{115}$ 4
$P_{ m max} m (kbars)$	$\frac{18(50)}{1.5(18)}$	$\begin{array}{c} 42.6{-}50(70)\\ 27.2{-}42.6\\ 50\\ 4 \\ (50)\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18$	$\begin{array}{c} 1.5\\ 1.7-30\\ 30-70\\ 0.14346-3\\ 0.03923-3\\ 3.6\ (10) \end{array}$	3.5 3.00 0.09 10 (50)	$\begin{array}{c} 30\\ 1.5(12)\\ 33\\ 50\\ 50\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$	$^{00}_{10}$ (20) $^{3.4}_{3.4}$	3 (10)	v ⊕ Q	80 80	$ \begin{bmatrix} 0 \\ 50 \end{bmatrix} $ (90)	$12 \\ 10 \\ 10 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 1$	$\begin{array}{c} 1.0\\ 0.202-3\\ 30-50\end{array}$	30 33.5 33.5 80	$ \begin{array}{c} 0.2) - 1.5(6) \\ 50 \end{array} $		$5 \\ 5.39{-}11 \\ 3$	$\frac{2}{100}$
$\operatorname{Fit}_{\operatorname{(bars)}}$	0.1	$412 \\ 1700 \\ 2800 \\ 13$	$\begin{array}{c} 750\\0\\1\\5.86\end{array}$	$\begin{array}{c}4.11\\2.84\\0\\51\end{array}$		664.82	. 1.75	5.00	18	$ \frac{6}{1400} $	13 44 9	21^{2}	1800 1700	0011		$^{31}_{0}$	2094 0 2094
$\sigma(c)$	(0.0015)	$1.7 \\ 1.3 \\ 0.4 \\ 0.09$	$\begin{array}{c} 0.1\\ 0.00047\\ 0.00087\\ \cdots\end{array}$	0.26 0.23 0.23	(0.0015) (0.046 0.6 0.6	0.023	(0.0011)	0.02	0.04	$\begin{array}{c} 0.02\\ 1.1\end{array}$	$\begin{array}{c} 0.028 \\ 0.1 \\ 0.1_{6} \end{array}$	0.22	.0 8.0 8	(0.0015) 0.4		0.4 ≈0.05 0.4	$\begin{array}{c} 0.12\\ 0.04\\ 0.08\end{array}$
$^{c}_{(A \text{ bars/}^{\circ}\text{C})}$	A = 156 1.593	11.16.22.44.494.49	$\begin{array}{c} A = 437 \\ A = 437 \\ 1.5178 \\ 1.5602 \\ 1.744070 \end{array}$	$\begin{array}{c} 1.787213\\ 1.764179\\ 2.23\\ 2.30\\ 2.30\\ 1.76\end{array}$	1.6169 2.405 14.8 5.905	$\begin{array}{c} 3.5\\ 1.177\\ 1.599916\\ 2.2\end{array}$	1.79100	$1.742594 \\ 1.92 \\ 2.0$	$\frac{4.44}{1.30}$	3.74 7.6	3.533 2.04 4.18	$A = 336 \pm 7$	1.38 3.4 8	1.5892 2.4	COMPOUNDS	$\begin{array}{c} 7.5\\ 4.62\\ 13.9\end{array}$	$\frac{4}{2.06}$
$\sigma(a)$ (bars)	(4)	$1500 \\ 2200 \\ 11 \\ 000 \\ 82$	$2000 \\ 0.12 \\ 0.11 \\ 0.11$	 34.2 400 (170 000)?	(4) 810 760	817 817 817	(1.5)	$ \begin{array}{c} \cdot \cdot \\ 56\\ (400 \ 000) \end{array} $	74	$20 \\ 3000$	123 700 114	194	$16 \begin{array}{c} 0.0\\ 2900 \end{array}$	$11 \begin{array}{c} (4) \\ (60) \\ (11 \end{array}$		$\approx 10^{260}$	$\begin{array}{c} 77\\110\\270\end{array}$
$^{a}_{(\mathrm{bars})}$	2114	$\begin{array}{c} 6600 \\ 6600 \\ 45 \\ 000 \\ 2674 \end{array}$	$\begin{array}{c} 50 & 000 \\ 117.60 \\ 50.96 \\ 274.22 \end{array}$	429.67 529.94 259.6 35 800 1 070 000	2376 32 300 9000 6400	$38 \begin{array}{c} 0400\\ 38 \begin{array}{c} 215\\ 1037.53 \end{array}$	1606.56	$\begin{array}{c} 2732.95\\ 5525\\ 1 \ 020 \ 000 \end{array}$	$ \begin{array}{c} 4270\\ 500 000 \end{array} $	3951 9000	$\frac{11}{11} \frac{971}{700}$	2914	$\begin{array}{c} 64 & 000 \\ 57 & 000 \\ 14 & 700 \end{array}$	$2610 \\ 60 000$		3330 843 100	2400 5740 5250
${}^{T_0}_{(\circ { m K})}$	$933.3 \\ 83.812$	558 462 594.1 302.9	$\begin{array}{c} 276.2\\ 276.318\\ 3.252\\ 2.046\\ 14.155\end{array}$	$18.811 \\ 20.681 \\ 16.6 \\ 429.76 \\ 1805$	$115.745 \\ 600.2 \\ 453.7 \\ 023$	234.29 24.617 1726	63.1604	54.383 317.4 2046	335.7 2253	311.9 1234	370.78 495.5 387.2	393.17 716	576.8 505.05 591	$\begin{array}{c} 161.364\\ 692.7\end{array}$		354.7 400.2 342.6	$289.84 \\ 327.3 \\ 229.3$
Substance	Aluminum ^{a, b} Argon	Bismuth VIa,° Bismuth VIIa,° Cadmium ⁴ Cesium Connera, ^b	Gallium II Gallium III Gallium III Helium, He^{δ} II Helium, He^{4} Hydrogen, H_{2}	Hydrogen, D2 Hydrogen, T2 Hydrogen, HID Indiun ^d Ironi*.e	Krypton Lead ^a Lithium ^a Ma <i>s</i> mesiim ^a	Mercury Neon Nickel ^{a,e}	Nitrogen	Uxygen Phosphorus (White) Platinum ^{a,e}	Potassium Rhodium ^a , ^e	Rubidium Silver ^a	Sodium Selenium Sulfur. <i>L</i> -mono	Sulfur, L-Rhom Tellurium II	Thalliumª Tin Iª Tin IIª	Xenon ^f Zinc ^a		Acetamide I II unstable	Acetic Acid I II ^g Acetonitrile

TABLE I. Normal melting curves

46	45, 114 45 93		19, 30, 45, 48, 49, 50, 64, 75, 93, 100, 106, 175, 93, 100, 106, 115, 112, 112, 112, 112, 112, 112, 112	$\begin{array}{c} 47, 15\\ 47, 15\\ 30\\ 15\\ 45, 76, 102, 115 \end{array}$	$\frac{115}{75} 64, 102$	103, 106 45, 104	$\begin{array}{c} 9, 45, 102 \\ 117 \\ 83, 103, 112 \\ 113 \\ 64, 74, 114 \end{array}$
114	$74 \\ 116 \\ 15 \\ 115 \\ 119 \\ 100 \\ 100 \\ 100 \\ 125 \\ 100 \\ 126 \\ $	97 96 97 64	$\begin{array}{c} 94 \\ 115 \end{array}$	2000000000000000000000000000000000000	45 47 51 51 51	$^{102}_{102}$	$\begin{array}{c}145\\119\\119\\26\\26\\26\\26\\26\\26\\26\\26\\26\\26\\26\\26\\26\\$
3	ೲೲೲಀೣೲೲೲೲ	$\begin{array}{c}1\\3\\0.3\\0.3\end{array}$	$\frac{1}{6}$ (12)	12 11 9.81–25 3	$egin{array}{c} 1 \\ 1 \\ 12 \\ 1 \\ 1 \\ 3 \\ 3 \end{array}$	112.3 353.3 1.335.3 1.335.3 1.335.3 1.335.3 1.335.3 1.335.3 1.335.3 1.335.3 1.335.3 1.335.3 1.12.3 1.	$egin{array}{c} 1 \\ 0.1 \\ 0.250 \\ 35 \\ 35 \\ 0.013 \\ 0.013 \\ 1.8 \\ 2.2 \\ 0.95^{-25} \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$
10	$^{12}_{89}$		12	$^{17}_{12}$	$^{+}_{-}$	$170 \\ 130 \\ 36 \\ 36 $	$egin{array}{c} 14 \\ 19 \\ 120 \\ 73 \\ 73 \\ 18 \\ 2 \\ 2 \\ 1.5 \end{array}$
0.1	$\begin{array}{c} 0.4\\ 0.08\\ 0.09\\ 0.004\\ 0.009\\ 0.009\\ 0.1\end{array}$		0.04	0.01 0.3 0.01 1.1 0.02 0.02	0.08 0.007 0.4 0.4	0.02 1.6 0.03 0.64	$\begin{array}{c} 0.01\\ 0.02\\ 0.02\\ 0.9\\ 0.2\\ 0.2\\ 0.3\\ 0.3 \end{array}$
3.7	5.7 7.87 7.83 7.83 7.83 7.83 7.83 8.83 9.53 8.83 9.53 8.83 9.53 8.83 9.53 8.53 9.53 9.53 7.53 7.53 7.53 7.53 7.53 7.53 7.53 7	$\begin{array}{l} A = 34.7 \pm 0.1 \\ A = 30.8 \pm 0.2 \\ A = 40.7 \pm 1.3 \\ A = 27.0 \pm 0.2 \end{array}$	$A = 39.1 \pm 0.1$ 2.60	22.46 2.66 1.93 1.93 1.65	$A = 49.6 \pm 0.3$ 1.18 2.250 3.3 $A = 65.0 \pm 0.2$ 5.6	$\begin{array}{l} A = 54.2 \pm 1.3 \\ 2.05 \\ 12.8 \\ 2.40 \\ 2.40 \\ 5.6 \\ A = 52.29 \pm 0.08 \\ A = 72.984 \pm 0.003 \\ A = 52.984 \pm 0.003 \end{array}$	$A = \frac{48}{28} . 186 \pm 0.003$ $A = \frac{27}{2} . 156 \text{ (impure)}$ $A = \frac{45}{2} . 27 \pm 0.09$ 2.60 $A = 76.5 \pm 0.2$ $A = 76.47$ $A = 76.47$ $A = 46 \pm 1$ 2.3 $A = 46 \pm 1$ 2.3 $A = 54.6 \pm 0.1$ $A = 54.6 \pm 0.1$
140	250 460 590 90 34 100 200		80	$^{+40}_{-100}$	$\begin{array}{c} 800\\ 20\\ 360\\ 160 \end{array}$	$\begin{array}{c} 70\\ 190\\ 140\\ 150 \end{array}$	$\begin{array}{c} 30\\ 40\\ 220\\ 1400\\ 300\\ 470\\ 1300\\ 1300\end{array}$
3160	2900 2400 5270 8900 4930 4500 4700		3600	$\begin{array}{c} 4800\\ 3600\\ 3600\\ 10\\ 300\\ 3200\\ 6100\\ 6100\\ 7250\end{array}$	10 800 4720 2700 1770	5340 693 5160 1290	2919 4000 8250 8250 2000 5200 5200
292.9	$\begin{array}{c} 307.2\\ 293.1\\ 195.30\\ 264.61\\ 295.7\\ 206.8\\ 310.2\\ 310.2\\ 325.7\\ 325.7\end{array}$	369.2 391.0 386.2 401.65	375.0 278.8	$\begin{array}{c} 242.1\\ 360.5\\ 327.7\\ 303.2\\ 303.2\\ 278.8\\ 316.2\\ 316.2 \end{array}$	261.06 260.0 324.5 257.9 368.2	$\begin{array}{c} 328.0\\ 280.94\\ 264.8\\ 183.4\\ 298.7\\ 2657.66\\ 2499\\ 289.46\end{array}$	$\begin{array}{c} 289, 46\\ 280, 46\\ 363, 3\\ 356, 3\\ 356, 6\\ 3146\\ 161, 6\\ 161, 6\\ 161, 6\\ 333, 56\\ 333, 56\\ 333, 69\\ 333, 56\\ 333, 56\\ 333, 8\\ 4\\ 333, 3\\ 333, 56\\ 333,$
Acetophenone	Autococooutave, cury table unstable Ammoniab Ammoniab Amethole Ancline Benzylaniline Dimethylaniline p-nitroanisole	p-azophenol ethyl carbonateh p-azoxyanisoleh p-azoxybenzoate, p-azoxyphenetolh p-azoxyphenetolh	Prazovy puteuro, coury 1 carbonate ^h Benzene	Bromobenzene <i>p</i> -dibromobenzene Chlorobenzene I II [#] <i>p</i> -dichlorobenzene Nitrobenzene Benzoic anhydride	Methyl benzoate Benzonitrile Benzophenone Dibenzyl Benzyl alcohol Betol	Monobromoacette acid III Bromoform 2-buttanol-2-methyl <i>n</i> -butyl alcohol <i>t</i> -butyri alcohol <i>n</i> -butyric acid <i>n</i> -butyric acid Camptor Camptor	Carbon tetrabromide Carbon tetrabromide Carbon tetrachloride ¹ Carbon disulfide Carbon disulfide Carbon disulfide Carbon disulfide Carbon disulfide Dichloroacetic acid [#] Dichloroacetic acid [#] Cesium chloride II Cetyl alcohol iodide unstable unstable

				'TABLE I. (Continued)					
Substance	${}^{T_0}_{(\circ \mathrm{K})}$	$^{a}_{(\mathrm{bars})}$	$\sigma(a)$ (bars)	c (A bars/°C)	$\sigma(c)$	Fit (bars)	$P_{ m max}$ (kbars)	Reference	Other references
Cholesterol acetate ^h	387.5			$A = 31.90 \pm 0.09$			1	26	
benzoate ⁿ hutvrate ^h	419.2 371 8			$A = 21.4 \pm 0.7$ $A = 21.7 \pm 3.5$			0.3	64 70	
caproaten	362.2			$A = 27.1 \pm 0.2$			· ·	6	
entoride ⁿ ethvl carbonate ^h	356.4			$A = 24.19 \pm 0.04$ $A = 29 22 \pm 0.02$				76 76	
formateh	270.4			$A = 29.09 \pm 0.2$			· ,	62	
methyl carbonate ⁿ	387.2			$A = 30.56 \pm 0.02$ $A = 26.56 \pm 0.02$				97 07	
propyl carbonate ^h	372.2			$A = 32.52 \pm 0.02$				67	
valerianate ⁿ Chloroform	364.8 200 7	8330	230	$A = 26.31 \pm 0.06$ 1 52	0.09	70	1 25	02 20	10
o-cresol I	303.56	2700	370	6.2	0.75	4	1 (8)	47	19, 114
П	376.4	9060 17 000	660	1.00	0.2	25	6.1 - 12	19	. 1
<i>m</i> -cresol <i>m</i> -cresol	285.00 307.0	7000 7000		1.9	0.1	; œ	- 63	47 114	45
Crotonic acid	344	-	2	$A = 26.82 \pm 0.08$	•	D	0.3 0.3	64	
Cyclobutanone	222.2	4550	800	2.00	0.3	$^{21}_{ m .21}$	4.5	115	
Cyclonexane methylb	279.71 146 8	3640 0600	C/T	1.42	0.00	NC	10 10	45 20	30*
Cyclohexanol	298.61	0000		$A = 24.5 \pm 0.1$		þ	1	47	87
Methylcyclopentanol	308.76			$A = 54.53 \pm 0.05$			-	46	
1, 4-Dioxane	284.5	7300	006	1 30.3	0.3	40	9,	26	46
Unstable Dodecane	263.65 263.65	3550	06	A = 52.2 3.05	0.05	21	x	40 88 88	
Dotriacontane	343.16	5 5 1		$A = 43.0 \pm 0.1$)	1		46	
Enanthic acid Ethenei	265.66 00.35			$A = 54.73 \pm 0.05$ A = 61 + 20 - 3			100	45	
Pentachloroethane	244.2			$A = 01.4 \pm 0.2$ A = 44.334 + 0.0003			0.0 4 1	45 45	
Ethyl alcohol	155.9	10_{-00}	180	1.61	0.015	73	35	30	
Ethyl acetate Ethyl bromide	159.6 154.2	7600 5400	5200 300	2.2 2.27	0.8	1500 200	88 88 8	88	
Ethyl ether	157.2		0	A = 73.2		2	ç	113	
2,2-Dichloroethyl sulfide	286.7 206.6	7280	60	2.66 $A = 46.92 \pm 0.01$	0.02	Ţ	01-	∞t	
unstable	304.06	4200	950	$A = 40.30 \pm 0.01$ 3.24	0.7	9		47	
Ethylenei	103.97			$A = 70 \pm 2$			0.01	41	00,
chloride	239.7	7400	560	$A = 59.541 \pm .005$ 1 65	0.1	2.5	- 22	40 115	103
Erucic acid	306.7	4600	130	3.10	0.07	pin;) 	114	
Erythritol Fenchyl alcohol	399.2 314 7	42/0	255	$4 - 49 0 \pm 0 1$	0.55	11	- 02	51	
Formanilide	320.7	2980	140	$A = \frac{1}{4.9} - 0.1$	0.2	11	- ന	-±/ 114	
Formamide	275.71	10 700	3600	2.7	0.9	67 <u>6</u>		45	2
Formic acid Guaiacol	281.6	4100 4100	490 140	2.0	0.5	223	no en	114 51	45
Indium antimonide II	608	2011	-	A = 437	•	1	19.4 - 50	99	
Hydrocyanic acid	259.2	3080 3340	170	3.6	0.15	12	იი ი	103	
Lithium chloride	2.170	14_{500}	(1000)	2.5	(0.1)	10	25 25	39	
Menthol metable	315.7	2650	150	4.6 $4 - 41.9 \pm 0.9$	0.2	14	° ⊃ 03	15 64	62, 64
Methane, $CH_{4^{j}}$	90.667			$A = 36.629 \pm 0.00007$			0.115(3)	41	66
$CH_{3}U'$ CD_{4}^{j}	90.417 89.777			$A = 38.41 \pm 0.02$ $A = 39.179 \pm 0.0003$			$0.077 \\ 0.17$	41 41	

201 107 107	13, 44, 64, 103, 106 44, 64 44, 50, 81	62 45, 64, 93, 108, 110 93, 108, 110 62 20 20 44, 114 94, 114	22k	51
45 15 11 13 11 15 11 20 10 21 15 15 15 15 15 15 15 15 15 15 15 15 15	$\begin{array}{c}11\\48\\62\\79\\88\\88\\88\\88\\88\\88\\88\\88\\88\\88\\88\\88\\88$	122222222222888172088811208881120888112088811208881120888881120888811208888811208888811208888112088888112088888112088881120888881120888811208888112088888112088881120888881120888811208888811208888811208888112088881120888811208888811208888112088888112088881120888811208888811208888112088881120888881120888811208888811208888811208888811208888811208888112088881120888881120888881120888881120888881120888881120888881120888881120888881120888881120888881120888881120888811208888888112088888888	$\begin{array}{c} 41 \\ 114 \\ 45 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 24 $	$\begin{array}{c} 111\\ 119\\ 233\\ 233\\ 233\\ 233\\ 233\\ 233\\ 233\\ 23$
10000040000000000000000000000000000000	67 19 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 2 0 8 5 -1 2 8 8 -9 8 7 -9 8 8 -9 8 8 8 -9 8 8 8 8 8 8 8 8 8 8	$egin{array}{c} 0.025 \\ 3.3 \\ 3.3 \\ 1.3 \\ 1.5 \\ 1.5 \\ 1.5 \end{array}$	$^{+1}_{-12}$
71 12 41 33 183	12 18 5 5	$^{+}_{-}^{+}$	0 2.6 	$\begin{array}{cccc} 120 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
$\begin{array}{c} 0.6\\ 0.1\\ 0.03\\ 0.08\\ 0.008\\ 0.05 \end{array}$	0.06	$\begin{array}{c} 0.02\\ 0.008\\ 0.001\\ 0.05\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.0$	7 0.05 0.03 (0.05) 	$\begin{array}{c} 0.01\\ 0.3\\ 0.3\\ 0.07\\ 0.07\\ 0.06\\ 0.1\\ (1)\end{array}$
$A = 71.45 \pm 0.03$ 5.5 3.6 A = 163 1.67 1.62 $A = 39.1 \pm 0.1$ $A = 53.07 \pm 0.02$ $A = 53.5 \pm 0.02$	$\begin{array}{c} A = 2 \\ A = 2.49 \\ A = 26.34 \pm 0.04 \\ A = 203 (impure) \\ A = 203 \\ A = 203 \\ A = 203 \\ A = 203 \\ A = 202 \\ A = 202 \\ A = 200 \\ A $	$A = \begin{array}{c} 3.39\\ 2.131\\ 1.70\\ 3.3\\ 8.0\\ 8.0\\ 8.0\\ 2.54\\ 1.4\\ 1.4\\ 1.4\\ 2.0\\ 2.0\\ 2.0\\ 2.46\end{array}$	$A = \frac{15}{123} \\ 2.67 \\ 2.67 \\ 4 = 57.8 \pm 0.2 \\ 4 \\ 3.4 \\ 3.4$	$\begin{array}{c} A = 52 \pm 2 \\ A = 53 \pm 2 \\ 1.74 \\ 7.9 \\ 6 \\ 7 \\ 7 \\ 4 \\ 4 \\ 4 \\ 1.54 \\ 1.54 \\ 0.1 \\ A = 64 \pm 3 \\ A = 1140 \\ A = 1140 \\ A = 1140 \\ 2.7 \\ 5.5 \end{array}$
170 130 360 30 570	160 1000 	26 40 140 140 1300 1300 1300 1300 1300 130	160 100 100 100 100 800	$\begin{array}{c} 100\\ 1200\\ 300\\ (300)\\ $
900 2670 3808 4550 4400 10 590	3080 3600 7600 10 300	$\begin{array}{c} 3450\\ 5760\\ 6760\\ 6760\\ 2670\\ 6600\\ 6600\\ 10\\ 300\\ 9300\\ 4700\\ 4750\end{array}$	330 3700 5650 12 100 3300	7350 3100 6600 6600 7200 7600 7600 7600 1620 16700 16700
$\begin{array}{c} 244.6\\ 300.2\\ 300.2\\ 305.7\\ 1755.7\\ 205.2\\ 176.5\\ 279.26\\ 279.26\\ 279.26\\ 279.26\\ 279.26\\ 279.26\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 7$	$\begin{array}{c} 331.2\\ 333.17\\ 353.17\\ 353.17\\ 353.2\\ 323.2\\ 323.2\\ 369.2\\ 369.2\\ 369.2\\ 329.7\\ 369.2\\ 329.7\\ 369.2\\ 329.7\\$	$\begin{array}{c} 327.40\\ 327.40\\ 327.40\\ 333.15\\ 333.15\\ 333.15\\ 333.2\\ 333$	$\begin{array}{c} 139.4\\ 1315.5\\ 315.5\\ 346.2\\ 262.06\\ 1043\\ 1315\\ 1315\\ 252.4\\ 252.4\end{array}$	$\begin{array}{c} 337.2\\ 323.2\\ 163.2\\ 163.2\\ 323.2\\ 323.2\\ 314.8\\ 312.0\\ 312.0\\ 312.0\\ 312.0\\ 312.0\\ 312.0\\ 1073.5\\ 1073.5\\ 1073.5\end{array}$
Nitromethane Diphenylmethane Triphenylmethane Methyl alcohol siloxanes dimer trimer Methylisothiocyanate Methylene chloride unstable II	Myrristic acid Napthalene , 1-bromo 1-Napthylamine 1-Napthylamine 1-Naphthol Nitric oxide <i>n</i> -nonane I	n-octadecane Methyl oxalate Palmitic acid n-pentadecanes I Phenol I I n-bunonitro , m -chloronitro o- nitrophenol m- Diphenylamine	Phosphine ¹ o-phosphoric acid Phosphorium chloride Phiperidine Potassium chloride I — thiocyanate Pothoric acid	Approximation of the second stable acid stable unstable acid stable appended Resorcinol Rubidium chloride I Rubidium chloride I Salol unstable IV unstable IV Silicon tetrachoride Sodium bromide chloride fluoride fluoride fluoride fluoride fluoride stable i stable i sodium bromide chloride fluoride f

						and the second second second second second		and a second of the second	and the second se
Substance	(°K)	a (bars)	$\sigma(a)$ (bars)	$(A \text{ bars/}^{\circ}C)$	$\sigma(c)$	Fit (bars)	P_{\max} (kbars)	Reference	Other references
Sodium iodide tungstate Stearic acid Succinotrile <i>n</i> -tetracosane I Thiophene Thymol o-toluidine, unstable <i>p</i> -	928 695.5 331.53 332.1 352.55 352.5 352.6 234.6 2357.06 2457.06 2457.06 2457.06 2457.06 2457.06	$\begin{array}{c} 10 & 100 \\ 4500 \\ 4240 \\ 1300 \\ 2090 \\ 6200 \end{array}$	(400) (400) 270 170 170 300	$\begin{array}{l} A = \begin{array}{c} 2.8 \\ A = 46 \pm 1 \\ A = 40.3 \pm 0.1 \\ A = 49.995 \pm 0.02 \\ 2.84 \\ 3.87 \\ 3.87 \\ 3.8$	$\begin{array}{c} (0.1) \\ 0.19 \\ 0.2 \\ 0.4 \\ 0.08 \end{array}$	44 222 18 18 44	$\begin{array}{c} 30\\1\\0.3\\0.4\\0.4\\5\\5\\3\\8\\8\\8\end{array}$	$^{33}_{15}$	62 64 44, 45, 50, 62, 64,
Bromotoluene Chlorotoluene Iodotoluene o- nitrotoluene, m-	281.2 281.0 289.99 263.89 289.21 289.21 289.21 289.21	4000 4075 4120 8740 4140 4300	100 100 120	$egin{array}{c} 2.50\ 2.48\ 2.37\ 1.5\ 3.0\ 3.0\ 2.6\ 40.28\pm0.05\ 2.6\ 1.6\ 2.6\ 1.6\ 2.6\ 1.6\ 1.6\ 1.6\ 1.6\ 1.6\ 1.6\ 1.6\ 1$	≥0.04 0.06 0.1 0.6 0.3	40000 4	$11 \\ 11 \\ 6)$	45 45 45 55 45 45 45 45 45 45 45 45 45 4	74, 75, 81, 93 76
n-tridecane ^s I Urethan I II Valeric acid Veratrole	283.1 310.93 339.4 350.0 238.7 295.7	2500 7970 2000 1900 10 000	100 30 300 300	$\begin{array}{c} \frac{4.57}{4.57}\\ 2.62\\ 1.4\\ 2.22\\ 2.77\\ A = 61.6\pm0.1\\ A = 51.6\pm0.1\\ \end{array}$	0.03 0.2 3.9 0.07	18 18 18	$1 \\ 2 \\ 2 \\ 35-4 \\ 2 \\ 35-4 \\ 23 \\ 1 \\ 1 \\ (3) \\ 1 \\ (3) \\$	22188888888888888888888888888888888888	93, 94, 75 93 15
$egin{array}{c} { m unstable} \\ { m Water, H_2O III} \\ { m VI} \\ { m VI} \\ { m VII} \\ { m D_2O IIII} \\ { m VI} \\ { m V} \\ { m V} \\ { m V} \end{array}$	$\begin{array}{c} 294.1\\ 251.2\\ 256.2\\ 255.2\\ 255.2\\ 258.8\\ 86\\ 88\\ 88\\ 88\\ 86\\ 88\\ 88\\ 88\\ 88\\ 8$	$\begin{array}{c} 620\\ 4100\\ 7070\\ 12& 980\\ 1610\\ 4160\\ 4480\end{array}$	90 1000 1180 110 80 80 80	$\begin{array}{l} A = 55.66 \pm 0.07 \\ 6.0 \\ 8.1 \\ 4.46 \\ 3.11 \\ 3.11 \\ 6.4 \\ 6.4 \\ 7.6 \end{array}$	5. 1.5 0.03 0.1 0.1	$\begin{array}{c} 12\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 2$	$\begin{array}{c} 0.8\\ 2.115-3.5\\ 3.53-6.38\\ 6.38-22.4\\ 222.4-40(20a)\\ 2.245-3.555\\ 4-5.5\\ 3.555-6.405\\ 3.555-6.405\end{array}$	$^{47}_{29}$	105, 109, 110, 111 30 30, 89c
VI ^s o- xyiene, <i>m-</i>	$\begin{array}{c} 263.15\ 248.2\ 227.7\ 286.51\ \end{array}$	1400 4640	400	$\begin{array}{l} 11.2 \\ A = 42.49 \pm 0.04 \\ A = 48.86 \pm 0.03 \\ 1.76 \end{array}$	2.0 0.07	104 0	$\begin{array}{c} 4.956-8.5 \\ 1 \\ 2.7 \\ 1 \end{array}$	$^{28}_{45}_{45}_{45}$	101 47, 101
 Thermocouple c Thermocouple c To trom A maric o To trom A maric o Data molude the Data molude the The deviations i 	orrections lacking. an Institute of Phys Company, Inc., N errocouple correcti justed from originu selow 200 bars lie	eies Handbook, editec ew York, 1957). ions. outside the experim	l by D. E. Gray ental error and	The original publication should * T_{2} not triple point. * Light of transition als i Transition overlooked with Some thermometer arrows an * The phase transition which actually a 1-II solid-solid trans	be consulted for d so run. n P range. i so designated as sition.	letails. melting in this	paper is		

Тавье І. (Continued)

• 5ull provisional • 5ull provisional • The darging adjusted from original publications. • The daviations below 200 bars lie outside the experimental error and the points below 200 bars may be represented by a different set of constants.

Substance	${}^{T_0}_{(\mathrm{K})}$	a (bars)	$\sigma(a)$ (bars)	$^{c}_{(A \text{ bars}/^{\circ}\text{C})}$	$\sigma(c)$	Fit (bars)	$P_{ m max}$ (kbars)	Reference	• Other references
Antimony Bismuth I	903.7 903.7 544.2	$\begin{array}{c} -29 & 400 \\ -91 & 000 \\ -27 & 250 \end{array}$	$\begin{array}{c} 1000\\ 26 \ 000\\ 280\end{array}$	60 17 5.60	4 7 0:07	450 4200 17	$26 \\ 50 \\ 12 (18)$	37 73 20	12, 27, 36, 68, 89a,
Cesium II Gallium I Germanium Silicon ^a	$^{7}_{303.01}_{1213}$	-57 500	? 4800	A = -263 $A = -172$	$\begin{array}{c} 1 \; (\text{see text}) \\ 0.2 \end{array}$	50	$ \begin{array}{c} 12 \\ 50 \\ 40 \end{array} $	73 23 65	$\begin{array}{c} 103, 110, 111\\ 27, 47, 95, 96\\ 61\end{array}$
Aluminum antimonide ^a Cadmium telluride I II Copper chloride (ous) Gallium antimonide Gallium arsenide Indium arsenide Indium antimonide I	$\begin{array}{c} 1333\\ 1318\\ 1041\\ 703\\ 973\\ 1411\\ 1213\\ 1298\\ 1298\end{array}$		2000	$\begin{array}{l} \text{COMPUTUS} \\ A = -145 \\ A = -50 \\ 16 \\ 11 \\ A = -200 \\ A = -233 \\ A = -100 \\ A = -100 \end{array}$	$1.4 \\ 0.8$	480 1210	40 13 50 50 50 50 50 50 50 50	65 65 65 65 65 65 65 7 65 65 7 65 65 65 7 65 65 7 65 65 65 65 65 65 65 65 65 65 65 65 65	55
Potassium prospride Potassium tetrasilicate Water, H ₂ O I	1038 273.15	- 3952	77	A = -544 A = -166 9.0	0.2	4	40 2 33	58 18	10, 52, 25, 77, 103,
D_2OI	276.97	4596	100	7.75	0.3	19	5	28	109, 110

the Simon equation does not apply and many interesting phenomena are encountered. A fair cross section of the work along these lines, as well as earlier references, may be found in some recent articles.^{134–138}

TABLE II. Substances for which fragmentary information is available.

Substance	Reference
Acetone Ammonium nitrate Diethylamine <i>i</i> -amyl decane <i>n</i> -amyl ether Diethylaniline Antimony tri-iodide 2, 2 Dimethyl butane 2, 3 Dimethyl butane Carbanide Carbanide Carbanide Carbane Tri-o-cresyl phosphate <i>n</i> -decane Ethylene glycol <i>n</i> -heptane <i>n</i> -hexadecane <i>n</i> -hexadecane <i>n</i> -hexadecane <i>n</i> -hexane Mesitylene Mesitylene Methyl alcohol Methyl alcohol Methyl oleate Tetrahydronapthalene <i>i</i> -octane <i>n</i> -octane Oleic acid Phosphorus (black)	$\begin{array}{c} 19, 122\\ 123\\ 103\\ 125\\ 30, 125, 128\\ 125\\ 20\\ 126\\ 126\\ 126\\ 22\\ 131, 131a\\ 125\\ 127\\ 128\\ 127\\ 128\\ 127\\ 128\\ 125, 126\\ 113, 128\\ 30\\ 127\\ 128, 130\\ 127\\ 128, 130\\ 127\\ 128\\ 125\\ 129\\ 128\\ 128\\ 125\\ 129\\ 128\\ 128\\ 128\\ 128\\ 128\\ 128\\ 128\\ 128$
Toluene	124

Another area of omission is the recent work on melting of substances of geophysical interest. The transition is quite sluggish for these substances, and this, coupled with the necessarily high temperatures reduces the attainable accuracy. There are a number of recent papers in which these melting relations are discussed.¹³⁹⁻¹⁴³

One should also mention the work of Jencel and Rinkens¹⁴⁴ on various molecular weight polyesters. These substances do not seem to be well enough characterized to include.

The numbers after Bridgman's papers correspond to the list of his publications which is given in his book.¹⁴⁵

COMMENTS UPON INDIVIDUAL SUBSTANCES

Bismuth. The various polymorphic transitions of bismuth have been investigated essentially four times. The first of these was by Bridgman. His investigations did not actually include Bi II, but volume measurements on the L I and the I II transitions in the neighborhood gave a normal slope for this phase. Since then there have been three investigations, two of which have shown a negative slope. Both of these investigations have been with superpressure, quasi-hydrostatic-pressure apparatus. The total change across the region of stability of Bi II is small, being only 2–7°K. Butuzov *et al.*³⁶ directly determine the melting curve of Bi II and obtained a positive value, the total change in temperature being 3 to 4 times higher than their possible experimental error. Thus, it appears that the actual slope is small, but positive. It is not inconceivable that the shear present in the superpressure apparatus depresses this transition somewhat, thus making it even more difficult to observe the rise in temperature.

[Note added in proof. In the recent experiments of Vereshchagin and co-workers^{89a} this phase was detected, but its melting temperature was assumed constant and used for calibration purposes.]

Bi I is a phase for which the agreement between the superpressure experiments and the hydrostatic ones is apparently poor. The simple piston-cylinder types of apparatus yield a curve which runs above that obtained in hydrostatic environments, possibly due to a systematic error of the experiment. The usual course is to raise the pressure, let everything settle down, and then heat until melting is detected. Since Bi I contracts upon melting, this means that the pressure drops abruptly on the sample, and this may be sufficiently supported by the solid medium to give appreciable errors. The volume change upon melting increases with increasing pressure, which would tend to make the errors larger at higher pressures. Some further work could clear up this point.

[Note added in proof. In the more exotic types of superpressure apparatus, the curve runs below the hydrostatic one and has drastically incorrect curvature. This would almost certainly be due to some systematic error, which is probably a combination of the above effect plus the complex processes involved in gasket formation.]

The work of Kennedy and his co-workers⁷³ is still provisional at the time of writing, and thus may eventually clear up these points.

Alkali metals. The Simon equation does not fit cesium, rubidium, potassium, and possibly sodium over an extended pressure range. Cesium and rubidium have maxima in the melting curves, and potassium probably does also. Thus, the normal Simon equation does not work. It is possible to admit the possibility of a maximum by making a and cfunctions of either pressure or temperature.¹⁴⁶ The value for c for Cs II was obtained by taking increasing numbers of data points, backing away from the II-III-L triple point. The value of c was consistently obtained, until the vicinity of the maximum was reached and the equation ceased being even a fair approximation for the curve.

Kennedy^{so} and his co-workers have raised the question of the possible existence of maxima in sodium and lithium. This question must be answered experimentally at the present state of theories of melting, but it is possible to get a hint. The fits to these investigators' data over the full 50-kbar range agree rather well with Bridgman for Li and Na, but start disagreeing more with K, violently for Rb, and the equation does not fit Cs over an extended range. Therefore, this writer would be tempted to guess then neither Li nor Na will show a maximum under 100 kbar, if at all. Any further extrapolation is dangerous.

Nitrogen and argon. The number of investigations on these substances is large. The data of Mills and Grilly⁸⁵ in one case and of Michels and Prins⁸² in the other have been adopted as the most recent and the most carefully run. Their papers should be consulted for analysis of agreement with other workers.

Mercury. Mercury occupies a unique place, due to the widespread use of its freezing pressure at 0°C for calibration of Manganin-wire pressure guages. The comparison of the mercury melting curves run by different investigators has led to some conclusions concerning Bridgman's pressure scale. This has been discussed by the author in a forthcoming paper.¹⁴⁷ Roughly, his 12 000 kg/cm² is off by a linear amount, and the melting pressure at 0°C is closer to 7716

TABLE III. Bismuth (a = -29 670 bars; c = 5.77).

Т (°К)	P_{exp} (bars)	P_{calc} (bars)	Error (bars)
544.2	0	0	0
540.7	991	975	16
537.0	1982	1975	7
533.2	2974	2967	7
529.2	3965	3974	- 9
525.1	4956	4972	-16
520.8	5948	5979	-31
516.4	6939	6981	-42
511.8	7930	7961	-31
507.0	8922	8951	-29
502.0	9913	9938	-25
496.8	10 904	$10 \ 915$	-11
491.5	11 895	$11 \ 862$	33

kg/cm² than to his value of 7640. Bridgman's 12 000 scale may also be shown to be somewhat nonlinear, and the highest points are not always as good as the lower ones. This may be seen in Tables III and V, where the 12 000 kg/cm² point is clearly out of line.

For all substances where the correction for the error in the mercury point is applicable, the correction is included in the value given in the tables.

Tellurium I. This substance has been run recently by Kennedy and his co-workers⁷² and shows a flat

TABLE IV. Antimony

P_{exp} (bars)	P_{cale} (bars)	Error (bars)
$(a = -30\ 000\ \text{bars}; a)$	c = 60) (Ponyat	ovskii).
0	0	0
2255	2792	- 537
4120	4945	- 825
7845	7639	- 206
$12 \ 307$	10 973	-1334
16 769	16 692	- 77
$19 \ 514$	$20 \ 005$	489
23 731	$23 \ 363$	-368
25 300	$25\ 264$	- 36
(a = -91.000 bars)	s; c = 17) (Ken	nedy)
0	0	0
5100	13 806	-8706
10 900	$18 \ 082$	-7982
$21 \ 000$	$18 \ 082$	2918
27 200	$22 \ 142$	5058
32 600	29 627	2973
38 200	37 290	810
43 800	43 310	590
46 300	45 130	1170
49 100	49 400	- 300
51 600	56 915	- 200
54 500	əo 215	-1/15
	$\begin{array}{c} P_{exp} \\ (bars) \end{array} \\ (a = -30\ 000\ bars; a \\ 0 \\ 2255 \\ 4120 \\ 7845 \\ 12\ 307 \\ 16\ 769 \\ 19\ 514 \\ 23\ 731 \\ 25\ 300 \\ (a = -91.000\ bars \\ 0 \\ 5100 \\ 10\ 900 \\ 21\ 000 \\ 27\ 200 \\ 32\ 600 \\ 38\ 200 \\ 43\ 800 \\ 46\ 300 \\ 49\ 100 \\ 51\ 600 \\ 54\ 500 \end{array}$	$\begin{array}{c c} P_{\rm exp} & P_{\rm cale} \\ (\rm bars) & (\rm bars) \\ \hline \\ \hline \\ (a = -30\ 000\ \rm bars;\ c = 60)\ (\rm Ponyad) \\ \hline \\ 0 & 0 \\ 2255 & 2792 \\ 4120 & 4945 \\ 7845 & 7639 \\ 12\ 307 & 10\ 973 \\ 16\ 769 & 16\ 692 \\ 19\ 514 & 20\ 005 \\ 23\ 731 & 23\ 363 \\ 25\ 300 & 25\ 264 \\ (a = -91.000\ \rm bars;\ c = 17)\ (\rm Ken \\ 0 & 0 \\ 5100 & 13\ 806 \\ 10\ 900 & 18\ 082 \\ 27\ 200 & 22\ 142 \\ 32\ 600 & 29\ 627 \\ 38\ 200 & 37\ 290 \\ 43\ 800 & 43\ 310 \\ 46\ 300 & 45\ 130 \\ 49\ 100 & 49\ 400 \\ 51\ 600 & 51\ 800 \\ 54\ 500 & 56\ 215 \\ \hline \end{array}$

maximum. The scatter in the points is too great to fit a Simon equation in the portion where it might apply. The initial slope of the curve (A) is 200 bars/deg.

[Note added in proof. Carbon. Bundy¹³¹a has quite recently published a phase diagram for carbon which shows the melting curve of carbon passing through a maximum, and diamond as having a falling melting curve. No actual experiments have been carried out on the diamond part of this curve.]

CHARACTERISTICS OF THE SIMON EQUATION

The Simon equation gives a form of the melting curve which rises indefinitely with increasing pressure for constant positive a and c. From this one may not conclude that this is the eventual course of the curve. By a careful study of the way the equation extrapolates, one may conclude that the equation is valid only over a limited range of temperatures and pressures. This range is roughly an order of magnitude greater than the value of a given by the lower pressure fits. These arguments have become superfluous since Kennedy and his co-workers^{73,89} and Bundy³⁴ have found maxima in the melting curves of Cs, Rb, and Te. This work has partially answered the old questions about the eventual course of the melting curve and has raised some new ones.

For all melting curves (with the single known exception of He³ in the vicinity of 0°K) the concavity is toward the pressure axis. This means that c is by necessity greater than 1. The constant c has received considerably more attention than a. This is partially due to the fact that c is independent of the units in which pressure is measured, and thus, of any errors in calibration of the pressure measuring devices. The value of c is sensitive to nonlinear errors in the pressure scale, however.

The slope of the melting curve at T_0 is given by ac/T_0 . The standard deviation of this quantity is given by: $[\sigma(a) \ c - \sigma(c) \ a]/T_0$, so that the slope is known considerably better than either a or c, as one would expect.

The application of the Simon equation to falling melting curves is apparently unique. The only discussions of this are by Voronel,^{148,149} but his derivation is in error. He takes a derivative of the equation, applies the derivative where the original didn't apply, and integrates to get an equation which is different from the one he started with. Predictions based upon this treatment have not been found to hold. There is no theoretical justification for the use of a Simon equation for falling melting curves, although some of Gilvarry's work¹⁵⁰ may be interpreted as implying that such an equation would work.

The quality of a Simon-equation fit to a normal and to an abnormal substance may be seen by examining Tables III and V, where fits to Bridgman's

Error P_{exp} (bars) P_{eale} (°K) (bars) (bars) 335.7 $0\\2$ 351.9991 993 $365.6 \\ 377.9$ 19821907 29742949389.0399.2408.6417.3425.73965 3938 4956493859485942693969397930 7974 $\frac{433.3}{440.2}$ 8922 8975 9937 9913 446.8 10 904 10 907 452.8 11 985 11 832 -63

TABLE V. Potassium (a = 4266 bars; c = 4.44).

data for potassium and bismuth are given. The fit is quite good, for both cases, but it should be remembered that Bridgman always smoothed his values before publication.

In Table IV the fit to antimony is given for two

different investigations. Here the equation quite clearly does not fit the data.

Attempts to fit the equation to falling melting curves with a negative c led to very poor fits. The least-squares fit always yielded negative values of a.

TABLE VI. Effects of fitting technique.

Criterion	с	a(bars)
Potass	sium	
least squares sum deviations vanish ? Taylog'a series expansion	$\begin{array}{c} 4.43 \\ 4.41 \\ 4.53 \\ 4.28 \end{array}$	4266 4313
Sodi	4.58 um	4300
least squares sum deviations vanish ?	$3.53 \\ 3.47 \\ 3.56$	$ \begin{array}{ccc} 11 & 970 \\ 12 & 240 \\ \dots \end{array} $

The scatter in this value from one investigator to another is considerably larger than for the normal substances.

PRECISION OF THE CONSTANTS

The comparison of the experimental values of the Simon-equation constants with the theoretical expressions for their values will be considered in a forthcoming paper,¹⁵¹ the discussion being somewhat lengthy.

As has been previously noted, the standard deviations of the constants are somewhat higher than most previous estimates. These standard deviations only represent statistical uncertainties resulting from scatter in the original data. The values of these constants are also somewhat sensitive to the criteria of a fit. This may be seen from Table VI, where fits according to two different criteria are compared with previously published values¹⁵² for potassium and sodium. For these substances the scatter of the data is rather small, so the constants are fairly close together. These fits are to the identical data. For many other substances, a slightly different criterion for a good fit could drastically alter the results, without seriously imparing the representation of the data by the Simon equation. The deviations between values of c are about the same as the $\sigma(c)$ given by the table for potassium, but greater than $\sigma(c)$ for sodium.

The standard deviations were calculated, as already noted, by assuming that the temperature measurements were perfect. This is never achieved in practice, so the assumption needs investigation. For most of the nonmetallic substances, the slopes of the melting curves lie between 20 and 50 bars per deg. Assuming that a Manganin guage is used, the usual sensitivity is about 0.1%. Thus accuracies on the order of 0.1° are sufficient for a large pressure range. For metals, the slopes are usually at least an order of magnitude higher, and the temperatures are materially higher, so that the error in the temperature measurement is usually considerably in excess of 0.1° . Here the assumption is definitely false.

The assumption of perfect accuracy of the temperatures is not too serious, however. As an example, consider some data of indium. The standard deviations given in Table I for this data are 4 kbars for a and 0.23 for c. If one calculates the standard deviations assuming that the temperatures are in error and the pressures perfect (a much more reasonable assumption in this case), then one obtains the values of 1.5 kbars for a and 0.101 for c. These values are distinctly smaller than the ones given by the original assumption. Consequently, in this case, one might say that the uncertainties given are generous estimates.

This illustration is a little misleading, since there are very few substances given for which the temperature errors mask the pressure errors. In an ideal case, one should weigh the errors from both causes by evaluating the various sources of errors in the two measurements. This requires a fairly intimate knowledge of the experimental arrangement, and is rarely attempted. Thus all standard deviations should, at worst, be within a factor of about 2 of the best values that could be calculated for them. Most of them are within a few percent.

It should perhaps be emphasized that the Simon equation is to be considered only as a very useful and simple interpolation equation. For many of the substances listed in Table I, the deviations of the measured values from the best fit lie outside the experimental error. These deviations show regularities, as may be seen from Tables II and III. Thus, though the equation is also useful for some theoretical discussions, it should not be considered to be an exact representation of the melting curve.

[Note added in proof. Perhaps one further note of caution should be emphasized. Many of the numbers given in Tables I and Ia are still more characteristic of the experiment than the substance. There are a number of substances, such as mercury and argon, where the melting curves have been very carefully run, and different investigators agree on the values of a and c to well within their experimental uncertainties. For many others the difficulties with technique are such that mild systematic errors in the

experiment introduce drastic errors in the final answer.]

CONCLUSIONS

The values of the parameters in the Simon equation have been given for all substances known to the author for which sufficient data are known. Their probable precision is discussed.

ACKNOWLEDGMENTS

The author thanks Dr. G. C. Kennedy and his co-workers for the use of unpublished data and Joe G. Foreman for aid in programming.

APPENDIX

The equations for calculation of the standard deviations using the notation and procedure of Deming¹⁵³ of a and c are

$$\sigma^2(a) = C_{aa}\sigma^2$$
, $\sigma^2(c) = C_{cc}\sigma^2$

with the following definitions:

$$C_{aa} = \frac{[cc]}{\Delta}, \quad C_{cc} = \frac{[aa]}{\Delta}, \quad \Delta = \begin{vmatrix} [aa] & [ac] \\ [ac] & [cc] \end{vmatrix},$$

where the bracketed quantities are defined by:

$$[ac] = \sum \left[\frac{(\partial F/\partial a) (\partial F/\partial c)}{L} \right], \text{ etc. },$$
$$L = \frac{(\partial F/\partial P)^2}{W_P} + \frac{(\partial F/\partial T)^2}{W_T}$$

and σ is defined by

$$\sigma^2 = S/(N-2) \; .$$

Here S is given by the expression

$$S = \frac{1}{\Delta} \begin{vmatrix} [aa] & [ac] & [ao] \\ [ac] & [cc] & [co] \\ [ao] & [co] & [oc] \end{vmatrix}$$
$$= [oo] + [ao] \frac{\begin{vmatrix} [ac] & [cc] \\ [ao] & [co] \end{vmatrix}}{\Delta} - [co] \frac{\begin{vmatrix} [cc] & [ac] \\ [ao] & [co] \end{vmatrix}}{\Delta}$$

in which the last two terms are always small. Here $[oo] = \sum F^2/L$, etc.

For the case of the Simon equation,

$$F = P - ax_i$$
, $x_i = (T/T_0)^{\circ} - 1$.

The value of L is, therefore,

$$L = \frac{1}{W_P} + \left[\frac{ac}{T_0} \left(\frac{T}{T_0}\right)^{\circ-1}\right]^2 \frac{1}{W_T},$$

which takes the two values

1 for
$$\frac{T}{W_P} = 1$$
; and $\left[\frac{ac}{T_0} \left(\frac{T}{T_0}\right)^{\circ-1}\right]^2$ for $\frac{P}{W_T} = 1$.

In the following the pressures are assumed to be the source of error, so L = 1. Then:

$$[cc] = \sum a^{2} (T_{i}/T_{0})^{2c} \ln (T_{i}/T_{0})$$

$$[aa] = \sum x_{i}^{2}$$

$$[ac] = \sum a (T_{i}/T_{0})^{c} x_{i} \ln (T_{i}/T_{0})$$

$$[oo] = \sum (P_{i} - ax_{i})^{2}$$

$$[oc] = \sum (P_{i} - ax_{i}) a (T_{i}/T_{0})^{c} \ln (T_{i}/T_{0})$$

$$[oa] = \sum (P_{i} - ax_{i}) x_{i}.$$

REFERENCES

- ¹ J. Perkins, Phil. Trans. Roy. Soc. London **116**, 541 (1826). ² B. P. E. Clapyeron, J. École Polytechnique **14**, 153 (1834);
- ⁴ J. Thomson, Jrans. Roy. Soc. Edinburgh 16, 575 (1894).
 ⁴ W. Thomson, Phil. Mag. 37, 123 (1849).
 ⁵ R. Clausius, Pogg. Ann. 79, 376, 500 (1850).
 ⁶ F. E. Simon and G. Glatzel, Z. Anorg. u. Allgem. Chem.

- 178, 309 (1929).
 ⁷ P. W. Bridgman, International Critical Tables (McGraw-Hill Book Company, Inc., New York, 1928), Vol. 4, p. 9 ff.
 ⁸ L. H. Adams and E. D. Williamson, J. Wash. Acad. Sci. ⁸ L. H. Adams and E. D. Williamson, J. Wash. 49, 30 (1919).
 ⁹ E. H. Amagat, Compt. Rend. 105, 165 (1887).
 ¹⁰ E. H. Amagat, Compt. Rend. 117, 507 (1893).
 ¹¹ S. E. Babb, Jr., J. Chem. Phys. 37, 922 (1962).
 ¹² S. E. Babb, Jr., J. Chem. Phys. 37, 822 (1962).
 ¹³ C. Barus, Am. J. Sci. 42, 125 (1891).
 ¹⁴ F. Birch and E. C. Robertson (unpublished).
 ¹⁵ E. A. Block Z. Physik. Chem. (Leipzig) 82, 403

 - ¹⁵ E. A. Block, Z. Physik. Chem. (Leipzig) 82, 403 (1913).
- ¹⁶ F. G. Brickwedde and R. B. Scott (unpublished). Cited by H. W. Wooley, R. B. Scott, and F. G. Brickwedde, J. Res. Natl. Bur. Std. 41, 379 (1948).
- ¹⁷ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 47, 347 (1911).
- (B5) ¹⁸ P. W. Bridgman, Proc. Am. Acad. Sci. **47**, 441 (1911).

 - P. W. Bridgman, Phys. Rev. 3, 126 (1914). (B14)
 P. W. Bridgman, Phys. Rev. 6, 1 (1915). (B19)
 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 51, 55 (1915).
- (B20) ²² P. W. Bridgman, Proc. Am. Acad. Arts Sci. 52, 91 (1916). (B25)
- ²³ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 56, 61 (1921).
- (B35) ²⁴ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 385 (1925). (B54) ²⁵ P. W. Bridgman, Phys. Rev. 46, 930 (1934). (B86) Ama Acad Arts Sci. 70, 1
- ²⁶ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 70, 1 (1935). (B91)
 ²⁷ P. W. Bridgman, Phys. Rev. 48, 896 (1935). (B95)
 ²⁸ P. W. Bridgman, J. Chem. Phys. 3, 597 (1935). (B93)
 ²⁹ P. W. Bridgman, J. Chem. Phys. 5, 964 (1937). (B102)
 ³⁰ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 74, 399 (1942).

- ³¹ P. W. Bridgman, J. Chem. Phys. **19**, 206 (1951).
 ³² F. P. Bundy, Phys. Rev. **110**, 314 (1958); see also refer-
- ence 124 ³³ F. P. Bundy, Phys. Rev. 115, 274 (1959); see also reference
- 124. ³⁴ F. P. Bundy and H. M. Strong, Phys. Rev. 115, 278
- (1959). ³⁵ V. P. Butuzov and M. G. Gonikberg, Dokl. Akad. Nauk
- SSSR 91, 1083 (1953).
 ³⁶ V. P. Butuzov, M. G. Gonikberg, and S. P. Smirnov, Dokl. Akad. Nauk SSSR 89, 651 (1953).

³⁷ V. P. Butuzov, E. G. Ponyatovskii, and G. P. Shakhov-skoi, Dokl. Akad. Nauk SSSR 109, 519 (1956).

- ³⁸ P. F. Chester and J. S. Dugdale, Phys. Rev. 95, 278 (1954).
- ³⁹ S. P. Clark, Jr., J. Chem. Phys. **31**, 1526 (1959).
- ⁴⁰ K. Clausius and E. Bartholome, Z. Physik. Chem. (Leipzig) B30, 237 (1935). ⁴¹ K. Clausius and K. Weigand, Z. Physik. Chem. (Leipzig)
- B46, 1 (1940).
 ⁴² K. Clausius, U. Piesbergen, and E. Varde, Helv. Chim.
- Acta 42, 2356 (1959)
- Acta 42, 2550 (1959).
 ⁴³ K. Clausius, U. Piesbergen, and E. Varde, Helv. Chim.
 Acta 43, 2059 (1960).
 ⁴⁴ B. C. Damien, Compt. Rend. 112, 785 (1891).
 ⁴⁵ L. Deffet, Bull. Belg. Chem. Soc. 44, 41 (1935).
 ⁴⁶ L. Deffet, Bull. Belg. Chem. Soc. 44, 97 (1935).
 ⁴⁷ L. Deffet, Bull. Belg. Chem. Soc. 49, 223 (1940).
 ⁴⁸ L. Deffet and G. Vlerick, Bull. Belg. Chem. Soc. 51, 237 (1042)
- (1942).
- ⁹⁴² R. Demerliac, Compt. Rend. **122**, 1117 (1896).
 ⁵⁰ R. Demerliac, Compt. Rend. **124**, 75 (1897).
 ⁵¹ W. Denecke, Z. Anorg. u. Allgem. Chem. **108**, 1 (1919).
 ⁵² J. Dewar, Proc. Roy. Soc. (London) **30**, 533 (1880).
- ⁵³ R. B. Dow and H. B. Hibshman, J. Chem. Phys. 5, 960 (1937).
- ⁵⁴ J. D. Dudley and H. T. Hall, Phys. Rev. 118, 1211 (1960). ⁵⁵ H. A. Gebbie, P. L. Smith, I. G. Austin, and J. H. King, Nature 188, 1095 (1960). ⁵⁶ A. R. Glascow and J. Timmermans, Bull. Belg. Chem.
- Soc. 70, 623 (1961).
- ⁵⁷ M. G. Gonikberg, G. P. Shakhovskoi, and V. P. Butuzov, Zh. Fiz. Khim. 31, 1839 (1957).
 ⁵⁸ R. W. Goranson and F. C. Kracek, J. Phys. Chem. 36,
- 912 (1932)
- ⁵⁹ R. W. Goranson and F. C. Kracek, J. Chem. Phys. 3,
- 87 (1935).
 ⁶⁰ W. van Gulik and W. H. Keesom, Commun. Phys. Lab. Univ. Leiden 192b (1928).
 ⁶¹ H. T. Hall, J. Phys. Chem. 59, 1144 (1955) see also refermed.
- ⁶² A. Heydweiller, Wied. Ann. 64, 725 (1898).
 ⁶³ F. A. Holland, J. A. W. Huggill, and G. O. Jones, Proc. Roy. Soc. (London) A207, 268 (1951).
 ⁶⁴ G. H. Hulett, Z. Physik. Chem. (Leipzig) 28, 629 (1899).
- 65 A. Jayaraman, R. C. Newton, and G. C. Kennedy (private
- communication). ⁶⁶ A. Jayaraman, R. C. Newton, and G. C. Kennedy, Nature
- ¹¹ 19 (1961).
 ⁶⁷ A. Jayaraman, W. Klement, Jr., R. C. Newton, and G. C. Kennedy (private communication).
- ⁶⁸ J. Johnson and L. H. Adams, Am. J. Sci. 31, 501 (1911). ⁶⁹ W. H. Keesom, Commun. Phys. Lab. Univ. Leiden 184
- (1926) ⁷⁰ W. H. Keesom, and J. H. C. Lisman, Commun. Phys.
- Lab. Univ. Leiden 213e (1931). ⁷¹ W. H. Keesom and J. H. C. Lisman, Commun. Phys. Lab. Univ. Leiden 221a (1932).
- ⁷² G. C. Kennedy (private communication).
 ⁷³ G. C. Kennedy, A. Jayarman, and R. C. Newton, Phys. Rev. 126, 1363 (1962).
 ⁷⁴ F. Korber, Z. Physik. Chem. (Leipzig) 82, 45 (1913).
- ⁷⁵ F. Korber, Z. Flysk, Chem. (Leipzg) 62, 50 (1919).
 ⁷⁵ N. Kultascheff (unpublished), see reference 123.
 ⁷⁶ E. Kuss, Z. Angew. Physik 4, 202 (1952).
 ⁷⁶ P. H. Lahr and W. G. Eversole, J. Chem. Engr. Data
- 7, 42 (1962).
- 42 (1962).
 ⁷⁷ A. Lampa, Wein. Ber. 111, 316 (1902).
 ⁷⁸ J. H. C. Lisman and W. H. Keesom, Physica 2, 901 (1935).
 ⁷⁹ S. Lussana, Nuovo Cimento 4, 371 (1902).
 ⁸⁰ S. Lussana, Nuovo Cimento 5, 153 (1903).
 ⁸¹ E. Mack. Compt. Rend. 127, 361 (1898).
 ⁸² A. Michels and C. Prins, Physica 28, 101 (1962).
 ⁸³ A. Michels R. Blaises and J. Hoogschagen, Physica 9.

- ⁸³ A. Michels, B. Blaisse, and J. Hoogschagen, Physica 9,
- 565 (1942).
 ⁸⁴ A. Michels, T. Wassenaar and B. Blaisse, Physica 9, 574
- ⁸⁵ R. L. Mills and E. R. Grilly, Phys. Rev. 99, 480 (1955).
 ⁸⁶ R. L. Mills and E. R. Grilly, Phys. Rev. 101, 1246 (1956).
 ⁸⁷ N. Nagornow, Ann. Inst. Anal. Phys. Chem. (II), 593
- (1927) cited in reference 46.

⁸⁸ R. R. Nelson, W. Webb, and J. A. Dixon, J. Chem. Phys.

- ³⁰ R. C. Newton, A. Jayarman, and G. C. Kennedy, J. ⁸⁹ R. C. Newton, A. Jayarman, and G. C. Kennedy, J. Geophys. Res. 67, 2559 (1962).
 ^{89a} G. Kh. Panova, S. S. Sekoyan, and L. F. Vereshchagin, ¹¹ No. 2, 61 (1961).
- Phys. Metals Metallog. 11, No. 2, 61 (1961). ⁸⁹⁶ C. W. F. T. Pistorius, Z. Kristall, 115, 291 (1961). ⁸⁹⁶ C. W. F. T. Pistorius, M. C. Pistorius, J. P. Blakey, and
- J. Admiraal, J. Chem. Phys. **38**, 600 (1963). ⁹⁰ E. G. Ponyatovskii, Kristallografiya **3**, 508 (1958). ⁹¹ E. G. Ponyatovskii, Fiz. Met. i Metalloved. **11**, 476 (1961).

 - N. A. Pushin, Z. Physik. Chem. (Liepzig) 119, 400 (1936).
 N. A. Pushin and J. V. Grebenshikov, Z. Physik. Chem.
- (Liepzig) 113, 57 (1924). ⁹⁴ N. A. Pushin and J. V. Grebenshikov, Z. Physik. Chem.
- (Liepzig) 118, 276 (1925). ⁹⁵ T. W. Richards and S. Boyer, J. Am. Chem. Soc. 41, 133
- (1919).
- ⁹⁶ T. W. Richards and S. Boyer, J. Am. Chem. Soc. 43, 274 (1921).
- ⁹⁷ J. Robberect, Bull. Belg. Chem. Soc. 47, 597 (1938).
 ⁹⁸ F. E. Simon, M. Ruheman, and W. A. M. Edwards, Z. Physik. Chem. (Leipzig) B6, 331 (1929).
 ⁹⁹ J. C. Stryland, J. E. Crawford, and M. A. Mastoor, Can.
- J. Phys. 38, 1546 (1960).
 ¹⁰⁰ J. C. Swallow and R. O. Gibson, J. Chem. Soc. 137, 18
- (1934). ¹⁰¹ J. C. Swallow and R. O. Gibson, J. Chem. Soc. 137, 440
- (1934). ¹⁰² G. Tammann, Ann. Physik 66, 473 (1898).
 ¹⁰³ G. Tammann, Ann. Physik 68, 553 (1899).
 ¹⁰⁴ G. Tammann, Ann. Physik 68, 629 (1899).
 ¹⁰⁵ G. Tammann, Ann. Physik 68, 629 (1899).
- ¹⁰⁵ G. Tammann, Ann. Physik **36**, 029 (1999).
 ¹⁰⁶ G. Tammann, Ann. Physik **2**, 1 (1900).
 ¹⁰⁷ G. Tammann, Ann. Physik **6**, 74 (1901).
 ¹⁰⁸ G. Tammann, Z. Anorg. u. Allgem. Chem. **69**, 54 (1904). ¹⁰⁹ G. Tammann, Z. Anorg. u. Allgem. Chem. 63, 285 (1909).
- (B11)
 - ¹¹⁰ G. Tammann, Z. Physik. Chem. (Leipzig) 69, 569 (1909).

- ¹¹⁰ G. Tammann, Z. Physik. Chem. (Leipzig) **69**, 509 (1909).
 ¹¹¹ G. Tammann, Z. Physik. Chem. (Leipzig) **72**, 609 (1910).
 ¹¹² G. Tammann, Z. Physik. Chem. (Leipzig) **80**, 737 (1912).
 ¹¹³ G. Tammann, Z. Physik. Chem. (Leipzig) **81**, 187 (1912).
 ¹¹⁴ G. Tammann, Kristalliaieren und Schmelzen (Johann Ambrosius Barth, Leipzig, 1903).
 ¹¹⁵ J. Timmermans and M. Kasanin, Bull. Belg. Chem. Soc.
 ⁶² 627 (1020)
- 68, 527 (1929).
 ¹¹⁶ L. F. Vereschagin and F. F. Voronov, Zh. Fiz. Khimii
- **30**, 329 (1956). ¹¹⁷ T. T. H. Verschoyle, Trans. Roy Soc. (London) **A230**,
- 189 (1932).

 - ¹¹⁸ L. E. O. de Visser, Rec. Trav. Chim. 12, 101 (1893).
 ¹¹⁹ W. Wahl. Trans. Roy. Soc. (London) 212A, 117 (1912).
- M. K. Zhokhovskii, Izmeritel. Tekhn., No. 5, 3 (1955).
 M. K. Zhokhovskii and V. N. Razumikhin, Izmeritel.
- Tekhn., No. 4, 43 (1957). ¹²² P. W. Bridgman, Proc. Am. Acad. Arts Sci. 49, 1 (1913).
- (B11)

- 123 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 51, 609 (1916).
- (B23) ¹²⁴ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 59, 141
- (1923). (B46) ¹²⁵ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 61, 77 (1927).
- (B58) ¹²⁶ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 66, 185 (1930). (B74) ¹²⁷ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 67, 1 (1931).
- (B78)
- ¹²⁸ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 77, 129
- (1949).
 ¹²⁹ V. P. Butuzov, S. S. Boksha, and M. G. Gonikberg, Dokl.
 Akad. Nauk SSSR 108, 837 (1956).
 ¹³⁰ J. Basset, Compt. Rend. 208, 169 (1939).
 ¹³¹ J. Basset, Compt. Rend. 298, 267 (1939).
 ¹³¹ F. P. Bundy, J. Chem. Phys. 38, 618 (1963).
 ¹³² S. D. Hammann. Physico-Chemical Effects of Pressure
- ¹³² S. D. Hammann, *Physico-Chemical Effects of Pressure* (Academic Press Inc., New York, 1957), p. 223 ff.
 ¹³³ F. P. Bundy and H. M. Strong, *Solid State Physics*, edited
- by F. Seitz and D. Turnbull (Academic Press Inc., New York),
- Vol. 13, p. 81 ff., esp. p. 134.
 ¹³⁴ B. Weinstock, B. M. Abraham, and D. W. Osborne, Phys.
- B. W. Baum, D. F. Brewer, J. G. Daunt, and D. O.
 ¹³⁵ C. A. Swenson, Phys. Rev. 89, 538 (1953).
 ¹³⁶ J. L. Baum, D. F. Brewer, J. G. Daunt, and D. O.
 Edwards, Phys. Rev. Letters 3, 127 (1959).
 ¹³⁷ E. R. Grilly and R. L. Mills, Ann. Phys. (N. Y.) 8, 1
- (1959).
 ¹³⁸ R. L. Mills, E. R. Grilly, and S. G. Sydoriak, Ann. Phys.
 (N. Y.) 12, 41 (1961).
 ¹³⁹ H. S. Yoder, Jr., J. Geol. 60, 364 (1952).
 ¹⁴⁰ F. R. Boyd and J. L. England, Carnegie Inst. Wash.

- ¹⁴¹ F. R. Boyd and J. L. England, Carnegie Inst. Wash.
- Yearbook 58, 83 (1959). ¹⁴² F. R. Boyd and J. L. England, Carnegie Inst. Wash. Yearbook 60, 113 (1961).
- Yearbook 60, 113 (1961).
 ¹⁴³ G. C. Kennedy, Advances in Geophysics (Academic Press Inc., New York, 1961), Vol. 7, p. 312 ff.
 ¹⁴⁴ E. Jencel and H. Rinkens, Z. Electrochem. 60, 970 (1957).
 ¹⁴⁵ P. W. Bridgman, The Physics of High Pressure (G. Bell and Sons, London, (1952), p. 433.
 ¹⁴⁶ L. Knopoff, eited by G. C. Kennedy, A. Jayarman, and R. C. Newton, Third Congress of the European Federation of Chemical Engineering, London, 1962 (unpublished).
 ¹⁴⁷ S. E. Babb, Jr., ASME Winter meeting 1962 (to be pub-lished)

- lished).
- ¹⁴⁸ A. V. Voronel, Zh. Tekh. Fiz. 28, 2630 (1958).
 ¹⁴⁹ A. V. Voronel, Fiz. Metal. i. Metalloved. 9, 169 (1960).
- J. Gilvarry, Phys. Rev. 104, 908 (1956).
 ¹⁵⁰ S. E. Babb, Jr., J. Chem. Phys. (to be published)
- ¹⁵² J. A. W. Huggill, cited by L. Salter, Phil. Mag. 45, 369
- (1954). ¹⁵³ W. E. Deming, *Statistical Adjustment of Data* (John Wiley & Sons, Inc., New York, 1943), p. 167 ff.