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where V;; represents the interaction between the ith
and jth nucleons. Our problem may now be seen to

' Supported in part by grants from the National Science
Foundation and the Research Council of the University of
Nebraska.

I See the bibliography that appears at the end of this paper.
2 Relativistic corrections are 5% in H2, and slightly more

in heavier nuclei. The theory is not yet suKciently refined to
warrant such corrections, and they are usually not invoked.

I. INTRODUCTION

~HE search for empirical regularities in the
systematics of stable nuclei dates back to

Aston's (A19)' early mass spectogra, ph measure-
ments. A number of stability rules formulated by
Harkins (cf. H31 for a summary as well as references
to earlier work) were complicated by the nuclear
model popular at that time, in which the nucleus was
regarded as a collection of A protons whose charges
were partially balanced by 2 —Z electrons.

Shortly following Chadwick's (C32) detection of
the neutron and its acceptance as an elementary
particle, the neutron —proton nuclear model was ad-
vanced independently by Heisenberg (H32) and
Iwanenko (I32). Physicists soon began to speculate
on the nature of a neutron —proton interaction (H82a,
M33, H38) tha, t could produce the binding of the
deuteron and more complex nuclei (W33, F35, F85a).

The basic nuclear problem was then dered. The
nucleus consists of A interacting particles (Z protons
and N = A. —Z neutrons) of approximately equal
mass, whose description should be given by solving
Schrodinger's equation'

be twofold: (1) To find the V;; explicitly; (2) from
this interaction operator deduce the physical charac-
teristics of the various nuclear systems in order to
compare them with experiment. The natural pro-
cedure is to start by determining V;; through analysis
of the two-body problem and proceed to step 2.
Regrettably, the nucleon —nucleon interaction is suf-
ficiently complicated that the two-body problem
provides insufhcient information as to its detailed
character, and one must study complex nuclei in
step 1 as well as step 2. In addition, even if V;; were
explicitly known, the methods for solving Eq. (I.l)
for a complex system are not trivial.

Consequently, the nuclear theorist must play a
double game with Eq. (I.l), and two very general
procedures have become popular. The first method
involves assuming an interaction operator (or select-
ing one from meson theory), solving Eq. (I.l) in a
reasonably straightforward manner in order to de-
rive the physical properties of the nuclear systems,
and finally checking the results against experiment.
This method is less useful for complex nuclei (A ) 4)
where "reasonable" methods of computation become
open to question. The second procedure, often used
in complex nuclei, is to make certain simplifying
assumptions concerning the nature 'of the wave
function |t. In clearer language, one constructs a,

model which possesses the salient physical properties
of nuclear systems. One then attempts to justify this
model in terms of the interaction operator, and thus,
in turn, from the model learn something of the im-
portant features of nuclear forces.

Before proceeding we must note that writing Eq.
(I.l) is in itself assuming a certain model, generally
designated as the "two-body interaction model. "%e
suppress, in this model, consideration of many-body
forces (P89). Such neglect is justifiable on three
counts. No evidence points to a necessity of intro-
ducing such forces. Though the two-body interaction
model hardly yields 100% agreement with observa-
tion at this time, agreement is good enough to war-
rant continued work with two-body forces alone.
Recent calculations on infinite nuclear matter (857)
with two-body interactions give reasonable results
in the light of our knowledge of the interior of heavy
nuclei. If many-body forces were needed anywhere,
one would expect them to be essential in the nuclear
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many-body problem. Lastly, the introduction of
many-body forces would introduce so many new

parameters into the problem that one could fit all
of the data easily, but such fits would be of dubious
significance. Hence, although many-body forces may
someday be required by meson theory, it is very
doubtful that they will ever be introduced phe-
nomenologically.

Prior to the neutron —proton model it had been
suggested that the protons might, to a reasonable
approximation, occupy independent orbitals (B30) in
much the same manner that the extranuclear elec-
trons occupy individual orbitals in the Hartree model
of the atom. In the neutron —proton model irregular
periodicities reminiscent of shell structure are not too
di%cuh to recognize (634). Bartlett (B32, B32a) re-
corded evidence of the existence of s, p, and d shells

in light nuclei, and recognized that the 1p shell is
being completed in the region between A = 4 and
A = 16.

It was soon recognized that nuclei with certain
numbers of protons or neutrons (magic numbers)
possessed unusual stability and abundance (E34,
634a). The set of magic numbers generally accepted
today are

Nor Z = 2, 6, 8, 14, 20, 28, 50, 82, and 126. (I.2)

We shall not review the evidence for these numbers
in its entirety, but rather refer the reader to one of
the excellent books (F55, M55) on this subject for a
detailed discussion. The major points are briefly as
follows:

1. Stability and abundance Nucle. i with X or Z
magic have unusually large binding energies and are
correspondingly highly abundant. If X and Z are
both magic (8He8. 8CS) 808) 148114) 20Ca20y MCa28y

88Pb»8) this stability ia all the greater. In particular,
the last nucleon to complete a magic number is ver'y

tightly bound. Furthermore, nuclei with Z(X) magic

possess an unusually large number of stable isotopes
(isotones) .

8. ¹utron capture cross sections. Nuclei with
neutron number one short of a magic number exhibit
a large neutron capture cross section, while nuclei
with a magic number of neutrons have a small

neutron capture cross section.
3. Islonds of isomerism. Long-lived isomers (half-

life near one second) appear just prior to the com-
pletion of a magic number of protons or neutrons in
the periodic table.

$. Electric quadrupole moments. The nuclear quad-

rupole moments tend to be small near a magic
number and large far from the magic numbers. This

indicates that a nucleus with X or Z magic is not
easily deformed from a spherical shape.

O'. Delayed neutron emission. Delayed neutron
emit ters (88Er», «Xe88, and 808) occur when X is one
greater than a magic number, emphasizing the in-
stability of the last neutron in such nuclei.

The data clearly point toward an interpretation
of the magic numbers in terms of shell closures,
analogous to the noble gases of atomic physics.

The primitive nuclear model therefore became an
independent particle model, in which each nucleon
was to be considered to move independently of
every other nucleon (at, least to a first approxima-
tion) and definite assignments of single-particle
orbitals could be made. Such a nuclear model lacks
the intuitive justification which impelled the corre-
sponding atomic model to success. Electron motion in
the atom is dominated to a fair approximation by the
strong central field of the nucleus. Nuclear inter-
actions are generated by the nucleons themselves.
The nucleon density is relatively high and the forces
basically attractive (though the existence of an
infinite repulsion at short distances is strongly
suspected). In Sec. V we will discuss the theoretical
justification of the independent-particle model in
terms of nuclear forces. Until then we simply accept
the model as an interesting hypothesis which yields
striking con6rmation with observations.

Much emphasis in the 1930's was placed on the
development of the explicit nature of the nucleon-
nucleon interaction. Construction. of variational trial
wave functions in terms of determinants of single-

particle orbitals provided a method of checking
nuclear forces against the properties of nuclei (par-
ticularly in the range 4 ( A ~( 16), and so the
independent-particle model found much use. The
effect of an inverted doublet splitting on nuclear
levels was treated, but not considered a major effect
because the Thomas term (the predominant source
of such a splitting known at the time) wa, s not large

(136, D36, B38).
Despite the emphasis on shell structure in the

1930's the model did not enjoy overwhelming success
at that time. Although the sheH. model had many
qualitative features in agreement with observations,
quantitative comparisons were found to lack accept-
able accuracy. I"or example, one could only obtain
about 70/z of the binding energy of nuclei in the lp
shell.

At the same time alternate nuclear models, whose

basic philosophy was quite different from the shell

model, had more success. The liquid-drop model

(W35, B36) proved useful in describing nuclear re-
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the levels are split as shown in Table I-2. Diagonal

TABLE I-1. Level order in harmonic oscillator shells.

Oscillator shells
Number of particles

In shell In the oscillator well

I
II

III
IV
V

VI
VII

0
1

2,0
3,1

4,2,0
5,3,1

6,4,2,0

2
6

12
20
30
42
56

2
8

20
40
70

112
168

matrix elements of the spin-orbit term in single-
particle states may be evaluated by the relation

(I —,
' jmll sll 2 jm) = W(j t -', 1; —,

' t)—

actions and explaining the trend of the nuclear
stability curve. The u-particle model held promise
since it appeared to explain numerous features of
nuclei (binding energy per n bond was nearly con-
stant for nuclei with an integral number of n particles,
o. activity of heavier nuclei was a natural consequence,
and some success was had in explaining excited states)
and if adopted would reduce the complexity of
calculations for medium weight nuclei. Both the
liquid-drop and the n-particle models imply that
strong correlations between particle motions are
important in nuclei, contrary to the assumptions of
the independent-particle model.

We shall see later that the existence of collective
eGects in nuclear motions is not a cogent argument
against shell structure. Justification of the shell
model was long in coming, however, and interest in
this subject dwindled until Mayer (M49) and Haxel,
Jensen, and Suess (H49) emphasized the importance
of jj coupling.

A major requirement of the shell model is that it
reproduce the magic numbers. Shell closures at 2, 8,
and 20 are predicted by simple central wells which are
relatively fi.at near the origin such as the harmonic
oscillator (see Table I-1) or square well (F55). The
magic numbers 50 and 82 may be obtained by in-
cluding a central elevation (E34, F49) in the potential
well which increases with increasing A.

The jj coupling model reproduces the magic num-
bers in a striking manner. If one adds to the harmonic
oscillator potential a spin-orbit interaction:

TABLE I-2. Level order in oscillator shells with an added
1 s interaction.

Nuclear shells
Number of particles
In shell In nucleus

I
II

III
IV
V

VI
VII

VIII
IX

»/2
P3/2
PI/2
d5/2
»/2, d3/2
f7/2
pa/2)pl/2)f6/2)g9/2
d5/2)» /2 y ~3/2 p g7/2y ~11/2
~9/2)f7/2)f5/2)p3/2)p1/2)
&13/2

2

2
6
6
8

22
32
44

2
6
8

14
20
28
50
82

126

pling coeS.cients Cg',f are treated in detail in several
modern texts (W59, EG7a, F59). Evaluation of the
Racah function yields:

ifj=l+-',
= —(t + 1)/2 if j = t ——'-. ,

(I 4c)

Far more obvious methods of deriving Eq. (I.4c) are
usually employed. We have inserted the more general
procedure because later, when we consider the origin
of the 1 s term from two-body interactions, it is
essential for maximum clarity.

We see that the magic numbers immediately ap-
pear when. Vs 0(r) is given a sign s.o , that our spin-
orbit term is attractive in j = l + —, states. In addi-
tion to yielding the magic numbers, the jj coupling
model predicts spins and parities throughout the
periodic table with impressive accuracy as well as
giving a fair insight into the sign and magnitude of
magnetic —dipole moments and the sign of electric—
quadrupole moments. For a detailed comparison of
shell-model predictions with known nuclear states
we once more refer to established references (F55,
M55). Tables I-3 and I-4 contain nuclear data for
light nuclei. Magnetic moments may be compared
to the single-particle values (Schmidt lines):

where

(r llsll r) —& Ã/" /] 4 —.
I I

—. —.) = (-.)

(I.4a)

(tlllll~) = (2t + 1)' '
L~to't]

'
(ttl~*l~&)

=
I l(t y 1) (2l, y 1)]". (I.4b)

The Racah function W(abed;ef) and the vector cou-

(I 4) p =t+ /~ = (j —k)g~ + k g. (I.5a)
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TABLE I-3. Angular momenta, parities, moments, and probable shell-model configurations for the ground states of stable nuclei
in the 1p shell.

Element

3L13
3Li4
4Be5
5B5
5B6
6C6
6C7
7N7
7Ns.
sos

1+
3/2—
3/2—

3+
3/2
0+
1/2
1+

1/2-
0+

0.82
3.26—1.18
1.80
2.69
0
0.70
0.40—0.28
0

0.01

0.02

0.05
0

0.16

neutron configuration
1&1/2 1p3/2 1P1/2

1
2
t3

3

proton configuration
1@1/2 1@3/2 1PI/2

~ = —i = Iil(i + ~))I:(i+ 2)g —
2 g.) (I 5b)

while single-particle estimates for the electric —quad-
rupole moment are

(I.5c)

Some obvious features of Tables I-3 and I-4 are
worth repeating here. In the lp shell jj coupling is
not yet firmly established and the assigned con-
figurations in Table I-3 cannot be considered to be
more than a caricature of the physical states for most
cases. Actually the spin-orbit term seems to build up
in the 1p shell (I53) and exerts a dominant influence
atA & 15.

Shell model predictions in the region 16 ~& A ~& 40
appear to be reasonably valid. A glaring exception is
F"with a perfect 2s1/2 state in the middle of a ld5/2

shell. In»Na» and 1oNe» we note a curious tendency
for three like nucleons in a j shell to couple to
J = j —1. Though irregularities such as these re-
quire explanation, they are not really inconsistent
with shell structure. On the other hand, numerous
irregularities in nuclei are immediately explained by

the shell model. Consulting Table I-4 we note that
argon does not possess an odd mass isotope (the only
such element with Z ( 58). Argon isotopes with
expected stability on the basis of the neutron excess
curve are Ar37 and Ar39. In both cases the isobars
CP7 and K"have greater binding due to the fact that
they fill a neutron shell at X = 20 (a similar situation
arises near X = 82 for, sCe).

Mayer (M50) has emphasized the importance of a
"pairing energy" which increases with increasing j.
This effect may be described as a strong tendency
for two like nucleons to couple to J = 0. Thus one
finds, for example, that in the range 65 ~& S ~& 75
the neutrons fill lh»/2 orbitals in pairs while a single
odd neutron goes into a 3s1/2 orbital. A similar situa-
tion arises in the range 111 ~& X ~& 125 with com-

peting li»/2 and 3p1/2 orbitals. The effect of pairing
correlations in light nuclei is not as obvious, but, as
we shall see in Sec. IV, this effect gives rise to the
utility of a seniority classification of shell-model
configurations which plays an important role in the
theoretical interpretation of nuclear energy levels.

In spite of its initial success it soon became clear
that the shell model was inadequate in describing

TABLE I-4. Angular momenta, parities, moments, and probable shell-model configurations for ground states of stable odd A
nuclei in the 1d5/2 and 2s1/2 lds/~ shells (about a closed 0 core).

Element

sO9
9F1O

1oNe11
11Na12
12Mg1S
13Al14
14~i15
15P16
16817
16%9
17C118
17C12o
19K20

5/2+
1/2+
3/2+
3/2+
5/2+
5/2+
1/2"
1/2~
3/2+
8/2"
3/2+
3/2+
3/2+

—1.89
2.63

—2.22—0.88
3.64—0.55
1.13
0.64
1.00
0.82
0.68
0.39

—0.005

0.1

0.149

—0.055
0.038—0.078—0.061

neutron configuration
1d5/2 281/2 1d3/2

proton configuration
1d5/g 2&1/2 1d3/2
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certain phenomena. Although the sign of the electric—
quadrupole moments are generally given correctly,
the shell model often predicts a value which is an
order of magnitude smaller than that observed;
experimental transition rates for E2 radiation are
often correspondingly larger than those given by
theory; and clearly no independent-particle model is
capable of describing the 6.ssion process.

Consequently it is not found possible to attribute
all nuclear properties to the nucleons in unfilled shells
and one must investigate the collective motion of the
particles constituting the nuclear core. Foldy and
Milford (F50) and Bohr (B52) treated the nuclear
core as an incompressible Quid, capable of surface
oscillations, coupled to the motion of the nucleons
in unfilled shells. The theory has been extended by
Bohr and Mottelson (B53) with considerable im-

provement in the prediction of nuclear properties.
Collective eGects manifest themselves principalIy

in heavier nuclei. Indications exist, however, that
weak collective effects produce essential corrections
to the shell model in nuclei as light as 0"; while
definite evidence for strongly coupled surface oscilla-
tions near aluminum have been found. In addition,
the collective model is of interest in the study of
light nuclei simply from the standpoint of the in-
vestigation of the relationships of all nuclear models
to an exact description of nuclear structure.

II. NUCLEAR SIZE PARAMETERS

The earliest estimate of nuclear size was made,
quite naturally, by Rutherford in his classic dis-

covery of the atomic nucleus. The only conclusion
that could be reached at the time was that the nuclear
charge appeared to be contained within a sphere of
radius 10-"cm.

As theoretical interpretations of nuclear data and
the experimental techniques for accumulating it im-

proved, considerable attention focused on determin-
ing the nuclear density distribution. Several methods
were popular in the period 1930 to 1950. The theory
of the penetration of charged particles (628, C29)
through a Coulomb barrier yielded information con-
cerning the size of n radioactive nuclei, and stable
nuclei where reaction yields initiated by charged
particles were known. The scattering cross section
for fast neutrons approaches just twice the geometric
cross section:

when the neutron wavelength is small compared to
the nuclear radius. In mirror nuclei (Z' = X,
X' = Z) the mass difference should be due to the

Coulomb repulsion of the protons. If one assumes the
protons to be uniformly distributed within a sphere
of radius 8, the Coulomb energy of Z protons is

E,(Z) = 3Z(Z —1)e'/5R. (11 2)

The Coulomb energy difference between mirror pairs
is then

( )
Ze cos 9/2
2E sin' 0/2

(II.4)

where I' is the nuclear form factor for a spherically
symmetric charge distribution (if the wavelength of
the electrons is very short compared to the radius
of the first Bohr orbit, the atomic form factor aver-
ages out):

(II.5)

q is the magnitude of the electron momentum change
divided by h:

q = (2E/h, e) sin 0/2, (II 6)

E is the energy of the incident electron, and p(r) is
the nuclear charge density. The criterion for validity
of the Born approximation in high energy (v —e)

3 The data are 6tted with a uniform distribution of nucleons
within a sphere of radius 8 = rpA ~ where rp —1.45 )& 10
CIXl.

a(Z', Z) = E.(Z') —E.(Z)
= (3e'/M) [Z'(Z' —1) —Z(Z —1)],

(II.B)

from which one may estimate 8 if A(Z', Z) is known.
The above methods yield fairly consistent results'

(see B52a for a summary} but possess a common
defect. The nucleon distribution is not determined
in detail. Only one parameter (8) describing the size

may be discerned in the data. Consequently, one
must begin the analysis by assuming that the form
of the distribution is known. In addition, several of
the methods (neutron scattering, reaction yields, and
n decay) require some knowledge of the range of
nuclear forces, and really measure the "nuclear force
radius" (D55) rather than the radius of the nucleon
distribution.

Many modern methods of determining nuclear
size parameters employ particles which only interact
with the nucleus electromagnetically. A prominent
example is the scattering of electrons by nuclei. In
Born approximation the electron differential cross
section for scattering per unit solid angle (0) is given

by
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electron scattering is that Z && 137. This condition
is not adequately fulfilled for heavy nuclei, where
accurate phase-shift calculations must be performed,
but in the region of very light nuclei (Z ~( 8) it will
suKce. 4

Hofstadter and his collaborators have performed
electron scattering experiments on numerous nuclei,
and extensive review papers on this work along with
other determinations of nuclear size appear in the
literature (H56, H57, H57a, E61). We shall confine
our interest to the work on nuclei with Z ~& 8 where

specific connections with shell-model parameters
have been made.

Meyer-Berkout, Ford, and Green (M59) have
made a detailed analysis of electron scattering experi-
ments on nuclei in the 1p shell, and attempt to fit
the charge distributions to a variety of reasonable
functions, and Ehrenberg, Hofstadter, Meyer-Berk-
out, Ravenhall, and Sobottka (E59) have performed
an extensive analysis on C" and 0". Several func-
tions yield an acceptable fit to the data (a Fourier
series of about 6 terms, an Hermite function of about
4 terms, a Fermi function, or an oscillator function).
Of particular interest to us is the fit with harmonic
oscillator functions, because of its direct connection
with the shell model.

If one considers a harmonic oscillator well, with
two protons in the ls state and Z —2 protons in the
1p state, the charge density is given by

a = (5/mes)'
' (II.7a)

and Ace is the oscillator well parameter. A good Gt

is obtained with this simple function for nuclei in the
range 4 ~( 2 ~& 16, with the exception of Li'. The
rms radius of this charge distribution is given by

((r'))' ' = a[(5Z —4)/2Z]' '. (II.ib)

Numerical results for nuclei ~. which experiments
have been performed are collected in Table II-1.

Two corrections should be applied to Eq. (II.7)
before making a connection with shell-model parame-
ters. The proton is not a point charge, and its ex-
tension is not negligible compared to the size of the

4 Born approximation is not valid near a diffraction mini-
mum even in light nuclei. Since one knows just where and
how it fails, however, one may still employ the simple relation
in Eq. (II.4) without obtaining misleading charge distribu-
tions.

28 r
p~. (r) = s(» + —', (Z —2) pa 6 6

(II.7)

where

nucleus. A Gaussian charge distribution for the
proton

p„(r) = s- '"a„'exp (—r'/a, '), (II.8)
with rms radius

r„= (3/2)' a, —0.8(10 ") cm, (II.8a)

gives a reasonable (though not the best) fit to elec-

Txsr z II-1. Shell-model parameters for light nuclei deduced
from electron scattering (all distances are in units of 10 is cm).

Element ((r'))" ((r2) r 2)1'2

He4
Li6
Beg
Bll
C12
N14
016

1.61
2.80
220
2.25
2.40
2.45
2.65

1.44
2.68
2.05
2.10
2.27
2.32
2.52

1.32
~ ~ ~

1.51
1.50
1.58
1.59
1.71

tron-scattering data and yields a particularly simple
result when folded into p&..(r) to obtain the distribu-
tion of charge:

p, (r) = ph. (r')p„(r —r')dr' =
7r (a a„

(Z —2) 3a'„a r'
3 2(a + a'„) (a + a„)'

X exp [—r'/(a'+ a„')] . (II.9)
Tassie and Barker (T58) have pointed out that in
addition to this correction one must account for the
fact that the center of mass of the nucleus does not
coincide with the center of the shell-model potential
well. If the levels of an oscillator well are filled in
order of increasing energy, the motion of the center
of mass within the well is described by (E55):

= (A/7r'a )' 'exp (—AR'/2a'), (II.10)

where 8 = A-'Z;r;. To subtract out the center of
mass motion one need only multiply the form factor
corresponding to p, (r):

~ (V) = I1 —[(Z —2)/6Z]aYI exp[ —(a'+ a')V'/41

(II.11)

by a factor exp (—q'a'/4A). The charge density then
becomes (T58):

28
p (i) =

+m

(Z —2) a' (Z —2) a'r'
&& 1+ 1 — 2 + 3 4

+m 3 a

y exp ( —r'/a', .), (II.12)
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where

a' = [(A —1)/Aja'+ a„'. (II.12a,)

b, = 1.72 X 10 ' cm, b„= 2.14 X 10 "cm (J60) .

(II.14b)

The form factor corresponding to Eq. (II.14) used
was corrected for the Gnite size of the proton and
center-of-mass motion (J60):

F(q) = 2 exp [—q'(-', b.
' + a,'. ) /4I + (1 —b„'q'/6)

X exp [—q'(-,' b„' + a,')/4j . (II.14c)

It was assumed that the center-of-mass correction is
approximately similar in form to that in Eq. (II.11).
The latter values (II.14b) would appear to be the
more likely since it is hard to believe that the 1p
protons move in a narrower well than the ls protons.
Jancovici (J56) has performed a va, riational calcu-
lation on 0" to determine to what extent the lp
nucleons deform the 1s shell. He obtained a large
s-shell dilatation (in order to provide better overlap
between ls and 1p orbitals) in support of the parame-

The rms radius Of the charge distribution is now given.

by

(r') = —', [(A —1)/A]a'+ [(Z —2)/Z]a'+ r,'.
(II.13)

Values of c corresponding to acceptable rms radii
are shown in Table II-1. These may be compared to
those quoted in Table I of reference (H57) where
finite proton size and center of mass corrections were
not made. The difference is only 4%, because the
two corrections act in opposite directions. We note
a curious tendency for c to increase throughout the
1p-shell. The large size of 0" is particularly surpris-
ing since this nucleus represents a doubly magic shell,
and one generally tends to associate tighter binding
with a smaller size.

In Li the fit with an oscillator distribution func-
CloD ls so pooI' that assignment of an 6 value ls I1ot

justified. The charge distribution in Li may be
6tted by assuming that the ls and 1p nucleons move
in different oscillator wells (B58, J60). The function

(r) = (2c/ ")Ib
'

e p (—r'/b') + (r'/3b')

X exp (—r'/b, ) I (II.14)

yields an acceptable Gt with the parameters

b, = 2.65 X 10 cm, b„= 1.07 X 10 "cm (858)
(II.14a,)

Ol'

ters in Eq. (II.14b), although it is somewhat surpris-

ing that only two loosely bound lp nucleons produce
such a large dilatation of the closed s shell in Li'.

Beyond 0" the nuclear charge distributions have
generally been fit to a Fermi function. It is difFicult

to clearly differentiate between an oscillator distribu-
tion and a Fermi function in the range 16 ~& A ~& 40
due to the insensitivity of the scattering to the charge
near the origin. A central elevation or depression in

p(r) is consequently not easy to verify.
The electron-scattering experiments appear, there-

fore, to yield strong justification for the use of ha, r-
monic-oscillator wave functions in calculations on
light nuclei, as well as an estimate of speci6c size

parameters.
If one now returns to the old picture of nuclear

size, in which the nucleons are uniformly distributed
within a sphere of radius 8 = r0A' ', one finds that a
reasonable approximation is given by r0 —1.25
&( 10-" cm instead of the previously accepted value
of —1.45 &( 10-"cm. It is surprising, therefore, that
good agreement was obtained for Coulomb energies
in the old model, which should yield an estimate
~15% too low. Bethe and Bacher (836a,) long ago
pointed out that Eq. (II.2) is too naive in that it
neglects the effect of the Pauli exclusion principle.
The nuclear wave function must be antisymmetric
in the proton coordinates and this tends to keep the
protons apart and reduce the Coulomb energy. For
the time being, let us neglect the neutrons and con-
sider the wave function to be a Slater determinant
for the protons only:

P = (Z!) "~u, u2 u.
~

.

The Coulomb energy is then given by

(II.15)

E.(Z) =
2

Z /dr, dr, dr~
e

i&j ~ij

= —', Z(Z —1) P*
&I

&dr&dr, ~ dr~
~12

(II.16)

u,*(1)u,*(2) u;(1)u, (2)
~12

2

—u,*(1)u,*(2) u, (1)u, (2) dr, dr, ,
~12

(II.16a)

where the sum is permitted to go over i and j inde-
pendently, since the self-energy term with i = j
cancels out. The first term in Eq. (II.16a) gives
Eq. (II.2) (one must deduct the self-energy terms
with i = j if this term is considered alone). The
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X, = -,'Z(Z —1), (II.18)

TxaLz II-2. Coulomb energy differences and second differences
for mirror nuclei. Energies are given in MeV.

Nucleus of larger Z

2He3
3Li5
4Be7

9

11

7N13
O15
F17

11Ne'9
11Na21

Mg23
A,]25

148i27

1 P29

17CP'
,8'»

s(Z)

0.76
0.80
1.64
1.85
2.76
3.00
3.49
3.55
4.04
4.30
4.89
5.03
5.60
5.77
5.70
5.94
6.19

0.76
0.04
0.85
0.21
0.91
0.24
0.48
0.06
0.49
0.27
057
0.16
0.57

+0.16—0.07
+0.24

0.25

Of these

&. =
2 IZ+ 2 [(—1)' —1jI (II19)

represent bonds between "paired" protons (that is,
proton pairs where the spin of the pair couples to

second term is the exchange term which estimates the
reduction of the Coulomb energy due to the ex-
clusion principle. Bethe and Bacher estimate the
Coulomb energy from Eq. (II.16a) using pla, ne waves,
obtaining

E.(Z) = (e'/R) (-', Z —0.460 Z' ') . (II.17)

Further investigations of the exchange term (857,
858, 860), employing more realistic wave functions,
indicate that the Z' ' dependence is approximately
valid, but the constant must be reduced for light
nuclei (858) where a uniform proton distribution is
not a good approximation.

Although Kq. (II.17) exhibits the general trend
of Coulomb energies, shell-model effects appear in
the data which require more detailed calculations for

specific nuclear systems in order to be understood.
An alternation of the second differences in the
Coulomb energy with odd-even Z is a symptom of
the pairing correlation (C54), while the vanishing of
second differences in the Coulomb energy may be
attributed to major shell crossings (K58) (see Table
II-2).

Feenberg and Goertzel (F46) obtained an ex-
pression for the Coulomb energy on the basis of
supermultiplet theory which to a first approximation
explains the odd —even alternation with Z. The total
number of proton bonds is given by

zero). The orbital part of the wave function for the
X„pairs is symmetric, while the remaining X& —X„
bonds are 4 orbitally antisymmetric and ~~ sym-
metric. The Coulomb energy is then written

E.(Z) = (X, —X„)(4 L. + —,
' L,) + N, L,

= X,(-,' I.+ —,
' I,) + X„(~I. ——,

' L.)
= —', Z(Z —1) (—' I.+ —' L,)

+!IZ+ -', I(—1)' —1)I(-:L.——:L.),
(II.20)

where L, is the Coulomb energy of a symmetric bond
and L. the Coulomb energy of an antisymmetric
bond.

For Coulomb energy differences in mirror pairs,
Eq. (II.20) yields

A(Z) = E, (Z) —E.(Z —1) = (Z —1)(-,' I.+ —,' L,)
+ 8 [1+ ( —1) ](L, —L,) (II.20a)

and for second differences

Ad (Z) =—A(Z) —A(Z —1) = (-'L. + —,
' I,)

+ (—1) (-.' L —
4 L.) . (II.20b)

The alternation of second differences in mirror nuclei,
displayed in Table II-2 is then qualitatively ex-
plained by Eq. (II.20b). Quantitative agreement
could not be expected since the parameters I, and
L. certainly must depend upon the specific nucleon
orbitals under consideration. Furthermore, consult-
ing Table II-1, it is seen that shell-model parameters
for a definite orbital within a shell may undergo
considerable variation from one nucleus to another
(it is quite generally assumed that there is no differ-
ence in the parameters of mirror nuclei owing to the
charge independence of nuclear forces).

Carlson and Talmi (C54) have revisited the effect
of the pairing property on nuclear Coulomb energies
employing jj-coupled harmonic oscillator wave func-
tions. The possible effect of the neutrons is suppressed
and they consider only the proton state of lowest
seniority. ' Reasonable agreement with electron scat-
tering data is found in the region 6 ~( Z ~& 15, but
the theory was not satisfactory for nuclei with A.

~( ll. Unna (U58) made a similar calculation using
proper isobaric spin wave functions which include the
effect of the neutrons, but found that this has a
minor inhuence on the results.

8engupta (861) has pointed out that, the pairing
effect in Coulomb energy is significantly different in

5 The seniority quantum number is discussed in detail in
Sec. IV.
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the jj and I8 coupling schemes. After reworking the
problem for selected nuclei in the lp shell (Li', Be',
8", and N") with I S-coupled oscillator wave func-
tions he finds reasonable agreement with the results
of the electron-scattering experiments for all cases
except Be', where the electron scattering data is best
fit with an rms radius of 2.26 )& 10-" cm, while the
Coulomb energy difference for the mirror pair
Be'—B' is best fit with an rms radius of 2.48 )& 10 "
cm.

The discrepancy at A = 9 may be due to the
Thomas —Ehrman (E51, T51) effect. If the separation
energy of the last nucleon is large the use of wave
functions corresponding to an infinite potential well

(such as the harmonic oscillator well) appears justi-
fied. For small separation energy, however, one must
take into account the fact that the potential goes
rapidly to zero beyond the nuclear radius and that
this may strongly infI.uence the wa, ve functions. Con-
sequently, one finds that Coulomb energies are re-
duced when calculated with wave functions for a
finite well (this effect is particularly pronounced in
s states). The separation energy for the last neutron
in Be' is only 1.6 MeV, and the Thomas —Ehrman
effect would appear to be applicable.

Further reduction in the Coulomb energy of
nuclei could be caused by the finite size of the proton.
Dalitz and Downs (D58) have estimated this effect
in He, using the proton distribution in Eq. (II.8) and
a simple 8-state function for He':

P = N exp I
—(r» + r» + r„)/28} . (II.21)

They then obtain for the Coulomb energy the ex-
pression

—I/2

E.(2) = —— 1 + —
s (II.22)

R

leading to a reduction in the Coulomb energy 10/q.
Ohmura and Ohmura (061) have reported that when

a repulsive core is included in the nucleon-nucleon
interaction this effect is substantially reduced. Con-
sequently, the reduction of Coulomb energies due to
the finite size of the proton is probably not too
important beyond the ls shell.

III. THE 1s SHELL

In most attempts to calculate the properties of
nuclear states, a completely rigorous solution of
Eq. (I.l) is not attempted due to the complexity in-
volved in treating a system composed of several
interacting particles. In the first s shell (represented
by the dynamically stable nuclei, &H', 1H', &He', and
sHe'), however, one is dealing with a sufficiently

small number of nucleons so that calculations of
reliable accuracy are attainable.

To accomplish such solutions one must start with
an explicit nucleon —nucleon interaction operator. A
completely acceptable interaction operator is not yet
available, but much is known concerning its probable
character from analysis of the two-body problem.
We shall not review this analysis in detail (cf.
H57b, M61, and G60 for a thorough discussion), but
simply summarize the results in order to obtain a
general form for the interaction:

PO(t j)A(r;, ) + Pi(t j)A(r;, ) + P.(tj)J2(r;, )

+ P (t j)~ (r' ) + I:l (1 —~' ~ )~ (r' )

+ k (3 + ~' ~ )J (r' )jS' + (l (1 —~ '~ )J (r' )

+ ,' (3—+~;.~,)J (r;;)jl;; (&;+ &,) . (III.1)

The P&(t,j) are projection operators:

P, (i,j) = —,', (1 —($,' d, ) (3 + ~,' ~, )
(singlet —even state), (III.la)

P~(»j) = x's (3+ d"d)(1 —&"&)
(triplet —even state), (III.1b)

P, (i,j) = —,', (1 —d; u, )(l —~; ~, )
(singlet, —odd state), (III.lc)

hl;; = (r; —r;) &( (p; —p;) . (III.le)

The radial functions J&(r;,) are generally assumed to
be of the form of a Yukawa, Gaussian, exponential,
square-well, or some similar short-range (~10 "
cm) function. The fit to nucleon —nucleon scattering
at intermediate energy is much improved if the po-
tential becomes strongly repulsive at a distance near
0.4 X 10 "cm, and good fits to the data have been
made assuming a Yukawa radial dependence around
an infinitely repulsive (hard) core of this radius'
(660).

The introduction of a hard core of radius c into the
nucleon —nucleon interaction presents a nontrivial
complication in solving Eq. (I.l) by imposing the

s Recently it has been suggested (861a, C59) that, a velocity
dependent potential which becomes strongly repulsive at,
intermediate energies could Gt the data and replace the "hard
core" hypothesis. Extensive calculations on nuclei in the 1s
shell with such an interaction have not, yet been reported.

Ps(t j) = A (3+ &' & )(3+ d" ~ )
(triplet —odd state), (III.1d)

d is the Pauli spin operator, ~ the isobaric spin
operator, and 1;, is the relative orbital angular
momentum between particles i and j:
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boundary condition

0 =0 when r;, ~&c (III.2)

for any of the r;;.
The noncentral components of the interaction re-

duce the variety of absolute quantum numbers,
complicating the wave functions considerably. In
fact, there are only three good quantum numbers
left:

(1) J, the total angular momentum,
(2) T, the isobaric spin,
(3) 2r, the parity.
If one were dealing only with central forces, the

orbital angular momentum L and spin 8 would also
be good quantum numbers; and, in addition, if one
deals only with signer and Majorana exchange
interactions, the wave function would also be charac-
terized by the partition quantum number [Xj (W59)
for the positions of the particles. '

Although L, 8, and [XI are not good quantum
numbers with realistic nuclear interactions, they are
sometimes useful in the construction of nuclear wave
functions. In the deuteron, for example, one has
J = 1+ and T = 0. The wave function may be
expanded into '81 and 'D1 components, consistent
with the absolute quantum numbers (for a two-body
system [Xj and Ir are redundant). Eliminating the
center-of-mass motion by the transformation

Substitution of Eq. (III.5) into H1II = Ep yields

h du dw 6w
2 0111 g 2 2111 2 2111

O'p QT

+ J1(r) It4'JJ0»1 + W'JJ2111I + J4(r) IV 8&'JJ21u

+ [~SX. —2X. l I+ J.()[—6 y--]
E[t4 JJ0111 + W $2111]

where we have used the relationships

812 $0111 MS f2111

812 $2111 MS $0111 2 $2111

(III.6)

(III.6a)

(III.6b)

du, + JIu+ MS J4w = Eu (III.7a)

dw 6w + J1w + J4(VS u —2w)M dr r

6J6W = EW )

subject to the normalization

(III.7b)

L.v ~ (&1 + d2) JJI sIM (J —L —8 )'gLsIM .

(III.6c)

Utilizing the orthonormality of the i]LsIM, one ob-
tains a pair of coupled differential equations for u
and w:

r = 1'1 —1'2, R = 1'1 + 1'2, (III.3)

LSJ
( QLSIM = ~ CS2'M YLS)fsv') ~

[+(r)/r] JJ0111 + [W (r)/r] JJ2111 (III.5)

7 The partition quantum number I) ] denotes the symmetry
class of the function. If one, for example, considers a function
of three variables, three symmetry classes are possible:

[X] = [8] (one symmetric function):
U([8]) = u(1) u(2) u(8)

[X] = [ill] (one antisymmetric function):
U([111]) = det [u(1) v(2) w(8) I,

and
[X] = [21] (two functions of intermediate symmetry):

U ([21]}= u(1) [u(2) v(8) —u(8) v(2))
U0([21]) = 2v(1) u{2) u(8) —u(1} [u(2) v(8) + u{8) v(2)]

the Hamiltonian becomes

H = —(A'/1IIIr') [r(B /Br')r —L'.,] + V (r) . (III.4)

In the ground state of the deuteron, only triplet —even
forces are effective, so that the interaction operator
becomes

V(r) = J1(r) + J4(r)812+ J0(r)L., (d1 + d2) .

(III.4a)
The wave function may then be expanded in the
form

(u +w)dr = 1. (III.7c)

The effect of the tensor —even potential (J4) is to
couple the '81 and 'D1 states, which nicely explains
the nonvanishing electric-quadrupole moment of the
deuteron (H,41) and makes the introduction of J4
into the interaction operator a necessity. H,arita and
Schwinger (H41) found that with a 'D, admixture of
about 4%, one could obtain the correct magnetic—
dipole moment of H' as well as its quadrupole
moment. More recent calculations on the two-body
system (G60) attempt to fit the rms radius (1.96
&( 10-13 crn after Gnite proton size corrections are
made) of H', now available from electron-scattering
experiments. Such fits appear to require a 'D1 state
admixture of about 7%, leaving a serious discrepancy
in the magnetic dipole moment. The velocity de-
pendent spin-orbit interaction, found to be essential
in interpreting polarization effects in proton —proton
scattering at, 310 MeV, produces a correction to the
magnetic moment which yields a further discrepancy
(F57b, S57a). Most estimates of corrections due to
meson effects (H57b) appear to reduce agreement
with experiment, and it seems that much work must
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still be done before the magnetic moment of H' is
fully understood.

If the radial functions J&(r) are nonsingular, Eqs.
(III.7) may be solved by standard techniques of
numerical integration. For example, one may start
by a,ssuming an eigenvalue E [u(r) must behave

r near the origin, hence, u'(o) is known], a value
for u(o), and then simply use the coupled equations
for u and w to calculate these functions out to their
asymptotic forms. The eigenvalue E which properly
connects the asymptotic solution [where the J&(r)
= 0] to the solution at the origin solves the equations.
If a hard core is present, this procedure is complicated
by the boundary condition in Eq. (III.2). Now one
must also guess a value for u'(c) in performing the
iterative numerical integrations. Such a procedure is
unsatisfactory, due to the fact that a, guess for u'(c)
that is only slightly wrong produces a very poor
asymptotic solution. A revised procedure has been
formulated by Laurikainen and Varho (L59). They
begin by solving the asymptotic equations with an
assumed eigenvalue E [such a solution provides the
slope of u(r) and w(r) where r ))0]. Then u and w

are computed from Eqs. (III.7) back to the point
where they va, nish (say at r = c'). When c' = c the
assumed eigenvalue is the one which solves Eqs.
(III.7).

Thus, computing the properties of the deuteron is
reduced to a straightforward procedure which we
shall now attempt to extend to the triton and the
u particle. The triton quantum numbers (Jvr =

~ +,
T = 1/2) are consistent with L8 states '81/2 Pg/2,
'P, /„and 'D, /„ while those of the n particle (Jm.
= 0+, 7' = 0) are compatible with '8O, 'Po, and
'Bo. The problem is complicated by a substantial
variety of linearly independent states for each I and

8, over which some confusion exists in the literature
(642, 853). A very neat and systematic way to
classify the states of the triton has been devised by
Derrick and Blatt (D58), and we shall reproduce
their argument here.

The key to a systematic formulation of the prob-
lem lies in selecting coordinates which display a
simple behavior under permutation of the three
particles. Derrick and Blatt select the three inter-
particle distances (forming the three sides of a

triangle):

Zl r23 ) $2 rla I Za r12 (III.8)
and the three Euler angles (copy) describing the
orientation of this triangle in space (the three center-
of-mass coordinates are, of course, eliminated).

It remains to select the normal orientation of the

triangle (where n = P = p = 0). Obviously we may
orient the triangle so that it lies in the xy plane in
normal position, but a definition of the direction of
the x and y axes in a manner which is invariant to
the permutation of particles requires more thought.
Two possibilities were seriously considered:

1. Compute the two principal moments of inertia
of the triangle, and let the x axis coincide with the
axis of the larger moment of inertia.

2. The x axis may be chosen as the invariant
"Euler line" within the triangle (this is the line
through the following three points: the center of
gravity, the intersection of normals drawn from the
vertices to the opposite sides, and the intersection
of the normals drawn from the midpoints of the
sides) .

Derrick and Blatt adopt the first of these possibili-
ties, because it makes their final expressions less
complicated. This choice has the disadvantage that
the x and y axes are only defined up to a ~ sign,
and some of the Euler-angle wave functions are
double valued. This turns out to be a problem only
in odd-parity states, however, and it is of no con-
cern in considering the triton.

The orbital parts of the triton wave function are
described by the Euler angles o.Py and are just the
representation coeKcients of the rotation group
(W59, E57a, F59):

D&~ra, (~pv) (III.9)
where L is the orbital angular momentum, ML its z
component in the space-fixed axes, and p its z com-
ponent in the body axes of the triangle. The index p,

labels different functions which cannot be obtained
from each other by rotation of the space axes; con-
sequently, there are 2L + 1 distinct orbital states
corresponding to each value of I.The parity of these
states is ( —1)", and thus in the triton we require
the states where p is even. This leads to orbital
functions:

8 state ([X] = [3]) = V2/4~ (III.10a)

P state (P,] = [111])= (iv 6/4m-)Do~(nPy) (III.10b)

D state ([X] = [3]) = (V'10/4~)D0~(nfl) (III.10c)

D state (P.] = [3]) = —(V5/4~)

X [D' ( Py) + D'-. ( Py)] (III.10d)

D state ([X] = [ill]) = —i(+5/4~)
X [D2M (+p /) D 2Jlf (IXp r)] (III.10e)—

each of which belongs to a definite symmetry class
[x].
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These orbital states must be vector coupled to
spin-isobaric spin functions so that J = L + S is a
good quantum number. An analysis of the spin-
isobaric spin functions for a three-nucleon system is
displayed in Table III-l. %e find that the following

TABLE III-1. Classification of spin-isobaric spin functions for
three nucleons.

Weight (m, m~)q (m,m~)z (m,m~)3 Sv'

1 1 1
2 2 2
1 1 1
2 2 2
1 1 1
2 2 2
1 1 1
2 2 2
1 1 1
2 2 2

1
2
1
2
1
2
1
2
1
2

1
2
1
2
1
2
1
2
1
2

[3]
[21]
[21]

[111]+ [21]
+ [3]

spin states are consistent with T = —,':
1.
2

one symmetr1c func4on)
one antisymmetric function,
one set of two functions with intermediate

symmetry. (III.1 la)

8= -'.2'
one set of two functions of intermediate

symmetry. (III.1 lb)

TABLE III-3. Classification of states for the ~ particle.

Spectroscopic
classification

Permutation symmetry
Internal Spin-orbit Isobaric spin

We see that ten distinct functions exist for the
triton. Hence, a rigorous treatment will involve
solving a set of ten coupled differential equations
(each involving the three variables xi, x2, and xa)
analogous to Eqs. (III.7) for the deuteron. This is too
laborious a task to be practical even for modern
electronic computers, and one must resort to a
variational calculation for the internal wave func-
tions. The spin-isobaric spin sums and the integra-
tions over angles have been done by Derrick (D60,
D60a), and a full calculation using the Brueckner-
Gammel (857) potential has been carried out by
Derrick, Mustard, and Blatt (D61).They find slightly
too much binding energy, and a Coulomb radius
that is much too large; which would appear to in-
validate the Brueckner —Gammel potential. Werntz
(W61) has performed a similar calculation with the
Gartenhaus potential, and found it too weak to bind
the triton at all.

Cohen (C60, C61) has attempted an analogous
program for the 0. particle. Coordinates similar to

TABLE III-2. Classification of states for the triton.

Spectro-
scopic

classifi-

cation

Permutation symmetry
Euler Spin-isobaric
angles spinInternal

One can therefore construct a variety of inde-

pendent spectroscopic states, each to be then com-
bined with some function of the internal coordinates

xl, x2, and x3 in a fashion that makes the final wave
function antisymmetric with respect to the inter-
change of any pair of nucleons. Since internal func-
tions of any symmetry may be constructed, this

'Sp
'Sp
'Sp
3pp
3P
3P
3P
3P
3Pp
3P
3Pp
5D
5D

5D
5Dp
5D

[41
[22]

[1111]
[4]

[22]
[22]
[31]
[31]

[211]
[211]
[1111]

[41
[22]
[22]
[81]

[2111
[1111]

[22]
[22]
[221
[22]
I22]

[1111]
[211]
[»]
[31]
[211]
[22]
[22]
[22]
[4]
[81]
[31]
[22]

[22]
[22]
[221
[221
[22]
[22]
[22]
[22]
[221
[22]
[22]
[22]
[22]
[22]
[22]
[22]
[22]

~S1/2
2S1/2

2'/2
2P1/2
2PI/2
4PI/2
4DI/2
401/2
4DI/2

[3]
[111]
[21]
[~]

[1111
[21]
[21]
t»]
[21]
[21]

[3]
[3]
[3]

[111]
[1111
[111]

[3]
[3]

[111]

[111]
[31

[21]

[111]
[21]
[211
[»]
[21]
[211

r = —,
' (r, + r, —r, —r,),

= (1/~2)(r r )

(III.12a)

(III.12b)

those of Derrick and Blatt may be used (C59a), but
result in an extremely complicated kinetic energy
operator. Consequently, Cohen employs

places no restriction on the spectroscopic states
consistent with the total angular momentum J. A
summary of the states thus obtained is given in

Table III-2.

p2 = (1/V2)(r, —r, ) . (III.12c)

The results of his classification are given in Table
III-3. Since seventeen functions are found one must
once again be satisfied with a variational calculation.
No such calculation has as yet been reported with a
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modern interaction operator, possibly because of the
failure of the Brueckner —Gammel and Gartenhaus
potential to yield the observed properties of the
triton.

If one attempts to extend this type of calculation
to heavier nuclei, clearly the number of coupled
functions will increase rapidly, making such extra-
polations unfeasible. It seems desirable to formulate
a treatment of the problem which generates the
correct linear combination of functions automati-
cally.

8olsterli and Feenberg (B56) have devised a
perturbation procedure, with this aim, which appears
to be fairly accurate. The zero-order Hamiltonian is
taken to be a sum of single-particle harmonic oscilla-
tor Hamiltonians with a uniform displacement in
energy:

IIo ——-', A~ Q (P'; + cI';) + U

(III.13)

The perturbation operator is

W = Q V;, ——', h,co(g; q, —AQ') —U, (III.14)

where Q = A-'Zq; and the depth of U is adjusted
so that Wpp = 0. The center-of-mass term is sub-
tracted out of W so that we will not mix states having
different center-of-mass motion from that of the
zero-order wavefunction. The second-order energy
shift

E E P oe (III.15)

with the aid of the identities

)i, (E—En) d~E —E. p

—) E~ —XII, ,
$n = 8 Pn

may be expressed in the form:

(III 16)

(III.17)

and

Eo = Voo —3Ioo+ (II...)oo (III.18a)

3I = -', hco(g; q', —A Q') . (III.18b)

E —Ec ——— e '(Ve 'V)oodX—XE —),II.
p jV —jap

+ (E —Eo —2hco)
' [(31')oo —(3Ioo)'

—2(3IIV)oo + 231ooVoo], (III.18)

where

The operator e-~~' may be evaluated by

Vs Q Js(r;, ) (III.20)

and we wish to use second-order perturbation theory.
The quadratic terms in V~ appearing in second order
are attractive and if V~ is made sufBciently large,
these terms will dominate the repulsive terms linear
in V~. Obviously, one must exercise great caution in
applying perturbation expansions to strong repulsive
interactions, and if a hard core is present, conven-
tional perturbation theory is invalid.

Conventional perturbation expansions may be
modified in a number of ways to remedy the situa-
tion. ' Instead of the trial wave function used to derive
the Brillouin —Wigner perturbation expansion

Po+ P " "' +, (III.21)

8 Conceivably, a perturbation expansion could converge
slowly even if the zero-order function is a good approximation.

, Such a situation probably obtains in infinite nuclear matter
where a large number of configurations are needed to describe
the physical state In very ligh. t nuclei (A & 16), however, a
perturbation calculation may be expected to be a reasonable
approach to the problem (F58).

9 Levinger et al. (L60) have treated the hard core within the
framework of second-order perturbation theory employing a
pseudopotential.

exp [—p(p'+ q')/f(q) =
2 f(v)

&& exp [—(1/2 g)(II + v —2kq v)jdv, (III.19)

where g = tanh 2p, and A; = sech 2p, . The approxi-
mate eigenvalue E includes the energy associated
with center-of-mass motion in the oscillator well, and
consequently, one adjusts h~ to minimize the in-
ternal energy of the physical system (E ——,shco).

This procedure has the advantage of involving
matrix elements of only the zero-order wave function.
Guided by the shell model, one may hope to be able
to choose a zero-order configuration which yields a
reasonable first approximation to the actual physical
state, and thus the configuration mixing will be
small and a perturbation expansion justified. ' A
simplified form of the interaction operator in Eq.
(III.1) has been fitted to the properties of H', H',
He', and He' (659) and the calculation of third-order
terms for H' indicate that, at least in the ls shell,
extension of the perturbation series beyond second
order is not essential (656, F57, 657).

A major difhculty in applying perturbation theory
to the states of light nuclei appears when a repulsive
core is incorporated into the interaction operator.
Suppose, for example, that we must deal with a short-
range repulsive term of the form
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&& [1 —exp k„'(r —c)] exp a„'r} if r ) c

=0, lf r ~(c
(III.23)

where P, P.', k„, k„', c„, and a„' are variational parame-
ters. It was found necessary to take No ——1 in order
to obtain two figure accuracy in the energy eigen-
value.

iVote added in proof Recently, Bla.tt, Derrick, and
Iyness (B62) have reported an error in the coding
for the triton calculation described in this section
(D61b). The corrected energy eigenvalue for H' is
—5.7 MeV, with Coulomb radius 2.50 && 10-" cm.
Since the calculated eigenvalue no longer lies below

the experimental binding energy, the conclusion that
this work invalidates the Brueckner —Gammel po-
tential is too strong.

IV. SHELL-MODEL CALCULATIONS

The nuclear shell model has achieved wide popu-
larity among nuclear theorists owing to its easily
visualizable character and the success in interpreting
experimental results. The assumption that, to a first
approximation, each nucleon moves in an average
potential independent of the motion of other nucleons
is an attractive one, due to one s familiarity with the
Hartree —Pock theory of atomic structure. As we have

one may begin with the prescription

W'~=
N II~;, (r';) 6+ Z~ E+ . .
N neo @ En

(III.22)
In Eq. (III.22) W' may be any interaction operator
(so long as it will not violate the symmetry and
boundary conditions of the problem); for example,
it may be taken to be the interaction operator of the
problem with troublesome singular parts (such as the
repulsive core) eliminated. Then only linear terms in
the repulsive core appear in the perturbation ex-

pansion, and these may be simplified by introducing
the correlation term S;; which is zero when r;j ~( c
and goes to unity rapidly as r;, —& ~ (C59b).

A. revised form of the trial function in Eq. (III.22)
has been applied to a variety of. problems involving
hard cores, including the deuteron problem with the
Brueckner —Gammel potential (K62). Average energy
denominators were used, and considerable liberty
with the W' was taken in order to simplify the matrix
elements. The trial function was taken to be of the
form

No

4 =- g r"
I X,.[l —exp /c. (r —c)] exp a„r + 8»X„'

pointed out in Sec. I, the a priori reasoning that, made
the independent-particle model reasonable in de-
scribing atomic spectra, is lacking in the nuclear
problem. In the early days of the shell model it was
proposed that the Pauli exclusion principle plays a
vital role in that it prevents a nucleon from being
scattered into nearby orbitals which are occupied by
other nucleons. Only in recent years, however, has
this conjecture been tested by actual calculations on
nuclear systems.

In this section we describe calculations that begin
by postulating the shell model, and within its frame-
work, try to interpret the observed features of nuclei.
Xo attempt will be made to justify the model, other
than by comparing it with experiment.

The single-particle orbitals are specified by

4- - = R. () Z~"'-"I'.(0~)x i .'( ), (1~1)
in addition to an isobaric spin variable.

The radial wave function B.~ is generally taken to
be the solution of the equation

1 d 2 d l(Z+ 1)
2 nl

+ [V.(r) + Vso(r)(d 1) —E„i)R.& ——0. (IV.2)

It is frequently assumed that V, is either a square
well or infinite harmonic oscillator potential, since
solutions for these potentials are readily available in

1. The Single-Particle Model and the
Single-Particle Functions

In the most primitive version of the shell model one
neglects all residual interaction that may exist be-
tween nucleons in their individual orbits. No attempt
is made to introduce correlations between particles
except for the obviously essential points that the
angular momenta must be vector coupled, so that J
is a good quantum number, and the total wave
function must be antisymmetric with respect to the
interchange of any two nucleons. The ground-state
coupling rules for angular momenta are very simple:

1. In even-even nuclei J = 0,
2. In odd A nuclei the total angular momentum

is attributed to the last nucleon added to the shell

(~ =j),
3. The rule becomes somewhat more compli. cated

for odd —odd nuclei where the last proton and the
last neutron must be vector coupled. Nordheim
(N50) has devised the criteria

a. J = j„—j.
~

if j„+j„+l, + l„ is even,

b. J' ) ~j, —j„~ if j„+j„+l„+ /„ is odd.
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a simple form. Both potentials have the desirable
features of being relatively Rat near the center and
rising rapidly near the edge of the nucleus. On the
other hand, each has unrealistic characteristics. The
walls of the oscillator well extend on up to infinity,
so that the asymptotic form of the radial function

exp (—A: r'). Actual nucleon orbitals certainly fall
off exp ( —k r) as r approaches infinity. The eigen-
functions for the square well behave properly at
infinity, but in this case the well's sharp corners are
unrealistic and force up the energy eigenvalue of
orbitals with high n or t, since for these much of the
wave function lies outside the well. By contrast the
harmonic-oscillator orbitals of high n and l are too
tightly bound. We see, therefore, that the oscillator
and square wells each yield a level scheme deviating
from that found in nuclei, but the deviations are in
opposite directions. Consequently, a level scheme
derived by interpolating between the two and then
adding a term in 1 d is found to reproduce the levels
found in nuclei to a reasonable first approximation
(M55, F55).

Several attempts (R56, G55, G56a) have been
made to reproduce the observed nuclear levels with
a more realistic interaction. A square well with a
diffuse boundary, of the form (G55, G56a)

V. = —Vs[1+ exp n(r —a)]
' (IV 4)

have been found to fulfill the purpose fairly well. If
one tries to interpret the spin-orbit interaction as the
Thomas relativistic correction

(V.(2M'c')r] '(dV. /dr)L S, (IV.5)

one finds that this term yields a splitting in the right
direction, but it must be reinforced by about a factor
of 40 to yield the right magnitude. "

In deriving the proton levels, the Coulomb re-
pulsion must be inserted into Eq. (IV.2), and conse-
quently the well depth Vo must be increased to
ensure beta stability. This anomaly leads to a proton
distribution of slightly [the effect is 3% in Au"'

~0 A velocity dependent force of the type L S introduces a
correction to the magnetic dipole moment of odd proton
nuclei owing to the fact that p must be replaced by p —(e/c)A
when the nucleus is in an electromagnetic field. It is dificult
to interpret this correction in a serious manner, due to the
doubt concerning the actual origin of the doublet splitting in
nuclei (see Sec. VI).

~. = —t/"0 if r ~( a

= —Vo exp [(a —r)/8aj if r &~ a (IV.3)
or (R56)

(R56)] smaller dimension than the neutron distribu-
tion. Johnson and Teller (J54) predicted such an
effect; basing their argument on the notion that due
to the Coulomb barrier the classical turning point of
the proton, as it hits the nuclear surface, is actually
inside that of the neutron. Recent experiments
(J57) on the absorption of negative Z mesons by
nuclei indicate that in the surface region where the
nuclear density is less than 10'Pz its normal value, the
density of neutrons is still approximately equal to
the density of protons, casting grave doubt on the
Johnson —Teller effect. A revision of the proton well
which exhibits equal proton and neutron densities at
the nuclear surface has not yet been reported.

The best indication of what the actual average po-
tential seen by a nucleon in a light nucleus is like, has
been made by Brueckner, Lockett, and Rotenberg"
(B61). They find that the V,(r) term in Eq. (IV.2)
must be replaced by a nonlocal interaction:

V, (r)P (r) —+ . V (r,r') P (r') dr', (IV.6)

where V(r, r') is of such complexity that the motiva-
tion in writing Eq. (IV.2) is nearly lost. An encourag-
ing feature of their calculation is that the single-
particle orbitals derived closely resemble harmonic
oscillator eigenfunctions.

This result is in excellent agreement with the
experimental evidence described in Sec. II. The
primary value of Eq. (IV.2) may then be considered
to be that it can provide one with a workable set of
single-particle orbitals. In light nuclei, which concern
us here, the indications that harmonic oscillator
eigenfunctions closely approximate nuclear orbitals
appear to be nearly overwhelming.

The resemblance is a remarkably fortunate one,
in that harmonic-oscillator orbitals possess many
analytic properties which greatly simplify shell-model
calculations. We shall review a few of these properties
here.

The single-particle oscillator Hamiltonian is given
by

H = —(h, '/2m) 7' + —', Icr',

which may be conveniently rewritten as

(IV.7)

~-~-b') = ~-~(&) V~-(~ ~) (IV.S)
II This calculation will be discussed in more detail in Sec. V.

H = -', kco(p' + q'), (IV.7a)

where co' = k/m, q = (Ic/A&a)'~'r = n.'~'r, and p =
—i V, . The eigenfunctions are well known
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where the Yz are the usual spherical harmonics, and
(T52):

(„+2)(, 2™+'(2Z+2n+ 1)1! ' ',
R1r =n 1/2 nt

(—1)"2 n!(nr )
2~ k!(n —k)!(2l + 2k + 1)!!

(IV.8a)

[we use the notation (27 —1)!!= (2l —1) (2Z —8)
3 1], where n is the number of radial nodes ex-

cluding the one at the origin and t is the orbital
angular momentum. The energy eigenvalue is

Eg ——(1l. + -', )fico, (IV.9)

where A = '2n + l. Each A; shell may accommodate

X(A.;) = (A;+ 1)(A.;+ 2) (IV.10)

like nucleons (with spin —,'), so that if one fills all
levels up to some A . then

h.max

QW(A;) = —', (A,„+1)(h,.+ 2)(A,„+3)

(IV.10a)
like nucleons occupy the well.

%hen calculating the expectation value of the
nuclear interaction energy one often encounters
matrix elements of the form

The angular integrations are then easily performed
by standard methods (E57a, C35):

1/2

(Z ~I.~~Z ) = -"'+""'+" C "C""
42-(2Z + 1)

(IV.14)

In nuclear spectroscopy this method is usually not
practical because one works with a variety of po-
tentials for which the coefficients f,(r„r2) are com-
plicated functions. Furthermore, in nuclear problems
noncentral interactions are no longer small and must
be considered, making the Slater method lose much
of its formal simplicity.

Talmi (T52) has developed an alternate procedure
for calculating the F integrals when harmonic
oscillator orbitals are used. The coordinates r1 and r2

are replaced by relative and center-of-mass co-
ordinates:

r = r, —r, r, R = —', (r, + r,),
P = —', (P1 —P.), P = P, + P2 (IV.15)

for which the oscillator Hamiltonian for two particles

H = —(h,'/2m)(V, '+ V,') + -,'k(r', g r', ) (IV.16a)

readily separates into relative and center-of-mass
terms:

P(nIZlmlyn2Z2m21nlllmlyn2Z2m2) ' ')2n1tlml (rl) II = [—(h, '/4m) V'& + kR'] + [—(7i'/m) V', + —,
' 7cr ] .

(IV.16b)

Consequently, the eigenfunctions may always be
expanded into the form

X Pn212m2 (r2) V(~r1 —r2~ )1)2nl 11 m1 (&1)

X p„2 [2 2 (r2)dr1dr, r

R (n1Z, m1,n2Z2m2) = F(n1l1m1, n2l2m2, n, l,m1, n2l2m2),

(IV.I») with the restrictions
and exchange

just as one does in the theory of atomic spectra
(C35). The tWO mOSt impOrtant typeS Of theSe termS anlllml(rl)&p 2l2m2(r2)

are the direct = P c(n, l,m„n2Z2m2, nlm, n'Z'm')q„, (r)q„, (R),
(IV.17)

G(n, l,m1, n2Z2m2) = F(n, l,m, ,n2Z2m2, n2Z2m2, n, l,m1)

(IV.1 lb)

integrals. In atomic physics, these integrals are
generally evaluated by expanding V(~r, —r2~) by the
Slater method

V(r,2) = g f&(r, ,r2)P&(cos t7»), (IV.12)
k=0

where the Legendre polynomial P2 (cos 0») may be
written as

P&(cos t7») = —

k g (—1)'Y2,(1)Y2-, (2) .

(IV.13)

R (nlllml n2Z2m2) = Q 7 (n1Zlml n2Z2m2 nlm)

X ~.*,„(r)V(r)&„, (r)dr, (IV.18)

since the integrations over the center-of-mass func-
tions are simply performed. Several authors (L60a,
E53, T56, F58, B60) have dealt with the problem of
calculating the 7 (Talmi) coeKcients in the litera-
ture. As a result of the Yalmi expansion one eventu-

m1+m, = m+m'
2n, + l, + 2n, + Z2 ——2n + l + 2n' + Z' . (IV.17a)

Then, for example, R(n, l,m1, n2Z2m2) may be written
as
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ally has to deal only with radial integrals remarkably
simple in form

Jsg r'""exp ( r') V—(r)dr . (IV.18a)

Clearly from Eqs. (IV.16) such a reduction is possible
only with oscillator functions.

A further advantage in using oscillator functions
is that only in this case (excluding the trivial example
of free particles) may the center-of-mass motion be
subtracted out in closed form (L58). As we remarked
in Sec. II, the center-of-mass of the nucleus does not
coincide with the center of the shell-model potential
well. Generally one works problems in which the
center of the well is defined to be at rest. Conse-
quently the kinetic energy associated with the motion
of the center of mass is included in the calculation
and must be subtracted out in order that the energy
eigenvalue correspond to the internal energy of the
system.

Bethe and Rose (B37) have proven a useful
theorem" concerning this subtraction for the oscilla-
tor well. Consider a well where all of the levels are
occupied up to some A. = k, the remaining particles
all going into A. = A: + 1 orbitals. The properly
antisymmetrized wave function may be written as a
sum of terms of the form

(IV.19)

where P~+&(r,) is an A X ci determinant the elements
of which are polynomials in the r; (in addition to
spin and isobaric spin variables) of degree no higher
than Ic + 1.The exponential factor may be rewritten,
replacing r; by r; —R (R = A 'Zr, ), as

Pl+i(r' R):Pa+i(r') . (IV.21)

To prove Eq. (IV.21) merely consider an expansion
of PI,+, (r, —R) into powers of 8:

Pg+z (r ' R) = Pyii (r;) + R 'Py(r;)

+ B'P~, (r;) + ~ ~ ~, (IV.22)

P~(r;) =—0 if t ( )'c + 1, (IV.22a)

exp ( —-', a Q r';) = exp [——', n g (r, —8)']
X exp (——', o. A&') . (IV.20)

It is also easily seen that

since P,+, (r;) had columns corresponding to every
linearly independent polynomial of degree less than
the maximum that appeared, (II,

' + 1). Consequently
the center-of-mass oscillation may be described as
being in the 18 state:

= %exp (—-', aAR')

with energy eigenvalue:

(IV.23)

P, = [(ls)'(2s)] '8s, (IV.25a)

6 = [(»)'(j-p)'] '~. (IV 25b)

There appear to be two such states, but both contain
an excitation of the center-of-mass. Diagonalizing
with respect to 8', one obtains

4l = (3/4)' '0 + (1/4)' 'll (IV 26a)

i(' = (I/4)"0 —(3/4)' '~ts (IV 26b)

In Pf the center-of-mass motion is described by Eq.
(IV.23), while Ps represents the original n particle
with the center of mass in the 2s state. Thus i(,' is the
only true excited state of the internal system which
should be considered. Wave functions such as Ps are
known as spurious states, and must generally be
subtracted out before even qualitative agreement
with the experimental spectrum of energy levels can
be attained (V60, B61).

2. Classi6cation of Shell-Model Basis Functions and
the Construction of the Energy Matrices

Although the single-particle model has been
qualitatively fairly successful in interpreting nuclear
moments, beta decay, isomeric transitions, level
schemes, and general treads in the systematics of
stable nuclei, "clearly its assumptions are too naive
to yield a final quantitative picture of nuclear
properties. Refinement of the shell model must take
into explicit account the nucleon —nucleon interaction;
at least among nucleons in the unfilled shells, and
possibly in the closed shells as well. In addition, the

(IV.24)

Obviously, the theorem fails unless all individual
orbitals with energy less than the maximum are
occupied. Thus, center-of-mass eBects cause little
difhculty in constructing ground-state wave func-
tions, but can be very troublesome in considering the
spectrum of excited states. As an example of this,
Elliott and Skyrme (E55) consider the doubly
excited states of He':

~ This theorem apparently was forgotten and later redis-
covered and extended by Elliott and Skyrme (E55), whose
simpli6ed proof is given here.

~3 The extent of this success has been reviewed in considera-
ble detail elsewhere (F55, M55, E57) and will not be repeated
in this paper.
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description of a nuclear state in terms of only one
configuration of single-particle orbitals could not be
strictly realistic, and the eGect of configuration inter-
action should be taken into account.

To carry out these refinements, one must fre-
quently compute matrix elements of the form

(41 Z I" 14'), (IV.27)

where P and P' are combinations of A && A. determi-
nants of single-particle orbitals u:

(&1)
' I«&' "»I . (IV.28)

Such matrix elements may be evaluated by the
Slater method, popular in the early days of atomic
spectra (C35), as we employed it to obtain an ex-
pression for the nuclear Coulomb energy in Eq.
(II.16a). In modern calculations the method of
fractional parentage (684b, R48) generally proves
to be more practical. Consider an antisymmetric
state it

a comprising k nucleons in some subshell whose
orbitals we shall denote by q; . It must always be
possible to expand p' in terms of states it

a-'

&. = Z O'-'(l4 ')(4"-''v I- (IV.29)

where (g ',y; I represents the antisymmetrized
result of vector coupling g.' and q, to the quantum
numbers cx designating the state g, and Q'(lg. ')
are the coeKcients of fractional parentage. Now our
matrix element

Q.'I P V,, ly,") = —; t P~ —I) (4.'I V„I4,') (IV.30)

(4-1 I'»IA) . (IV.82)

may be expressed as

(0-'I Z I'' IA') = a &(& —1)
'&j'

&& Z, (4-'(lk' ') (0"(IW''') (0" 'll' l4''')
a', P

2 Z, (0-"(I&' ')(A'(IIV'')(0" 'I Z I'"lP't'')

(IV.81)

so that the matrix elements in the (p, )' configura-
tions are easily computed if the matrix elements of
the (q; )' ' configuration and the appropria, te co-
eKcients of fractional parentage are known. Thus,
the stage is set to perform a chain calculation for all
con6gurations of the shell starting with the relatively
simple evaluation of the two-particle matrix ele-
ments

Such a chain calculation may be tedious, however,
and can be averted by the further expansion

0- = Z„(4-"(I4"V-") (4-''', 4-'"I-, (IV 33)
a,a

which yields an expression for Q'1+V;;iffy) directly
in terms of two-particle matrix elements

(4-"I Z I'' lkt') = a &(& —1), Z, „(0-(14'-''0'-")
i&j a,a",P, P

& (4( l
O'Va") (4t' "II'»l4'e") (IV.84)

Extensive tables of fractional-parentage coe%cients
have been compiled (J51, E52, E58, F52b, J54a) in
the literature, particularly in the range useful for
calculations on light nuclei.

Matrix elements for the kinetic energy operator
are considerably simpler to compute, being just the
sum of single-particle operators with an appropriate
center-of-mass correction. Thus the energy matrix
for a system of several nucleons may be deduced
without the need of working with, or for that matter
even writing down, the wave functions. It is, how-
ever, necessary to classify the spectroscopic states
allowed in a given configuration.

In the ls shell the simplifying assumptions of the
independent-particl. e model are not essential; and
thus, as we saw in Sec. III, a general classi6cation of
spectroscopic states without recourse to making l a
good quantum number for each nucleon is feasible.
One clearly sees, after noting the variety of states
obtained for the ~ particle, that such rigor is im-
practical for 3 ) 4. Consequently, in the region be-
tween helium and oxygen (4 & A ~( 16) it is com-
mon practice to assume a ground state configuration
which is principally

(18)'(Ip)" ', (IV.85)

with perhaps some configuration interaction treated
as a higher-order correction. The 1p shell represents
the region of the periodic table where the doublet
splitting builds up toward its dominant character in
complex nuclei (I58), and so either L8 or jj basis
functions may be employed in the calculations for
this region.

The earliest detailed analysis of states in the 1p
shell was made by signer, Feenberg, Phillips, and
Bardeen (F87, W87a, F87a, B88a) in terms of L8-
coupled basis functions

P(),) (l", ;L8J3ITTa) (IV.86)

Since Wigner and Majorana forces dominate the
nucleon —nucleon interaction, it is useful to classify
the basis functions in terms of the partition quantum
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number [X], which spread out the irreducible repre-
sentations of the symmetric group (W59, R48, H62).
Small components of Heisenberg and Bartlett forces
in the interaction will tend to mix functions with
different [X], while tensor and spin-orbit forces will

reduce the significance of L and 8 in the nuclear
wave function as well.

The properly antisymmetric L 8-coupled states for
n nucleons in a p shell are displayed in Table IV-1, as

TxsLz IV-1. Classification of states (pl" in LS coupling.

couples the spin and orbital angular momentum of
each particle, splitting the single-particle energy
levels with different j. In this case it is clearly better
to employ jj-coupled basis functions in the calcula-
tions.

As the spin-orbit interaction begins to play a
dominant role, one also detects a tendency for two
like nucleons in the same jt shell to couple their
angular momentum to J = 0. This fact is largely
responsible for the coupling rules

J = 0 for even —even nuclei

n [x] S T I, n P] S T
and

J = j for odds nuclei,
[0]
[1]
[2]

0
1

0,2

13
1,2

0,2,4

2

1)2)3,4
1

5 [41]
[321

0 0

0 1
1 0

[11] 0 0 1
1 1

[21] 1 1
1 3
2 2
3 1
2 2

[111] 2 2 0

[4] 0 0
[31] 0 1

1 0
1 1

[22] 0 0 0,
0 2
2 0
1 1

[211] 0 1 1
1 0
1 1
1 2
2 1

[311] 2
1 3
2 2
3 1
2 2
3 3
2 2

221]
1 3
2 2

2 2
1 5
2 2

2 2
3 3

[42] 0 1
1 0

[411] 0 0
1 1

[33] 0 0
1 1

[321] 0 1
1 0
1~
0 2
2 0
1 2
2 1

[222] 0 1
1 0
1 2
2 1
1 3
8 1

0,2

1,2~, 3)4

1,2

expressed in Sec. IV.1. The significance of this fact
was erst noted by Mayer (M50) . If one approximates
the nuclear interaction by a 6 function"

V,, = —V&&8(r; —r,), (IV.38)

the interaction energy of k identical nucleons in the
nlj shell is then proportional to the radial integral:

I„, = —' R„',(r)r'dr .
Sz

(IV.39)

Mayer (M50, M55) has shown that the ground-state
interaction energy E,(nlj) is given by

E&(nlj) = ——,
' k (2j+ 1)I„& k even

= ——,
' (k —1)(2j+ l)I„& k odd. (IV.40)

Equation (IV.40) was verified by Mayer for j ~( 7/2,
and continues to hold for larger j as well. It appears
as if the nucleons are grouped into pairs with J = 0,
each pair contributing

they were originally obtained by Hund (H37). Work
with L8-coupled basis functions has been extended
by Jahn et al. (J50, J51, J54a) with some application
into the 2s 1d shell, and a classification of states for
the f shell has been made by Flowers (F52).

The 18 classification for nucleons is a straight-
forward extension of the coupling scheme for atoms.
A major difference in the ordering of levels comes
about due to the fact that the nucleon —nucleon inter-
action is dominantly attractive and therefore favors
low-lying states of maximum orbital symmetry,
while in considering the interactions of electrons in
atoms the inverse situation obtains.

Beyond oxygen the observed doublet splitting is
consistently large enough so that the effective single-

body spin-orbit interaction

(IV.37)

(IV.40a)

to the total energy, while an odd nucleon contributes
nothing at all.

Racah (R43) has studied interactions with this
property in I8 coupling. One may define an operator

(IV.41)

with the g;, defined so that

Now consider a state of the configuration t" where the
expectation value of Q does not vanish. Such a state

~4 For a 8-function interaction, Majorana and signer forces
become equivalent, since one obtains a nonvanishing inter-
action energy between a pair of particles only if their wave
function is symmetric with respect to interchange of the labels
of r; and r;.
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corresponds" to a state of the configuration t" ' with
the same 8 and I . If this state also has (Q) W 0 one
may go back to l"-' and so on until finally one reaches
a state t' with {Q) = 0, in which there are no paired
particles. This number s, common to all states of the
sequence described above, is defined as the seniority
of the state. A similar operator for jj coupling is
easily defined:

where

Q= Z~', (IV.42)

«~, (i)f,„(i) = (2j + 1) ' ' C'„",( +,)P;( +,) (i) .

(IV.43)

The uj„are normalized so that Racah's double-barred
matrix element is 8;,':
(j'll«~llj) =— (2j+ I)[(:"'u-'»] '(j'j'I«& '-)

I jj) = ~jj'.

(IV.44)
These operators may be written explicitly as

«o, ——(2j + 1) ' ',
«. = [j(j+ 1)(2j + 1)] ' 'J. , (IV 45b)

(IV.45a)

(g J3f~q;, ~g J3II) = (2j+ 1)6&o, (IV.42a)

and one may proceed through an argument analogous
to that for Q, to define the seniority s of a state in the
configuration j".

Owing to the evidence for a pairing interaction in
nuclei, it is profitable to classify the states of a con-
figuration in terms of the seniority quantum number

s, as well as J and T. The discussion will be facili-
tated by the introduction of Pacah's (R42) unit
tensors «&, (i) defined by their operation on the spin-
orbit part of a single-particle wave function:

4'&=&&(1,2) = (2j + 1) g (—1)' P, (l)P, ,„(2)

= Z ~'-"-- 4-(1)4 --(2) . (IV.48)

The importance of classifying the states of a con-
figuration j" in terms of the symplectic subgroup is
easily seen from Mayer's result on pairing energies.
If the state is denoted by the seniority quantum
number s and further by the reduced isobaric spin t,
which is the isobaric spin of the state of smallest
number of particle having the same transformation
properties as f (the j' configuration) (F52a), then
considerable information concerning the ordering of
levels within a configuration becomes evident before
performing a calculation. It is further common
practice to designate the state by a partition number
(o) = (o&o& o,+&g&), which yields the symplectic

Tsar, x IV-2. Classi6cation of states for n nucleons in j = —,
'

orbitals.

The three-dimensional rotations (to be referred to
as Bs) form a particular subgroup of the unitary
transformations, and classification of the functions
in (IV.47) in terms of the irreducible representations
of It'.3 is equivalent to making the total angular mo-
mentum a good quantum number (W59, H62).
Similarly, classifying the functions in Eq. (IV.47)
according to their symmetry [X], means breaking the
general unitary group U(2j + 1) down into its
irreducible sub groups under permutation of the
particles.

In jj coupling we are further interested in the
symplectic subgroup of transformations, which leave
invariant the antisymmetric bilinear form (H62):

n

U~, ——P «~, (i),
i=1

which generate the basis functions

(IV.46)

«2, Q O'„'„',J„J„', (IV.45c)

and so on. Though explicit formulas for the ul„may
be instructive they are not in practice useful, and
it is best to rely on the defining Eq. (IV.43).

The «~, (i) form a complete set of operators of the
unitary group U(2j + 1), while the P, (i) form the
basis functions. Similarly, one may define operators
for n particles:

[0]
[1]
[2]
[11]

[21]

[111]
[22]

[211]

[1111] 2

(00)
(&0)
(2o)
(00)
(11)
(10)
(»)
(10)
(00)
(&&)
(22)
(»)
(11)
(00)

(o o)
(1',—;)
(2,0)
(o',o)
(2, &)
(1',!)
(3,-')
(1,—,')
(0,0)
(2,&)
(&,0)
(2',0)
(2,'1)
(0,0)

0
3

13
0
2
3
2

1 5 7
2)2)2

3

0
2

2,4
13
2
0

(olios) (s,t) allowed J values

n

II~, ,(') (IV.47)

&5 That is, one can express this state in terms of a state of
the conlguration l" 2, with the same I and S coupled to the
state of P with L = 0 by means of fractional parentage co-
eKcients.

symmetry of the sta, te and is analogous to [X]
= [X X& X&,+&] with pairs of particles that are
vector coupled to zero angular momentum sub-
tracted out. Such a classification of states has been
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made for the configurations j"with j = 8/2, 5/2, and The Casimir operator" (R51) for the unitary group
7/2 by Flowers (F52a) and we display his results in is given by (EM)
Tables IV-2 to IV-4. Fractional-parentage coeKcients

g(U) = Q (2k+ l)Ug Ug (IV.50)
TanLE IV-3. Classification of states for n nucleons in ) = 5/2

orbitals.
which has eigenvalues in the states j" [X]:

[0]
[11
[21
[11]

3 [21]

[211]

[221]

[2111]

[11111]
6 [222]

[2211]

[21111]

[111111]

0 (000)
(100)

0 (200)
(ooo)
(11o)
(1oo)
(210)
(100)
(111)

0 (000)
(110)
(220)

1 (200)
(110)
(2»)

2 (000)
(110)
(1oo)
(210)
(111)
(221)

(100)
(210)
(111)
(100)

0 (200)
(»1)
(222)

1 (000)
(110)2
(220)
(211}

2 (200)
(110)

3 (000)

(0,0)
(1,2)
(2,0)
(0,0)
(2,1)

(3,l)
(1,2)
(3',—:)
(o,o)
(2', 1)
(4,0)
(2,0)
(2,'1)
(4,1)
(o,o)
(2'1)

(3',—;)
(3,—:)
(5,-'. )

(1,—',)
(8'-:.)
(3,-')
(1',-;')
(2,0)
(4,1)
(6,0)
(0,0)
(2,1)2
(4,o)
(4,1)
(2',0)
(2,1)
(0,0)

F (oyosos) (s,t} allowed J values

0
5

1, 8, 5
0
2,4
5

l l l, (l)' —: —" —"
2
3 9
2) 2
0
2,4
0, 2~ 3 4~ 5)62, 8
1) 3) 5
2) 4
1) 2) 3~) 4) 5) 6) 7
0
2, 4
5
2
1 3 5 t'7%2 9 11 13

2) 2) 422 ) 2)

2) 2

1, 3) 5

0
2~, 42
0 2o 3 4& 5
» 2) 3') 4) 5) 6) 7
1, 3) 5
2, 4
0

gX = (jI:))is(U)lj"I:) l)
2j

= ngl lj + 2 Q Q (2k + l)(up(i) uu(j))
i&j k=0

2T(T—+ 1) + —,
' n(4j+ 8 —n),

(IV.51)

and similarly, the Casimir operator for the symplectic
subgroup is (E52)

g(8p) = 2 P (2k + 1)Ui. U~, (IV.M)
odd k

and has eigenvalues

g(-) = 0 X(.)l~(~p)lj W(-»
= ng(1) + 4 Q Q (2k + 1)(u (i) u (j))

i &j odd Jc

= —2t(t + 1) + —,
' s(4j + 8 —s) . (IV.53)

Consequently, the expectation value of Q becomes

(&) = l Igl:) j —ngl:11 —g(~) + ng(1) I (IV 54)

It is now possible to examine the types of inter-
action operators which possess the pairing property
found by Mayer. Racah and Talmi (R52) first in-
vestigated this question, searching for an interaction
whose matrix elements have the form

(~i~s~s~4) (s,t) allowed J values

TanLn IV-4. Classification of states for n like nucleons (7 = n)
for j = —,

' orbitals. »ri Vins'r' = 5„ I s.ri Vis.r' + —,
' n —.E, I .

(IV.55)

[ol
[1l
[11]

3 [111]

[1111]

(0000)
(1000)
(0000)
(1100)
(1000)
(111O)
(0000)
(1100)
(llll)

(0,0)
(1,0)
(o,o)
(2,'1)
(1',—:)
(~,2)
(0,0)
(2,1)
(4,2)

0
7

0
2, 4, 67'
2
3 5 9 ll 15
2) 2) 2) 2 ) 2
0
2, 4, 6
2, 4) 5, 8 V„= gg Vg,ug, (l) ug(2) (IV.56)

where the 'Uk are integrals on the radial wave func-

Such an interaction is diagonal in the seniority
quantum number, with each zero-coupled pair of
nucleons contributing Eo to the interaction energy.
The interaction operator may be expanded in terms
of the unit tensors:

for these configurations have been tabulated by
Edmonds and Flowers (EM).

In terms of Racah's unit tensors, one may write
the seniority operator as

2j

gas = + Q (—1) (2k + 1)up(1) up(2) . (IV.49)

~6 Casimir's operator for a semisimple group of elements
X„ is (R51, H62)

C= gp XpX

where gf' is the metric matrix and C may be shown to com-
mute with every element of the group. The Casimir operator
for 83) for example, is simply the square of the total angular
momentum.
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tions of the nucleons. The interaction operator now
takes the form

Ca, ——[4n./(2II: + 1)]' 'I'g, . (IV.58a)

Only terms with even A; will contribute to the matrix
elements

(IV.59)

due to the selection rule on parity. Consequently if
we consider the interaction

~1 ' d2I (r12) (IV.60)

(which for hke particles represents a mixture of one
part Wigner interaction plus two parts Majorana),
only terms of odd k in Eq. (IV.57) yield a nonvanish-

ing contribution. As we have pointed out previously,
in the limit of 5-function forces there is no distinction
between Wigner and Majorana interactions for like
nucleons and thus 1Il this liIQit the seI1101lty ls
always a good quantum number.

Though this situation is not precisely realized for
nuclear interactions, it is true that one has far weaker
interaction in orbitally antisymmetric states than in
the symmetric states. For this reason the seniority
is almost a good quantum number, and clearly an
examination of nuclear systematics reveals the
existence of the pairing property.

French (F60) has examined the criteria for the
existence of states of good seniority in terms of the
symplectic symmetry of the nuclear wave function,
ending that in addition to being composed of a sum

of scalar products of odd-rank tensors the interaction
may also have an additive multiple of 7.'2, and of
course, a simple additive constant.

(IV.57)

This interaction clearly has the pairing property
expressed in Eq. (IV.55) if the Grat term is diagonal
in the seniority and independent of the total number
of particles. Racah (R43) has shown that these
conditions hold if we are summing only over tensors
of odd rank in Eq. (IV.57).

Now consider a Wigner interaction, which may be
expanded as

V(ri2) = gg V~(r„r,)C~(1) C~(2) ) (IV.58)

where

3. Intermediate Coupling

A rudimentary refinement of the single-particle
model involves a careful investigation of the mode
of coupling between the angular momenta for the
individual orbitals. In the 1p shell for example one
may regard the states of normal parity" as belonging
to the configuration

(18)'(1P)" ', (IV.61)

and for the time being ignore the effect of configura-
tion mixing. It is then possible, after consulting
Tables IV-1 and IV-2, to note which states of this
configuration are consistent with the particular
values of total angular momentum and isobaric spin
associated with a given nuclear level, and then pro-
ceed to try and calculate the physical properties of
this level.

To illustrate the procedure consider the ground
state of Li' which has J = 1+ and T = 0. If 18
coupling is used, one may assume the wave function
to be the linear combination

l~ l2

X I 81 82 8 lpga j j'M)

4 jl j2 ( V.64)

and in both cases we employ the complete set of
states belonging to the conGguration (18)' (1P)'. The
energy separations of the various multiplets of the

~7 Such states are dered as those having a parity equal to
the parity of the orbital in the shell raised to the power of the
number of nucleons in the shell. In the 1p shell these states
have parity {—1)~ 4.

4(li') = a4('8) + l4('P) + W('D ), (IV62)
while if jj basis functions are employed one has

4'(Li ) = OV (p & ) + 5'4'(p / ) + c'4'(p & p & )
(IV.63)

where all states belong to the (18)' (lP)' conGgura-

tion, and the closed 1a shell contributes nothing to
the total angular momentum and the isobaric spin.
If one adopts an explicit interaction operator [of the
form in Eq. (III.l)] it is then possible to set up and
diagonalize the energy matrix; the solution for the
lowest eigenvalue yielding an estimate for the ampli-
tudes a 5 c (or a' b' c').

Evidently, one makes no ultimate physical error
in this case by specializing to either LS or jj basis
function, since one may effect a transformation be-
tween the two schemes employing the well-known
9-j coefGcients (E57a, F59):

/rsvp = g [(2L + 1)(28 + 1) (kg + 1)(F2 + 1)]
jl,j2
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1p shell have been studied in L8 coupling by Feen-
berg and Phillips (F37a) and in jj coupling by Kurath
(K52). If one considers only central interactions, the
energy differences may be expressed in terms of the
direct integral

/11m(rl)/11m (r2) I 12 (r12)/11m(rl)/11m

X (r.)«i«.
and the exchange integral

(IV.65a)

K = ' ' ' /linc (rl)i/11~ (r2) V12 (mls)flite (r2)/11m.

X (ri)dridr2 (IV.65b)

for the 1p shell.
Although the choice between L8 and jj basis

functions may be a matter of pure expediency in
calculations simple enough so that the complete set
of states belonging to a con6.guration may be used,
cases arise where a knowledge of which coupling
scheme better approximates the physical system is
needed. To illustrate this, consider the J = 3+,
T = 0 states of the configuration

(»)'(1p)' (IV.66)

which approximate the ground state of 8".Consult-
ing Table I7-1, we find a total of nine states with the
desired properties:

[X] = [42]: 'Ds (twice), Fs, Gs

P] = [411]:'F.

[)] = [33]: 'Jis

P ] = [321]: 'Ds, 'Ps, 'Ds, (IV.67)

and the problem becomes quite dificult even if we

only choose the functions of maximum orbital sym-
metry ([X] = [42]). On the other hand, if the 1 d

interaction is strong enough so that the p3)2 orbital
lies appreciably lower than the pi/2 orbital and the
level is well approximated by jj coupling, then the
configuration will be

(1 i)'(lp i)' (IV.68)

(which means that we have two holes in the psys

shell). Referring to Table IV-2, we find that such a
state is derived from the single function

X = [2] (~) = (2o) (p i) ' (IV69)

and so the validity of jj coupling would result in a
great simplification of the problem (Z53).

Clearly, jj coupling must be more realistic than
L8 coupling beyond Ca", since it is required to

Txazz EV-5. The separation between J = 2
—and J = —,'—

states for dynamically stable nuclei in the lp shell.

Nucleus E(-,' ) —E(-,' —)—
MeV

Nucleus E(-,' —) —E(-',—)
MeV

L17
Be7
Be9
B9
Bll

0.478
0.431
3.04
2.82
2.14

+11
+13
NI3
N15
015

1.99—3.68—3.51—6.83—6.16

interactions. This enigma led Inglis (I53) to propose
a basic model for performing the intermediate
coupling calculations in which the Hamiltonian is
taken to be a sum of two-body central interactions

~8 Paradoxically the fairly equal level spacing in C 2 looks
like IS coupling, the jj model predicting a large gap above
the ground state followed by relatively closely spaced levels
derived from the configuration (p3/2) p1/2.

reproduce the proper shell closures in heavier nuclei.
The necessity of introducing the 1 d interaction in
order to obtain the magic number X or Z = 28,
originally led to an investigation of the possibility
that the doublet splitting builds up in the 1f shell

(F52), but the jj-coupling approach is also needed to
yield the shell closure at Z or X = 14 and works
reasonably well throughout the 1d 2s shell.

Inglis (153) first observed that a transition from
L8 to jj coupling takes place through the lp shell.
A. ground-state angular momentum of 3+ is favored
for Li' in jj coupling, and the observed value of 1+
indicates that the high orbital symmetry of the '81
state dominates the wave function of this level. The
magnitude of the doublet splitting for the dynami-
cally stable nuclei in the 1p shell is shown in Table
IV-5. The small separation of the doublet states at
3 = 7 substantiates LS coupling near the beginning
of the shell. The splitting is seen to rapidly increase
through the shell, and the inversion in sign of the
doublet in going from A = 11 to A = 13 verifies the
closure of the p3y& subshell at C"."Clearly, however,
the spectrum of excited levels does not conform con-
sistently to either coupling scheme even near the
end of the shell. Furthermore, Lane (L53, L54, L55,
L55a) has demonstrated that the reaction data and
decay widths of nuclei in the 1p shell are consistent
only with intermediate coupling.

In order to investigate the range of validity of
either extreme one must perform calculations in
intermediate coupling employing a complete set of

jj or L8 basis functions. Such calculations are im-
peded by our incomplete understanding of the origin
of the doublet separations in terms of two-body
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and a single particle spin-orbit term:

H = g T, + g [W + 3IPsr(i j ) + Bps(i j)
i i&j

+ HPII(i j )]V(r,;) + a P s; 1; (IV.70)

where P~(i,j) is the Majorana operator which ex-
changes space coordinates, the Bartlett operator
Ps(i,j) exchanges spin coordinates

P-(t,j) = —: (1+ d' d, ),
and the Heisenberg operator is given by

IH IMIB ~

(IV.71)

(IV.72)

The relationship between this way of writing the
central interaction and the one employed in Eq.
(III.1) using projection operators

g [Vopo(i,j) + Vd'i(t', j) + Vspo(i, j)
(IV.73)+ Vapo(i j)jV(r' )

is easily found:

(IV.75)

Once a force mixture is decided upon, the spectrum
of states belonging to a configuration may be de-
duced from three parameters; the direct integral I,
the exchange integral I4, and the strength of the
spin-orbit interaction. In the long-range approxi-
mation, where V(r») may be taken as a constant over
the volume of the nucleus, K = 0 by the ortho-
gonality of the single-particle orbitals. On the other
ha, nd, in the zero-range approximation, where V(r„)
= Vob(r, —r,), one obtains L = 3K. The actual
ratio must lie between the two extremes. Hummel
and Inglis (H51) estimate that L = 6K with oscilla-
tor functions, while Eurath (E56) obtained L
= 6.8K. At any rate, the resulting spectrum is not
critically sensitive to this ratio over the range of its
uncertainty. The ratio e/K may then be used as a

Po = -', (1+PM) (I —Ps)
= —; (1 y p„) ——,

' (P. + P ), (IV.74a)

P, = —,
' (1+P~)(1+ Ps)

= —; (1 + P„) + -', (P, + P„), (IV.74b)

Ps = —,
' (1 —P~)(1 —Ps)

= —,
' (1 —PM) —

4 (Ps —Prr), (IV.74c)

Po ———,
' (1 —PM)(l + Ps)

= —,
' (1 —P~) + —,

' (Ps P~) . (IV.74d)

The parameters are usually normalized so that

parameter which is adjusted to obtain the best agree-
ment with the observed level order.

The contribution of the central interaction is
sensitive to the orbital symmetry of the wave func-
tion, and consequently, if K & e, Ls coupling will
be favored. On the other hand, if a & K, the spin-
orbit interaction will be effective in splitting single-
particle j = l % —, levels, and jj coupling is then pre-
ferred. We must note that the above inequalities
are symbolic and must not be taken literally. The
real point is to find by a detailed calculation which
term is most egec6ve in determining the properties
of the spectrum.

Inglis performed complete intermediate coupling
calculations for two particles (A = 6) and two holes
(A = 14) in the 1p shell. In the more complicated
cases, further removed from a shell closure, he made
an estimate of what the spectrum should look like
by computing the two extremes (LS and jj) and
interpolating between them. The exchange mixture
used was

W=H =0, M =0.8, 8=0.2, (IV.76)

which closely resembles the Rosenfeld (R48a) mix-
ture

8 = —0.13, M = 0.93, II = —0.26, B = 0.46,
(IV.77)

originally designed to produce saturation of nuclear
binding energies as well as the singlet —triplet splitting
observed in the deuteron. In Li' the ground state is
over 90% s8~ for reasonable values of a/K( 2),
indicating that I8 coupling is the more reasonable
extreme toward the beginning of the shell. In N" the
admixtures of '8&, 'P&, and 'D& vary more radically
with the strength of the spin-orbit term, showing a
preference for '81 for small c and crossing over to
about 80% 'D& for a/K~ 4.

Eurath (E56) has extended the intermediate
coupling calculations to nuclei throughout the 1p-
shell. A typical set of parameters fitting the data is
given in Table IV-6. We note the lack of fluctuation
of K with mass number compared with the rapid
increase in a through the shell. The parameters in
Be' are not certain because of the lack of experi-
mental data at the time the calculation was done.
The parameters listed are essentially in agreement
with those of French, Halbert, and Pandya (F55a)
on Be', however, and probably represent the best fit
within the context of the model. "

~ Analysis of the states of Be in terms of the u-particle
model (K60) will be discussed later.
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Reasonable agreement with the observed spectra with
is obtained up to excitation energies of about 6
MeV. For highly excited states, the mixing of higher

Li'~He'+ p, (IV.79b)

He' —+ He' + n . (IV.79c)

L/K K (MeV) a (MeV)

TxsLF EV-6. Summary of intermediate coupling parameters
for the 1p shell.

This new "energy zero" is found to lie 8.011 MeV
above the ground state of Li'. The energy levels used
by Hoper are shown in Table IV-7.

6
7
8
9

10
11
12
18
14

5.8
5.8
5.8
5.8
6.8
6.8
6.8
6.8
5.8

1 0 2
1.2
14 2—1.2—0.9—0.9—0.9—0.9—0.8

—1.6—1.6—2.4—1.8—4.2—5.4
45—4.8
40

TABLE IV-7. Energy levels of Li6 used by Soper (857b).

0 1
0 3
1 0
0 2
1 2
0 1

0
2.189
3.57
4 52
5.31
5.4

—8.011—5.822
4 44
3 49
2\7—2.6

Energy (MeV) measured Energy lMeV) measured
T J from the ground state from "zero"

configurations probably becomes significant. Owing
to the fact that parity is a good quantum number,
the lowest configurations that may interact with Matrix elements for the central interaction in the
(ls)4 (1p)" ' involve excitations of 25~ in the oscilla- states of the configuration (IP) have been comPuted
tor wave functions: by I'eenberg and Philips (F37a).

(IV.78)

T=0'
('SiiVrsi'8, ) = I + 2E

( Dpi Vi2i Dg) = I —K

( P&
i
Vi2

i
I',) = (L —3K) (W —3I —B + H) .

(IV.SOa)

(We note that all of these configurations involve
excitation of the center of mass and therefore contain
spurious states which must be subtracted out of the
final calculations. )

The static electromagnetic moments in the 1p shell
are consistent with the parameters deduced from
spectrum of excited states (K56, K59). An examina-
tion of the radiative transition widths (K57), how-
ever, yield E2 transitions which are generally too
slow (although M'1 transitions are in agreement),
indicating a need for incorporating soine collective
distortion into the wave functions.

Meshkov and I) fford (M56) and Soper (S57b) have
attempted to deduce the force mixture from the
spectrum of Li', and then apply the obtained inter-
action to the states of Li'. To illustrate the general
procedure, we review the details of the calculation
by Soper.

First, the energy pf a protpn and a neutrpn fpr Li'
in the presence of the (ls)' core, but in the absence of
any interaction with each other, is deduced by com-
paring the separation energy for

8" = 0.40, M = 0.33, 8 = 0.17, II = 0.10,
(IV.Sla)

L = —5.45MeV,
c = —1.554 MeV,

K = —1.18 MeV,

(IV.81b)

('S.
~

V,.~'Z.) = (I. y 2Z)(W+ a~ —B —H)

( Ds
I V,s I Ds) = (L —Z) (W + 3f —B —H)

('P&iV»i Pz) = (I —RK)(W —M —B+H),
(IV.SOb)

while matrix elements of c 1.s are given in Table
IV-8. The energy matrices for the states in Table
IV-7 may then be set up, and putting in the experi-
mental values for the energy eigenvalues, solved for
the parameters L, E, a, O', M, 8, and II. Unfortu-
nately, the T = 0, J = 1 state at 5.4 MeV is too
broad to allow a precise determination of the singlet-
odd interaction, which is arbitrarily equated to zero.
The parameters which fit the spectrum are then
found to be

Li' ~ He' + p + n, (IV79a) which, upon comparison with Table IV-6, are seen
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TxnLE IV-8. Matrix elements of a Zl,'s; in the states of the (lp)2 configuration, obtained from Klliott (E58a) by setting his6D'=a.

ISp 3pp 381 3D1 1PI 3P1 3D2 3P2

'8p
3pp
3S1
D1

1p
P1

3D2
3P2
ID
3D3

0—Q2 a
0
0
0
0
0
0
0
0

—Q2 e—a
0
0
0
0
0
0
0
0

0
0
0
0—Q-', a
0
0
0
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0
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to be in excellent agreement with those found by
Eurath (K56). Meshkov and Ufford (M56) deduce
a similar force mixture

W = 3f = 0.40, B = 0.20, H = 0, (IV.8le)

entirely within agreement with that of Soper when
the uncertainty in the singlet —odd interaction is con-
sidered. Both mixtures give satisfactory results when

applied to Li'.
The mixtures given in Eqs. (IV.81) are not at all

similar to the H,osenfeld or Inglis mixtures, but the
calculations do not appear to be sensitive to the
difference. In some measure this may be due to the
near equivalence of Wigner and Majorana terms for
short-range interactions, which was remarked upon
in the preceding section.

More noteworthy is the deviation of the above
interactions from the simple Serber mixture

W = M = 0.5, B = H = 0 . (IV.82)

The relatively large components of Bartlett and
Heisenberg forces in the Soper and Meshkov —Ufford
mixtures are diKcult to reconcile with the results of
low-energy n—p scattering. This discrepancy may
possibly be attributed to the neglect of the tensor
interaction, which in second order provides a sizeable
contribution to the triplet —even interaction but has
little effect on low energy n—p scattering processes
(659). The ratio of triplet —even to singlet —even
interaction is given by

(W+ M+ B —II)/(W+ M —B+H), (IV.83)

so that one may compensate for the neglect of the
second-order effects of the tensor force by reinforcing
the mixture of Bartlett interaction. Lyons (L57) has
shown that the primary effect of tensor forces in Li'
is to produce a splitting similar to that of a single-

body 1 8 term, so that the only additional noticeable
effect in the intermediate coupling calculations will

be the reinforcement of the triplet —even interaction.

The success of the intermediate coupling calcula-
tions in interpreting low-lying states of normal parity
in the 1p shell has led Elliott a,nd Flowers (E55a) and
Pedlieh (R55) to perform similar investigations for
two and three nucleons in the 2s 1d shell. Although
the jj model generally seems to work quite well be-
yond 0", the ground state of F" (as we saw in Sec. I)
is a glaring exception to the usual rules, the last
nucleon clearly appearing to be in the 281/2 orbital
while a 1d5/2 state is definitely predicted. This sug-
gests that the tendency toward maximum orbital
symmetry is still playing a dominant role in deter-
mining the coupling scheme for this nuclide, and an
intermediate coupling calculation is required to clear
the matter up.

The problem is complicated by the fact that one
must deal with two orbitals, the relevant parameters
being deduced from the 0" spectrum. The 8/2+
excited state of 0" lies 5.08 MeV above the 5/2+
ground state. If these states are interpreted as pure
lfs/2 and G5/2 orbitals in addition to a closed (ls)'
(lp)" core, the magnitude of the spin-orbit coupling
parameter is immediately determined to be

c = —(2/5)5. 08 = —2 MeV . (IV.84)

The 1/2+ first excited level of 0" lies at 0.88 MeV,
yielding a separation of the 1d and 28 orbitals in the
absence of a spin-orbit interaction of 1.125 MeV.
One is now faced with the determina, tion of eight
radial integrala rather than the two (I and K) needed
in the p shell. Determination of the integrals directly
from the data is therefore impractical, and one must
proceed to assume logical parameters for the shape
and range of the nuclear interaction as well as the
single-particle orbitals. Elliott and Flowers choose a
Rosenfeld mixture with Yukawa shape

I'(r' ) = ~ (r /r") e p (—r'/r ) (IV 85)

having range rp = 1.37 )& 10 "cm. Harmonic oscilla-
tor orbitals are used with a variety of length parame-
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TxsLz IV-9. Percentage analysis of wave functions for A = 18.

Orbital Symmetry
[2] [11]

jj-Configuration
d5/2 d3/2 (d3/2) (d8/2 Sz/2)

34
79

30
15

TxsLz IV-10. Percentage analysis of wave functions for
2 =19.

Orbital symmetry
[3] 92

[21] 8
[111] 0

jj configuration
(-:)'

(2)'(l)
(-)2(-,')»

(k)(k)(-:)

(2)'

84
16
0

16
47
7
5

19
6

86

0

39
26
10
3

20

0
90
10

0
90
10

62
3

33
2

0
90
10

11
0

these states surely involve excitation of the core. No
excitation of the (1s)' (1p)" core was considered;
however, it is found necessary to invoke some weak
collective effects of the core in order to explain the
E2 transitions for these nuclei. This corresponds to
Eurath's (E57) findings in the lp shell and this point
will be elaborated upon in Sec. VII.

2c Bilaniuk and Hough (B57a) Gnd remarkable agreement
with the calculations, determining some of the ratios of the
mixing coeKciente experimentally from the Orr(d, p)Ors re-
action.

ters, a typical value being 1.64 &( 10 " cm. Com-
paring this value with those displayed for the 1p
shell in Table II-1, we find it to be quite reasonable,
being between the length parameters deduced from
the electron scattering experiments on N" and O".

The results obtained by Elliott and Flowers for
the compositions of the wave functions for A = 18
and A = 19 are shown in Tables IV-9 and IV-10. A
definite tendency toward maximum orbital sym-
metry rather than spin-orbit splitting is indicated,
undoubtedly due in part to the close competition
between 2a&/2 and ld&/2 orbitals. It is found, however,
that a restriction to maximum orbital symmetry
would be much too severe, since the spin-orbit forces
are not properly accounted for unless they are
allowed to mix states of different symmetry. Reason-
able agreement with the experimental spectra is
obtained if V, is chosen to be 40 MeV."

The observation of low-lying excited states with
negative parity in 0",F",and F"is disturbing, since

States of unnatural parity have been investigated
in intermediate coupling by Elliott and Flowers
(E67b) for 0" and N", and by Hallert and French
(H57c) for N". The lowest expected configurations
are

(»)'(Ip)" '(»)
(1 )'(1 )" '(1~),

(IV.86a)

(IV.86b)

with possibly some distortion of the ls shell for N"

(Ia)'(1S)" . (IV.86c)

%e note that since these are not "ground-state"
configurations, spurious states involving the excita-
tion of the center of mass must be deducted from the
spectrum.

Owing to the fact that one must work with 1p, 2s,
and 1d orbitals in these calculations, the technical
diKculties far exceed those encountered in investi-
gating states of normal parity. A nontrivial compli-
cation arises from the fact that the doublet splitting
at the end of the 1p shell is considerably greater than
at the beginning of the 28 1d shell. The p3)2 F91/2

separation estimated from N" is 6.33 MeV, yielding
a spin-orbit strength of

a, ——4.2 MeV, (IV.87a)

while in 0" the ds/& —
d&/& splitting [previously con-

sidered in Eq. (IV.84)] yields

a~ ——2.0 MeV . (IV.87b)

Reasonable agreement with the low-lying states for
A = 16 and A = 15 is found; but several highly
excited states are not predicted at all, indicating the
possible importance of configurations of triple (No~)
excitation. Decay strengths are found to be sensitive
to the ratio a„/ad, causing some discrepancy with
experiment (E59a).

In the N" calculation Halbert and French paid
particular attention to the suggestion of Lane (un-
published) that the 2s or 1d nucleon is very weakly
coupled to the nuclear core. Such weak coupling
results in states of unnatural parity in a nucleus with
mass number 2 + 1 that are expressible simply as
one state of the nucleus A vector coupled to a single
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2s or 1d orbital y.

Pz+( = Igs, &p} ~ (IV.88)

Contrary to this model, they find that the (ls)'
(lp)" core in N" ia not strongly associated with a
particular state of N".

Examples of this weak coupling have been found,
however, in other nuclei. In a B"(d,p)B"experiment
by Bilaniuk and Henael (B58a) a pair of single-
particle s levels were observed at 9.19 and 9.28 MeV.
Bilaniuk and French (B60a) have interpreted these
as 7/2+ and 5/2+ levels involving a 2s&y2 orbital
weakly coupled to the J = 3+ ground state of N"
to give an "a-particle doublet. "Eurath and Lawson
(K61a) have found evidence for such weakly coupled
states in the spectrum of C".

We may conclude from our survey of the inter-
mediate coupling calculations that the Hamiltonian
displayed in Eq. (IV.70) yields remarkably good
agreement with the spectra of nuclei in the range
6 ~& A ~& 19. This is surprising since all of the com-
plex noncentral terms of the "exact" interaction
given in Eq. (III.l) are represented only by the
simple single-body 1 s term. As we saw in Sec. IV.l,
the Thomas term arising from the effective single-
particle potential is too small by about a factor of 40
to yield the observed doublet splittings, and conse-
quently, the 1 s interaction considered here cannot
be more than a caricature of the actual force which
produces these splittings. Balashov (B59) has con-
sidered the effect of using a two-body spin-orbit
force

among the lp nucleons in the Li isotopes [in addition
to an effective single-body interaction that each 1p
nucleon has with the (ls)' core]. Agreement is only
slightly improved and this refinement does not ap-
pear to be an essential one. Feingold (F56) and Lyons
(L57) have performed calculations on the Li isotopes
with the tensor interaction, finding that the resultant
spectra and mixing of states closely resemble those
yielded by the simple 1 8 term. It appears, therefore,
that the salient characteristics of the noncentral
components of the actual nucleon —nucleon interac-
tion may be characterized by the single-body I 8
term used in the intermediate coupling calculations.

A detailed discussion of the origin of the doublet
splitting in nuclei is reserved for Sec. VI.

4. Order of States Within a Con6guration

Once s, particular coupling scheme is decided upon,
one may examine the order of levels for a particular

nucleus in terms of the configurations dictated by the
shell model. The success of this analysis will, in turn,
react on the validity of the chosen mode of coupling
as well as the general assumptions of the shell model.
In this section we shall concentrate on jj coupling,
since the results of the intermediate coupling calcula-
tions indicate that the effective 1 s term is always
strong enough to make a restriction to pure I8
coupling unrealistic.

First, let us consider the ground-state coupling
rules given in Sec. IV.1. For even —even nuclei the
general rule J = 0 is an immediate consequence of
the pairing effect. Each nucleon tends to be paired
with a like nucleon in the same "j" shell to give
J» = 0, and so, quite naturally a J = 0 ground
state is energetically favorable.

The ground-state rule holding for most odd 2
nuclei is equally well explained by this effect. All
nucleons couple in pairs to give zero angular mo-
mentum except for the last nucleon added to the
shell. The total angular momentum is then attributed
to this last nucleon yielding J = j. A substantial
number of exceptions to this rule do, however, exist.
Typical examples in light nuclei were pointed out in
Sec. I, where it was noted that 10Nell an(i 11Na12 both
have J = 3/2 even, though there is no doubt that
the 1d&/2 subshell is being filled. Throughout the
periodic table, cases like this are present, where the
odd group beyond a shell closure consists of three
nucleons and the total angular momentum is j —1
rather than j. Such exceptions may be explained
(B53) in terms of the coupling of the odd group of
particles to a strongly deformed nuclear core (this
point will be elaborated on in Sec. VII).

Guided by the preceding coupling rules, one may
view the ground-state angular momentum of an
odd —odd nucleus to be simply the vector sum of the
angular momenta of the last proton (j„) and the last
neutron (j„) to be added to each shell, and conse-

quently, lying between the limits

(IV.90)

Defining the Nordheim number

X —= j, + j.+ l„+ E. , (IV.91)
one may formulate the coupling rules (N50)

J = ~j, —g„~ if X is even (IV.92a)

J ) ~j„—j.~
if N is odd. (IV.92b)

The shell model offers no interpretation of these rules
unless one introduces the residual interaction be-
tween the proton and neutron into the problem. For
this reason, odd —odd nuclei provide a unique oppor-
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(j„j„J3IIVo+d„d„V jI„j J11I)
= (M.J3EIVo+ V1IM-JM)

—2(2j. +1)(»-+ 1)
t„ E.

j- j.
J 2

X (l„l.J3IIV1Il„l.J3I) (IV.94)

after the d„d„ term is disposed of by transforming to
18 coupling [through Eq. (IV.64), and using the
well-known relationship

dl'd2xsM(112) = 2[8(8 + 1) —2]xsM(112) . (IV.95)

The 6-j symbol is simply related to the Racah func-
tion (E57a)

= (—1) '+"+'W(abed;cf) . (IV.96)

The first term in Eq. (IV.94) yields the characteristic
spectrum of a signer force, and always provides a
J = Ij„—j„I ground state, as long as each of the
Sister integrals of the force are negative. The first
excited state almost always has J = j, + j„. The
second term in Eq. (IV.94) is found to be much
smaller than the first (V1 0.1V,) when doublet
splittings in nuclei with j„orj„=1/2 are examined;
the variation of this term with J is much more pro-
nounced, however, and thus the level order is largely
determined by the square of the 6-j symbol (D60b):

J '
= (1/&) [J(J+ 1) —(2 2 )j- ju 2

X (j. —j„a1)] ifj„=l, a —', , g. = l. w -', ,

(1/e)I:(j. +j.)(j.+j.+ 1) —J(J + 1)]
if j„=l, + —', , j. = l„+ -', ,

(1/e) [(l„+l„)(l„+ l„+ 1) —J(J + 1)]
if j„=l„—-', , j„=l„——,', (IV.97)

tunity to study the residual n—p interaction in the
nucleus. The low-lying excited states of these nuclei

may be regarded as arising from the recoupling of j,
and j, and configuration interaction probably plays
a smaller role in determining the level order here
than in any other nuclear species.

De-Shalit (D53) and Schwartz (S54) originally
attempted to interpret Nordheim's rules in terms of
a residual n—p interaction of the form

V12 = VO (r12) + Vl (r12)dl ' d2 ~ (IV 93)

If one assumes that the low-lying spectra are simply
due to the coupling of the last neutron and the last
proton added to the shell, the matrix elements of
interest are given by

where

~ = (j.+ 1.+ 2)(j. + l. + 2)(j-+ l. + 2)

X (j-+ l-+ 2) (IV.97a,)

Using a 8-function interaction

V„= V,[(l —n) + ad1 d2]8(r, —r2), 0 ~( n ~( 1,
(IV.98)

it was found (D53, S54) that for even 1V (j„=l„~ —',,

j„=1„&-', ), J = Ij„—j„I remains the ground state
as n increases. Furthermore, it is an isolated ground
state, the excited states being clustered at a relatively
high excitation. For odd iV (j„= l, & —,', j„=l. + -', ),
J =

I
j„—j„I is still the ground state for n = 0, but

it rises rapidly with increasing n, and even for small
values of n, J = j„+j„is generally found to be the
ground state. It is not an isolated ground state, how-

ever, as the excited levels are relatively nearby,
explaining the weakness" of Nordheim's rule for
odd E.

A satisfactory interpretation of Nordheim's rules
is thereby obtained in terms of a strongly attractive
signer interaction plus a relatively weak spin-
dependent interaction favoring triplet states. "These
rules are not suKciently reined to be generally
applicable, however, since inherent within them is
the assumption that J simply results from the cou-
pling of a single j„and j„.We have already seen that
exceptions to the rule J = j for odd A nuclei are
present, and consequently, it must not always be
accurate to assume that in each odd group of an
odd —odd nucleus all nucleons but one couple to zero.
In other words the Nordheim rules are applicable
only when each odd group has seniority l.

Brennan and Bernstein (B60b) have formulated a
revised set of coupling rules in terms of the odd group
model. Here one assumes that the p protons in the
j, shell couple to angular momentum J„, and like-
wise, the n neutrons in the j„shell couple to J„.Both
J„and J„are deduced experimentally from the neigh-
boring odd 2 nuclei. It is then found that if

(2j„+ 1 —2p) (2j. + 1 —2n) ) 0, (IV.99)

then one may substitute for Nordheim's rules the
criteria:

J =
I
J„—J

I
if iV is even, (IV.100a)

J = IJ, ~ J.
l

ifXisodd. (IV.100b)

2I Such an interaction characterizes the effect of the tensor
force as well as the central forces. For the 8-function inter-
action in Eq. (IV.98), u is related to the force mixture parame-
ters by n = —2(K + B) = —',(1 —W —M).
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If one has a particle-hole configuration:

(2j„+ 1 —2p) (2j + 1 —2n) ( 0, (IV.101)

there does not appear to be a clear rule concerning
the ground-state spin. " De-Shalit and Walecka
(D60b) have demonstrated that the coupling rules
in Eqs. (IV.100) follow simply from the examination
of a few H,acah coefFicients, as long as the dominant
contribution of the interaction comes from low multi-
poles of a Slater expansion.

The spectrum of excited states in odd —odd nuclei
has been treated in considerable detail by de-Shalit
and Walecka (D61). They Find it useful to write the
interaction in the form

Vw = Q V;;(r;;) (IV.103)

in a state of the configuration j' characterized by the
quantum numbers J,T,s, and t may be expanded into

22 For a particle-hole interaction, the Wigner force becomes
repulsive and the order of levels is inverted. This yields a
clustering of levels near the ground state and makes the formu-
lation of a definite rule quite difFicult.

V12 —VO(rl)r2p cos O12) + 61'62Vl(rlpr2) cos On)

(IV.102)

and then derive an explicit expression for the distri-
bution of the relative angle between two particles.
In addition to the modified Nordheim rules given in
Eqs. (IV.100), it is also possible to show that the
ground-state angular momentum is even or odd ac-
cording to whether the parity of the nucleus is odd
or even.

In deriving the level order of excited states for a
given nucleus, including as many nucleons as possible
in the analysis, is found to be profitable. Certainly
all nucleons in unfilled shells must be included, and
all too often excitation of the core must be considered
as well. Such considerations frequently yield addi-
tional selection rules (for seniority change, etc.), for
electromagnetic transitions (F52a, T60), and signifi-

cant corrections to the static magnetic and quadru-
pole moments (M51, F52e).

The single-particle model cannot be expected to
predict reasonable spectra because it treats all states
within a given configuration as being degenerate. The
first logical step in removing this degeneracy is to
introduce a two-body interaction between nucleons
in unfilled shells. Edmonds and Flowers (EM) have
demonstrated, by group theoretical methods, that
the diagonal matrix elements of a pure signer
interaction

a series of the form

E(q'; JTst) = —; k(k —1)E. y —', [-; k —2T(r + 1)

+ k(j+ 1) —s g(~)l@+ (IV.104)

where g(0) is the eigenvalue of the Casimir operator
introduced in Sec. IV.2:

g(~) = (2j+ 2)s —-,'s(s —1) + —,
' s —2t(t+ 1)

(IV.105)
and Ep, EI ' E I/2 are certain linear combinations
of Slater integrals. For short-range forces, E, and Er
are much larger than the remaining terms of the
series. "If one considers the more general interaction

V = Q [W + MP~(i j ) + BPIr(i,j )
i&j

+ &Ps(i,j)Ã(r' ), (IV.106)

an expression in closed form has not been obtained.
For the special case of 6-function interactions Elliott
and Lane (E57) deduce

E(j";JTst) = (W+ M —II —a)
X [(j+1)k —-', s(2j —s)jEo

+ small terms, (IV.107)

if all nucleons are of the same type (T = k/2,
t = s/2). The difFiculty in deriving a general ex-
pression lies in the fact that it is awkward to work
with Majorana and Bartlett forces in jj coupling
where the space and spin portions of the wave func-
tion are intractably coupled together. For zero-range
forces, however, Majorana forces become equivalent
to Wigner forces and Bartlett forces are equivalent
to Heisenberg forces, nullifying the difhculty.

We see from Eq. (IV.104) that the seniority and
isobaric spin quantum numbers play a dominant
role in determining the order of levels within the
configuration j', the total angular momentum J not
even appearing in lowest order. This result cannot be
taken too literally by itself, however, due to the fact
that it has been derived for the very special condi-
tions of ordinary forces of very short range. In order
to test the implications of this, Edmonds and Flowers
(E52a) have performed numerical calculations for
the energy matrices in conFigurations j"with j = 3/2,
5/2, and 7/2, using both a pure Majorana force and
a H,osenfeld exchange mixture. For configurations
consisting of only one type of particle, they find an
isolated ground state of minimum seniority followed

by clusterings of states with the same 8 and t. For
configurations of both protons and neutrons, levels

23Inthelimitof zerorange, Ep = 1, E~ = 2, and E2 = 1/l5
(E52) in arbitrary units.
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(j'~l gt'Ij"~) = 2k(k —1)(j"Jlt»lj'J) (IV1o9)

This expression can be further simplified by

(j'~lt»l j'J) = g ~(j" ~»~) (j'~»lt»lj'~»)
J'12

(IV.110)

where the sum extends over all values of J12 allowed
in the two-body system and the coeKcients c are
related to the coeKcients of fractional parentage.
Now suppose there are A allowed values of J»,. we
define X independent operators t,';, t;';, . t;", such
that we can express the matrix elements in Eq.
(IV.108) as

(j'J12lI'»lj'A2) = g ~.(j'J12lt12lj'J12) .
n=1

(IV.111)

of high angular momentum and large seniority are
found to occur quite close to the ground state. For
very long ranges, states belonging to the same value
of J become degenerate and the seniority quantum
number loses its significance in determining level
orders. The usefulness of the seniority does clearly
persist, however, out to ranges of physical interest.

Calculations attempting to interpret nuclear spec-
tra directly from a two-body interaction operator are
strongly impeded by our ignorance of the details of
this operator as well as the uncertainty in the parame-
ters of the wave function. Furthermore, there is no
guarantee that the interaction between two free
nucleons is identical with that contributing the
residual interaction in shell-model calculations. In-
deed, it is likely that some part of the "true" two-
body force is "used up" in determining the eGective
single-body potential that a particle sees in the shell
model, while the remaining effects of this force show

up as residual interaction. In order to bypass this
di%culty, one may work through a shell with
fractional-parentage coeKcients as discussed in Sec.
IV.2. The two-body matrix elements

(j'& 2l I"12lj'~12) (IV.108)

may be determined from the spectrum of the two-
body system, and the remaining matrix elements of
configurations j' with k ) 2 then may be computed
from Eq. (IV.84) [alternatively the matrix elements
in Eq. (IV.108) could be determined by a least-
squares fit to yieM optimum agreement with all
nuclei in the shell].

An analogous procedure has been formulated by
Racah (R52a). Consider any two-body operator t;;
In a configuration of A; equivalent nucleons in a state
j, one may write

Since we have X such equations, we can solve for the
X unknowns n2. Combining Eqs. (IV.109), (IV.110),
and (IV.ill) we find

(IV.112)

This relationship provides a greatly simplified
method for working through the states of the con-
figurations j'. The n„may be determined once again
from the two-body system (or to give the best fit
for the subshell). Then, if one has chosen a set of
operators which have simple matrix elements, the
needed energy levels can at once be calculated with-
out the necessity of finding coefFicients of fractional
parentage. An obvious choice for t;', is just the
operator which counts pairs of particles and has
expectation value -', k (k —1). Another choice is
/2j = ~;.~j, yielding

g ~; ~, ~ T(T + 1) ——,
' k, (IV.113)

while a third selection could be either the Casimir
operator, g(o.), or the seniority operator Q.

Unfortunately, there are not always enough opera-
tors available with simple expectation values to
completely characterize the spectrum. It is, however,
always possible to And an expression for the bary-
centric energy

E(j',st) = g& (2J + 1)E(j';JTst)/ g& (2J + 1)

(IV.114)

of a group of levels all having the same (s, t). We erst
note that in the configuration j' only three sets of
(s, t) values are present:

(s,t) = (O,O), (2,0), and (2,1) . (IV.115)

It must then always be possible to write E(j'; st) in
the form

E(j';at) = a+ b[T(T + 1) ——,']
+ c[g(~) —4(j+ 1)], (IV.116)

where c, 6, and c are parameters to be determined
from the known spectrum. It then follows that

E(j';st) = -', k(k —1)ct, + b[T(T + 1) —-', k]

+ c[g( ) —2k(j+ 1)] . (IV.117)
This equation is not entirely satisfactory by itself
since it only indicates the average position of states
comprising a given symplectic multiplet (character-
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TABLE IV-11. Binding energies in the 1ps/2 shell relative to
He4. Parameters: A = —0.788, e = 0.594, b = —5.187,

2(j + l)c = —8.721 (all in MeV).

Nucleus
Binding energy (MeV)

Exp Theoret (T56b)

2Hes
2He4
sLis
sLIs
sLi4
sLi5
sLi6
4Bes
4Be4
4Be5
4Be6
5B5
5B5
5B6
6C4
6C5
6~6

0
0

18
2
3
2
3

0
k

0
0

1)8

0

—0.95
0.98
0.18
2.17

10.95
12.98
16.58
9.80

28.19
29.85
86.66
84.70
86.22
47.90
82.02
45.14
68.85

—0.74
8.99
2.90
4.24

18.62
18.56
16.05
11.92
28.12
29.76
86.86
84.80
86.14
47.90
82.18
45.28
68.80

nuclei usually have the only (l, l) state of a con-
figuration as the ground state. For odd —odd nuclei
the ground state is not, generally, an isolated state
in (s, t) and an average over a symplectic multiplet
must be taken.

Talmi and Thieberger (T56a, T56b) have applied

TxsLE IV-12. Binding energies in the 1pl/2 shell relative to
Ci2. Parameters: A. = 5.887, a = 2.912, 5 = —1.085 (all in

MeV).

ized by s and t) It. can, however, be most useful in an
investigation of ground-state binding energies. Even—
even nuclei all have ground-state angular momentum
J = 0, so that (s, t) = (0,0). Furthermore, this is the
only (0,0) state of the configuration. Likewise, odd A

results of applying Eq. (IV.118) to light nuclei are
displayed in Tables IV-11 to IV-16. The Coulomb
contribution to the binding energies for these nuclei
was obtained by analysis of mirror systems and then
substracted out. The agreement with experiment is
found to be excellent in regions where jj coupling is

Nucleus
Binding energy (MeV)

Exp Theoret (T56b)

800
8010
8011
QF8
9F1o

10Neo
10Nelo
10Ne11
10Ne12
loNels

12Mg12
12MglS
12Mg14
Is~l12
lsAlls
1s~lls
1s~l14
14Shs
148i14

0
5
2
5
2
5
2
5

0
5

0
5
2
5

0
5

0
5

0
1,8,5

5
2
5

0

4.14
12.21
16.16
0.59

19.97
15.85
88.05
89.46
50.17
55.86
58.58
70.66
77.99
89.10
72.96
84.09
84.08
97.86
91.75

108.95

4.56
18.65
15.61
0.95

21.62
17.49
88.59
89.86
49.65
52.88
58.08
70.41
77.40
88.90
72.18
88.69
88.44
97.68
91.96

110.47

expected to hold, the rms deviation being less than
1%. In nuclei where I8 coupling is known to be
clearly a better description, agreement is very poor.
Thus, for A = 6 the experimental values cannot be
obtained to within a factor of 2 and these nuclei

Txsz,F IV-18. Binding energies in the 1d5/2 shell relative to
Oi . Parameters: 2 = 4.565, a = 0.802, 5 = 8.205, 2(j + 1)c

= —2.909 (all in MeV).

Nucleus
Binding energy (MeV) TABLE IV-14. Binding energies in the 2si/2 shell relative to

Fxp Theoret(T56b) Siss. Parameters: A = 8.606, o = 1.978, 5 = —0.816 (all in
MeV).

6~V
6Cs
7N6
yN7
yN7
7Ns
806
807
808

4.95
18.12
1.95

10.18
12.49
28.82
6.54

19.79
85.48

5.84
18.04
2.81

10.02
12.19
28.85
6.48

19.81
85.51

Nucleus

14Si15
14Si16
15P14
15P15
15P15
15P16
16S15
16S16

8.47
19.09
2.79

18.28
18.97
26.88
20.16
85.24

8.61
19.08
2.81

18.24
18.87
26.48
20.21
85.22

Binding energy (MeV)
Exp Theoret (T56b)

this method to the calculation of binding energies of
light nuclei. They fit a function of the form

E(j';Tst) = kA + isk(k —l)c+ [T(T —1) —~~ k]b

+ [g(c) —2k(j+ l)]c, (IV.118)

where 2 represents the single-particle energy of a
"j"nucleon in the independent-particle model. The

were, in fact, excluded from the least-squares fit.
Again, at the beginning of the 1d5/2 shell, where, as
we saw in Sec. IV.3, intermediate coupling must be
employed, comparison with experiment is not as good
as it is later in the shell.
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The remarkable agreement obtained in most cases
is strong confirmation that jj coupling applies and
that the quantum numbers T, 8, and t do characterize
the ground states. Furthermore, it would appear that
the central field approximation holds up very well

TABI K IV-15. Binding energies in the 1d&j2 shell relative to
8&2. perzmetere: A = 8.658, c = 0.118, b = —1.815, 2(j + 1)c

= —1.759 (all in MeV).

Nucleus
Binding energy (MeV)

Exp Theoret (T55b)

16S17
16818
16~19
16~20
17Cl16
16C117
17C118
17Cl1.9
17C4o
18Ar17
18Ar18
18Ar1g
18Ar2()
19E18
19@19
19&20
20Calg
2oCa2o

8.65
20.05
27.07
36.97
2.42

13.75
26.46
35.03
45.39
19.69
34.96
43.79
55.54
36.88
48.88
61.96
54.32
70.29

8.66
20.04
27.12
36.93
2.38

13.77
26.29
35.10
45.23
19.58
34.83
43.96
55.82
37.00
48.86
61.85
54.44
70.17

and, in fact, the field parameters remain reasonably
constant throughout a given subshell. In this respect,
nuclear spectroscopy is basically simpler than the
corresponding atomic problem where the Slater
integrals change when electrons are added to the
system. prima (A58) has repeated this analysis in
the 2s1y2 and 1d&y2 shells using fractional-parentage

Nucleus
Binding energy (MeV)

Exp Theoret (T56b)

20Ca21
2oCa22
2oCa23
20Ca24
20Ca25
2oCa26
2oCa27
2oCa2s

8.37
19.85
27.78
38.96
46.38
57.17
63.87
73.77

8.68
21.03
28.84
40.31
47.24
57.84
63.90
73.63

coeKcients, obtaining equally good agreement with
experiment.

YVhen one attempts to do similar calculation for
nuclei in which the last neutron occupies a shell
di6'erent from that of the last proton, a number of
technical difhculties present themselves. The isobaric

Tash, z IV-16. Binding energies of the calcium isotopes relative
to Ca40. Parameters: 2 = 8.681, a = 0.155, 6 = —1.185,

2(j + 1)c = —2.058 (all in MeV).

spin T can no longer be introduced as a good quan-
tum number, and so the sum

(IV.119)

will no longer have meaningful expectation values in
the states under consideration. More parameters are
needed to describe the situation, and to make matters
worse (especially in light nuclei), experimental infor-
mation is scarce. Goldstein and Talmi (G59a) treat
systems with m protons in the j shell and n neutrons
in the (higher) j' shell with an expression of the form

(binding energy of nucleus treated)
—(binding energy of preceding closed shells) (IV.120)

where E(j") is the single-particle energy of the m
protons and is taken from the work of Talmi and
Thieberger (T56b); V(j",j'") is the interaction energy
between the protons and the neutrons; o.;. is the
kinetic energy of a neutron; and V(j'") is the inter-
action energy between the neutrons. The n,' cannot
be taken from reference TG6b, since these were deter-
mined with a closed j shell for the protons, and must
therefore be treated as new parameters. The V(j™)
were taken from reference T56b. The interaction
energy V(j",j™)may be expressed in terms of two-
body matrix elements

V(j',j,J) = V, (IV.121)

using fractional-parentage coeKcients. Application is
made to nuclei with protons in the 2s1y2 sheH and
neutrons in the 1d3/2 shell, and those with protons in
the 1dkt~ shell and neutrons in the 1f~y2 shell. Com-
parison with experiment is on par with that obtained
by Talmi and Thieberger (T56b).

A simple and elegant example of this sort of analy-
sis ha, s been made by Goldstein and Talmi (G56b)
and independently by Pandya (P56). Consider the
low-lying states of »K» and»Cl». In both cases one
has a single neutron in the f, p2 shell, while in»C121
one has a single proton in the ds(2 shell, and in 1gK21 a
single hole in the d3/2 shell. A theorem by Racah
(R43, B59a) states that matrix elements of a tensor
of odd rank are unchanged if one replaces all particles
by holes, while for an even-rank tensor this operation
will involve a sign change. Using an explicit analytic
form for the coeKcients of fractional parentage, a
sum over the parent states of a hole configuration
may be carried out, leaving a sum over particle states:
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and likewise, one has a reciprocal relation

~alii'] = —Z~. (2J +1)~(iii'i'~~)E~.U i''].
(IV.122b)

In a (d3/2)+'f~/2 configuration one expects states with
4, 3, and 2 all having negative parity.

Utilizing Eqs. (IV.122) the energy levels of »Cl» and
»K» may be related to each other in a simple linear
manner to an accuracy of about 3%%u&.

The fact that the isobaric spin cannot be regarded
as a good quantum number in nuclei where different
proton and neutron shells are being filled (which we
previously referred to as a diKculty), can, in special
cases, prove useful. French (F61) illustrates this by
comparing the properties of 17Cl&~ with 17Cl». We have
already pointed out that in»Cl» the low-lying levels
can be attributed to a configuration in which one
has one proton in the 1d3/2 shell and one neutron in
the 1f~/& shell (the isobaric spin is not a good quantum
number). In»C1» one expects a group of excited
levels with one nucleon in each of the orbits 1d3/2 and
lfp/2 but now, due to the removal of the closed
1d3/2 neutron shell, the isobaric spin is again a good
quantum number and each level in &7C117 breaks into
two levels

0'(& = o) = (1/~2)4~(»2) + ~"(21)]
(IV.128a)

P~(T = 1) = (1/v 2)[qg(1,2) —(pg(2, 1)],
(IV.128b)

corresponding to a state in»C1» described simply by
q&(1,2). Consequently, if interaction with the closed
1d3/2 neutron shell is suppressed, a group of the energy
levels in &~C1» may be expressed as a simple linear
combination of the levels in»Cl&~'.

Ez(C4»)=7g [&J',r=o(»Cl») + Ez, r-7(77Cl&7)] .

(IV.124)

Unfortunately, the needed levels in»Cl» have not
yet been observed, so that Eq. (IV.124) is still
experimentally unverified.

It is more diKcult to examine levels arising from
excited configurations due to the spurious states in-

volving center-of-mass motion and the increasing
number of parameters. Unna and Talmi (U58a, T60)
have performed a detailed analysis of levels in the
1pI/2 region which appear to come from the promotion
of one or more p nucleons to the 2s 1d shell. It is fre-
quently found that excited states of unnatural parity
in the 1p shell may be attributed to the promotion
of a 1p nucleon to the 2s1/2 orbital; in fact, it appears
that the 2s1/2 state lies significantly lower than the

ld&/& state in this region. Therefore, in a first analysis,
only excitations to the 2sI/& state were examined. We
shall discuss only three of the examples treated; the
0+ state of 0"at 6.06 MeV, and the low —,'- —levels of
0" and F"

The first excited state of 0"has long been a prob-
lem to nuclear theorists. When two 1p1/2 nucleons are
promoted to 287/2 orbitals, Unna and Talmi find two
0+ excited states lying 13.81 and 16.91 MeV above
the ground state. In order to obtain a 0+ state near
the observed 6.06 MeV excitation, they found it
necessary to excite four 1p1/2 nucleons to the 2s&/2

orbit (obtaining an excitation energy of 6.90 MeV).
The reason for this follows from the fact that, using
their parameters, the attraction between a pair of
p&/2 nucleons and a pair of nucleons in the next shell
is much smaller than the attraction of two pairs in
the same orbit. The —,

' —level in 0" is similarly
interpreted as a (lp~/2) (2s7/s)' configuration; while in
F" the —,

' —state may be explained by raising a single

1p&/& nucleon to the 2s1/2 orbit so that the configura-
tion consists of a 1p1/2 hole.

The calculations reviewed in this section present a
picture of nuclear structure which is startling in its
simplicity. In many regions it appears that the
nuclear wave function is well represented by jj-
coupled single-particle orbitals for which J, F, 8, and
t are good quantum numbers. In addition, no varia-
tion of the radial part of these functions within a
subshell is required. Thieberger (T59) has investi-
gated the nature of the two-body interaction that
will produce the matrix elements derived in this work.
When a hard repulsive core is included in the inter-
action, it is found that the best force mixture is not
far from the Serber type. Furthermore, three-body
correlations may be included that yield improved
agreement with experiment.

Perhaps the most surprising feature of these
calculations is the fact that one need not introduce
any configuration interaction to obtain good agree-
ment for binding energies. Upon retrospect, however,
one sees that this only means that the two-body
matrix elements are always effected by configuration
interaction in the same way, that is, independent of
the number of nucleons in the shell. The most rigor-
ous test, of the derived wave functions is not through
their energy eigenvalue, but in examining the expec-
tation values for other nuclear properties such as the
static electromagnetic moments and transition rates.
Here the individual particle model, in which all
nucleons are taken into account, generally provides
a better description of the observed system than the
single particle model. Nevertheless, signi6cant dis-
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crepancies still persist, and one must proceed to take
configuration interaction into account.

5. Configuration interaction

So far we have studied shell-model calculations
involving pure configurations:

II' (j')'". (IV.125)

The notion that the true wave function can be
reasonably well represented by a single configuration
is of course the foundation of the independent parti-
cle model. Indeed, we have seen that this assumption
must contain a considerable amount of truth since
it permits one to interpret a great many features of
nuclear spectra.

An exact description of a nuclear level may be
obtained in terms of a linear superposition of all
possible configurations:

p = p I ll; (j;) '] + g a.y. I JJ; (j;)"'], (IV.126)

where P,n; = g;k; = A, and n symbolically stands
for the set of integers n;. The fact that a consistent
picture of nuclear level orders may be obtained with
only the leading term qo of this expansion, could
indicate that the Ia.I' are, in fact, all much less than
one. Such an inference may, however, not be entirely
correct. The only conclusion that can definitely be
drawn is that configuration interaction does not play
a vital role in determining level orders. This may be
due to the fact that each level is eGected in approxi-
mately the same way by configuration mixing, and
then this mixing need not be small.

A more crucial test of the importance of mixed
configurations lies in an examination of nuclear
properties other than the energy. In calculations of
binding energies, the variational stability of the wave
function is on the side of the theorist, and it is well
known that an acceptable energy eigenvalue may be
obtained from a fairly poor wave function.

The static electromagnetic moments provide a
useful criterion for the validity of the wave function.
If we consider an odd A nucleus with Xs (odd)
nucleons in one group and iV, (even) nucleons in the
other group (all filling the j shell), the magnetic
moment is given by (T60, B56a)

p, = Pp, + (1 —P)po (IV.127)

if s = 1 and T = IX, —XsI/s. p, is the Schmidt
moment of a nucleon in the even group, po is the
Schmidt moment of a nucleon in the odd group, and

TABLE IV-17. Magnetic moments in the individual particle
model (F52e).

Ele-
ment Z N

Con6gu-
ration T jj,s @exp

4 (ps/s)' 2
&e 4 5 (p3/2) 3

(p&~&) (p&~s ) 2
C 6 7 P1/2
N 7 8 (p&ys)-'
0 8 9 d/
F 9 10 (sy/s)s
Mg 12 18 (ds(s) s

Cl 17 18 (ds/s)s
Cl 17 20 (dsis)

3.79—1.91
3.79
0.64—0.26—1.91
2.79—1.91
0.13
0.13

3.04—1.16
3.04
0.64—0.26—1.91
2.79—0.64
0.26
0.13

3.26—1.18
2.69
0.70—0.28—1.89
2.63—0.96
0.82
0.68

(F52e). We see that, in general, taking all particles
into account improves the theoretical estimate, and
in no case yields a poorer value than the single-
particle moment. Discrepancies still persist, however,
so that one must seek to improve the wave functions
further. "The need for introducing mixed configura-
tions is also clearly seen in the analysis of stripping
reactions (M60), internal conversion coefficients
(E59b), and electromagnetic transitions (G59a).

Transition probabilities (both for p and y decay)
furnished early indications of the importance of con-
figuration mixing (D53a). In many nuclei one ob-
serves transitions which are forbidden if the shell
model assignments are taken literally, while in other
cases, experimental half-lives are orders of magnitude
greater than shell-model predictions. A famous illus-
tration of this is the beta decay of C":

sCs~rNr + p (IV.128)
The half-life for this transition is extraordinarily long
with log ft = 9.03. The decay is expected to be
superallowed (Js- = 0+ in C", and Js- = 1+ in
N") with log ft 5. The only interpretation of this
reduction in the transition probability is that some-
how cancellation occurs in the nuclear matrix ele-
ment. If one adheres to the shell-model configuration
atA =14

(1 )'(Ip)" (IV.129)

P = I:(2j + 1) —& jl (27 + 2) (2T + 2) if &. & % .

(IV.127b)

Magnetic moments for light nuclei are displayed in
Table IV-17. Schmidt moments (p,) and experi-
mental values are compared with the moment ob-
tained on the basis of the individual particle model
where all nucleons in the j shell are taken into account

P = X,/(2j + 2) (2T + 2) if'() &X,
(IV.127a)

24 Several possibilities exist for correcting the magnetic
moments other than improving the nuclear wave functions
(856a). None of these show promise of resolving the problem,
however, and we shall not consider them here.
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the wave functions for C" and N" may be written
as the linear combinations

812 ~1'~12~2'~12 3 ~1'~21 (IV.182)

in mixing the states of the shell-model configuration
(E56).Visscher and Ferrell (V55) have demonstrated
that the strength of the tensor interaction may be
determined to produce the desired cancellation. The
tensor-force matrix element that is operative in pro-
ducing the reduction in the beta-decay transition
rate may be expressed as the difference between two
radial integrals. If the tensor interaction is assumed
to have a Yukawa radial dependence, the difference
between these two integrals is rather small and one
must assume a depth for the interaction so large that
one no longer obtains agreement in the ordering of
the states of the spectrum. On the other hand, if one
uses a field-theoretic dependen. ce for the shape of the
tensor interaction

e
' '[c/r + 8 (a/r)' + 8 (a/r)'], (IV.188)

the required cancellation may be obtained without
other complications. Since the radial shape of the
tensor interaction is not certain, interpretation of the
large ft value in C" in terms of the cancellation re-
quired in Eq. (IV.181) is in considerable doubt.

Baranger and Meshkov (B58b) have proposed a
solution to the problem that appears to have more
experimental justification. An analysis of C" (d, t) C"
reactions indicate considerable configuration mixing
in the C" ground state. The wave functions for C"
and N" are then assumed to be of the form

Amplitude coefIicients consistent with the long
P-decay half-life are in agreement with the reaction

gr=o(7Nv) = aq ( 8,) + bq ( P, ) + cq ( D, ) (IV.180a)

Jr=I(6C8) = 6 p( 8o) + 5'y( Po) ~ (IV.180b)

Now the Gamow —Teller matrix element can be
written symbolically in the form (F55):

(&"ITIC") = ~~'('~ I&i'~ ) + ~~'('P I&I'P )

(IV.181)

which could be made to vanish for a proper choice of
the amplitude factors. An intermediate coupling
calculation cannot produce the required cancellation,
but it is possible to obtain the required relationship
between the amplitudes if one considers the effect
of the tensor operator

data, although large uncertainty exists in their exact
value. Probably the proper resolution of this prob-
lem requires both configuration mixing and the tensor
interaction.

It is reasonable to expect that configuration mixing
will become more prominent in highly excited levels.
The ground state should be well represented by a
single configuration, if such an assumption is to hold
at all. Thus it seems that a systematic investigation
of configuration interaction should begin with calcu-
lations on ground-state wave functions with the pur-
pose of improving the comparison with static electro-
magnetic moments. Another advantage in this pro-
cedure is that these moments involve the expectation
value of a sum of single-particle operators

Mi„= +5K),„(i) .
i=1

(IV.185)

(»~i2)'(I ps~2)'(Ip»2)'(Id«. )"(2s~~2) . (IV 187)

It is tempting to consider the 1d&/2 shell and all shells
below it as an undistorted core, but this is clearly
unrealistic. The 281/'2 nucleon will only mix with
higher s orbitals, which amounts to no more than
improving the radial wave function. That some dis-
tortion of the core is required. , clearly follows from
the fact that the magnetic moment of 148i» is far

If the mixing coefEcients a. in Eq. (IV.126) are small
enough so that, to a first approximation, one need
consider only corrections linear in a., the expectation
value of Mi„becomes

(Mg„) = (0[M),„)0)+ 2 Q a.(0)Mi„~n), (IV.186)
@80

where we have used the fact that M~„ is Hermitian.
The simplification comes from the fact that since
M ~„ is the sum of single-particle operators, the states
~n& which make a nonvanishing contribution may
involve configurations different from IO& by& at
most, one nucleon orbital.

%e consider then, first of all, configurations in
which one nucleon from the shell-model ground-state
configuration is promoted from an orbital (jt) to a
higher orbital (j't'). It is always prudent to consider a
closed core of nucleons whose configuration remains
fixed because of its great stability. Certainly this
cannot be too far from the case if the core is doubly
magic. In most cases it is practical to only consider
configuration mixing for the nucleons in the last un-
filled subshells, but unfortunately this may not,
always be the case. To illustrate this, let us examine
the situation for 148i15. The shell-model configuration
for the ground state is
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from the Schmidt line (see Table I-4). One must
therefore mix in components of

(18,/, ) (1@8/.) (1p, /2) (1d./. ) (2s~/2)(lda/2), (IV.138a)

(ls, /, ) '(1p3/2) (1p, /, ) (1d, /, ) '(2sg/g)', (IV.138b)

and perhaps, even higher configurations.
One might suspect that the configuration in

(IV.138a) is particularly important because of the
strong radial overlap between ld5/2 and 1d3/2 orbitals.
Because of such overlap considerations, it is never
really safe to neglect distortion of a core unless it is
a closed t shell as well as being a closed j shell in
spite of the large separation between j = l + i2and
j' = t ——,

' orbitals due to spin-orbit interaction.
Only three such doubly magic cores exist beyond the
n particle (s08 20Ca20 and g2Pbj26); and even for the
u-particle configuration mixing is suspected to be

The mixing of j = l + -', and j' = l ——,
' orbitals

will be the most significant in connection with the
magnetic —dipole-moment corrections; as well as being
anticipated as the most prominent due to overlap of
the radial functions. This is easily seen from an
examination of the magnetic-moment operator

p., = Q; (g',s; + g',1;), (IV.139)

which is obviously diagonal in the single-particle
l values. Contributions to

(ti.,&
= &ol&.,lo& + 2 g a.&ol~"l~& (».14o)

n/p

will come from states ln), where only one nucleon
orbital differs from the configuration for the state
lO), and this orbital must have the same l value as
the original one.

Blin-Stoyle and Perks (B53a, B54) have investi-
gated corrections of this type and found that they
generally lead to displacements from the Schmidt
moments toward the experimental values. In par-
ticular, it was shown that the magnetic moments of
p1/2 nuclei should not deviate significantly from the
Schmidt values, wherea, s a considerable correction is
expected for s1/2 nuclei. This corresponds rather mell

to the observed situation and lends considerable
weight to the theory.

More extensive calculations throughout the peri-
odic table have been made by Noya, Arima, and
Horie (N59a, H55, A54). Using a two-body inter-
action of the form

Vim ——(Vo + Vi(4 ~ «2)8(r„), (IV.141)

configuration mixing was computed by second-order

perturbation theory. A summary of the results for
light nuclei is given in Table IV-18. The consistent
improvement over the single-particle moments and
the results for the individual-particle model (Table
IV-17), verifies the necessity of introducing con-
figuration interaction into the wave functions.

TA.BLK IV-18. Magnetic moments by con6guration mixing.

Nucleus Jm-

Proton
con6gu-
ratIon

Neutron
configu- Schmidt
ration value

P the or.
(N59a) @exp

9F10
15P16
14S115
17Cl18
1 7C120
19+20
19K22
16817
16S19
13A114
809

12Mg13

281/2
281/2

~ ~

1d3/2
1d3/2

(1«8/2)3
(1«3/g)~

(&4/2)'

(1«~/2)4

()«s/2)'
~ ~ ~

2S1/2
(&«3/2)'

()f»2)'
1d3/2

(1«3/2)'
(&4/~)'

1d5/2
(1«g/2)'

2.79
2.79—1.91
0.12
0.12
0.12
0.12
1.15
1.15
4.79—1.91—1.91

2.73
1.69—0.93
0.63
0.59
0.12
0.14
0.65
1.03
3.39—1.91—0.76

2.63
1.13—0.56
0.82
0.68
0.39
0.21
0.63
1.00
3.64—1.89—0.96

il&l2LS J3II& = lLSJ&,
and introducing the zero-order solutions

(IV.143a)

(IV.143b)

IIolj j2&& = ~~(j j~)l~,~.J&, (IV.148c)

Qn the other hand, configuration interaction does
not yield as consistent a picture of the electric
quadrupole moments (B59b). This is, perhaps, to be
expected, since the quadrupole-moment operator
connects single-particle states differing by as many
as two units of orbital angular momentum. The col-
lective model, which takes into account large dis-
tortions of the core, is needed here.

The calcium isotopes provide excellent objects for
more extensive calculations. The 20Ca20 core fulfills
the requirement of being a closed l shell as well as a
closed j shell, and jj coupling appears to be valid in
this general region (at least for ground states).
Levinson and Ford (L55b, F55b, L55c), and Mitler
(Mola) have formulated a, procedure for deriving the
properties of 20Ca» from the single-particle spectrum
of 20Ca21 and two-body matrix elements determined
from 20Ca22.

Consider first the following treatment for two
interacting particles in a central field (L55b). We
write the Schrodinger equation in the form

' —&)l4& = Vlk&, (IV142)
where II0 is the Hamiltonian for the central field due
to the core and V represents the two-body interac-
tion. Abbreviating the L 8 and jj representations by
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—5(l(, l, )b(l,', l, ) (l,'l,'LSJ~Q) = 0 . (IV.145)

The determinant of the coeKcients inside the bracket
is then equated to zero and solved for the sz(ji j2). We
note that the matrix elements of the two-body inter-
action appear in the LS representation where they
are relatively easy to calculate. Fractional parentage
coefFicients are employed for extrapolations to sys-
tems of more than two nucleons. A Serber exchange
mixture was assumed, and since the systems ex-
arnined contained only neutrons beyond the closed
shells, one deals with a pure singlet interaction.

It was further assumed that the radial parts of the
1f and 1g orbitals overlap 100%%uo, whereas the lf and
2p orbitals do not overlap at all (excluding 2p orbitals
from the analysis). Only four level positions in 20Ca»
were used for the analysis (0+, 2+, 4+, and 6+),
and so in order to find the nine Slater integrals F'(A:
= 0, 1, 8), Levinson and Ford assumed that these
integrals varied smoothly with k and expressed F',
F' F' F' and F'in terms of F0 F' F' and F' The
level positions and the ground state magnetic mo-
ment of 20Ga23 were then deduced to within 1% of the
experimental values. Amplitude coeKcients for the
mixed configurations in 2&Ca» and 20Ca» are displayed
in Tables IV-19 and IV-20.

Tash, K IV-19. Con6guration mixing in Ca42 based on semi-
emperical analysis.

f7/2 f7/2, f5/2 f5/2
2

g9/2
2

g7/2

Eq. (IV.142) can be written in the jj representation
as

g~P)
(2 2'~I ~IS) (IV,& —"(ii )

With the aid of the unitary transformation coef-
ficients between the jj and LS schemes, Eq. (IV.144)
may be written as

(l l LSJIV(l'l'LSJ) g l(~ ~ LS~ll, l,&&"J)l
I I E —.(~:~")

could be neglected, Mitler deduces a necessity for
invoking a particle-to-surface coupling in order to
account for the observed electromagnetic transitions.
In addition, the pure singlet —even force is found to
be inadequate in accounting for the levels of 20Ca23,
and a weak repulsive triplet —odd interaction as well
as a strong tensor component must be included.

Tear, x IV-20. Magnetic moment contributions from admixed
states of Ca4~ (p.„, = —1.315).

Admixed state

(-.')' (~l 2(-)' H1
-'

{l)'5l &

(-')' I.0j -'

(-')'
Center-of-mass motion

Amplitude

—0.025—0.081—0.108—0.209
0.961

Total

0.033
0.211
0.271—0.117—1.764
0.061—1.305

Mitler obtains a magnetic moment for Ca" of
—1.825 nuclear magnetons. Arima and Boric's
perturbation procedure would give —1.829 nuclear
magnetons, which emphasizes the power of their
simpler method. It is interesting that Ford and
Levinson obtained such close agreement with an
inappropriate interaction operator and an incorrect
wave function. This work shows the importance of
including as many con6.gurations as possible in shell-
model calculations, rather than merely trying to guess
at which configurations are most important.

Pote added in proof. Dawson, Talmi, and Walecka
(D62a) have investigated the two-neutron spectrum
in 0", generating higher configurations through the
Bethe —Goldstone equation and employing the Brueck-
ner —Gammel two-body interaction. The positions for
the first five levels is closely reproduced, and the
mixing coe%cients compare favorably with those ob-
tained by Elliott and Flowers (see Sec. IV.3). This
calculation strengthens the argument that the residual
interaction to be used in shell-model calculations
closely resembles the interaction between two free
nucleons.

0.87
0.948 —0.212
0.915 —0.369
0.794 —0.610

0.34
0.238
0.170

—0.31
0
0
0

—0.15
0
0
0

V. ABSOLUTE CALCULATIONS

We now turn our attention to the general solution
of Schrodinger's equation

I

Mitler (M61a) has reworked this problem, com-
puting the Slater integrals with oscillator functions.
He found the results of I evinson and Ford to be in
error principally through their neglect of the inhu-
ence of the 2p orbitals. Where previously it was con-
cluded that collective eGects were so weak that they

for a nucleus composed of an arbitrary number of
nucleons. These solutions play a vital role in checking
our knowledge of the interaction operator V;;, since
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the two-body problem does not provide enough infor-
mation to determine the force accurately. In addition,
such calculations should resolve any doubts con-
cerning the validity of nuclear models. The calcula-
tions reviewed in the preceding section clearly
indicate that the shell model, with all of its refine-
ments, leads to a reasonable interpretation of many
nuclear properties. The basic problem of just how
literally one may take the shell-model assumptions is
still, however, unanswered. To make the question
clearer, we deGne the overlap integral between a
model wave function P~ and the exact solution of
Eq. (V.l):

IM = . gA'~& &, (V.2)

the value of which provides a precise criterion for the
validity of the model.

Early attempts to perform absolute calculations on
the nuclear binding energies involved a Hartree —Fock
type of solution, in which one assumes a variational
trial function in the form of a determinant of single-
particle orbitals

(gl) ~Qx'u2. ~ .8„( . (V.3)

Z p' —
~ Z»' + Z V(r')

The guiding philosophy behind this selection is based
on the early success of the independent-particle
model. These calculations were far from successful,
however, yielding far too small binding near the
observed nuclear densities (B36a, F37) if they at-
tained binding at all.

This failure to produce reasonable binding energies
was largely responsible for the unpopularity of the
independent-particle model during the early 1940's.
Explanations of the failure were not lacking (F87).
The correlation energy due to "clustering" of groups
of nucleons had been neglected. The binding energy
of a nucleon in the n particle is about 7 MeV. If the
binding energy of a nucleon is found to be signifi-
cantly lower than this, then o.-particle clusters must
become important in producing the proper energy.
A possible remedy, without discarding the independ-
ent-particle model, is to take correlations into ac-
count by perturbation theory. To this purpose, Eq.
(V.l) may be rewritten as

is then treated as a perturbation. First-order pertur-
bation theory is formally identical with the Hartree-
Fock approximation, while the higher orders provide
correlation energy. "

Special care must be taken in these calculations
regarding the center-of-mass motion. The kinetic
energy of the center of mass (837)

(V.6)

has been properly subtracted out of the Hamiltonian
in Eq. (V.4), but this is not in itself adequate. When
the perturbing terms in the wave function

Ivo-~-/(E —E-) (V 7)

are considered, one must be careful not to include all
states q„prescribed by the independent-particle
model. Some of these states, as was pointed out in
Sec. IV.1 (E55), involve the same internal motion
of the nucleons that is described by the zero-order
wave function, but with the center-of-mass motion
excited to a higher state. As a result, the zero-order
function would be remixed into the wave function in
each order, and consequently, the perturbation ex-
pansion would appear not to converge.

Early perturbation treatments of He' and Li' by
Inglis (I37), and 0"by Kroeger (K38), demonstrated
the importance of second-order energy shifts, but still
could only yield about one-half the binding energy
of 0".

Second-order perturbation theory treats only two-
body correlations. If the clustering of four nucleons is
essential, one must go at least to fourth order to
include them.

The correlation energy, though significant, does
not appear to be the answer to the question. An im-
portant reason for the failure of the early Hartree-
Fock calculations was the fact that saturation was
then believed to be produced by using an exchange

many cases the harmonic oscillator will be employed:

V(r) = —', kr'

due to the fact that its eigenfunctions have simple
properties and produce a nucleon distribution close
to that which is actually observed. The term

+ g V;; —g V(r;) @ = E+, (V.4)

where V(r, ) is a ficticious central potential introduced
to provide a convenient set of basis functions. In

~5 The contribution to the binding from higher orders may,
strictly speaking, only be interpreted as correlation energy if
a self-consistent field calculation is performed in zero order.
If one simply introduces an arbitrary U(r;), as we do here,
part of the higher order effect simply arises from the improve-
ment of the radial wave function.
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mixture that caused the direct integrals

D = g . u*, (l)u.*(2)V»u1(1)u„(2)dr, dr, (V.S)
L,n

to give a nearly vanishing contribution. One finds
that D ~ A' while the kinetic energy varies as A' ',
so that the coefIicient of D must be nearly zero in the
expression for the binding energy of a complex
nucleus. On the other hand, the exchange term

E = Q . . u*, (l)uo(2)V»u. (l)u1(2)dridro (V.9)
L,n

varies approximately as A'/", and produced the pri-
mary contribution to the binding in early calcula-
tions.

Modern interaction operators become repulsive at
small nucleon —nucleon separations ( 0.4 && 10 "
cm), and need no longer depend upon their exchange
nature to produce saturation. A central interaction
near the Serber type seems to give the best 6t to
scattering data, so that the direct integrals now make
a strong contribution to the binding energy. Non-
central forces have also been added to the nuclear
interaction since the early Hartree —Fock calculations,
which may contribute to the binding in higher order.

%hen perturbation expansions are made, two
problems of convergence present themselves. The
perturbation series must be terminated at some
order. Second-order corrections, which involve two-
particle correlations, have clearly been shown to be
significant (I37, E38), but the importance of four-
particle clusters is in some doubt. Once a definite
order of the perturbation is shown to be relevant,
there is still some question about how many excited
configurations must be included in that order.

The latter convergence problem is resolved by the
Bolsterli —Feenb erg (B56) perturbation procedure,
which was reviewed in Sec. III. The energy shifts for
a given order are then generated in closed form by an
integral operator. Application of this method has
been made to 0" (659). The interaction operator
used in the calculation consisted of a Serber central
force with a repulsive core and a tensor —even com-
ponent;

V1o tlirt eXP (—Srlo/ro) + J'. (Po + R) eXP (—r1o/ro)

+ o (1 —zl %2)8»(712/ro) Js exp —(F12/ro)

(V.10)
where:

J. = —58.65 MeV,

J, = —107.29 MeV,

Js ——+189.75 MeV,

/

~o./'

E —E (V.13)

Convergence of the series so obtained is poor; so poor
that it is not profitable to try to evaluate the integral
expression by such an expansion. Once again this
points up the need for including as many excited
configurations as possible in shell-model calculations.

The problem of convergence for the perturbation
expansion is more difIicult. Second-order perturba-

25' Note added in proof. H. Collard and R. Hofstadter [Bull.
Am. Phys. Soc. 1, 489 (1962)l have recently measured the
rms radius of He, obtaining 1.68 + 0.17 F. This is in excellent
agreement with the value 1.60 F. obtained from the potential
in Eq. (7.10).

ro ——1.54 g 10 "cm . (V.10a)

The parameters were adjusted to yield a reasonable
fit (within 2% of the observed values) to the binding
energies of H', H', and He'; the rms radii of H' and
He4; the Coulomb energy'" in He'; and the electric—
quadrupole moment of O'. A net binding energy of
—129.2 MeV was obtained for 0", compared to the
experimental value of —127.16 MeV. Agreement is
not quite as good as it appears, since Coulomb forces,
which contribute about +14 MeV to the binding,
were neglected.

The rms radius of O" was calculated to be 2.33
X 10 " cm, compared to an experimental value of
2.57 )& 10 "cm. The mixing of configurations other
than the pure shell-model configuration

(1 )'(ip)" (V.ll)
was found to be about 18%, so that the overlap
integral in Eq. (V.2) is

Ior(O") = 0.82. (V 12)

Most of the admixed configurations involve 'Do

states connected to the 'So shell-model state by the
tensor force.

Although the repulsive core employed was weak
by modern standards, the calculation demonstrates
the usefulness of the independent-particle model.
The zero-order contribution to the energy comes to
87.8 MeV, whereas the second-order tensor terms
yield 36.4 MeV, and the remaining 5.0 MeV comes
from the central interaction in second order. Thus,
the simple shell-model configuration comprises 82%
of the wave function and yields nearly 70% of the
total binding energy.

After the second-order energy shift is evaluated in
a closed integral expression [see Eq. (III.18)j, it may
be reexpanded into the usual series:
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p(r) = (2 + Br')e (V.14)

so that most of the density is below the normal value
and correlations involving several particles could be-
come significant.

Da Providencia (D61a) has compared the second-
order energy shift in 0" with the similar correction
in nuclear matter, finding them nearly equal. Corre-
lations are found to increase near the surface, but
this appears to have little effect on the convergence of
the perturbation series. This is partly attributed to
the large spacing between single-particle levels in
light nuclei, which reduce the effectiveness of exciting
several nucleons out of the shell-model configuration.
Another possible argument for neglecting clusters of
several particles is that since such clustering is only
significant when the density is low, their net effect
might not contribute appreciably to the binding
energy.

If the repulsive core is required to be infinite, the
problem of performing absolute calculations is drasti-
cally complicated. In that case, one must impose a
new boundary condition:

'k(ly, r2) ' ' 'r~) = 0 If rg~ ~( c, (V.15)

where c is the core radius. Since no two nucleons are
allowed to approach each other nearer than the limit
c, particle correlations are of critical importance. In-
deed, it is surprising that the independent-particle
model works at all. The resolution of this problem
possibly lies in the fact that even if the core is infinite
its radius is quite small compared to the mean dis-
tance between nucleons, and consequently we may
still be dealing with a small effect. This is conjecture,
however, and must be proven in order to put the
independent-particle model back on a Arm founda-
tion.

A possible means of investigating the correlations
imposed by a hard core is to choose a variational trial

tion theory accounts only for two-particle corre-
lations. Higher correlations are known to be negligible
in infinite nuclear matter at normal density. This
result is easily clari6.ed. At its normal density, nuclear
matter is saturated and cannot condense. The ap-
pearance of complex substructures, such as n particles
near the interior of a heavy nucleus, is, therefore, so
unlikely that such clusters may be neglected. Near
the surface of the nucleus the density is below normal,
however, and complex structures may, temporarily,
appear. In light nuclei the surface problem is particu-
larly important. The nucleon density in 0", for
example, is given approximately in the form

function that is the product of an independent-
particle function $0, and a Jastrow (J55) correlation
function

~=F~. = IIf(„) ~. , (V.16)

where

f(r) =0 if r (c
f(r) —+1 as r~ ~ .

(V.16a)

(V.16b)

This trial function satisfies the boundary condition in
Eq. (V.15). Hopefully, f(r;;) approaches one rapidly
as r;; becomes large so that the motion is well ap-
proximated by $0. Substituting Eq. (V.16) into (V.1)
and integrating we obtain

E = I
—(A'/2')Q, IF' g; V', + F g„(V',F)

+ F g, (V,F) V, —(1/A) F' g V,"V, ly.)
$j

+ (~.IF' Z v., l~.)I/«. IF'l~.) (V.17)

The only fortunate aspect of this equation appears
to be that as long as harmonic oscillator orbitals are
used in constructing $0, the center-of-mass motion
still subtracts out in the same simple manner as
before. The undesirable feature of Eq. (V.17) is the
appearance of many-particle terms. For example,
consider

(4"IF' Z V' IA) =
2 ~(~ —1)(@IF'V IA).

(V.18)
In the absence of the correlation function F, diagonal
matrix elements of V» become [if $0 can be written in
the form of (V.3)]:

(~I&lc) = 7'. + ~ + ~, (V.19)

where

& I

—
2~ Z v'IA (V.19a)

2

If(r')I'V', + ~ d„"" IA

(V.19b)

—,
' A. (A —l)(QOIV»lpo) = ~ Q . u,*(l)u,*(2)V~2

i&j

&& [u;(l)u, (2) —u;(2)u, (1)]dr,dr, , (V.18a)

but Eq. (V.18) does not simplify at all.
Dabrowski (D58c) has employed a trial function

of this sort in a calculation on 0".The erst approxi-
mation attempted was to write
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(V.25a)

Tp and 'U now contain only two-particle correlations Formal manipulation of Eqs. (V.24) yields (ap =—1)
while the higher terms are contained in C. These
higher terms were then neglected. The f(r) were taken ~ g ~-(~-I Z v-'I+&

to be E —.„

f(r) = 1 —exp [ P(—r'ic' —1)f i«& c (V.2o)

so that expansion into the form (V.18) is easily car-
ried out. Tauber and Wu (T60a) have done a similar
calculation for 0" and 0" using a potential re-
sembling that of Gammel and Thaler (G60). The
results appear to be quite reasonable; but Dabrowsh.
has estimated the effect of higher cluster terms in C,
using an approximation based on the short range of
the correlations, and finds them to be of importance
in any atteInpt at quantitative accuracy.

A. powerful procedure for handling systems com-
posed of a large number of strongly interacting
particles has been developed by Brueckner and his
collaborators (a list of references for the early papers
in this series appears in B58c). A detailed exposition
of this work will not be given here, but we shall now
present a simplified treatment of the Brueckner
method in the context of conventional perturbation
theory to show where the basic approximations are
(R57).

The Hamiltonian is given by

H= QT;++V,,

We introduce a single-pa, rticle potential U; and write
the Hamiltonian as

& = pp + (apl g v I+&, (V.25b)

I,; = "+(~ I g v'I ~o) + g l(~ I Z v-'l~-&I'
~ ~ ~

)

which upon introducing the notation

g lv-&(~-I
E —Hp gp E

V'= P. V.',
becomes

(V.26)

(V.27a)

(V.27b)

E = o+ ( oIV'+ V'@ V'
0

( )

One may now introduce the operator

t = V'+ V'E H t
0

which we emphasize represents an exact formulation
of the problem.

The expression for @ in Eq. (V.25a) may be itera-
tively substituted into Eq. (V.25b) to obtain the
Brillouin —signer perturbation expansion

where

H =Hp+ g V', (V.22)
Vl + V'/ V/

+ V'E H V'E H
V'+, (V.29)

Hp ——Q; (T;+ U,), (V'22a) defined so that

Q„V.' = Q. (V. —U.), (V.22b)

and n = ij is a pair index. U is defined so that
(~-lv'I+& = (~-ltl~ &.

Equations (V.25) can then be written as

(V.BO)

g. U. = P, U, , (V.22c) v-(~-ltl~ )+ = Pp (V.Bla)
and its exact form is not relevant (for example, one
could choose U = [(U; + U;)/X —1]). Defining
the eigenfunctions and eigenvalues of Hp by

IIpgn = &nPn )

one may find the solution of Eq. (V.21) from

E = pp + ((ppl

flump)

. (V.Blb)

The main approximation made by Brueckner in
his treatment of the many-body problem is to write
t as a sum of two-body terms:

(V.B2)

e = g.c.p. ,

(E —H, )% = P. V.'+,

Z-&.(& —p-)v- = Z- V-'+

(V.24a)
where

(V.24b)

(V.24c)
= V'+V', , t—l70

(V.B2a)
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+ g (U'
(E ~ )

U') + I«&,

(V.33)

states which violates the Pauli exclusion principle are
spuriously mixed into the wave function. This is
easily seen by examining the exact second-order cor-
rection

&(«I F.U.'I&„&(&„l g, U,'I«&
nWO E

As long as qo is properly antisymmetrized, the states
q. are guaranteed to be antisyrnmetric also since

P U' is symmetric in all coordinates. The term

+ + l(«IU. I&„&l'

neo a E &n
(V.35)

which actually occurs in Eq. (V.33), does not possess
this property, however, because one has effectively
chosen only a part of the interaction P U', and so
the p„ in Eq. (V.35) are not guaranteed to be anti-
symmetric. Corrections for this have been obtained
by Bethe and Goldstone (B56b, G57b).

The properties of nuclear matter have been calcu-
lated using this method by Brueckner and Cammel
(B58c).A potential of the Gammel —Thaler form, but
modified to fit the deuteron, is used. "This potential
is given in Table V-1. The derived properties of
nuclear matter are in excellent agreement with our
knowledge of the interior of heavy nuclei, yielding a
binding energy per nucleon of 14.6 MeV at an equilib-
rium spacing of 2 )& 10 "cm.

A significant feature of the nuclear matter calcu-
lations is the fact that the Pauli principle causes the
two-body wave function to approach its uncorrelated
form [or to "heal" (G58) j for separations of the order
of a Fermi wavelength, even though the hard core
requires it to vanish at the core radius. Consider a
particular nucleon moving through nuclear matter.

Several similar potentials have since been tabulated by
Gammel and Thaler (G60).

Correlations between pairs of particles are then
treated exactly, while higher correlations are com-
pletely neglected. This approximation turns out to
work very well in infinite nuclear matter at normal
density, basically because of the saturation argument
made previously in this section (B58c, B56b, G57b).

The problem formulated thus far does not quite
treat two-body correlations correctly, since if one
considers the energy to be given by

E=«+(«I Z& I«&

= «+ («I Z- U-'

As it is scattered by the other nucleons, the nuclear
potential attempts to impose on it a new wave
number (momentum)

k = (MU/5')' ', (V.36)

where t/0 is the depth of the two-body potential well.

TABLE V-1. Parameters of the Brueckner —Gammel potential.
All radial functions have a Yulrawa shape Vc(a/r) exp ( r/a)—

outside of a hard core with radius 0.4 g 10 ~3 cm.

Triplet central even
Tensor even
Singlet central even
LS even
Triplet central odd
Tensor odd
Singlet central odd
IS odd

Vp(Me V)

—877.4—159.4—484—5000—14
+22
+180—7815

a '(10" cm ')

2.0909
1.0454
1.45
8.70
1.0
0.8
1.00
8.70

This new rnornentum, however, turns out to be much
smaller than the Fermi momentum

kg) ((kg ) (V.37)

so that the states into which the nucleon tends to be
scattered are already filled. The result of this is that
for average nucleon separations, the motion is reason-
ably described by an independent-particle model.

The extension of this method to problems involving
finite nuclei is not trivial. Brueckner, Gamrnel, and
Weitzner (B58d) have devised a method in which the
t matrix is assumed to have the same value at each
point as nuclear matter at the same density, but the
effect of the density gradient is neglected. This
assumption of "local uniformity" is based on the
observation that the range of nuclear forces is small
compared to the falloff distance of the nuclear densi-
ty. For example, the triplet —even and singlet —even
central interaction have ranges of 0.5 g 10 " and
0.7 )( 10 " cm, respectively, in the Brueckner-
Gammel potential, while the nuclear density gener-
ally falls from 90% to 10% of its central value in a
distance of 2.5 g 10 " cm." This suggests that the
properties of the nuclear medium over any small
region of the nucleus should not be very different
from the properties of nuclear matter at, the same
density.

Brueckner, Lockett, and Rotenberg (B61) have
calculated the properties of 0", Ca", and Z", using
the assumption of local uniformity and including
some rearrangernent energy (B59a). The binding

7 The tensor-even force has a range of 1.25 X 10 ~3 cm. , so
that the method is in some doubt in the handling of the con-
figuration mixing effects of this term near the surface.



energy per nucleon predicted by straightforward
application of the theory was far too small in magni-
tude. Under the assumption that this was due to an
overestimate of the effect of the repulsive core, the
strength of the core terms were arbitrarily reduced in
order to reach tighter binding.

The results obtained by reducing the core terms to
0.825 their normal value in 0"and 0.90 their normal
value in Ca" are shown in Tables V-2 and V-3. The

TABLE V-2. Calculated properties of 016 and Ca40.

Hinging energy/A rms radii (10 rs) cm
Element Theoret Exp proton neutron total exp

016 —4.41 —7.98
Ca40 —6.12 —8.55 2.91

2.38
2.84

2.40 2.57
2.88 3.49

TABLE V-3. Calculated energies for 0 s and Ca o (in MeV).
The core strength has been reduced to 0.825 of its normal
value in OM and to 0.90 of its normal value in Ca4s (B61).

binding energies are still 3.5 MeV/nucleon short of
the experimental value, while the predicted radii are
about 8%%uz too small. The order of single-particle levels
is found to be in agreement with the shell model,
however, and separation energies have been adjusted
to be fairly close to the experimental values in three
out of four cases. %e also note that the proton
distribution extends just a bit further than the neu-
tron distribution, in agreement with the conclusions
reached in Sec. IV.1. Although the single-particle
potential U; is nonlocal and not very pretty by shell-

while binding energies can usually be obtained by
manipulating parameters in the interaction, no
agreement with the observed density of 0"has ever
been obtained to this author's knowledge. Eden,
Emery, and Sampanthar (E58, E59), for example,
have performed calculations on 0"with a variety of
interactions fitted to low-energy two-nucleon data.
Binding energies obtained varied from 118 to 256
MeV, but the rms radius could only be raised to 2.0
y, 10-"cm.

It is possible that higher clustering eft'ects have a
more significant inhuence on the nuclear density than
has previously been anticipated. At normal density,
clusters involving more than two particles are not
important. Now consider the energy of a finite num-
ber of nucleons as the density is varied. In the neigh-
borhood of the minimum the variation of the energy
with changes in density will be very slight. A de-
crease in the over-all density will result in an en-
hancement of the contribution from higher clusters,
and certainly the density of an actual nucleus does
drop slightly to take better advantage of clustering
terms. Thus, the effect of clustering, generally
neglected in Hartree —Fock calculations, may tend to
increase the nuclear size.

If the short-range repulsion in the nucleon—
nucleon interaction is not required to be infinite, but
merely very strong, procedures for calculating the
properties of nuclear systems may be greatly simpli-
fied. Clark and Feenberg (C59b) have developed a
method for disposing of undesirable core terms. Sup-
pose that the interaction operator has been decom-
posed into

Experimental separation
Ele- Eigenvalue energy
ment State Neutron Proton Neutron Proton

& = &A + &R, (V.38)

O16 1SI/2
1pa/2
1@i/2

Ca4' 18g/2
1P3/2
1pI/2
1d5/2
28y/2
1d3/2

—44.3—19.0—14.9—70.1—44.7—38.6—20.6—16.0—13.4

—39.6—14.6—10.7—60.0—85.1—29.2—11.6—7.3
49

—15.60

—15.98

—12.11

—8.34

0'=e4, (V.39)

where 8 is a real function of the space coordinates

(V.39a)

where V~ contains all strong short-range repulsions.
The wave function is then written as

model standards, the single-particle orbitals resemble
harmonic oscillator eigenfunctions closely enough to
once again justify their use in other calculations.

The assumption of local uniformity is suspected to
be a primary source of quantitative error in these
calculations (IMO). It is curious that all calculations
on nuclei beyond the ls shell appear to yield too
small a size. The size is, of course, anticipated to be
the poorest result of most calculations. Nevertheless,

Matrix elements of the Hamiltonian

2

V'+ &A+ &R

can then be written without the VR term

(V.40)

e ~ Q VpC* VgC + e O'*VAe C, (V.41)
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if 8 is chosen to satisfy

(ft'/2M) Q„ t
(V'„8)' + V",,8] = Vs . (V.42)

might involve the tensor operator

18;; = d; n;, d,'n;j ——, d,'d;, (VI.2)

The method does not apply to hard cores, since Eq.
(V.42) will not, generally, be solvable if Vs is infinite
over a finite region of space. It is possible to make the
repulsion as strong as desired, however, as long as it
is only infinite when two particles are in contact.

VI. ORIGIN OI' THE DOUBLET SPLITTING

The importance of the spin-orbit interaction in the
shell-model Hamiltonian was brought into sharp
focus by the success of jj coupling and the inter-
mediate coupling calculations reviewed in Sec. IV.3.
The problem concerning the exact origin of the
doublet splitting appears to have been first considered

by Dancoff and Inglis (D36, I36), long before the
significance of this effect in determining nuclear
systematics was recognized. The spins and parities
of the first two levels in Li' were at that time deter-
mined to be 3/2 —and 1/2 —,and enough wa, s known

about the ordering of single-particle orbitals to
properly identify these as 'P3/2 and 'PI/2 states of a
(1p)s configuration. A. doublet separation such a,s this
must originate from a vector interaction, the simplest
example of which is the single-body spin-orbit term

(»1)
The only vector interaction suspected to be inQu-

ential in nuclear physics was, at that time, the
Thomas relativistic correction. Many authors have
since reinvestigated this problem and all have come

to the same conclusion. The Thomas term yields a
doublet separation of the right sign, but is about two
orders of magnitude too small. "

The problem was revived in 1940 when Dancoff
(D40a) attempted to interpret the scattering of
nucleons by n particles. The scattering analysis re-
quires both a p3/& and a p&/2 phase shift to fit the data,
so that once again a doublet splitting is observed.
The p&y2 phase shift does not pass through 90', so
that it is difEcult to assign a definite energy difference
to this doublet. It is usually estimated to be about
2.6 MeV (A55). In addition to the Thomas term,
Dancoff was aware that the internucleon interaction

since a term of this form was known to arise from
pseudoscalar meson theory with pseudovector cou-
pling.

It is easy to demonstrate that the second-order
tensor terms produce doublet splitting. From two
Pauli spin operators for particles i and j construct, a
tensor of rank two

OO =&zp

o„, = (1/V 2) (o. a io„) . (VI.3a)

Likewise we construct a tensor of rank two from the
unit vector n;j —= n

(VI.4)

The tensor operator may then be expressed as the
dot product

8;, = Ss(ij) Bs(ij) = p (—1) Ss„(ij)Bs (ij)
= V 5 Q C"',S,„(ij)Bs=(ij). (VI.5)

Second-order terms will involve the product 8;, 8&~

which can be expanded making use of the 9-j co-
efFicient:

4 2
8,,8p&

——5 Q (2K + 1) ' 2
K=O , 0

2 K
Cm —uo

0 0
M= K

where

X Sznr(ijkl)Ba ~(ijkl), (VI.6)

S (ijkl) =

BUM(ijkl) =

C„„jrSs„(tg)Ss„(kl),
p+p M

C'„'„~B,„(ij)B,„(kl),
p+p, =M

(VI.6a)

(VI.6b)

2 2 K

5(2K + 1) (VI.6c)

Ss„(ij) = Q C'„'„' o„'o'„,
p+y =m

where the spherical tensor components are defined in
terms of cartesian components by

28 The Thomas term would not be small near the hard core
of the Gammel —Thaler potential since BV/Br —+ ~ . In this
region the Thomas correction is inapplicable, however, since
it is derived under the criteria

~
V

~
&& Mos. Actually, the two-

body spin-orbit term of meson theory can be thought of as
arising from this effect, because both it and the hard core are
attributed to the three-pion resonance (B60cl.

Equation (VI.6) now becomes

8;,8&& ——Q 81'(ijkl) BI&(ijkl) . (VI.7)

If I 8 basis functions are used, one will need to
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evaluate matrix elements of the form

&8Lnrls. Z.l8LJ~) = ( 1)—W(JL8K;8L)
x (8lls ll8)(Llla llL) . (VI.8)

This matrix element obviously vanishes unless
8 &~ K/2 and L &~ K/2, so that for a closed shell,
only the term with K = 0 contributes. The principal
eRect of a term 8&.RK with K @ 0 is to produce a
spin-orbit splitting. To illustrate this, consider the
term with K = 1, which produces a doublet split-
ting. When 8 = 1/2, one can have J = L & 1/2, and
the splitting between these two states is determined
by the ratio of two H,acah coeKcients

W([J = L —-', ]L —,
' K; -,'L) L + 1

([J = L+ jI -K-,. —I) I
the reduced matrix elements in Eq. (VI.8) retaining
the same value for both states. In a like manner, the
term with K = 2 splits triplets, K = 3 quartets, and
so on. The term with K = 0 is exp].icitly given by

Boo(ij7cl)soo(ij7cl) =
5 {(n; 'n, ()

X {-,' ~'(~' ~ ~') ~" + —,
' ~'(~'. d') d' —-', a' ~'~' ~'}

(VI.9)

and has the properties of a triplet —central interaction.
It is this term which produces most of the triplet—
singlet splitting in the deuteron. This becomes quite
clear after examining the case where (ij) = (kl):

8„(~jij)S,.(ijij) ——, (3 + e' u') . (VI.ga)

The vector term

R&~(ijkl) = (2/5) n;,'n~i(n;, X n~i) ~ (VI.10a)

Pjkl) = (1/40) {&'~ (&' X &)~&

+ u' (a' X a"), a' + d' (a' X d') ~a"

+ a' (~' X a') ~"
I (VI.10b)

is the one of interest in this section, since it has the
form required to produce the observed nuclear
doublet separations (that is, it is the dot product of
two vectors, one of which is constructed from Pauli
spin matrices, and the other of orbital coordinates).
Such a hypothesis is not a particularly attractive one
since it is not clear by inspection that the second-
order tensor terms produce a splitting which is even
of the proper sign.

The two-body spin-orbit term required in the
interpretation of proton —proton scattering (see Table
V-1)

(d'+ d') 1&2 (VI.11)

can easily be seen to produce a splitting whose sign

agrees with that which is observed. A debate seems
to exist in some quarters as to whether the two-body
spin-orbit term is really required since the vector
term in Eqs. (VI.10) resembles it so closely, or
alternately whether the term in Eqs. (VI.10) is
signi6eant. These arguments miss the main point.
The actual problem involves the competition be-
tween noncentral interactions which operate in
orbitally symmetric states with those which operate
in orbitally antisymmetric states. There is no doubt
that a strong tensor —even term is needed in the inter-
action. The argument is based on the observed
quadrupole moment of the deuteron (R41), and seems
incontestable. The evidence for a spin-orbit —odd
interaction is also very strong (660). Large polari-
zation effects are observed in proton —proton scat-
tering, which must be attributed to noncentral
interactions of the form

d g d = 2id ) (VI.13)

K can be no larger than two, so that the polarization
effects must be interpreted in terms of an interaction
either of the form in (VI.ll) or (VI.5). Now such
noncentral interactions act only in the triplet states
for two nucleons, since by the %igner —Kckart
theorem,

(8 = Olls~ll8 = 0) = 0 if K w 0. (VI 14)

For two protons, the triplet states are all orbitally
antisymmetric:

(VI.15)

and one must therefore interpret the proton —proton
polarization eRects in terms of either a tensor —odd or
spin-orbit —odd interaction. A. tensor —odd interaction
turns out to have the wrong energy dependence and
cannot fit the scattering data at 310 MeV. In any
case, a strong tensor —odd term is not desirable
because it would lead to far too large a doublet
splitting in 1p-shell nuclei.

One is then faced with an interaction operator
which must have strong tensor —even and spin-orbit-
odd components. "The question of physical interest
with regard to the shell model is then, just how much

29 A large spin-orbit —even term is included in many of the
Gammel —Thaler potentials, but it is not absolutely required
to 6t the data.

~X (a 1)02) ' +IC (rl pr2) (VI.12)

where SK is a spherical tensor of rank K constructed
out of Pauli matrices for particles one and two, and
likewise, 8& is an orbital spherical tensor. Due to the
commutation relations
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H =H, + V+t
=Ho+ W, (VI.16)

where V is the two-body central force and t the tensor
interaction. One then selects trial function

P = (1 + M')Po, (VI.17)

where t' is a tensor operator modified from t to yield
an improved eigenvalue (this is essentially the well-
known Leonard —Jones method). The eigenvalue is
then given by:

do each of these terms contribute to the observed
effects, and do they yield a picture of nuclei which is
completely consistent with that found in nature?

Dancoff's (D40a) original calculation on He' with
tensor forces was disappointing as it yielded a normal
P doublet (P,y, ground state, Po(o excited state),
rather than the observed inverted I' doublet, when
the Rarita-Schwinger (R41) square-well potential
was used. In addition to being of the wrong sign, the
derived splitting was negligible compared with the
experimental result, .

Feingold (F56) later obtained better agreement
with an improved method of calculation, and a more
modern interaction operator. The Hamiltonian is
written

a
' = h,/yc, (VI.19a)

in the right direction from the radial integrals at
fairly large particle separations.

The He' problem is a particularly dificult one
since there is no bound state. Several authors (661,
T60b, F56) proceed to assume a bound-state wave
function, either fitting the size parameter to the
Li' —He' Coulomb energy difference, or using the
a-particle parameters. The results so obtained are of
the correct sign and magnitude, but it is possible that
a theory which assumes a bound state where none
exists, may overestimate the effect of the tensor
force. Two attempts have been made at phase-shift
calculations for n—n scattering. The first (S57c) as-
sumed scattering of neutrons from an n particle
which was given as a pure 'Sp state and found that
only about 30% of the 'P splitting could be attributed
to the tensor interaction.

Nagata et al. (N59b) also computed the phase
shifts for n—n scattering using the pion-theoretical
potential

V"' = (g'/4m. )pc'~, ~,

X I-,' && do+ So[1 + 3/~r+ 3/(«)']I
X («) 'e "", (VI.19)

where p is the pion rest mass

(H)oo + 2X (t H)oo + X (t Ht )oo

1+ 2X(t )oo+ li (t't )oo
(VI.18a)

so that minimization with respect to X yields

E[(t')..+ X(t't')..] = (t'H)..y X(t Ht'). .. (VI.18b)

and Eqs. (VI.18) and (VI.19) may then be solved
simultaneously for ) and E.The method is equivalent
to second-order perturbation theory with an average
energy denominator

Vsing a Gaussian-shaped potential, fitted to low-

energy two-body data, FeingoId obtained an in-
verted doublet splitting of 380 EeV in Li (experi-
ment, al value: 480 KeV), and a '8~—'8o separation of
1.4 MeV in Li' (experimental value: 3.5 MeV).

The doublet splitting in He' was also computed,
yielding a result of the right sign and about one-half
as large as the observed value. The essential differ-
ence between Feingold's calculation and the earlier
work of Dancoff appears to be that while Dancoff
used a square-well and exponential wave function,
Feingold employs a Gaussian well with oscillator
functions. Feingold then obtains large contributions

g /47r —0.08 . (VI.19b)

The equations for an isolated u particle are then set
up and solved with a trial function which is a mixture
of '8o and 'Do states, fitted to give the observed size
of the n particle in the 'Sp state. This results in a
binding energy of 33 MeV (experimental value 28
MeV) and a 9% admixture of the 'Do state. The scat-
tering of a neutron from this system (which is as-
sumed to be undistorted by the neutron) is then
computed. The computed P-doublet splitting is then
found to be about 60% of the observed value. The
significant difference between this calculation and the
previous one is attributed primarily to including Dp
states in the ~-particle wave function.

The phase-shift calculations are greatly simplified
if one does not consider any distortion of the n
particle. Takagi et at. (T59a) and Nagata et at.
(N59b) estimate, however, that such distortions
may actually contribute strongly to the doublet
splitting, and should be considered. The importance
of this effect has clearly been demonstrated by
Terasawa and Arima (T60b, A60, A60a) and also by
Jancovici (J59). The clearest example is found in
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Terasawa's (T60b) calculation on He'. Consider a
shell-model representation of the n-particle wave
function in jj coupling. The main part of the wave
function will be described by the closed-shell con-
flgul ation

(lsi/s)' . (VI.20a)

Nuclear forces will then mix in other configurations,
two of the lowest being

(1s / )'(1p./ )' (VI.20b)

(ls~/s) (1p~/s) ~ (VI.20c)

Now the lowest configurations for the P-doublet
levels of He' are:

(lsd/s)'(1ps/Q) for J = 3/2 (VI.21a)

(lsr/s)'(1p, /, ) for 7 = 1/2 . (VI.2lb)

The existence of a fifth nucleon in a 1p orbital will

tend to suppress configuration mixing of the core
states because of the Pauli principle, and thereby
actually reduce the magnitude of the binding energy
of the core. This effect will be greater for the 'I'&y&

state since the 1p1y2 shell accommodates fewer
nucleons then the 1p3/& shell. I'or instance, if the
fifth nucleon is a 1p1g2 neutron then promotion of
two neutrons from the core to 1p1/2 orbitals is for-
bidden, but if the fifth nucleon is a 1pa/'2 neutron
promotion of two neutrons to the 1p3)2 shell is still
possible. The net result of this is a tendency for the
'PI)2 level to lie higher than the 'I'3y2 level.

We note that this effect will always tend to pro-
duce a doublet splitting whose sign is consistent with
the ordering of states in the shell model. Unfortu-
nately, however, this does not provide an ironclad
proof that the splitting due to the tensor force always
has the proper sign. The mixing of other configura-
tions also contribute to the doublet separations, and
the only way to find their sign and magnitude seems
to be to actually perform a detailed calculation.

A significant feature of the doublet splitting is the
fact that it varies in magnitude throughout a given
shell. This fact was pointed out in Sec, IV.3 with re-
gard to the 1p shell, where the variation is so extreme
that the mode of coupling changes in going from
Li' to N". Elliott and Lane (E54) have attempted to
interpret this variation in terms of a two-body spin-
orbit interaction which takes on the same values in
states of even and odd orbital symmetry. "Oscillator
wave functions are employed (with length parameter

ss A symmetric spin-orbit interaction (that is one multiplied
by r& ~2) yields results which are Dot at all like the observed
values.

6) along with a Yukawa shaped potential (range
parameter a). The doublet separations for a particle
and a hole in the 1p, 1d, 2p, and 1f shells were then
deduced in terms of the ratio (a/b).

It is very dificult to interpret the results of this
calculation due to the uncertainty in the size parame-
ters b. There is a marked tendency for a hole to
exhibit a much larger doublet splitting than a particle
due to its interaction with the nucleons of an addi-
tional shell, and an equally marked tendency for it to
increase with increasing quantum numbers (nl) of
the orbital.

Feingold (F59a) has emphasized the importance of
explaining the small doublet splitting observed in
Li' (0.478 MeV). A. two-body vector force, with the
exchange character used by Elliot and Lane to obtain
a reasonable ratio for the N"/He' doublet separation,
yields a ratio for the N"/Li' splitting near 4 com-
pared to the experimental value of 13.3. I'eingold
considered the effect of a three-body vector force of
the form

(r12 rls) (r12 X r13) I'd' x ~' + —: t[4d'(&' &')

—d'(d' ~ d') —~'(d' d')] I (VI.22)

which will arise from the second-order tensor term
displayed in Eqs. (VI.10). It was found that agree-
ment with the ratio for 'P separation in N "/Li' could
only be obtained if the tensor force has exchange
properties not too close to the Serber type, so that a
bit more tensor —odd interaction would have to be
included in the Gammel —Thaler potential.

A possible interpretation of the small separation
for the Li doublet may lie in a consideration of mix-
ing jj configurations. The 3/2 —level is composed of

(p»s) ~ (p»s) p~/s ~ ps/s(p~/s) ~ (VI 23a)

while the 1/2 —level is made up principally of

(ps/. ) pi/. , (p./.), (pi/. ) ps/. , (pi,'.) . (VI 23b)

The appearance of the configuration (p, /&)' in the
1/2 —level may pull the energy down sigruficantly
relative to the 3/2 —ground state. It is not possible
to estimate the magnitude of such an effect without
going through a calculation of the matrix elements
involved.

The determination of size parameters plays a vital
role in the spin-orbit problem since doublet separa-
tions seem to be especially sensitive to them in the
region of physical interest. Often these parameters
are fixed by either fitting the rms radius obtained
from scattering experiments or the Coulomb energy
difference for a pair of mirror nuclei. This procedure



PAUL GOLDHAMMER

may lead to serious errors on two counts. It is gener-
ally just the zero-order shell-model wave function
that is used in the fitting. Arima and Terasawa (A60)
have pointed out that the higher order configurations
tend to increase the size of the nucleus, and there-
fore, perhaps the parameters should be chosen so that
the zero-order wave function yields a smaller radius
and a larger Coulomb energy than that observed in
nature. This makes sense, but the magnitude of such
an effect in the absence of an absolute calculation is
obviously in considerable doubt. Secondly, the errors
incurred by calculating matrix elements of an inter-
action with wave functions which were not derived
from that interaction are very hard to estimate. In a
binding-energy calculation, variational stability of
the wave function relieves the difhculty somewhat,
but in estimating the separation between two levels
one is not so fortunate.

Estimates of the separation between 1p3/2 and 1p1/2

orbitals in 0"were computed in connection with two
of the absolute calculations treated in Sec. V (B61,
659). The calculations of Breckner, Lockett, and
Rotenberg (B61) resulted in far too much doublet
splitting. So much in fact that the lf7/, neutron level
was puHed down lower than the proton 1d3/& level in
Ca", and the spin-orbit —even interaction had to be
equated to zero to retain P stability. This done, the
p8/2 pj/2 separation in 0" is about 4 MeV (see Table
V-8), which one may compare with an energy differ-
ence of 6.3 MeV between the 1/2 —and 3/2 —levels
of N".

Most of this 4 MeV is attributed to the spin-orbit
rather than the tensor interaction. Since the spin-
orbit force used had an excessively short range

( 0.27 X 10 " cm), the assumption of local uni-

formity should hold, and the effect of the spin-orbit
interaction at the density obtained should be reasona-
bly accurate. The tensor —even force, on the other
hand, has a very long range, and it is doubtful that
tensor forces were properly taken into account. In
addition, if the spin-orbit —even terms are dropped,
some modification of the tensor even term—s should
be required to retain agreement with n—p scattering
data.

In calculating the properties of 0"by the Bolsterli-
Feenberg perturbation procedure (662), the energy
difference between 1p3/2 and 1p1/2 orbitals was found
to be 5.6 MeV, which is about 11% short of the 6.3
MeV doublet P separation in N". It is interesting
that the two-body vector term arising from the sec-
ond-order tensor contribution is of the form

(VI.24)

which closely resembles the usual two-body spin-orbit
term of Eq. (VI.ll) (Feingold's formalism yields
precisely this term in third order). The contribution
of this term is quite small, however, and the main
effect comes from the three-body term displayed in
Eq. (VI.22). This is in agreement with the hypothesis
that the effect arises from the Pauli principle since,
as we saw in Sec. 5, the three-body terms in the
second-order energy shift

(VI.25)

help to correct violations of the Pauli principle that
occur when the two-body terms

(VI.26)

are considered alone.
After surveying the large number of calculations of

doublet separations in various nuclei, it appears that
the effects of either the spin-orbit or tensor force are
individually large enough to account for the observed
splittings. No calculation which adequately treats
both forces together has been reported. It is possible
that cross terms between the tensor and the spin-
orbit terms appear which provide a partial cancella-
tion of the eHects that each term yields individually
(F618).

If such cancellations do not occur, then some of
the calculations described above must badly over-
estimate doublet separations. The primary defect
with the estimates of the tensor contribution is that
the calculations were carried out within the context
of second-order perturbation theory. The essential
property of the tensor interaction in producing the
doublet splittirig appears to be its long range (A60,
T60b). One is then dealing with a very smoothly
varying interaction, and it is hard to believe that
higher order corrections would drastically change the
second-order result.

The spin-orbit force is of very short range. The
second-order term has a sign opposite to that of the
first and appears to be larger, invalidating a perturba-
tion expansion (F62). In this case, however, only the
two-body terms are significant and the Brueckner
method should treat them quite adequately unless
cross terms with the central and tensor forces become
important. This makes the fact that the spin-orbit-
even interaction had to be set equal to zero in the 0"
and Ca" calculations quite significant, and strongly
suggests that the noncentral components of the
Brueckner —Gammel potential require detailed re-
visions.
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(n~jjl Q"l«jj) = —[(2j —1)/2(j + 1)]{ntlr'I«)
(VII.1)

and observed nuclear moments sometimes exceed
this by more than an order of magnitude (F55, B53),
while E2 transitions frequently have lifetimes one
hundred times shorter than that given by a single-
particle estimate (651).

The occurrence of nuclear fission provides strong
evidence for collective behavior in nuclei, since
clearly no independent-particle model could be ex-
pected to yield a dynamical description of this proc-
ess. In addition the success of the liquid-drop model
(B36) in the interpretation of nuclear reactions
emphasizes the limitations of the shell model.

Rainwater (R51a) treated the nucleus as a "core,"
plus a single odd nucleon whose angular momentum
tends to deform the core into a spheroidal shape.
Consider a sphere of charge Z and radius R, which is
deformed into a spheroid with symmetry axis a and
azimuthal axis b, such that the volume remains un-

changed:

ab' = 8'. (VII.2)

The quadrupole moment of the spheroid is then

where

Q = —
54 &ZAN', (VII.3)

e = (a —5)/8 (VII.3a)

and terms quadratic in e are neglected. The intro-
duction of such collective distortions of the nuclear
core appear to lead to corrections for the nuclear-
quadrupole moments which are of the right magni-
tude (F51).

To clarify the mechanism of the distortion one

may assume a potential which is a function of the
particle density (D53b), so that surfaces of constant
density are also surfaces of constant potential. Con-
sider the anisotropic harmonic oscillator (F55):

V(r) = -,'3fcv'[X(x'+ y') + z'/X'], (VII.4)

VII. COLLECTIVE NUCLEAR MOTION

The shell-model calculations reviewed in Sec. IV
reveal a remarkably consistent picture of nuclear
level orders and some understanding of more subtle
nuclear properties, such as static magnetic —dipole
moments. A persistent failure of the model in deter-
mining electric —quadrupole moments and E2 transi-
tion rates is, however, revealed with equal clarity.
The electric —quadrupole moment of a single proton
in a state specified by quantum numbers ntg is

E/ha) = -', (2W, )' '(W. + W„)' '

W —y'/4W (VII.7)

X = [2W,/(W. + W, )] = [1 —y/2W], (VII.7a)

where

W, = g (n, + -', ) ——, ,

W= Q, W, ,

(VII.7b)

(VII.7c)

Y = W —3W, . (VII.7d)

Levels tend to fill in order of decreasing t/I/', within an
oscillator shell; thus at the beginning of the shell one
has ) ) 1, favoring a prolate spheroidal shape. As
the shell is filled, the shape alternates from being
prolate to oblate so that either is about equally likely.
In regions displaying large deformations one finds
that nearly all nuclei have a prolate shape, so that
this result is not realistic. Moszkowski (M55a) has
repeated the analysis using a distorted square well
instead of the harmonic oscillator. Prolate shapes are
then found to be more favorable, owing to the fact
that a square well tends to lower the energy of states
with high orbital angular momentum.

Bohr and Mottelson (B53) have formulated a
theory of the collective motion of the nucleons com-
prising the core coupled to nucleons in un6lled shells,
which is founded on the liquid-drop model (B36,
H53). The nuclear core is assumed to have a sharply
de6ned surface whose shape is described by

R(8,(p) = Ro[l + Q)„„),„Y),„(e,q)] . (VII.S)

If one treats the core as an irrotational, incompressi-
ble Quid, then oscillations of the surface are described
by the Hamiltonian

e- = P.,.k la l~..l'+ C.l~„l'], (VII.9)

deformed by the parameter X into a spheroidal shape
so that surfaces of constant density are given by

(r')' = 'A(x'+ y') + z'/X' = const . (VII.5)
The energy eigenvalue is immediately seen to be

E/&co = ) ' '[g (n. + n„+ 1) —1]

+ (1/~)[Z (.+!)—!],(»16)
where the sum goes over the quantum numbers for
each particle in the potential well, and the energy of
the center-of-mass motion has been deducted.

The eigenvalue is then minimized with respect to
) yielding
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where

C, = ( —1)(X+ 2)R.8 ——~ —1 Ze

(VII.9a)

the core and the "extra" nucleons is taken to be

H,.»
= Z; F(",) —I (r;)j

BV= Q r; Q ag„Yg„(0;,p;), (VII.16)

8g ——(3/4»rX)A3Mc, (VII.9b) which becomes

and 8 is the nuclear surface tension. The condition

ng„——(—1)"n)*, „(VII.10)

ensures that 8 is real. It is obvious that II,.describes
a set of harmonic oscillators with frequencies

H;.»
= Q; &(r; —Rc)DR Q~, „ng„I'g„(0;,q;)

(VII.16a)

if V (r) is a rectangular well of depth D and radius Rc.
Evaluation of II; & will involve the radial integral

~~ = (('~/8), )' ', (VII.11) (nl!B(r —Rc)DR!nl) = RcDR„'»(Rp), (VII.16b)

when the real and imaginary parts of the n» are
treated as independent variables (one must be careful
to note that »r~„ is not Hermitian). 4 standard form
is obtained by making use of the transformation
(F55)

»rg„——()'t/28g~g) [bg„+ (—1) 'b*, „j (VII.12a)

uy„= —io»g(A/28)»c), )' 'fbg„—(—1)"bf „j, (VII.12b)

so that the Hamiltonian becomes

which turns out to be close to 40 MeV, independent
of n and l (F51).

Many applications with various computational
techniques were attempted in the early literature
(D53b, M54, W53, F53). If H;, is small then one
may treat it as a perturbation (weak coupling). Con-
sidering only quadrupole deformations ()» = 2) the
eigenfunctions of II,.can be written immediately:

H..= s Qx, , &~a(~~,4, + 4,5~,), (VII.13)

and the 6» and 6» play the familiar role of creation
and destruction operators

b*8„'(n) = (n' + 1) a'„(n) (VII.14a)

55„(n) = (~')'"5. , (n) . (VII.14b)

It is clear that this description is reasonable only so
long as X is much smaller than A. From Eqs. (VII.9)
we see that the cases where )» = 1 (corresponding to a
displacement of the system a,s a whole) and X = 0
(describing a dilatation or "breathing mode") are
not treated by this formulation of the problem. "
Most of the applications have been made to the
modes with ) = 2, which represent quadrupole dis-
tortions, and some calculations indicate that modes
with )», = 3 are significant (D62).

The particles in unfilled shells are often treated by
the shell model

H„= Q; (7; + V(r;)), (VII.15)

and in more refined treatments some interaction may
be introduced between them. The interaction between

3~ The P = 0 "breathing mode" has been treated in some
detail (F56a) in attempts to interpret the 6rst excited state
of OM at 6.06 Me V (j»r = 0 + ). It now appears that the breath-
ing mode lies much higher above the ground state (G57c,
657d), and one must seek an interpretation of this level in
terms of pair excitations (U58a, V62) as indicated in Sec. IV.4.

Each quantum of surface oscillation carries 2 units of
angular momentum (F55), and eigenstates of K' (the
angular momentum operator for the core) are ob-
tained in terms of the p

V(vKK, ) = +.„8,(gn„)bx, (Q pn„)

X (~' ~-s!vs) y(r»' rt-. ) .
(VII.18)

Solutions of H, are simply Slater determinants for
the particles in unfilled shells

(VII.19)

The unperturbed coupled system is then represented
by

C(vKJ;II, ) = g (KJK,M!II,)V,~V(vKK, ) .
(VII.20)

One may then proceed to solve

(H..+ H„+ H;.»)$(II,) = EP(II,) (VII.21)

by perturbation theory (weak coupling), assuming
the zero-order wave function to be

4 (v;.KJ;II.), (VII.22)

where v; is the least number of surfons consistent
with the other quantum numbers or apply an inter-
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mediate coupling procedure in which the wave func-
tion is taken to be

f(II.) = g.zz p,ex' (vJK;II,), (VII.23)

where the sum is taken over a sufhcient number of
states to produce convergence. The p„~K are varied to
minimize the total energy. Matrix elements needed in
applications where the un6lled shells contain only
one nucleon have been tabulated by Feenberg (F55).

If the interaction Hamiltonian is very strong, the
core will be deformed into a permanently nonspherical
equilibrium shape. The quantum number v then loses
its significance to the extent that it no longer makes
sense to use it in the classification of basis functions,
and the intermediate coupling approach is inap-
propriate. Oscillations about a spheroidal equilibrium
shape are best treated by transforming the co-
ordinates to the body axes of the system

I;„(0',y') = Q„D'„„Fg„(o,y), (VII.24a)

(VII.24b)

If the rotated axes coincide with the major axes of
the core, 0.2'2 = n2' 2 and n» ——n,', = 0, so that the
deviations from the equilibrium shape are described
by only two parameters, and we may make the
substitution

n20 = Pcosv (VII.24c)

n22
——(1/v 2)P sin y . (VII.24d)

The motion of the core is now described by P, y, and
the three Euler angles which specify the orientation
of the nuclear symmetry axes relative to the labora-
tory system. The interaction Hamiltonian becomes

II;„= DRO g; b(r; ——R)

X [P cos yI'20 + v 2P sin pF»] . (VII.25)

Since P„~n2„~' = P', the potential energy of the sur-

face is simply

(VII.26)

while T,.breaks up into a rotational part describing
the motion of the symmetry axes

(VII.27a)

and a part describing the vibrations in shape and size
of the core

[R.,Rb] = iR.xr—, . (VII.27d)

In seeking appropriate eigenfunctions which have
I (I + 1) and I, as good quantum numbers it is
useful to rewrite Eq. (VII.27a) substituting R = I
—J

r- = (n'i2y)(I'y J' —2I J)

+ — — (I, —J, )', (VII.28)

where we set

(VII.28a)

The motion of the nucleons in un6lled shells is as-
sumed to be rapid, compared with the rotation of the
core, so that the particle motion adjusts to this rota-
tion "adiabatically. "The wave function may then be
written as a simple product

D(~.)x(r'), (VII.29)

where D represents the motion of the core, and x the
intrinsic motion of the nucleons in unfilled shells.
Since I induces a rotation of the coupled system, it
clearly must leave the intrinsic state of the extra
nucleons invariant. Thus I operates only on D while
J operates only on x.

It, follows at once that D(0„) must be the proper
function for the symmetric top, with eigenvalues

I D~z = I(1+ l)D~m,

I.D ~K ——3EID~K,

Is DMK —+DMK ~
(VII.29a)

where K is the projection of I on the symmetry axis,
and 3II is the projection of I on the space-fixed axis.
Because the nucleons move in a deformed well, J is
not generally a good quantum number. Therefore,
the intrinsic wave function x will be designated by
0, the component of the angular momentum of the
nucleons in unfilled shells on the axis of symmetry.
The axial symmetry of the nuclear core is assured
by the constraint

The moments of inertia are given by the hydro-
dynamical model as

8„=4B,P' sin' (y —-', ~v), (VII.27c)

and the R„are the angular momentum operators for
the nuclear core, obeying the usual commutation
relations

(VII.29b)R.'f = 0

(I, D~~)xg = D~~(J, xo) (VII.29c)

&.'b = k R.(P'+ PY) . (VII 27b)
which implies that

The vibrational states are generally very high in the
nuclear sprectrum, so that they are hard to observe.
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so we must have

(VII.29d)

Diagonal matrix elements of H,.t are then bound to
be

Properly normalized eigenfunctions for the coupled
system must then be taken as"

P(IKM) = [(2I + 1)/16'']' '

X [D~zc X~ + (—1) D,~-~ X-xj

(VII.29e)

to preserve invariance under reQections of the co-
ordinates.

A set of states having the same intrinsic wave
function, but differing in I are denoted as a rotational
band. Since I &~ K the allowed states of a K band are

I =KK+1, (VII.29f)

and will obviously be ordered according to increasing
values of I. When K = 0 the states

I = 024
have even parity, while the states

I 1 3 5 o ~ ~

(VII.29g)

(VII.29h)

have odd parity. K = 0 bands of even parity are
easily recognized in many nuclei (S55).

The Hamiltonian relevant to the rotational col-
lective motion is

H,.t, = H, + (h, /28)(I'+ J' —2I J), (VII.30)

where the vibrational terms are neglected and we
have already noted that for a spheroidal deformation,
I.' —J,' may be equated to zero. Clearly the term in
J' affects only the intrinsic structure, and therefore,
may be incorporated into IJ„

H,.t,
——H„'+ (A/28)(I —2I J) . (VII.BOa)

The I.J term is not diagonal in the f(IKM) repre-'
sentation, and thus, it can perturb the energy levels
within a rotational band by mixing K values. If J lies
along the z' axis, then I J = J' and then this pertur-
bation becomes independent of I. For this reason

(h,'/s)I J (VII.BOb)

32 If K = 0, One has

N(IOM) = [(2I + 1)/8n'2]'&2DLsoXo.

measures the decoupling of the intrinsic motion from
the z' axis, and is generally referred to as the de-
coupling term.

At this point, it is usually assumed that the mixing
of K bands can be neglected as a first approximation.

and c~ is the amplitude of the function x« in the de-
formed intrinsic wave function XK. This latter term
in b(K-, ) is needed, since I J has a nonvanishing
diagonal matrix element for K = 1/2 (D53b).

The lowest state of a rotational band is now clearly
seen to have angular momentum I = K. The reason
why three like nucleons in j-orbitals are frequently
observed to couple in such a way as to give an I = j—1 ground state can now be readily understood. U
the surface-to-particle coupling dominates over parti-
cle—particle coupling (as it will for strongly deformed
nuclei) two of the nucleons will pair off by anti-
aligning along the z axis (that is, one will have Q„
= +j, while the other has Q„= —j). The third
nucleon will then go into a state with 0„=j —1, so
that Q=QQ =j —1, and I=K=Q=j —l.
On the other hand, if particle —particle coupling
dominates, three nucleons in an unfilled shell will

first couple to J = j with projection 0 = j on the z

axis. One then has a ground state angular momentum
I = K = 0 = j, as predicted by the simple single-
particle model. The occurrence of I = j —1 ground
states may therefore be considered symptomatic of a
strongly deformed nucleus.

A detailed model of the intrinsic structure has been
worked out by Nilsson (N55). The Hamiltonian for a
single particle in the deformed potential of the
nucleons comprising the core is given by

H =
2 M~'o(~) [(&'+ v ) (1 + 3 ~) + & (1 —

3 ~)1

—(h,'/23I)V'+ al s + Dl'. (VII.31)

The term Dp is introduced to compensate for the
tendency of the oscillator well to raise the energy of
states with high /. For small deformations 8 is related
to the previous parameter P by

8 = 4 (5/vr)' 'P = 0.95 P, (VII.3 la)

and ooo(5) is fixed by the condition that equipotential
surfaces have constant volume:

u co„ar, = const,

coo(8) = (1 —34 8' —(16/27)8') ' 'a)o, (VII.31b)

(rKIV~H. ..iIKM) = &H„')

+ (&'/2~)1I (I + 1) + a( —1)'" '(I + 2)t'(K k) l

(VII.BOc)

where c is given by

~ = Z~ le~I'( —1)' "(~+k), (VII Bod)
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where co,
' is the value of ~0 when there is no defor-

mation. a and D are determined by requiring a good
fit to the observed single-particle level order for a
vanishing deformation.

The Hamiltonian is then written as

H = Ho + H~ + al s + Dl', (VII.8 lc)

Ho = —(0'/2M) V + —,
' 3EI&v'or, (VII.8ld)

iNQ& = P a„iNfAZ&, (V11.81h)
i,A+&=Q

and for each ~NQ) there is a matrix to be diagonalized.
The largest matrix to appear in the Nilsson calcula-
tion is 7 g 7. The parameters of the Hamiltonian
turn out to be a function of A with

Scop —412 ' 'MeV

ii = 2D/0, =0 if N =0,1,2,
= 0.85 if N = 8. (VII.Bli)

Single-particle level positions are then calculated in

terms of the deformation parameter

(VII.81j)

Hs = —MoP()br —, (m/5) I"20(8,q) . (VII.Ble)

The basis functions may then be taken to be ~NLA. Q),
where,

H. [NlAZ& = (N + —;)~~.(NlAZ&

1'~NiAZ& = l(l y 1)~NlAZ)

~.~Ni~x& = A~m~r&

a.)NiAZ& = Z(NlAZ&. (VII.81f)

II0 and P are obviously diagonal in this representa-
tion, while 1 s will couple basis functions in which
A —+ A & 1, P —+ g & 1, and H~ connects functions

(Nlh&(H)(N & 2, l & 2,AZ& 4 0 . (VII.Blg)

No operator in the Hamiltonian may couple X to
X ~ 1, due to invariance of the wave function under
rejections. The coupling of different X values is
thereby neglected as a first approximation, owing to
the fact that 2h, co is much larger than the nondiagonal
coupling energies in most of the applications. It is
expected that the coupling between shells with
different E is accounted for by modifying the param-
eters in the Hamiltonian.

X is thereby regarded as a good quantum number,
and of course so is Q = A + P due to the axial

symmetry of the problem. The single-particle func-
tions are then of the form

where y = —-', (g/huo). The decoupling factor and the
gyromagnetic ratio for the intrinsic motion may then
be computed from the derived ~NQ&.

A great many applications of the collective model
have been Inade to specific nuclei throughout the
periodic table. %e shall describe only a, few examples
in light nuclei (A & 40) here.

There is definite evidence for the existence of very
weak collective effects in 0" (W59a). The electric—
quadrupole moment is

Q(0 ) = (—0.026 & 0.009)(10 ") cm'. (VII.82)

The motion of the last neutron about the doubly
magic core gives rise to a reactive motion of the
protons in the core, producing a quadrupole moment,

1/20 the observed value. Fallieros and Ferrell
(F59b) have demonstrated that a consistent treat-
ment of this effect gives rise to a quantum mechani-
cal contribution from the exchange of the last neutron
with neutrons in the 1p shell. Using oscillator func-
tions it was then found that the quadrupole moment

just exactly va, nished, laying to rest any hope of
interpreting the quadrupole moment of 0" without
distorting the core. Raz (857b) finds a quadrupole
moment of

Q&h..„= (—0.080 & 0.006) X 10 "cm' (VII.82a)

by a straightforward application of the collective
model in weak coupling, while Amado (A57a) has
related the collective effect to configuration mixing
in the nuclear core.

F"has been treated both by a strong (P57) and an
intermediate coupling (A58a) procedure. Intermedi-
ate coupling yields amplitudes for states involving
two quanta of surface oscillation which are a bit large
(about 80'%%u& of the wave function for I = 8/2+), so

that this procedure does not appear trustworthy,
even though the results agree well with experiment.
Paul Ands very good agreement with the observed
properties of F"by a,pplying the Nilsson model. The
even parity states are assigned to the two rotational
bands with K = 1/2, and K = 8/2, which lie much
lower than the others, if 5 ) 0. The I = 1/2+
ground state is then immediately interpreted as the
lowest state of the K = 1/2 band. The level order is

correct, but the level spacing is greater than that
observed. To remedy this, Paul introduces mixing
between the K = 1/2 and K = 8/2 bands through
the term I.J in the Hamiltonian. The observed values
are then quite well reproduced. Table VII-1 com-

pares a few results with the calculations by Elliott
and Flowers (E55a). Chi (C62) mixes in the K = 5/2
band a,s well as those with K = 1/2 and K = 8/'2,
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improving agreement with the position of the I
= 5/2 + state which Paul found to be about 20%
too high.

Evidence for the deformation of the core persists
through the 1d—2s shell (860d, R57a). Paul and
Montague (P58b) successfully treat Na" in a man-

TABLE VII-1. Predictions of the shell model in intermediate
coupling (E55a), with those of the Nilsson model (P57) in F 9.

p...,(Si ') = —0.555 nm . (VII.34)

which deviates strongly from the single-particle
(Schmidt) value

the intermediate coupling procedure a,nd cast some
doubt on the validity of strong coupling.

The ma, gnetic —dipole moment of Si" provides an
interesting comparison of several methods. The
experimental value is

Property P57 Experiment li(-', +) = —1.91 nm. (VII.34a)

p-ray branching
ratio
—~-1
to
—~-13 5

Magnetic moments
(nuclear magnetons)

Lifetime (sec)
—,
' + state

log ft
Ne~g decay

0.&% 0.6%

2.75
3.70

2.80
3.30

3.52 3.2

2.63
3.50 + 0.24

(1.25 + 0.025)
0.9X10 7 5XIO ~ X10 I

Tanz, E VII-2. Amplitude coefficients for Si29 (or P2 ) with
I = —,

' (E = —0.622 A(o).

P vjk
2

0.645
0.814
0.015
0.026

The strong coupling procedure yields a small im-
provement to the Schmidt value (C62)

ner similar to Paul's analysis of F",while Litherland
ef al. (158a, 657e) find strong coupling applicable

Si" and P" provide excellent examples for in-
vestigation due to the fact tha, t one may regard
148i14 as a doubly magic core, and, consequently, a
single-particle treatment is appropriate for the odd
nucleon. In addition the 2 = 29 systems have been
treated by several, diferent procedures, and thereby
we have an opportunity to compare these procedures.

Bromley ef ct. (857b) and Chi (C62) adopt strong
coupling at A = 29. Chi obtains remarkably close
agreement with the position of the first four levels

(1/2+, 3/2+, 5/2+, and 3/2+) in Si"—P" with a
relatively small distortion parameter (P = 0.150 in
P", and P = 0.162 in Si").

The intermediate coupling procedure has also been
applied to the low levels of Si" and P" (F55, 656c).
The wave function

P(II.) = Q.;i p.,i,4(ujK;II.) (VII.33)

includes all possible states with w = 0, 1, and 2
coupling 281/2 and 1d3/'& single-particle orbitals. Ampli-
tude coeKcients for the lowest I = 1/2 and I = 3/2
states are displayed in Tables VII-2 and VII-3. %e
note that the I = 1/2 state contains a 34% admixture
of the Id&y2 orbital, while the I = 3/2 state contains a
17% admixture of the 2si/2 orbital. The two surfon
components amount to only 4.1% of the total wave
function for both cases, which would seem to justify

p = —1.211 nm . (VII.34c)

Intermediate coupling appears to yield a correction
much closer to experiment, lying about halfway be-
tween the single-particle moment and the observed
value. Neither correction, however, comes as close

TasLz VII-3. Amplitude coefficients for Si» (or P») with
I = —,

' (E = —0.622 lira).

P vj7c
2 .

0.645
0.157
0.157
0.015
0.013
0.013

to the observed moment as the results obtained by
configuration mixing (N59a, reviewed in Sec. IV.5),
where one gets

p. = —0.93 nm, (VII.34d)

by mixing configurations in which one nucleon in a
1d5/2 orbit is promoted to a 1d3/2 orbit.

This comparison indicates that, when the core is
not strongly deformed, configuration mixing proba-

p.i..., = —1.779 nm, (VII.34b)

while for intermediate coupling we obtain (F55,
656c)
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bly provides a clearer interpretation of magnetic—
dipole moments than the collective model, which
presumably takes a large number of mixed con-
figurations into account (A59a). The reasons for this
were explained in detail in Sec. IV.5. The situation is
quite different in calculating electric —quadrupole
moments, however, where the eGect of a small ad-
mixture in which many particles are excited may pro-
vide a substantial correction to the result.

In the intermediate coupling approach it is neces-
sary to introduce the single-particle energies as addi-
tional parameters (T60c), so that this method throws
little light on the level order. If the deformation is
not strong, however, it would appear to be reasonable
to take these parameters out of a simple shell-model
interpretation.

In P" the intermediate coupling procedure breaks
down (056e), and one must refer to the Nilsson model
in order to understand the level order (858f). One
notes, in fact, that in the 1d—2s shell the parameters
needed to interpret levels in terms of the collective
model are subject to rapid Quctuations in going from
one isobar to the next (C62).

This general problem persists in heavier nuclei as
well. While many nuclei exhibit a collective behavior,
the parameters needed for quantitative comparisons
are never near the hydrodynamic values which we
have discussed so far. The observed moments of
inertia, in particular, are generally much larger than
those given by Eq. (VII.27c). The maximum value
that the moment of inertia may take is, obviously,
the rigid body value 8„,. When one assumes irrota-
tional Qow for the nuclear Quid, one finds a moment
of inertia

the Cartesian coordinates of a nucleon in the labora-
tory system, and x', y', z' the corresponding coordi-
nates in the body-fixed system. If z' is the symmetry
axis and x' the axis of rotation then

S'=X
y = y cos (vt + z sin (vt

z' = —y sin cut + z

cosset�.

(VII.86)

HP = ih(BQ/Bt), (VII.86b)

we transform to the body-fixed frame and note that

V(xyz, t) = V(x'y'z', o) .
Now differentiate

(VII.86e)

P(xyz, t) = p(x'y'z', t)

totally with respect to t (x is fixed)

(VII.86d)

B$ . By Bp By' By Bz'

Bt Bt By' Bt Bz' Bt

(VII.86e)

The Hamiltonian for a single nucleon in the
laboratory frame is

H = T„+ V(xyz, t), (VII.86a)

while the wave function will be denoted as P(xyz, t)
in the laboratory and y(x' y''z, t) in the body-fixed
frame of reference. In order to be able to deal with
a static potential in solving

2
&irrot 8rig P (VII.85)

Schrodinger s equation in the body-fixed frame now
becomes

which is usually found to be about half the observed
value. The assumption of irrotational Qow is clearly
in error, and at the same time 8„-, turns out to be
larger than the observed moments of inertia by a
factor of 2

ih(BqiBt) = H'q,

where H' has only static terms

H' = T„+V(x'yY) —(ut. .

(VII.37)

(VII.37a)

irrot + obs ( rig p
(VII.85a)

so that one must seek a method of computing 8 more
sophisticated than either of these two simple ex-
tremes.

Inglis (I54, I55, I56) has devised a simple model

(the "cranking model" ) which estimates the collec-
tive response of nucleons to a rotation of the binding
field. In the cranking model the nucleons are assumed
to move in a spheroidal potential well which rotates
with constant angular velocity co about an axis
perpendicular to the symmetry axis. I et x, y, z be

If co is small we may solve Eq. (VII.87) as a simple
stationary-state equation and disregard the slow time
dependence of the energy eigenvalue and the eigen-
function.

We seek the solution up to terms in ~2, which are
most easily obtained by perturbation theory. The
zero-order Hamiltonian is then

(T„+V(x'y'z')) ~i) = E';"~i) (VII.87b)

and col. is the perturbation. Obviously,

(VII.37c)
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and hence the energy shift in second order is given by

E~(«) = E + «g «) g&) (VII.37d)uo ~ l(~I@I~)l'

with corresponding eigenfunctions

~- = l~&+ ~ Z «& «l (VII 37e)
n

E„' («) is not quite the correction we seek, since

H = II' + (oL. . (VII.37f)

The perturbed energy in the laboratory system is

E-(~) = E-'(«) + ~6'IL.I~.&

= E„+ g ... *,., (V11.37g)
(pl p l(flL*lri)l

If several particles are present in the well we must
sum the above expressions over all occupied orbitals.
One interprets Eq. (VII.37g) by recalling that
classically

E((u) = E(0) + —', d«(VII. 38)

where 8 is the effective moment of inertia of the
system

2 g g &pi

*
&p) . (VII 38a)

n

Straightforward application of Eq. (VII.38a) to a
system of independent nucleons leads to an effective
moment of inertia very close to the rigid-body value,
and consequently too large to coincide with the ob-
served values. Bohr and Mottelson (B55) suggest
that the independent-particle picture is too naive and
that residual interactions among the nucleons must
be taken into account. In particular, one might ex-
pect that the pairing eGect would tend to lower the
ground state energy E" in an even-even nucleus, so
that the energy denominators in Eq. (VII.38a) are
much larger than an independent-particle treatment
would indicate, reducing the calculated moment of
inertia. Consistent perturbation treatments (459,
R59a) of two-body interactions in many-fermion
systems show, however, that the modifications of the
wave functions is such as to exactly cancel the effect
of energy shifts on the moment of inertia.

Bohr, Mottelson, and Pines (B58g) propose that
there is an "energy gap" in nuclei that display the
properties of a strongly deformed core. In the regions
155 ( A ( 180 and 230 ( A & 250, where such
strong deformations are found, the first excited states
of even —even nuclei lie about one MeV above the
ground state, while the Grst excited states of odd A
nuclei have excitation energies of only about 0.2

MeV. This effect may be traced to the pairing energy.
In the first region (155 & A & 180) the protons are
filling the 1h1j./2 orbital as the neutrons Gll the 1ho(2

orbital, while in the second region (230 & A & 250)
protons fill the 1A9)2 orbital while the neutrons go into
the 2g9)2 orbital. The point is now clear. In odd A
nuclei the Grst excited state may arise simply from
promoting the odd nucleon to a higher orbital, but an
even —even nucleus in these regions cannot be excited
without breaking up a zero-coupled pair of particles.
Since the pairing energy is roughly proportional to
2j+ 1 the fa,ct that both the protons and the neu-
trons in the regions of strong deformation fill orbitals
with very high j values means that the excitation of
a pair requires a great deal of energy.

The resulting energy gap is reminiscent of that
found in superconductors" due to the pairing of
electrons with opposite momenta. Belyaev (B59f)
has applied the formalism of the theory of supercon-
ductivity to the problem of nuclear matter. The
energy gap is shown to develop, if the two-body
interactions are such as to create a self-consistent
field plus a residual attractive interaction whose
principal effect is to provide the pairing energy. One
then obtains an eGective moment of inertia for the
system given by

g lpl j*lLc&l' (p' —~) (pp —&) + ~'
;~ E, + Ep E.Ep

VII.38b

where the sum on i goes over all unfilled orbitals,
and the sum on Lc goes over all filled orbitals. X is a
chemical potential approximately equal to the Fermi
energy of the system, the c; are the single-particle
eigenvalues of the self-consistent Geld, 6 is the
"superconducting" energy gap, and

E; = l(c; —X) + 6']' '. (VII.38c)

Griffin and Rich (G59b) have applied this theory to
nuclei" in the rare-earth region, obtaining excellent
agreement with experiment ('%%uo error varies from
20.1% to 0.8/o). This work has recently given rise to
a refinement of the shell model sometimes called the
"quasi-particle" model (K60b, K61b). No applica-
tions of this work to light nuclei have as yet appeared
in the literature.

33 For a thorough bibliography on the formalism of the
theory of superconductivity, relevant to the present problem,
we refer the reader to Belyaev (B5M).

34 Solutions developed by Belyaev have the defect that the
number of nucleons is not conserved and thus spurious states
are mixed into the wave function. Consequently, these results
pertain to an average behavior among neighboring isobars.
Baranger (B60e) has since devised a formalism in which such
spurious states are eliminated.
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0(r') = x.(~')v (~ r')d~' (VII.89)

where y is referred to as the construction potential,
and y is a generating function. One might then take
y to be an independent-particle wave function re-
ferred to the intrinsic axes while the collective proper-
ties of the system are contained in x. The method has
the advantage that the collective coordinates (n;)
appear only as variables of integration, and thus the
problem of redundant coordinates if avoided. The
method has been extended by Peierls and Yoccoz
(P57a, Y57), who treat y by a Hartree —Fock ap-
proach and vary x to minimize the energy eigenvalue

E = Q*Hgdr/ /*/dr . (VII.40)

A simple illustration is found by treating the
center-of-mass motion in this manner. We note that

y = (A!) ' '~u, u, . u~~ (VII 4&)

It is curious that both the shell model and the
collective model offer descriptions of nuclear proper-
ties which are in good agreement with those observed,
even though basic assumptions of the two xnodels are
quite different. This question was brought into sharp
focus when it was found that the anomalous nucleus
F" (the ground state having I = I/2 + even though
F" is in the ld5/, -shell) could be well understood in
terms of either model (P57, E55a).

In Sec. V we saw that it is possible to put the shell
model on a firm theoretical foundation, in terms of
Schrodinger's equation for A interacting particles.
This status has not yet been reached by the col-
lective model. The main problem lies in the fact that
the collective-model wave function is never written
in terms of all the nucleon coordinates. In connecting
the solutions of the 2-body Schrodinger equation
with the collective model one must somehow associate
the coordinates describing the collective motion (n;)
with the particle coordinates (r,r2 r~). Villars
(V57, V58) has approached the problem by making a
canonical transformation from the laboratory system
to an intrinsic set of axes within the nucleus, in the
hope that the Hamiltonian will split into clearly
distinguishable rotational and intrinsic parts. Un-
fortunately the coupling terxn between these parts
turns out to be complicated and quite large, and no
one has as yet devised a successful scheme in which
it can be made small. Thus the method of canonical
transformation does not appear to be a promising
approach to the problem.

Hill and Wheeler (H53) originally suggested writ-
ing the nuclear wave function in the form

s' '"y(r; —R)dR.

It is evident that the method will yield

(VII.43)

x ~Due (VII.44)

when applied to the rotational problem where f is re-
quired to be an eigenfunction of P and I,.

The method does indeed provide generating func-
tions which are intuitively of the right form, and one
may then compare the derived inertial parameters
with those found in nature. When the procedure is
applied to the harmonic oscillator (in its ground
state), the mass parameter is given precisely. This is
not surprising since, as we have seen in Sec. IV.I, the
center-of-mass motion may be separated out exactly
by elementary means for this case. A similar calcu-
lation for the square well leads to an inertial constant
which is substantially different from the xnass of the
system. Application of the method to calculating
nuclear moments of inertial (Y57) yield results of the
right order of magnitude, but no detailed agreement
is attained. A part of the difhculty may be attributed
to the fact that the &p(r;) used were not actual solu-
tions of the Hartree —Fock, self-consistent field prob-
lem.

Elliott (E58a, E58b) has made a careful study of
the similarity between the shell model and the col-
lective model, particularly for nuclei in the 1d—28
shell. The calculations on F" demonstrate that the
shell model is applicable when the mixing of con-
figurations involving orbitals in the same oscillator
shell (s', s'd, s d', and d') are taken into account"
(E55a, R55), while interpretation in terms of the
collective model requires the mixing of K bands
(P57). Now it must certainly be possible to find an
alternate description of the collective motion in terms
of the mixing of shell-model configurations, since all
such configurations form a complete set of basis
functions. The usefulness of such a description de-
pends upon the number of configurations that must
be taken into account, and the difhculty in finding
the mixing coeKcients. Elliott (E58a) demonstrates

35 Some distortion of the nuclear core is needed in the shell-
model calculations, however, to obtain agreement with the
electromagnetic transitions.

does not have the proper translational symmetry and
choose x to be a function of the center-of-mass co-
ordinate R = gr;/A, replacing r; by r; —R in y.
Variation of x in Eq. (VII.40) then yields

(VII.42)

so that
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a classification for oscillator orbitals of the same shell,
such that the basis functions so defined display a band
structure similar to the Nilsson levels.

The classification is based on the unitary unimodu-
lar group in three dimensions (SU«), and is defined in
terms of the linear transformations in three dimen-
sions among the oscillator quanta contained in the
wave function for a single particle in the oscillator
well. One may define operators a&, ac, and a-& which
create one oscillator quantum with angular momen-
tum projection 1, 0, and —j. along the z axis. Like-
wise one has the destruction operators a&, as, and
a 1, obeying the usual commutation relations

[a;,a,] = [a,*,a*, ] = 0, [a;,a ] = &; (VII.45)

The generators of 8Us will then be the nine operators
which annihilate a quantum i and replace it with a
quantum /

(VII.46)

which have commutation relations

[a,*a;,as*ar] = a~a&5@ —a(a, 6;& . (VII.46a)

Irreducible representations of this group (for a
given oscillator shell) may be designated by two
numbers (»), related to the usual partition function

[f] by X = f&
—fs, p, = fs The pro. blem of which

irreducible representations Ds of the three-dimen-
sional rotation group Bs are contained in an irreduci-
ble representation (») of 8Us is then solved by group
theoretical methods yielding

L = K,K + 1,K + 2, , [K + max {X,p}],
(VII.47)

where

K = min {X,p, },min {li,p} —2, , 1 or 0, (VII.47a)

unless K = 0, in which case one has

muting operators

Hp = ai ai + asap + a —ia-i )

Qp = 3as ap —Hp,

LP = C1 QI —9—19-1 ) (VII.48)

which are to be diagonal. Hp is just proportional to
the oscillator Hamiltonian, and the final intrinsic
functions

x([f](»)«~) (VII 49)
are designated by the particle symmetry [f]", the
8Us classifficatlon (»),

xn([f] (»)«AK)Dsrir(Q)dQ

f([f](»)nLM) . (VII.52)

&=3¹—
¹

i1 = —', (Ill; + 1V,) (VII.49a)

and the projection of the angular momentum along
the z-axis K. The x may be expanded in terms of
basis functions in which the total orbital angular
momentum I is a good quantum number

xu([fj(»)«AK) = Q, s c(Xp«AK;aL')

X fn ([f](»)aL'K), (VII.50)

where n distinguishes states with redundant L, and
0 indicates that the functions are referred to an
intrinsic frame of reference where c and A are good
quantum numbers. The Pn may be transformed into
the laboratory frame in the usual manner

lie(l fJ(»)~L'K) = Z~' D~'~(Q)*li ([f](»)~L'K')

(VII.51)
so that by multiplying Eq. (VII.50) by Dsr&(Q) and
integrating we obtain

Thus, this classification leads to a band structure
quite similar to that found in the collective model.
The fact that the bands found in 8Us are cut off at a
maximum value of I does not constitute a significant
difference between the two theories, since this cutoff
is generally high enough to be beyond experimental
observation. A comparison of the wave functions for
F", found by Elliott and Flowers (E55a), and those
given by the 8U3 representations show an overlap
greater than 90%.

Basis functions in the 8' scheme are constructed
by replacing a& a~&, ap cp, and c*& a-& by the com-

P([f](Xp,)KI3I) =

xu ([f](»)K)D sr'(Q)dQ, (VII.53)

which express the laboratory wave functions in terms
of Hill —Wheeler integrals over the wave functions in

36 In the 1p shell the particle symmetry is identical with the
SU3 partition function since each particle is associated with
one oscillator quantum. Koltun (E61) has applied an interest-
ing computational technique to intermediate coupling prob-
lems in the 1p shell based on this method.

L = max {lI.,y},max {X,p} —2, , 1 or 0. (VII.47b) Ifwe redefine the f so that states are distinguished by
K rather than 0. one can write:
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the intrinsic frame. The intrinsic states xg are re-
dundant in that there are several sets of ~ and A.

which generate the same P. Elliott chooses e = e

= 2X + p, h. = -', y if X )~ y and e = e;, = —(2P,

+ p), A = ~X if X ( p, in order to ensure that all
states of a given representation P,p) are generated by
as few intrinsic functions as possible.

Thus the similarity of the states classified by the
irreducible representations of SV3 to a rotational
band [found in Eq. (VII.47)], is not merely coinci-
dental since Eq. (VII.58) displays the relation be-
tween the intrinsic states and a rotational wave
function referred to the laboratory system. Goshen
and Lipkin (059c) and Pilkuhn (P59) have devised
simplified models of this scheme (in one and two
dimensions) in which the oscillator Hamiltonian is
shown to split into a collective and intrinsic part.

An interesting comparison of intermediate coupling
wave functions and wave functions generated by
applying Elliott's method to Nilsson's intrinsic func-
tions in the 1p shell has been made by Eurath and
Picman (E59c). The Nilsson scheme yields three
single-particle levels with K = 3/2, (1/2)' which may
be expanded in terms of eigenstates $(nIK) of the
total angular momentum I and its projection on the z

axis K

~NK)D = Q, I C rx(g)C'a(HAIK), (VII.54)

where q is the deformation parameter [defined in Eq.
(VII.31j)],and the subscript 0 again denotes the fact
that these functions are referred to an intrinsic set
of axes. The wave functions in the laboratory system
are then obtained by Elliott's generating procedure

$(nIllII) = Nij;(q) (2I + 1) [D~M(Q)]*~NK)iidQ,

(VII.55)

where Nl~ normalizes P. The P(uIM) are then com-

pared with the functions

@zni = Q dr~P~i~ (VII.56)

obtained in Eurath's (E56) intermediate coupling
calculations (discussed in Sec. IV.3). Overlaps of
99% or better are obtained by choosing g a/K roughly
proportional to the number of particles or holes in the
shell, and the sign as positive if the shell is less than
half full, and negative if the shell is more than half
full. The spin-orbit coupling strength e cancels out
in the product rl a/K, thus this parameter is a
measure of the amount of deformation needed to
simulate the eGect of the two-body interaction.
Eurath (E59a) has used the generating procedure to
compute the mixing of higher configurations (2fico

above the ground configuration) in the wave func-
tions of 1p-shell nuclei, and 6nds considerably im-
proved agreement in the estimates of E2 transition
rates.

(VIII.1)8 =E —nE,
where E is the total binding energy of the nucleus,
and E is the binding energy of the n particle. Table
VIII-1 displays values of 8 for a few light nuclei.
We note that the inter-alpha binding per 0. bond is
nearly constant at ~2.4 MeV.

This simple observation appears to give considera-
ble weight to the cx-particle model, but upon closer
examination two major defects become obvious. The
interalpha binding in Be' should be a cornerstone of
the theory, but this nucleus is not even dynamically
stable. In addition, the constant value of the n bond
is simply related to the fact that the average binding

energy per nucleon is roughly constant in these
nuclei.

Another difhculty of the model is the fact that the
u—n interaction is quite weak, while at the same time
the o. particles must be closely packed in order to
reproduce the observed nuclear densities. Therefore
the amplitude for zero-point oscillations of the ~
particles could not be small compared to their spac™

37 In Ne and Mg there is some doubt about how many
bonds one should count for the chosen con6guration. We have
simply taken the number which is in beat accord with the
other nuclei.

VIII. CLUSTER MODELS

The observation of 0, decay in radioactive nuclei
led to the speculation that n particles might exist as
stable structures within the nucleus very early in the
development of nuclear theory. The resulting n-

particle model had a strong intuitive appeal. The
number of particles to be dealt with in a complex
nucleus such as Ne" would be reduced from 20
fermions with spin -', and isobaric spin -', to only 5
bosons with spin zero and isobaric spin zero.

The most striking feature of this model was its
interpretation of binding energies. The o. particles
were assumed to be arranged in the ground state

configuration so that they were as closely packed as
possible. In 0",for example, the four o. substructures
should form a tetrahedron, so that each of the six
o. pairs are close together. Now the binding energy of
a nucleon in the n particle is about 7 MeV, so that
nearly 90% of the nuclear binding energy is already
accounted for. The remainder, denoted as the "inter-
alpha binding energy, "will for a nucleus comprising
n o.-particles be given by
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TABLE VIII-1. Inter-alpha binding energies 8 in light A = 4n nuclei.

Nucleus

Bes
l2

O16
Ne20
Mg24
Si»
8'2

Number of
particles Con6guration

Dumbbell
Triangle
Tetrahedron
Trigonal Bipyramid
Octahedron
Pentagonal Bipyramid
Hexagonal Bipyramid

Number
of bonds

1
3
6
8

12
16
19

B (MeV)

—0.12
7.33

14.4
19.8
28.8
37.8
46.8

8 /bond

—0.12
2.45
2.42
2.41
2.40
2.36
2.47

ing. This must create a strong overlap between the
internal wave functions of the o.-particles, so that a
constant interchange of nucleons will occur, and it is
hard to believe that individual 0. particles retain their
identity. "To remedy the situation the model was re-
vised so that the n particles were pictured as dis-
solving into nuclear matter and then reforming
(F87b, W87, W87c). It is found, however, that the
"lifetime" of an a particle is not long in nuclear
matter, so that the model does not appear to be
useful in the description of complex nuclei.

It is possible that configurations in which several
nucleons are closely correlated (or "clustered" ) may
have large amplitudes in the wave functions of a
few light nuclei. As we related in Sec. V, clustering is
entirely negligible in saturated nuclear matter, but
near the surface where the density is below its
saturated value, clusters very likely will form. A
reasonable approach for determining the signi6. cance
of clustering in a given nucleus is to examine the
energy needed to separate the nucleus into a given
cluster configuration. If we break a nucleus of A
nucleons up into k clusters, each composed of n~

nucleons so that

(VIII.2)

then the "intercluster binding energy" may be de-
fined as

B(n„ns, ) = Li' —Qg Eg, (VIII.8)

where E is the binding energy of the nucleus in
question and E~ the binding energy of the (free) kth
cluster.

Intercluster binding energies for a few nuclei in the
1p shell are displayed in Table VIII-2. If the inter-
cluster binding is small compared to the binding
energy of the least strongly bound cluster of a given
configuration, then the formation of this configura-
tion is favored energetically and may strongly over-
lap the actual nuclear wave function. On this basis

38 Modern estimates place the mean free path of an n
particle within the nucleus at about 2 X 10 rs em (R58a).

the cluster model should be applicable to Be' and
Be' if it is ever applicable at all. It could not possibly
be realistic in B"since it requires 6.1 MeV to break
this nucleus up into smaller groups of particles (He'
+ He'+ H'), and the most weakly bound system
(H') in the favored group is only bound by 2.2 MeV.

TABLE VIII-2. Inter-cluster binding energies for some 1p-shell
nuclei.

Nucleus

Li6
Li7
Bea
Be9
B10

C12
O16

Cluster
configuration

He4+ H2
He4+ H3
He4+ He4
He4+ He4+ n
He4+ He4+ H2
Li6 + He4
(He4)s
(He4)4

Inter-cluster
binding energy (MeV)

1.5
2.5—0.1
1.6
6.1
4.5
7.2

14.4

A

Qp;+ ah Qr' P = EP (VIII.4)

to write a cluster-model wave equation

where c = 3/Ico/0, and
(VIII.5)

ni ni

P; = gp. , 8; = —gr, . (VIII.6)
1

s=l +i s=l

0"and C" display enough stability against break up
into four and three 0. particles that application of the
cluster model is very doubtful in the ground states.
The excited states of these nuclei lie fairly high above
ground, however, and may overlap certain n-con-
figurations strongly. Li' and Li' may be considered as
borderline cases subject to more intensive investi-
gation (E6lc).

By any standards Be' is the most favorable nucleus
for application of the cluster model. Wildermuth and
Eanellopoulos (W58) employ the separability of the
harmonic oscillator Harniltonian
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The H; now depend only on the relative coordinates
between the particles of the ith cluster. In Be' the
coordinates of the two 0. clusters are

R., = —,
' gr; (VIII.7a)

R., =-', gr, (VIII.7b)
i=5

with internal coordinates for the 0.1 cluster

gl2 ~1 ~2 $34 ~3 ~4

gi234 (r, + rm) —(r8 + r4), (VIII.7e)

and a similar set for the 0.2 cluster. The wave function
for Be' may then be written in the form

4 = S[P(nl)tt (n2)X(R i —R 2) }, (VIII.8)

where 8 denotes the fact that one must antisym-
metrize the wave function with respect to all of the
nucleons. Because of the Pauli principle X(R &

—R„~) must be an oscillator function of at least
fourth degree so that four nucleons are forced into
the 1p shell in the corresponding independent-particle
wave function. Oscillator functions of the fourth
degree involve the 4s, 2d, and 1g states.

Wildermuth and Kanellopoulos (W58) then use the
two-body interaction (which reproduces two-nucleon
scattering data up to 50 MeV)

a = 4.7 )& 10"em ', (VIII.10)

which would yield a binding energy for He4 of 28.5
MeV with rms radius 1.55 )& 10 "em, very near the
experimental values of 28.2 MeV and 1.44 )& 10 "
em.

One then has a very simple picture of the low-lying

levels of Be' in terms of two n particles, whose relative
rotations provide the observed spectrum (a large

energy gap exists between the second and third ex-
cited states, indicating the break up of an n particle) .
The shell-model interpretation of these levels is

equally simple. Table IV-1 tells us that the states of
the (1p)' configuration with maximum orbita, l sym-

F12 VO exp —(r12/p) [w[l g (1 + 61 ' 62)

X (1+ ~, ~2)]+ ti[-2 (1+ ei &.)
——. (1+ ~i ~2)]} (VIII.Q)

where V&& ——68.6 MeV, P = 1.55 )& 10-" cm, w

= 0.41, and b = 0.09. A. '80 ground state is obtained
for Be' with excited states 'D2 and '64. The excitation
of the 'D and '0 states is proportional to L(I + 1) so
that one has a rotational band cut off at L = 4. The
oscillator parameter used for Be' was

metry ([X] = [4]) are the '80, 'D2, and 'G4 states.
These wi11 then be the low-lying levels of Be' and it
is well known that their spectrum resembles a rota-
tional band (F87a). There is therefore no distinction
between the predictions of the shell model and the
n-particle model.

It is found, in fact, that after the wave function in

Eq. (VIII.8) is properly antisymmetrized the usual
shell-model wave function for the system is obtained

(P56a, E60). This result is quite a general one. Per-
ring and Skyrme (P56a) have demonstrated that a
similar situation attains for any nucleus which can
be written as a configuration of n particles, and their
results have been generalized to other nuclei by
Eanellapoulos and Wildermuth (K60). The reason
for this is easily understood. The particles are not
really uncorrelated in the independent-particle model.
In Be', for example, due to the fact that the four 1p
nucleons are in a relative state of maximum orbital
symmetry, there is a high probability that they will

be found clustered together on one side of the closed
18 shell.

%hat then is the distinction between the inde-
pendent-particle and cluster models~ If one con-
sistently includes configuration interaction in both
models, certainly there is none. On the other hand,
if we try to represent nuclei by a single configuration
we find that certain types of collective motion may
be incorporated into the cluster model in a simple

way. For Be' the mean separation between the two

n particles may be treated as an additional parame-
ter. If this separation is much larger than the shell

model indicates, then the Q.-particle model does in-

deed describe a collective distortion of the Be' wave

function which could only be described in shell theory

by including configuration mixing. The cluster model

should then be looked upon as an alternate method of
investigating distortions of nuclear wave functions,
and we have the problem of comparing it with the
model reviewed in Sec. VII.

Blair and Henley (B58h) propose a "strong cou-
pling" version of the o.-particle model for Be'. The
system is composed of two n particles separated to
form a dumbbell, and a neutron which is strongly

coupled to the motion of this dumbbell so that th.e
projection of its angular momentum (0) along the
symmetry axis is a good quantum number. The wave

function for the system is then taken to be

2I+ 1
Ci~~ = ~ X()Ri —R2 })

&& {6 ()D' (~')+ (—1)''A- ()&'- (~*)}

(VIII.11')
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where r is the coordinate of the odd neutron, 0,
represents the three Euler angles which specify the
orientation of the symmetry axis of the dumbbell,
K is the projection of the total angular momentum
I on the symmetry axis, and M its projection on the
space-fixed axis. The model is motivated by the
observation that the energy levels in Be' and Be' are
strongly reminiscent of a rotational ba,nd structure.
Kunz (K60) has performed detailed calculations on
Be', which are formally similar in structure to Nils-
son's calculations (described in Sec. VII) for the
strong coupling collective model.

The rotational eigenvalues

EI = (A /28)[I(I + 1) —Ip(jp + 1)] (VIII.12)

with moment of inertia

(VIII.12a)

(3II is the mass of an n particle and 2B the equi-
librium separation of the two a particles), yield a
reasonable fit to the K = 0 band of Be' and the
K = 3/2 band of Be' for an equilibrium separation of

28 —4.6 && 10 "cm . (VIII.12b)

Eunz relates the energy levels of Be' (E&) to those of
Be' (E&) by

Eg = Qr. [1+ (—1) ]~C„"„p~'Ez—Ep/p, (VIII.13)

reproducing the K = 3/2 band of Be' (3/2 —,5/2 —,
7/2 —,9/2 —) to an accuracy of about 10%.

The calculated electric —quadrupole moment of Be'
is 7.9 )& 10 " cm', nearly three times the observed
value of 2.9 )& 10 ".Thus it seems that this nucleus
is not as distorted a,s the O.-particle model suggests.
Eurath's (K56) intermediate coupling calculations
reproduce the level sequence in Be' quite as well as
the n-particle model, but with a spin-orbit coupling
strength which is surprisingly weak near the middle
of the 1p shell (see Table IV-6). The magnetic mo-
ment of Be' (—1.18 nuclear magnetons) is closely re-
produced by both models.

The need for introducing some collective effects
into Be' is evident from the large quadrupole mo-
ment, but the n-particle model appears to be some-
what too extreme. Probably this nucleus is best de-
scribed by some compromise between the two models
involving considerable configuration interaction, per-
haps the Nilsson picture.

Dennison (D54) succeeds in correlating the posi-
tions, angular momenta, and parities of sixteen levels
with excitation energies up to 13.25 MeV in 0".Per-
ring and Skyrme (P56a) find, however, that once the
Q.-particle wave functions are antisymmetrized they 1 1 1

apppl + +lflp + 62/21 (VIII.15)

become combinations of a few shell-model states in-
volving the excitation of one, two, or three nucleons
out of the (ls)' (lp)" con6guration. It is hard to de-
cide whether or not the agreement found in the o.-
particle model is just coincident al. Dennison raises an
interesting argument. The ground state of 0" is cer-
tainly spherically symmetric, while the Q.-particle
model describes it as a tetrahedron. If the nuclear
volume is divided into four equal parts, each part will
on the average contain two protons and two neutrons,
the spins in each pair being oppositely oriented. The
probability of finding a fifth nucleon in a small vol-
ume is greatly reduced by the fact that the orbital
part of the wave function for two like nucleons with
spins oriented in the same direction is necessarily
antisymmetric. Thus even a weak tendency to form
four-nucleon clusters in the nucleus may be amplified.
It is conceivable that even small cluster admixtures
play a deciding role in determining the order of
closely competing shell-model states.

The status of Li' in the cluster model is an enigma.
The 1.5 MeV required to break this nucleus up into
an n particle and a deuteron is not very small com-
pared to the 2.2 MeV binding energy of the deuteron.
Hence, while the (ls)' core is most likely stable, a
deuteronlike cluster description for the two nucleons
in the 1p shell does not seem favorable. On the other
hand the separation of the 1+ ground state relative
to the erst excited 3+ state (favored as the ground
state by Nordheim's rule) at 2.189 MeV is frequently
attributed to admixtures of deuteron correlations in
the ground-state wave function (S53), and analysis of
the scattering of deuterons by 0. particles indicates
that the n—d model is worthy of further study (G60a).

Wackman and Austern (W62) examine a three-
body model of Li', in which the n particle is kept in-
tact and the two extra nucleons are treated in quite a
general ma, nner. The interaction between a nucleon
and the ~ particle is adopted from an analysis of n—n
scattering, while the n—p interactions considered are
those of Gammel and Thaler (with hard core) and
Pease and Feshbach (without a repulsive core). Basis
functions a,re of the form

/~1.s(ri, rp) = QLp(op, 0p, a&,sp) f(r&, rp, p), (VIII.14)

where rl and r2 are the respective distances of the two
nucleons from the n particle and p is the distance be-
tween the two nucleons. The spin-orbit functions &~I,&

are denoted by the orientations (0;) of the vectors r;
and the spins of the nucleons (8~, sp). The ground state
(Jz = 1+) will then be written as the linear com-
bination
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The radial functions are simple products

f(r&,r2, p) = Ii, (r&)h(rg)g(p), (VIII.16)

where the h(r) are chosen to be

h(r) = re "" ' (VIII.17)

and p is a variational parameter.
The g(p) express the correlation between the two

nucleons, and must be chosen very carefully. If the
n—p interaction has no repulsive core, the choice

the 7 = 0 levels downward by two or three MeV and
affect the T = 1 levels hardly at all, so that it may
provide the needed corrections both for the absolute
energies and the relative positions of the T = 1 and
7 = 0 levels.

The magnetic moment of Li' is

p(Li ) = 0.822 nm (VIII.21)

compared to a magnetic moment for a p' configura-
tion in the '8i state of

g(p) = e ""' (VIII.18)
p(p' 8&) = 0.879 nm. (VIII.22)

is reasonable. If a hard core is present the function

g(p) must vanish inside the core radius. It was then
found that the function

g(p) = e
"' '[1 —e

'" '], c & p

c ) p, (VIII.19)

which is often suggested for such correlations (see
Sec. V), will not even produce binding. The difhculty
is attributed to the fact that both the potential and
kinetic energies are very large just outside the re-
pulsive core, and, consequently, small errors in the
wave function for this region can have large effects on
the energy eigenvalue (A60b). This error is avoided

by solving the two-body Schrodinger equation with
zero-energy eigenvalue in the region near the core,
and using this solution in that part of the variational
trial function from the core out to some cutoff p.,
where the effect of the core becomes small.

A complication in the three-body model arises from
spurious states which violate the Pauli principle.
These states are introduced because there is nothing
in the formalism to prevent the two 1p nucleons from
being demoted to the ls shell. Such spurious states
are projected out of the Gnal wave functions. The
ordering of levels with zero isobaric spin (J = 1,3,2)
is then given correctly, but the T = 1 level with
J = 0 is found to lie below the J = 3 level, contrary
to experiment. The level spacing is quite reasonable,
but all levels are displaced upwards in energy by
about 3.5 MeV above the experimental values. Since
this is a variational calculation, such a discrepancy is
to be expected. Its source may be that configuration
mixing due to the tensor interaction is not fully ac-
counted for in the calculation. %e note that the
second-order term

('8 i8;, (E —IIo) '8,, i'8 ), (VIII.20)

which provides the triplet-singlet splitting in I,will

not appear in this problem. This term should displace

The above calculation yields

p = 0.866 nm, (VIII.23)

so that one does improve upon the naive estimate of
Eq. (VIII.22). Since relativistic corrections are being
neglected and we are dealing with small differences,
this does not present a critical test of the wave

function.
A problem arises with regard to the electric —quad-

rupole moment of Li'. The experimental value is un-

certain, but estimates place it near (W62)

Q..&.. ——3.8 X 10 "cm'. (VIII.25)

It is quite possible that the tensor effects mentioned

previously will provide the indicated negative mo-

ment in Li' as they do in H' [one should point out,
however, that even the sign in Eq. (VIII.24) is not
definite].

Bayman and Bohr (B59g) have shown that the
cluster model provides an alternate description of
certain states in Elliott's 8U8 coupling scheme. Pos-
sibly the 8US scheme represents a proper description
of the mixing of shell-model states in nature, mani-

festing itself in the cluster model for light nuclei with

only a few clusters, and in the Bohr—Mottelson model
for heavier nuclei. This, however, implies a signifi-

cance for the SUa scheme which is not yet on a firm

theoretical foundation. For the present, it seems safe
to conclude that cluster configurations are mixed into
the wave functions of light nuclei with sufFicient

amplitude to have some inAuence on the properties
of a few favored nuclei. In particular, such cluster
configurations may play a dominant role in deter-
mining branching ratios and angular distributions of
nuclear reactions due to the strong overlap that these
configurations will have with the unbound states
yielded by the reaction (T60d).

Q(Li') = —ll X 10 "cm'. (VIII.24)

Wackman and Austern obtain
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