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be put into the form used)

H(x', t') = G(t — )G(t + * )/G(t —*)G(t y x)
where G' is the derivative of G with respect to its

with a nonvanishing p. If the partial derivative of H argument. When due account is taken of (7.2), it is
with respect to x' is computed, and then x' and t' easily seen that the condition (A80), applied to
are set equal to zero, the result is, when (A15) is H = D'/jJ, ', cannot be satisfied unless p vanishes.
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1. INTRODUCTION

&HAT structural information about the liquid
state can be obtained by application of x-ray

diffraction techniques, has been known since Debye
(1915) and Ehrenfest (1915) showed that the perio-
dicity of a crystal structure is not required for the
production of diffraction effects. Early experimental
diffraction work was done by Debye and Scherrer
(1916) on benzene and by Eeesom and de Smedt
(1928) on liquid argon. This was followed by the
introduction by Debye (1927) of the concept of a
probability function for the distribution of inter-
molecular distances. The relation of this function to
the production of the diffraction pattern was dis-
cussed by Zernike and Prins (1927). These authors

* Present address'. Dow Chemical Company, Pittsburg,
California.

also showed how to apply the Fourier integral theo-
rem to the determination of the probability function
from diffraction patterns Debye. and Menke (1980,
1981) made the erst quantitative application when

they treated the case of liquid mercury.
X-ray diRraction measurements were made in a

large number of liquids during the first half of this
century. In a few instances experimental work was

done over a range of pressure and temperature. The
results for liquids are summarized in reviews by
Gingrich (1948), Furukawa (1962), and Kruh (1962).

The techniques of data treatment by a number of
authors were summarized in a book by H,andall

(1984). The method most commonly used at the
present time is that of Warren and Gingrich (1984).
A. more general approach which treats subtle mathe-
matical points with considerably more elegance is
that of Filipovich (1955a, 1955b, 1956a, 1956b). This
author rigorously presented the diffraction formulas

in terms of both the radial atomic density and the
radial electron density. He related these two func-

tions and quantitatively treated the "diffraction
error" caused by truncating the formal infinite

integral required for the Fourier transformation of
the intensity data. Filipovich also wrote expressions
for the effect of improper normalization of experi-
mental data. In a treatment applicable to the trunca-
tion error as a special case, Waser and Schomaker
(1958) discussed the use of intensity data weighting
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functions when the experimental data that are
available are incomplete.

The analysis of the radial density functions to
identify spurious features resulting from systematic
errors was treated by Finbak (1949a, 1949b). In a
summary paper (1954), he discussed errors occurring
in the work reviewed by Gingrich (1943). These
errors in the radial distribution curves generally con-
sist of nonzero density at subatomic radial values and
also of ripples of varying severity superposed on the
true distribution at higher radii.

The subtleties of the errors arising in the Fourier
transform have pointed to the need for caution in the
treatment of the experimental data, and, particularly,
in the assigning of physical significance to some of the
results. The importance of a clear understanding of
these problems has become more apparent as at-
tempts have been made to extract progressively more
information about distances and configurations from
the fine structure of the radial distribution curves.
The present authors Pings and Paalman (1962) have
recently commented on the difhculties of a critical
test of the presence of 03, 04, N4, etc. , in a condensed
phase in view of the fact that the characteristic
interatomic distances of such species correspond to
the wavelength of error features that are frequently
superimposed on the true distribution functions.

Bemuse of its historical evolution, much of the
early literature on experimental determination of
liquid structure is couched in the terminology and
concepts of solid-state diffraction. There also appear
to exist contradictions and ambiguities in several
reports on the problems of errors associated with the
Fourier integral. For these reasons, and for the reason
that the various pertinent contributions are scattered
through diverse literature, the present paper presents
a coherent treatment of the application of the Fourier
integral to liquid x-ray diffraction data, including a
systematic analysis of several important sources of
error. In view of the recent appearance of the two
excellent review articles by Furukawa (1962) and
Eruh (1962), we will not comment here on data from
actual systems, except as this serves to directly
illustrate points associated with the Fourier trans-
form.

2. ELECTRONIC DENSITY

A. General

The phenomenon of diffraction arises when inci-
dent x rays cause the excitation of a set of electrons
with subsequent radiation from the electrons as
secondary sources. %hen all such scattered rays have

the same photon energy, interference effects occur
between wavelets from the various scattering points.
Several origins of scattering may exist in any given
system. The collection of electrons into groups to
form atoms gives rise to the diffraction eA'ects typical
of a monatomic gas at low density. %hen a mona-
tomic liquid is irradiated, an additional contribution
to the interference pattern is derived from the rela-
tive distribution of the individual atoms. Molecular
liquids exhibit a third type of inQuence „' together with
the effect of atomic structure and relative molecular
distribution, the diffraction pattern is affected by the
relatively fixed orientation of atoms in the molecule.

The following derivations are qualified by three
conditions: First, the primary x-ray beam is com-
posed of radiation with frequency large compared
with any natural absorption frequency of the scatter-
ing medium; second, each scattered wavelet passes
through the sample without rescattering; and third,
no absorption of incident or scattered radiation takes
place in the medium. The first condition is met by
choosing a target material for the x-ray source with
an atomic number suitably higher than that of the
sample. The necessity for this restriction is twofold.
It avoids serious departure of the index of refraction
from unity and the attendant difhculties in defining
the optics of interference phenomena; it also obviates
the laborious recomputation of atomic scattering
factors, since tabalated values presuppose this con-
dition. The second qualification is an assumption
justified by the relatively small scattering cross
sections of most sample materials. The third con-
dition is a theoretical idealization that is never
strictly true and requires that mathematical absorp-
tion corrections be applied to experimental data
before analysis is possible.

The basic problem in an x-ray structural analysis
is finding the solution to the integral equation (Filipo-
vich 1955, 1956)

(I(s,t)) = (p(r, t)e"'dv)

(p(r~, t) p(r, ,t))e""" "'dv~dvn . (1)

In this expression, s = (27r/X) (s& —so), where s, and
s1 are unit vectors in the direction of the incident and
scattered radiation, respectively, X is the wavelength
of the monochromatic radiation used, and ~s~

= (4m/X) sin 8. In the last relation, 8 is just half the
scattering angle, i.e., half the angle between s& and
so. The quantity p(r;, t) is the time-dependent electron
density at a point defined by the position vector r;,
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Because of the masking effect of the main x-ray
beam emerging from the sample area, I(e) data can-
not easily be obtained experimentally for the region
in s about zero. To correct for the inaccessibility of
this "zero scattering, " it is convenient to substract
out the intensity at the origin using (13) and the fact
that I.(s) differs significantly from zero only near the
origin. In view of the linear additivity of the Fourier
transforms, (6) and (11)may be combined as follows:

4 '[ () — ()]- d (14)

4~v'[ (r) —p~(r)] =
"

[I(e) —I (e)] .
8 ~ Sin 8f'C4 .

(15)

For practical analysis of experimen ts involving
studies of distances small compared to the sample
size, it is possible to exploit the fact that n(r) is essen-
tially unity yielding in place of (15):

C. Transform Convergence

In the preceding ma, nipulation of the diffraction
integral the infinite limits for r were retained by the
artifice of defining p(r) and n(r) to be zero outside the
sample. This was done to achieve an explicit expres-
sion for p(r) through the Fourier integral theorem,
which requires the infinite limit. The resulting
expression for p(r) is then obtained at the expense of
demanding an infinite integral of the intensity kernel
in (15) or (16). By experiment, however, intensity
data are accessible only to e = 4~/X because of the
obvious geometric rest, riction. Although some ad-
vantage obviously can be gained by executing the
experiment with radiation of shorter wavelength,
this will never eliminate the problem. Most current
data are being reported for s ( 12 A ' and the
authors are unaware of any experiment to date in-
volving accurate intensity measurements for values
of 8 greater than 20 A '.

Experimentally, it can be shown that the intensity
per atom of scattering from a monatomic liquid,
coherent and incoherent, approaches the intensity

4mr'I p(r) —p] = 4mr'd p(r)

2r
" [I(s) —I.(e)] sin srd~,

(', r«R.]. 16
7t p

In view of the approximations, (16) would obviously
be inapplicable for analysis of low-angle scattering
data or for treatment of data where the characteristic
sample size 8, is very small.

per atom from the material as a dilute gas with in-
creasing a. At large a, the liquid intensity oscillates
about that of an isolated atom with ever diminishing
amplitude. Indeed, this phenomenon has, until re-
cently, been the sole criterion for normalization of
intensity data from arbitrary units to the classical
electron basis delineated above. (This aspect will be
further discussed in a following section. ) Another use
can be made of this fact, however. Since Fourier
integral analysis of diffraction patterns must in-
herently be concerned with the effects of integral
truncation, it is important to choose an eKcient
manner of treating the incomplete data. A criterion
for this choice may be expressed by the equation

eI*(e) sin erde — eI*(e) sin srds

eI(e) sin erd8— eI(e) sin srds, (17)

where I*(s) is the desired function of the intensity
I(8) and e. is the upper limit in s. This may be written
as

eI(8) sin erde ) eI*(e) sin 8rde

or as the sufhcient condition

sI(e) sin er ) sI~(e) sin sr .

f(s) = p(r)e"'dv .

From experience, the relation

(20)

I(s)»(e) —f'(e) (21)
0

obtains for s & 5 A ', and in itself is a sufhcient
condition to satisfy (19). Therefore, the inversion
of a truncated portion of [I(e) —f'(e)) will approxi-
mate the true answer better than an inversion of a
similar portion of 8I(s). It remains to assess the
effect of the linear term in f'(s) upon the desired.
density function p(r) .

From (20) it follows that

f'(e) =
Vat Vat

p(r)'p(r' + r)dv' e"'dv, (22)

where the integrals extend over the nominal volume

In view of the damped oscillations of I(e) about
f (s), the atomic scattering intensity, a likely choice
for I*(s) is just I(8) —f'(s) As disc. ussed by James
(1954), the atomic form factor f(s) can be defined in
terms of the electronic density
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The atomic scattering intensity f'(s) may be factored
out of the integral and the integration performed for
the term in. p.(0) to yield

I(s), sin sr
~f2 ( )

1 — 4zlr p. (r) dr

Fourier transformation of this equation leads to the
explicit expression for p.(r):

4zrr p (r) = s 2 slil srds . (40)
2r

" I(s) —Xf'(s)
7i p s

The necessary adjustment for the exclusion of the
inaccessible "zero scattering" is effected as previ-
ously:

(2) -2 Pan (r,2) = p.n(r)2) +
27l ~12

X I() -Xf'(); f'()I ()IZX s
~fg( )

slil sr)2ds,

(43)

where the function n(r&2) is unity for radii not ap-
proaching sample dimensions.

Manipulation of the Fourier integra1s enables the
electron density to be related to atomic density by a
method presented in general form by Vfaser and
Schomaker (1953).Equations (7), (24), and (40) can
be rewritten as

r[p(r) —po(r)] =, sz(s) — sin srds, (44)
f'( )

4~r'[p-(r) —p.~(r)]

2r 1(s) —X/ (s) —/''(s)/ (a)/Z').
p &f (s)

&& sin srds . (41)

rp. (r) =, sz(s) sin srds,2'

where z(s) has been introduced as follows:

z(s) = (I(s) —&f'(s))l&f'(s)

(45)

(46)

Define by means of the Fourier cosine inte ral the
ceding may be simplified to function T(r) as follows.

4zrr'[p. (r) —p.]
2r 1(s) —)//'(s) —/ (s) I./a)/Z

)7l p &f'(s)
&( sin srds . (42)

'(s)
T(r) cos srdr,

p

T(r) = — — cos srds.
"f ()

7r Z

(47)

(48)

In this relation, the f'(s) in the numerator of the
intensity term arises through the necessity for dis-

posing of the density singularity at the origin. In
(25), the same term arbitrarily was added in an
attempt to strengthen the convergence of the trans-
form. The reason for this distinction is the presence
of f'(s) in the denominator of (40). This function
causes the intensity kernel to tend toward a limit of
unity with increasing s if the numerator term in
f'(s) is absent. Such a situation would formally in-
validate the integral transform.

The relationships derived above pertain to a
system of E atoms of the same kind. Xo attempt is
made here to present corresponding expressions for a
system of different atoms. A weighted atomic density
function was derived by both Pilipovich (1955) and
Warren, Erutter, and Morningstar (1936) for the
case of a system composed of different types of atoms.

The treatment of this section has led to an expres-
sion for the radial atomic density function. In. Ap-
pendix II this function is related to conventional
distribution function n' '(r, 2) used in liquid-state
theory. Equation (41) can thus be resta, ted:

When (47) is inserted into (44) for the function
f'(s)/Z, one integration may be ca,rried out to give

r[p(r) —p, (r)] =
2 (r —t)p. (r —t) T(r)dt . (49)

n 2

I-(s) = Zf.(s)s"'"', (50)

where v„„is the vector from the molecular center to
atom p, f,(s) is the atomic scattering factor for atom
p, and n is the total number of atoms in the molecule.
Considering an assembly of molecules, the total

4. MOLECULAR DENSITY

For the sake of presenting a complete theoretical
base for the use of x-ray diffraction in liquid structure
studies, the pertinent equations are developed for the
molecular radial density function for a system of
identical molecules. The treatment is essentially that
of Menke (1932).

By the use of (31), the intensity for an isolated
molecule p may be written
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intensity becomes

N~ n

be separately averaged. Applying the definition

I(s) = ZZf. () "'",
where r„„is the vector from the origin to atom p in
molecule )(I. Equation (51) can be expanded to

F(s) = Z Zf. (s)f.(s)

where t, is the distance from the molecular center to
atom p, (56) is written

Nm Nm n n

I(s) = Z Z Z Zf. (s)f.(s)e"'"' '""
00

(52) N
—I (s) = F(s) 4IIR'p (R) R dR . (59)

Letting r„be a vector to the center of molecule p,

N~ N~ n n

I(s) = Z Z Z Zf. (s)f.(s) "'-"'e"'"-"".
Once again invoking the Fourier integral,

(~)
ZII

'
I(s) —N I (s))

0 XFs
(53)

The molecular summations may be replaced by The adjustment for "zero scattering" gives

integrals through the use of a molecular density
function, in a step similar to (82). 4mR'[p„(R) —p„(z(R)] =

(60)

I(s) = Z Zf„(s)f,(s)e"'" '""

X
"'

[p (R) + p (0)]d . (55)

The above expression relates to one instantaneous
spatial configuration of all the X„molecules. Because
of the configurational dependence of the nondensity
term in the integrand, it must be spatially averaged
to account for the equal probability of all molecular
orientations.

Integrating the p (0) term,

—Z Zf. (s)f.(s)e"'"" '"'
g 'P Q

n n

Z Zf.(s)f.(s)e"'"""'"'e"'"p-(R)d» (56)

The summed term on the left-hand side of (56)
is just the scattered intensity for an isolated molecule

n n

I (s) = Z Z f„(s)f, (s) sin ~"'-,
sK„, '

where K„, = ~v„„—v„,~. The function

n n „s,se
u a

(57)

in the integral is independent of R and may be re-
moved from the integrand. In fact, v» and v„, are not
related and the corresponding exponential terms must

n n

I(s) = Z Zf. (s)f.(s)e"'"' '""
V V y q

X e" p„(r„)p (r„+ R)dvgvs, (54)

where R = r„—r„.
By a treatment completely analogous to that for

the atomic density case, there results the relation

t(s) —N.t. (s) —Z(s) I.(s)t (E, ss, Z,)')
0 X F(s)

X sin 8M8. (61)
This may be expressed in terms of the pair-distribu-
tion function (see A.ppendix II)

n"'(R,.) = pz~(R„) +
7l 12

l(s) —N I (s) —Z(s)l. (s)/(ass, Z,)'),
0 X F(s)

X sin sB»ds. (62)

The above analysis is such that the choice for the
molecular center influences the form of the molecular
density function. This is apparent from (59), where
the function F(s) is dependent upon the molecular
coordinate system, but the average intensity must
quite obviously be invariant. Furthermore, the origin
of the molecular coordinate system must be at an
atomic center so that F(s) will not exhibit a zero
which would invalidate the transform of (60). The
molecular density apparently cannot be simply re-
lated to the atomic density or to the electronic
density due to gross differences in the intensity
kernels.

S. NORMALIZATION AND ERROR ANALYSIS

The analysis of the preceding paragraphs has all
been based on intensities expressed in absolute units.
These are seldom if ever actually measured directly,
the usual procedure being to determine a total
experimental intensity Its(s), which is in units that
are relatively consistent, but are arbitrary. It is
necessary to normalize such data before using it in
the formulas for the distribution functions. It is con-
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venient to consider a function [I,(s) —I.(s)]~ which
is constructed from I & (s)~ by merely extrapolating the
latter function to zero at the origin of s. This observed
intensity consists of the coherent plus the incoherent
Scattering. One thus requires a normalization con-
stant c, such that

V(8) —I.(s) +»'-(s)] = c[I (s) —I (s)]', (63)

—&f'(s) }(&~) '

When this is inserted in (25), the result is:
(67)

(1 + e) c where e will represent the error. The function
involved in the Fourier integral for the electronic
case is then:

where I .(s) is the incoherent scattering per atom.
Allusion was made in a prior section to the fact that
frequently in the past normalization was eBected by
Gtting the experimental data to the independent
atomic scattering f'(s) at large values of 8

[p(r) —pn(r) —p, (r)], = (1 + e)

&& [ (r) —~~(&) —~ (&)] + 2

(68)

2——2m. p = I(s) —I, (s) —Nf (s)
XZ

Upon substituting (63) into this integral, the follow-

ing relation is obtained for the normalization con-
stant:

s'[f'(a) + I;..(8)]ds —2~'p

"""Ic[I (8) —I.(s)]} = """P [f'( )s+ I -(s)]}

(64)

This procedure is subject to error since the scaling
constant is rather arbitrarily chosen to center the
diminishing oscillations of I(s) about f (s). The un-

certainty is aggravated because for a given expected
error in intensity measurement, the relative error in

I(8) is greater by nearly an order of magnitude in the
large s region than in the neighborhood of prominent
structural features. Thus, an error in normalization
is magnified at intensity maxima.

Another criI;erion for normalization suggested by
Erough-Moe (1956), Norman (1957), Vainshtein
(1957), and Mendel (1962) is obtained from a form
of (25) applicable for r approaching zero. When
suitable limiting values are inserted, the expression
becomes

where the term on the left-hand side is the erroneous
value. For the electronic density, normalization error
thus leads to a linear perturbation plus a small cor-
rection that has the general properties of the trans-
form of the independent scattering plus incoherent
intensity.

A corresponding treatment applied to the atomic-
density function leads to an analogous equation

Thus, for the atomic density, normalization error
leads to a linear perturbation plus a correction
proportional to the transform of the ratio of the total
to the coherent atomic scattering. Because of the
particularly involved nature of the molecular density
intensity kernel, the normalization error for this case
is not presented.

The most important type of error is the "diKrac-
tion error" resulting from the truncation of the formal
infinite integral of the Fourier transform. Denoting
the spurious functions with primed symbols and
drawing upon the excellent presentation of Waser
and Schomaker (1953), the relations connecting ac-
cessible and true functions may be written

s'[I, (s) —I.(8)] d8

Strictly, the expression is true only when the infinite
limit is used in the integrals. However, for a reasona-
ble range of data, c is found to be relatively insensi-
tive to s., the upper limit in s. The older normaliza-
tion criterion of (64) may still be used as a check for
consistency.

In general, exact normalization is not achieved and
it becomes important to examine the nature of the
error from inversion of such data. Consider then the
result of using not the correct value of c, but instead

These equations relate the approximate density
functions to the true values by means of a convolu-
tion with the function (sin x/x). This procedure
corresponds to a unit weighting of the measured
intensity for arguments zero to 8, in the variable s.
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= [sin (r —r~)s.](~(r —r, ) . (78)

The spurious function rp'(r) will exhibit a broadened
maximum at r& of height s./~, minima at r& & 4.50/s.
of height —0.22 s./a. , maxima at r& & 7.72/s. of
height 0.185 s./a, and so on. Such development of
subsidiary features to a density maximum has re-
sulted in much confusion in the theoretical interpre-
tation of past diffraction work, as discussed by Eanda
and Sugarawa (1951). Pings and Paalman (1962)
have recently commented on the problems of identi6-
cation of true details of structure in the presence of
these spurious ripples arising from transform errors.
As suggested by Waaer and Schomaker (1958), there
is sometimes an advantage to modifying the experi-
mental intensity data with a weighting function of
the form exp (—cs'). The resulting convolution in-
volves a similar exponential in r', which decreases
monatomically, but causes 80% more broadening of
the involved peak.

Another general type of error is caused by an
erroneous matching of intensity data from experi-
ments involving different x-ray energies. The most
serious effect is an amplification of the error at the
main intensity peak. This leads in general to a
wedge-shaped er",or, centered at the main peak posi-
tion in s. A similar difhculty may also be forthcoming
from improper correction for absorption in the
sample. An elementary understanding of the phe-
nomenon may be gained by characterizing the error
at s, by b(s —s,). The transform of this function is
proportional to sin a,r. This leads to a rough method
for locating the position of an intensity error causing
a ripple in the density function, since s, = 2a./a, ,

where Ar is the ripple period.
Bastiansen and Finbak (1944) treated this prob-

lem more elegantly for a simpli6ed hard-sphere
system. Their results showed that for a positive
error at the intensity peak, spurious maxima will

occur at 0.26 r', 1.83 r', and 2.67 r', where r' is the
main-peak location in the density function. Similarly,
for a negative error at the intensity peak, spurious

In yeimral, any convenient even-weighting function
may be used, the convolution being carried out with
the cosine transform of this function.

The effect of the convolutions in (70) and (71) may
be assessed by assuming that in the neighborhood of
a maximum in rp(r) at r& this function ia given by

(72)
Then,

sin (r —p)s.rp'(r) = — 8(p —r, ) 'dp
a. . '

(r —p)

maxima will occur at 0.60 r', 1.48 r', and 2.23 r'.
Obviously, this quantitative description does not
exactly describe a system departing from the hy-
pothesized one, but departure should not seriously
change the qualitative picture.

In summary, the interpretation of experimental
diffraction data is beset with the problem of identify-
ing the aberrations caused by truncating the formal
infinite Il'ourier integral. This difhculty is com-
pounded by the obscuring of systematic errors in the
transform integral. The general result of these spuri-
ous effects is to superpose oscillations upon the de-
sired density function and to broaden its structural
features. Several methods have been described to
identify the presence of false information, although
correction of the difhculties generally requires, at
best, a reprocessing of the data. It may indeed be
necessary to repeat experimental work with an
emphasis suggested by the error analysis. As a
minimum requirement for judging the veracity of an
experimental result, the atomic density must essen-
tially equal zero for all radii less than an atomic
diameter and both the atomic and electronic densitiea
must be limited to nonnegative values.

FIG. 1. Scattering geometry.

p I S

speci6ed geometrically by the unit vector s., and the
scattered wave traveling in the direction s. This wave
is scattered from the origin and from the point P,
which is located at a vector r from the origin (see
Fig. 1).Erecting perpendiculars to s, and si at 0 and
I', it is evident that the difference in path length for
waves scattered by these points is just r s1 —r s..
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APPENDIX I. DERIVATION OF THE BASIC
DIFFRACTION EQUATION (James 1954)

The phenomenon of diffraction results from inter-
ference effects among wave trains originating from
various point, s in a medium. The description of such
interference involves quantitative evaluation of the
phase differences resulting from variation of path
length between wavelets. Consider an incident wave
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The corresponding phase angle in terms of the wave-
length X is

gives, upon integration,

(2~/), )r. (s, —s.). (74) n"'(r„r2)dr, dr, = (1V —1) n"'(r, )dr,

If for a given set of geometrical parameters the
displacement of a wave scattered from 0 is A,e'"t,

then the displacement of the wave from P is just

ia) t+i(2+/) )r (S,-sp)
pe

= X(X —1) .

For an isotropic fluid, n'(r, ,r,) can only be a function
of ~r, —r2~, which may be expressed by writing
B (riu). Thus,

The resultant displacement for a system of points is

ice t ~ i(2'/$) rj ~ (s~ -sp)z~pe Z~; e

This may be expressed for a continuum in terms of
the scattering point density, where the resultant
displacement becomes

(r12)drl&r2 —V B (r12)i&2
(2) (2)

Combining (81) and (82),

(2)n (r„)dr, = (X —1) .

(82)

icot r i i(2n. /)1,)r (S,—Sp) 7A.e pjrje (k.
V

The corresponding intensity may be written

(75)

~2 r i i(2x/g)r (s, -sp) ~
dv )

V
(76)

i (2m /) ) r. (s, —sp) ~
dv (77)

APPENDIX II. THE RELATIONSHIP BETWEEN
RADIAL DENSITY AND PAIR DISTRIBUTION

(H111 1956)

or stated as the intensity relative to that of an
isolated scattering point

Thus, the constant in (79) is just V/X or 1/p .
Observing that the right-hand side of (79) or (88)

is essentially equal to the total number of molecules
in the volume, V, the function n&'& (r„r2)/p or
n"'(ri2)/p, expresses the radial density. Therefore,
the number of molecules between r and r + dr from
a specified molecule is

'I~'" ( .)/r-]«
Since x-ray diffraction intensity measurements com-
prise the time-averaged data for an assemblage,
I'ourier inversion of the intensity function gives
access to the average number of molecules in a
spherical shell about an average molecule.

since X —1 choices exist for occupancy of dr2. This
relation implies that the probability that a particular
molecule is fixed at rl while any second molecule is in
dr, at r, is proportional to n"'(r&,r,)dr, . Integrating
this expression over the volume of the system V to
determine the proportionality constant,

const X n"'(ri, r2)dr2 (79)

the summed probabilities for the total
molecular pairs considered.

But the recurrence relation

number of

n'"+" (ri, ~ ri, +i )dr. +i
——(X —h) n'"' (r, r„) (80)

Iinc(&)I (8)I.(s)
I,(s)~

I*(s)
K„q
l„

np
r
r12
ri
8
+12
R
Rp

The probability that a particular molecule is in dr
at r& while any molecule is in dr2 at r2 may be written

C

dvi

(X —1)P'"(r, ,r2) dr, dr2 ——(1/X)n"' (r, ,r, )dr, dr, .
f(~)

(78) ~(~)

APPENDIX III. NOTATION

Normalization constant
Differential volume element about the point de-

fined by ri
Atomic scattering factor
Interaction term between atoms from different

molecules
Intensity kernel for the Fourier transform
Theoretical intensity of diA'racted coherent radia-

tion
Incoherent, intensity from an independent atom
Scattered intensity for an isolated molecule
"Zero-scattering" intensity
Total intensity of radiation observed experimen-

taHy
Unknown function of intensity
vie —&veI

Distance from molecular center to atom
Number of atoms in system
Number of molecules in system
Pair-distribution function
Number of p atoms in a molecule
Radial argument of electronic or atomic density, A
Distance between atoms 1 and 2
Position vector of ith particle
Radial argument of molecular density, A
Distance between molecules 1 and 2
Vector between molecular centers
Radius of spherical sample
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t
T(r)
V

n(r)
3(r —r;)
aV
hr
b,s
&o(r)
8

p(r)
P
o'(r)
o.(r)
p.(r)
o (r)

Scattering angle parameter, (4vth) sin 8, A ~

Location of erroneous intensity feature, A &

Upper limit for 8 in truncated Fourier integral
transform, A &

Dummy variable; time
Fourier cosine transform of fs(s)
Volume
Vector from center of molecule „to atom p
Atomic number
Geometrical factor for "zero scattering"
Delta function
Finite increment of volume
Ripple of density error, A

Increment in a, A &

Density fluctuation about p
Half-angle of diffraction
Radiation wavelength, A
Electron density, electrons / A3

Average electron density
Value of density from truncated Fourier transform
Electron density within one isolated atom
Atomic density
Molecular density
Angular coordinate
Frequency
Error in normalization constant
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