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I. INTRODUCTION

INCE the time when Kinstein presented a thor-
ough analysis of the measurements of space and
time in his theory of special relativity, the semantics
involved in those two conceptual schemes have been
perfectly defined for inertial frames. However, the
effect of relative motion on length and time standards
and the relationship between length and time meas-
urements performed by different observers are by no
means clearly understood when accelerated frames
are considered. In this latter case, practically every
writer explicitly or covertly makes one of the follow-
ing two assumptions:

1. Acceleration in itself does not affect the rate
of a standard clock or the length of a measuring rod
(at least the effects of acceleration on the time and
length measurements can be disregarded in a first
approximation) ; velocity, therefore, is considered the
only agent capable of altering the measurement.

2. Acceleration does not affect the vacuum speed
of light.

Although it has been argued'? that recent Moss-
bauer-effect experiments support the first of these
two postulates, the assumption of either postulate is,
essentially, a matter of convenience and rests on no
compelling physical grounds. The difficulty in inter-
preting experimental checks of the time problem in
accelerated frames is that they all simultaneously
involve two factors: the rate of natural time measured
in the accelerated system and the behavior of ma-
terial systems with respect to that time, <.e., the
dynamics in an accelerated frame. The conventional
approaches have consisted in ruling out one of these
two factors by postulating a solution to the con-
comitant problem and then studying the other factor
in connection with the phenomena of interest:
Sherwin® assumes the emitted frequency to be repre-
sentative of natural time (that is, he assumes the
dynamics in the accelerated frame to be identical to

1 C. W. Sherwin, Phys. Rev. 120, 17 (1960).
2H. Arzeliés, Relatwité généralisée-Gravitation (Gauthier—
Villars, Paris, 1961), Part I, pp. 121-122.

that in an inertial frame) and checks it against ex-
periment; Mpller? assumes natural time to be proper
time and proceeds to the dynamical analysis. Neither
of these approaches seems fully satisfying. All that
can be safely said is that the corresponding analyses
of experimental data do not disprove the proper-time
hypothesis (a negative result, although admittedly
a valuable one).

More elaborate treatments of the accelerated
frames, by resorting to the use of the theory of
general relativity, do not help because the fourth
space—time coordinate must be related to the physical
time through the principle of equivalence or some
similar procedure. In setting up such a relationship
it is implicitly assumed that ‘“proper time’ is the
actual time shown by a moving clock.

Several authors have advised against the loose use
of the integrated proper time

T = /(1 — 1;2/02)1/2dt,

e.g., von Weyssenhoff,* and Fock.® (However, Fock®
makes use of general relativistic proper time, which
is equivalent to the integrated proper time in the
case of a clock at rest in the accelerated frame.)

This paper contains the results of an investigation
of the first of the pending problems; namely, the
relationship between the time measurements per-
formed in an inertial frame and in an accelerated
frame. Specifically, any a priori assumptions, such
as those stated in assumptions 1 and 2 above, are
not used since such an approach would arbitrarily
restrict the space-time coordinate transformation.
The most general transformation relevant to a given
physical situation will be derived from the general-
ized point of view. Such a transformation will neces-
sarily include arbitrary functions and parameters.

3 C. Mpoller, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 30, No. 10 (1955); Helv. Phys. Acta, Suppl. 4, 54
(1?15.)]6.);70n Weyssenhoff, Z. Physik 107, 71 (1937).

5V. Fock, The Theory of Space, Time and Gravitation
(Pergamon Press Ltd., London, 1959), pp. 34, 212; see also

J. Pachner, Bull. Acad. Polon. Seci., Ser. Sci. Math., Astron.
Phys. 9, 827 (1961).
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These functions and parameters will be present in
the physical predictions that can be derived from
the transformation and will have to be determined
from present or future observational data. This ap-
proach seems to constitute the only reliable physical
procedure to be used in arriving at a real understand-
ing of time and space measurements in accelerated
frames. The physical interpretation of observational
data will be further discussed in this context in Sec.
VIII.

Only the simplest case is considered ; namely, only
one spacelike dimension and an accelerated frame in
“hyperbolic’’ motion (to be defined explicitly in Sec.
IV). Both the “proper time’” and “conformal’” ap-
proaches will be shown to be two particular cases
of the general transformation and the physical mean-
ing of these particular cases will be clarified.

The argument used in this paper is wholly kine-
matic and is not related to a gravitational scheme.
Genuine gravitational fields are not uniform through-
out space. Consequently, they cannot be eliminated
at every space—time point by use of a physically
meaningful coordinate transformation. In other
words, the principle of equivalence is meaningful
only in terms of local application in the case of actual
gravitational fields. As a result of its tensor character,
the Riemann tensor will vanish after the coordinate
transformation if it vanished in the frame used before
the transformation was applied. According to the
criterion stressed by Synge,® such a result indicates
the absence of a true gravitational field. Explicitly,
this paper is limited to a study of accelerated frames
in empty space—time.

II. HISTORICAL REVIEW

To this writer’s knowledge, one of the two above-
mentioned assumptions is introduced in all the previ-
ous attempts at a physical definition of time and
length in a noninertial frame. Consequently, these
studies can be divided into two lines of approach:
proper time and conformal.

Proper-Time Approach

In the proper-time approach, the physical clocks
are assumed to tick off the integrated proper time.

This is the most widespread assumption and it has
often been related to the principle of equivalence of
general relativity. In fact, this was the basis on which
Einstein” introduced it. Born® applied it in his pio-

6J. L. Synge, Relativity: The General Theory (North-
Holland Publishing Company, Amsterdam, 1960), p. IX.

7 A. Einstein, Jahrb. Radioakt. Elektronik 4, 411 (1907).

8 M. Born, Ann. Physik 30, 1 (1909).
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neering work on relativistic ‘“rigid-body’”’ motion
wherein he considered the simple case of uniform
acceleration (“hyperbolic motion’”). On the basis of
special assumptions, Einstein® derived a first-order
transformation for the same case.

In a careful work that seems to have been largely
overlooked by subsequent writers, Kottler'® as-
sumed, as a starting point, that “for the moving ob-
server to consider himself at rest means that the
proper spatial coordinates of every point of the co-
moving reference frame are constant from the point
of view of that observer,” and he showed, as could be
expected, that his assumption was equivalent to re-
quiring that the accelerated frame move as a “‘rigid”
body in Born’s sense. He derived an explicit transfor-
mation relating the inertial coordinates (z, y, 2, f) to
those in the accelerated frame (2’,y’,2’,t’) in the case
of hyperbolic motion, ¢’ being the proper time.

Uniform acceleration was again examined by
Whittaker'? through use of a limiting procedure
applied to Schwarzschild’s metric (a procedure that
had already been used by Kottler'®); his work was
continued by Meksyn'* and a comparable approach
was used by Gottlieb.!?

A thorough study of the proper-time transforma-
tion to a uniformly accelerated frame was performed
by Mpller'® from the general relativistic point of
view; this work led to the development of the same
transformation as that derived in Kottler’s work.
Mpller also showed that there can be no clock
“paradox’ when a space-time coordinate transfor-
mation is consistently used (a point of view that was
also stressed by Fock!).

A space-time transformation applicable for use
with any rectilinear motion was formulated by Born
and Biem!® and a detailed illuminating analysis of the
implications inherent in this scheme was made by
Crampin, McCrea, and McNally.*®

Newman and Janis® derived a transformation that

9 A. Einstein, Ann. Physik 38, 355 (1912).

10 F. Kottler, Ann. Physik 44, 701 (1914); 45, 481 (1914);
50, 955 (1916).

11 7, Kottler, Sitzber. Wiener Akad. 125, 899 (1916).
( 12 E). T. Whittaker, Proc. Roy. Soc. (London) A116, 720
1927).. .

B F. Kottler, Ann. Physik 56, 401 (1918).

14D, Meksyn, Proc. Royal Soc. Edinburg AS51, 71 (1931);
Nature 160, 834 (1947).

15 . Gottlieb, Nuovo Cimento 14, 1166 (1959).

16 C. Moller, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 20, No. 19 (1943).

17 Reference 5, p. 213.

18 M. Born and W. Biem, Koninkl. Ned. Akad. Wetenschap.
Proc. B61, 110 (1958).

19 J, Crampin, W. H. McCrea, and D. McNally, Proe. Roy.
Soc. (London) A252, 156 (1959).

20 Ji. T. Newman and A. I. Janis, Phys. Rev. 116, 1610,
1959.
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is indirectly dependent on the proper-time hy-
pothesis; indeed, the argument is based on the con-
ventional “spatial metric tensor,”’*?2 whose validity,
in turn, rests on the explicit assumption that length
and time are evaluated in terms of proper length and
proper time.

Singh and Pandey?® considered an accelerated
reference frame in free radial fall in a centrally sym-
metric gravitational field described by Schwarz-
schild’s metric. They showed how, in principle, a
space-time coordinate transformation could be de-
veloped under particular assumptions (although the
actual calculations are too involved to be practica-
ble.)

Finally, Arzeliés* guided by the requirement for
analogy to the Lorentz transformation, made a
thoughtful guess at the space-time coordinate trans-
formation. Actually, his guess is equivalent to the
assumptions of proper-time measurement and quasi-
rigidity of the accelerated frame previously made by
Kottler and Mgller. He carefully analyzed the
behavior of clocks and measuring rods and furnished
an extended bibliography.

Conformal Approach

In the conformal approach, the vacuum velocity
of light is assumed to be unaffected by acceleration.

In the main, this assumption originated in mathe-
matical studies of the conformal group of transfor-
mations in four-dimensional space or as a result of
the influence of Milne’s kinematic relativity.

Bateman?® and Cunningham?® established the con-
formal invariance of Maxwell’s electromagnetic equa-
tions tn vacuo and developed the mathematical study
of general conformal transformations in four-dimen-
sional space—time.

Kottler analyzed the physical meaning of space—
time conformal transformations. Included in his work
are the results of former work by Ehrenfest?” and
van Os.?®

Further developments were achieved by Schouten

21 C. Moller, The Theory of Relativity (Oxford University
Press, London, 1960), Sec. 89.

21,. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Publishing Company, Inc., Reading, Massa~
chusetts, 1951), Sec. 10—4.

23 K. P. Singh and 8. N. Pandey, Proc. Nat. Inst. Sci. India
A26, 694 (1960).

24 Reference 2, pp. 297-329.

25 H. Bateman, Proc. London Math. Soc. 8, 223, 469 (1910).

26 . Cunningham, Proc. London Math. Soc. 8, 77 (1910).

27 P. Ehrenfest, Koninkl. Ned. Akad. Wetenschap. Proc.
B15, 1187 (1913).

28 C. H. van Os, Koninkl. Ned. Akad. Wetenschap. Proc.
B16, 40 (1913).
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and Haantjes,?*° who stressed electromagnetic phe-
nomena and considered uniform acceleration as a
special case.

Independently, Page®?? defined a transformation
between “equivalent’ accelerated frames on a purely
kinematic basis and particularized the case of uni-
form acceleration. His work stimulated generaliza-
tions and a group-theoretical study of conformal
transformations by Bourgin® and Hill.3* Gupta? tried
to reconcile Page’s transformation with the proper
time approach by regauging length and time meas-
urements. However, this procedure leads to a non-
integrable transformation, which cannot be used as
a space—time coordinate transformation unless excep-
tional care is exercised and a supplementary con-
dition is introduced.?

Jones®” suggested a simple construction for the
practical use of conformal transformations.

The relationship between uniform acceleration
and conformal invariance was recently studied by
Vachaspati and Bali®® in relation to the irritating
problem of the radiation from a uniformly accelerated
point charge.

General Approach

Kottler apparently has been the first to notice
that the assumptions, herein labeled as ‘‘proper-time
approach” and “conformal approach,” can actually
be considered as definitions of two particular cases of
a general problem. (However, Kottler did not study
a more general case.) This remark clarifies Board-
man’s discovery® of discrepancies between Whit-

29 J. A. Schouten and J. Haantjes, Physica 1, 869 (1934);
Koninkl. Ned. Akad. Wetenschap. Proc. B39, 1059 (1936).

30J. Haantjes, Koninkl. Ned. Akad. Wetenschap. Proc.
B43, 1288 (1940).

311, Page, Phys. Rev. 49, 254 (1936).

82 L. Page and N. I. Adams, Phys. Rev. 49, 466 (1936);
Electrodynamics (D. Van Nostrand Company, Inc., New York,
1940), p. 128.

3 D. G. Bourgin, Phys. Rev. 50, 864 (1936).

8¢ . L. Hill, Phys. Rev. 67, 358 (1945); 72, 143, 236 (1947).

35 8. N. Gupta, Science 134, 1360 (1961).

36 H. Arzeliés (reference 2) calls “non-Einsteinian’ a refer-
ence frame derived from an empty inertial one by a non-
integrable differential transformation. He showed (reference 2,
especially Chap. 14, Secs. 2 and 3, and the final note) that (1)
such a transformation is not sufficient to determine the new
coordinate system and (2) the geodesic law and the general
relativistic relationship between metric and matter-energy
density are not valid in non-Einsteinian frames. The latter of
these two remarks is obviously a consequence of the fact that
the relevant coordinate transformations are more general than
those used in tensor calculus; therefore, tensor covariance does
not hold in such problems. Arzeliés’ book seems to be the only
place where a limited attempt is made at handling non-
Einsteinian frames.

37 R. T. Jones (unpublished); Am. J. Phys. 28, 109 (1960);
29, 124 (1961).

38 Vachaspati and L. M. Bali, Nuovo Cimento 21, 442 (1961).

89 J. Boardman, Bull. Am. Phys. Soc. 4, 294 (1959).
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taker’s and Haantjes’ metrics: They pertain to two
different cases.

In the same context, McVittie®® pointed out that
the answer to such a problem as the celebrated “clock
paradox” actually depends on the definition of
“time”’ chosen for use in the accelerated frame. (A
graphic description of an analogous situation has
been presented by Dicke.4)

III. PRELIMINARY IDENTITIES AND EQUATIONS

Basic Identities

As mentioned in Sec. I, space-time is considered
here to be two-dimensional and capable of description
by use of one spacelike and one timelike coordinate.
Let R(x,t) be an inertial frame characterized by the
Minkowskian metric element

ds’ = dt’ — da’ (3.1)

(where ¢ stands for ¢ multiplied by the time measured
in that inertial frame and ¢ is the vacuum light speed
in an inertial frame). Let R'(2,t') be another frame,
unspecified except for the requirement that it be
related to the inertial frames by a finite (‘“‘passive’)
coordinate transformation of positive Jacobian (see
Sec. IV, postulate 2)

t = (V) (3.2)

(in other words, R’ is “Einsteinian’?¢). The timelike
coordinate ¢’ is defined as ¢ multiplied by the time
measured in the relevant frame (this time will be
called “natural time’” in that frame). Similarly, 2’ is
the expression of “natural length” in R’, i.e., the
value of 2’ assigned to each point of R’ is determined
by an actual length measurement in the accelerated
frame. The use of these definitions permits a direct
physical meaning to be assigned to the primed co-
ordinates.

Partial derivatives of functions of several variables
and ordinary derivatives of functions of a single
variable will be designated throughout by subsecripts
(e.g., o', = 92'/0z, xve = %x/0t? ., = da/dz’).

The following identities are easily verified:

z = z(@t),

o =t/J, xt=—2xv/J; (3.3a)
= —t//J, th=ux/J; (3.3b)
J = xz'tz' — Xt . (3.30)

Substituting Eqs. (3.2) into Eq. (3.1) yields the
metric form in the primed frame:

40 G. C. McVittie, Astron. J. 63, 448 (1958).
41 R. H. Dicke, Sci. American 205, No. 6, 92 (1961).
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ds’ = guda 4 2gida’dt + gldt” ;  (3.4a)
gh=1tr—2al, gh==0 —4av; (3.4b)

gla = bt — 22" (3.4¢)
—g = gii — ghgla = J*. (3.4d)

Conformal Transformation

A coordinate transformation from one frame of
reference (R) to another one (&’) in metric space is
said to be conformal if the components of the metric
tensor in the two frames are related by

g = Kgl,
where K is a function of the coordinates in either
frame of reference.
According to this definition, the necessary and
sufficient conditions for the transformation (3.2) to
be conformal are

gis =0, gh+gu=0, (3.5)

that is,
v+t =av+2.  (3.6)

Since z and ¢, in Eq. (3.2), are independent functions
of 2’ and ¢/, Eq. (3.6) yields

ttrtzr = T’ ;

3.7)

where 5 is 1, and can be taken to be 41 by ap-
propriate orientation of one of the coordinate axes.
Equation (3.7) is obviously equivalent to Jones’
criterion.’”

The velocity of light measured from R’ at any
event (z/,t') is

b’ =z, & =12,

V, = C(dx’/dt,)d;=o

and is a solution of the equation*?

gV + 2egl V! + cgls = 0 . 3.8)

The two solutions are the velocities of light in both
directions.

The physical meaning of the conditions (3.5) is
apparent in Eq. (3.8): A conformal transformation s
a transformation such that the velocity of light, with
respect to R’, 1s equal to ¢ in both directions at every
event (z',t"). It will be noted that conformal transfor-

42 Equation (3.8) is different from the conventional general
relativistic equation for the velocity of light (see, for instance,
reference 21) because the physical meaning of the coordinates
is different: in the present work, «’ and ¢’ represent the lengths
and times actually measured in R’, whereas in the conventional
approach they have no immediate physical interpretation and
the actual measurements are assumed to be expressed by
proper length and proper time. The leading idea at the basis
of this paper is, precisely, to waive the latter assumption.
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mations, in themselves, are neither related to nor
based on constant acceleration, in contradistinction
to what some authors seem to believe.

Velocities

A point is defined as being at rest with respect to
a reference frame when its spacelike coordinate is
invariable with respect to that frame.

Let P’ be a fixed point with respect to R’, with
abscissa z’. Its velocity vz, with respect to R, at some
instant ¢/, is expressed as follows:

wp’ = vp’fc = (dT/At)s"=conss = T//E . (3.9)

Conversely, if P is a fixed point with respect to Z,
coincident with P’ at time ¢/, the velocity of P, as
measured from R’ at that instant, is, through use of

Eqs. (3.3),
wp = vp/c = zi/ti = —x/ /2. (3.10)

It is clear that observers in B and R’ generally do
not agree on the relative velocities of the (instan-
taneously) coinciding points P,P’. They do so only
if the transformation (3.2) is such that

(3.11)

This is the case for a conformal transformation.*®

te = 2.’ .

Acceleration

A similar analysis could be made for the accelera-
tion. The only type of acceleration that is considered
in this paper is the rest acceleration, i.e., the accelera-
tion of a moving point P’ at some instant 7%, as
measured from the inertial frame Ro(X,7T") instan-
taneously at rest with respect to P’ at the instant 7.
This acceleration will be computed presently.

The velocity Vp. of P’, as measured from Ry, can
be obtained by use of Eq. (3.9):

WP' = VP'/C = X:'/Tt' .

Since this velocity must vanish at T, so does X ,'.

The rest acceleration A of P’ is thus expressed (as
a result of setting X.” = 0 after differentiation is
completed) by

A/ = @Wp, dT)a'= = (OWr/0t")/(T/dt")
=Xu,/T%) .
The explicit formulas for X and 7' in this expression

4 For example, in special relativity the reciprocity of the
velocity measurements (wp’ = —w’p) is a consequence of both
the postulate of the universal constancy of the velocity of
light in inertial frames and of the principle of relativity. But,
it need not be maintained in a generalization where both
postulates of special relativity are waived.
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are

X=klx—wet); T=Fk({— wsz);

k= (1—wh)™". (3.12)
The velocity wp’ must be considered a constant in

the differentiations and finally replaced by its value
(3.9). Use of this procedure results in

A4S = ety — zoter)(fr — 27) 7. (3.13)
In the particular case in which the rest acceleration
of every point of R’ is constant, 4/¢?is a function of

2’ alone, say, a(z’). The differential equation (3.13)
can then easily be integrated to

afe — @)] = {1+t = L@V, 3.14)
where fi and f; are arbitrary functions of z’. This is
the general equation for the well-known hyperbolic
motion. The physical significance of the arbitrary
functions fi, fo is the following: The value of fi for
any given point P’ is determined by the initial
velocity vo = cw, of that point for £ = 0, according to

wo = —afi(1+ @)™ (3.15)

fo is then clearly related to the initial position.

Proper Time and Length

The ratio, at To, of the actual infinitesimal length
and time measurements dz’, dit’ performed in the
accelerated frame, to the corresponding proper
length and time measurements dX, d7T' are, from
Eqgs. (3.12), (3.9), and (3.4),

(dt'/dT as"=o
(d:v'/dX)dT=o

& — 22)7 = gl 7%; (3.16a)
(6 — &) (@t — wite?)

= gi*/J . (3.16b)
IV. POSTULATES

The postulates on which the argument is based can
be divided into two groups. The first group is com-
posed of fundamental general assumptions that, in
effect, constitute a definition of the basic features of
the present approach. The second group consists of
simplifying hypotheses that are not essential to this
approach but help keep the mathematical calcula-
tions within reasonable limits.

Basic Assumptions

Postulate 1. In the domain where the transformation
(3.2) <s valid, x and t depend continuously on z’, on
t’, and on the acceleration, and are differentiable func-
tions of &’ and t'.

Postulate 2. I'n the limiting case tn which the acceler-
ation of every point of R’ vanishes, the coordinate



ACCELERATED FRAMES OF REFERENCE

transformation must amount to the Lorentz transfor-
mation.

An immediate implication of the first two postu-
lates is that the Jacobian of the coordinate transforma-
tion (3.2) is positive, i.e., [see Eq. (3.3¢)],

J>0. (4.1)

Postulate 3. In order that the transformation be
consistent with the usual conception of “‘time”’ and
“space”’ coordinates, it is required that t be a monotonous
wncreasing function of t' and that ds® be positive when
when dx’ vanishes,* i.e.,

&> 0, 4.2)

Postulate 4. For an observer sitting in R’ to be able
to consider it as a solid frame of reference, some
specification must be made as to the ‘rigidity’’ of
that frame.

The wording of such a specification is by no means
obvious, and indeed, several definitions of the
“rigidity”’ of the accelerated frame have been pre-
sented in earlier papers. One such definition, general
enough to include some systems worked out by
earlier writers, will be chosen as the fourth postulate:
The velocity of lught in each direction, in each point of
R’, 1is independent of time from the point of view of R’
A consequence of this assumption is that the fre-
quency of an electromagnetic radiation is propagated
without change inside the (empty) frame R’ when
such frequency is measured in terms of units of R’.
The above definition of rigidity is the natural exten-
sion of Born’s special-relativistic criterion, akin to
that proposed by Synge** although somewhat more
stringent.

It can be seen in Eq. (3.8) that the mathematical
expression of postulate 4 is

g:'i = fﬁ(:c,')f(x',t’) ’ (7’.7 = 11)14y44) . (4:33')
These three conditions entail the additional equation

J = o@) @), (4.3b)

which may take the place of any one of Eqs. (4.3a).
It will be convenient to use this latter equation
instead of the first of (4.3a).

It will be seen in Sec. VI that the proper-time
approach corresponds to a particular case of postu-
late 4 with f(2’t") reduced to a constant. In that case,

gin > 0.

432 Actually, the latter condition is equivalent to the state-
ment that the velocity of the accelerated observer with respect
to R is less than c. Since this statement is necessarlly true when
postulates 6 and 7 are accepted, the condition g'ss > 0 ,may
be omitted in the present problem. Also, the condition ¢ > 0
is implied by postulates 1 and 2 if ¢, is continuous.

4 Reference 6, p. 115.
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the “rigidity”’ criterion developed by Newman and
Janis?® and by Arzeliés,*® namely, that the conven-
tional “‘spatial metric tensor” is time independent,
is satisfied by postulate 4. The same criterion is
equivalent to that of Rosen,*® as was proved by
Newman and Janis.2°

Of the four postulates in this group, the first three
can practically be inferred from the physical meaning
of the transformation, and these three have been
accepted by every earlier writer. The actual generali-
zation is to be found in the fourth postulate. The
latter may be considered controversial. In this
writer’s opinion, its virtue consists in the fact that
its use seems to minimize the a prior: restriction
imposed upon the transformation, but, of course, it
might have to be replaced by an even more general
postulate, or perhaps by a different one, if it hap-
pened to be disproved in an experiment.

Simplifying Hypotheses

It turns out that the most general solution of the
problem defined by the four postulates above, with-
out any restrictive assumption at all, is practically
unmanageable. Instead of placing arbitrary condi-
tions on the relations between measurements, which
are the result in this problem, it has been found con-
venient to introduce the necessary simplifications in
the starting point where their physical bearing can be
readily assessed.

The first obvious step is to reduce the number of
dimensions:

Postulate 5. Only one spacelike dimension s con-
sidered.

A second simplification consists of assuming that
the law of motion, as seen from an inertial frame, of
each point that is at rest with respect to the acceler-
ated frame is known and is described by means of an
explicit equation in space-time. This assumption
obviously involves no restriction in any given physi-
cal situation. The limitation consists only in the in-
convenience that the solution must be worked out
anew if the kinematic conditions are changed. The
same idea can be readily generalized to the four-
dimensional space-time.

The particular law of motion to be preferred in a
first study is suggested by the following argument.
Special relativity is the theory of the effects, on
kinematic and dynamic measurements, of relative
velocity with respect to an inertial frame. The
method used in special relativity to ensure that
rigorous results are obtained consists in considering

45 Reference 2, p. 71.
46 N. Rosen, Phys Rev. 71, 54 (1947).
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a nonaccelerated moving frame. Any possible effect
of acceleration is thus eliminated without any ap-
proximating assumptions having to be made. The
results may then be tentatively applied as an
approximation when small accelerations are in-
volved; such a procedure leads, precisely, to the
“proper-time approach.”

The scope of the proper-time approach is thus
clearly brought to light; it is, so far, an approximate
treatment, valid for small enough accelerations, and
it must be considered as such until the physical
effects of acceleration are fully understood. The
phrase “small-enough accelerations” is quite vague.
Its operational meaning is: that range of accelera-
tions in which experiments are in acceptable agree-
ment with the theoretical predictions. This range
may possibly cover all accelerations of interest
(indeed no presently available experiment seems to
show that the boundary is exceeded), or it may even
cover any acceleration whatsoever (if clock rates and
measuring-rod lengths are actually insensitive to
acceleration) ; but this question must be decided by
unprejudiced investigation.

The obvious way to extend the method of special
relativity to acceleration effects is to eliminate any
spurious influence from a variation of acceleration
by using only a constant acceleration. The results
may then be tentatively applied as an approximation
in the case of slowly varying acceleration and this
approximation may be expected to be better than
that obtained by use of the proper-time formalism.

Acceleration is not a well-defined quantity in this
problem; the acceleration of P’ has a different value
according to whether it is measured from R, R’, or
R,. There does not appear to be any physical reason
to prefer any one of these three points of view. In-
deed, whatever the choice, a constant acceleration is
by no means a convenient case for experimentation,
but there are advantages in considering a constant
rest acceleration: (1) it is expressed by a finite equa-
tion (3.14) for the unknown functions (3.2), and (2)
since the case of constant rest acceleration has been
considered by several authors (Sec. IT), the compari-
son of the different known particular cases with the
general formula to be derived is straightforward.
Therefore, the following assumption is made.

Postulate 6. Every point at rest in R’ undergoes
hyperbolic motion with respect to R, or, in other words,
the functions (3.2) satisfy Eq. (3.14).

It will be noted that no assumption is made as to
the values of the accelerations of the different points
in R’; the function a(z’) is left completely unre-
stricted. Any assumption regarding a would involve
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a physical hypothesis concerning the behavior of R’,
as seen from R, and the use of such a hypothesis
would bias the argument.

The same can be said of f;(2’). This function de-
scribes the relationship between the distributions of
length measurements in B and R’ at some (arbitrary)
initial moment. It must be left unrestricted.

As for fi(z'), it was seen [Eq. (3.15)] that this
function is related to the distribution of velocities
among the points of R’ at an initial time which is
again arbitrary. In principle, it may also be any
function, but the calculations will be appreciably
simplified by further specifying the physical problem
as follows.

Postulate 7. It will be assumed that there exists one
instant of time at which all the points of R’ are simul-
taneously at rest with respect to R.

That such an assumption is physically reasonable
appears from the fact that it represents the actual
situation when two (inertial) reference frames are
at rest with respect to each other and one of them is
suddenly accelerated. Such a situation would be
expected to occur in any experiment on accelerated
systems where two identically constructed clocks are
found at rest in an inertial frame at the beginning or
end of the process. If the particular instant described
in postulate 7 is taken as the time origin, the mathe-
matical expression for the postulate is [from KEq.

(3.15)]

This seventh postulate could be waived at the
price of facing more involved computations, but the
argument would not be essentially different. A
straightforward partial generalization is the case of
a nonzero velocity which is the same for all the points
in R’. The relevant transformation is then the
product of a Lorentz transformation and the trans-
formation to be derived hereafter.

In the sixth and seventh postulates there is no
implication that the length and time measurements
are identical in both frames at the initial time, for
the assumption is not made (as it is in the conven-
tional papers and textbooks) that those measure-
ments are acceleration independent. Thus the simpli-
fication introduced by use of these assumptions is
less stringent than the simplifications resulting from
the assumptions usually made by earlier writers who
studied the one-dimensional hyperbolic motion.
Specifically, the generalization used in this paper
consists of allowing f, to be an undetermined function
of 2.
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V. THE GENERAL TRANSFORMATION

The most general transformation that satisfies
Eqgs. (3.14) and (4.4) (i.e., Postulates 5-7) is obvi-
ously

z=fi+a'coshF; t=a" sinhF, (51)
where F is a completely undetermined function
F(a't') of 2’ and ¢'.

These functions, substituted into Eqs. (3.4), lead
to the metric tensor

gh = (Fr/a)’ — (0.'/a")" + (for'/a”)

X (a.'cosh F — aF,’sinh F) — fa./, (5.2a)

ghs = (Fv/a)?, (5.2b)

gls = F/Fv/a® — (1/a) fo’Fu sinh F | (5.2¢)
J=—aTFs/d+ (1/a)fo.’Frcosh F, (5.2d)

where a.’ and f;,,’ are the derivatives of @ and f., and
F.’, F;' are the partial derivatives of F.

The second of the Eqs. (4.2) is obviously satisfied;
from the first one, it can be inferred that

at'y’ > 0. (53)
Consequently, condition (4.1) indicates that
—a.//a’ + fau'cosh F > 0. (5.4)

A transformation described by Eqgs. (5.1), (5.3),
and (5.4) satisfies postulates 1, 3, and 5-7. Postulate
2 contains a prescription for boundary values, when
a(z’) = 0, which will have to be worked out for
every particular case. The transformation will now
be further restricted through the use of postulate 4.

This restriction can be effected by expressing that
the ratios ¢'14/¢’s« and J/g'ss are functions of 2’ alone,
ie.,

Fz’/Ft’ — (a/Ft')fZ,z' sinh F = ﬁ;(x') ,
—a.'/aFy 4+ (a/F:) fap’ cosh F = fi(a) .

(5.5)
(5.6)

[It will be noted that fi is positive on account of Egs.
(4.1) and (4.2).]

The system of equations (5.5) and (5.6) is readily
solved in the particular case in which f, .’ = 0. This
solution is described in Sec. VI. In the rest of this
section, f2.." 1s assumed to be nonzero.

In this case the derivation is rather lengthy and is
deferred to Appendix 1. The result is the following
transformation:

z = e\ [uDa@) + a7 (0)],
— 2D sinh [W%a(0) (¢’ + £5)],

(5.72)

t = (5.7b)
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D = a(0){x cosh [*a(0) (¢ + f5)]
- N+ w’ @), (B70)
a(@) =a(@)/a0), e==x1, u=1—2\, (5.7d)
where A is a parameter bound by the conditions
0<A< 3%, (5.8)

fs designates a function of 2/, arbitrary except for the
restriction

f:(0) =0. (5.9)

A restriction is also placed on the acceleration func-
tion a(2’) : when a(0) tends to zero, a(z’) must behave
as

1+ (1 — Na(0)2' . (5.10)
The corresponding metric form is
ds’ = u’a®(0)D*{dt”® + 2fs . dx'dt’
+ [feer — a2 (0)al (N + pa’) M d2®} . (5.11)

In the limiting case in which A\ tends to 1/2, the
transformation becomes

z = 2 (0)[aD'" + 1], (5.12a)
t= =D +f5), (5.12b)
D =130+ ) —a. (5.12¢)

This transformation could also be computed by
direct integration of Eq. (A10) if & = 0. The corre-
sponding metric form is

ds’ = D'{dt”® + 2fs da’dt’
+ [fir — 4a72(0)e21d2} . (5.13)

Use will also be made later of the other limiting
case in Eqgs. (5.7), in which X tends to 0:

= —efla cosh [a(0)(t’ + f)] — @ (0)}, (5.14a)
t = a ' sinh [@(0){# + f)] . (5.14b)

VI. THE PROPER-TIME APPROACH
AS A SPECIAL CASE

The derivation in Sec. V is based on the assumption
that f,,.- does not vanish. The case of a vanishing
f2..» will now be investigated. If f;,.’ vanishes, Eqs.
(5.6) and (5.2b) show that F, and ¢’s, and therefore
g’:; and J, are functions of 2’ alone. Consequently,
Eqgs. (3.16) indicate that at any point of the acceler-
ated frame R’ both the ratio of local natural time to
local proper time and the ratio of local natural length
to local proper length are independent of time. In
other words, at every point in R’ natural time is
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essentially equivalent to proper time; this is the
proper-time approach.

Conversely, in the proper-time approach ¢’s, and
therefore F,, must be functions of 2’ alone. Since
cosh F cannot be independent of ¢ [see Eq. (5.1)],
Eq. (5.6) entails f . = 0. Thus, fs . = 0 s the neces-
sary and sufficient condition for the proper-time solu-
fion.

Since F. is independent of ¢/, so is F.’ as a conse-
quence of Eq. (5.5), and F has the form

F =0t +y¢@], (6.1)
where b is a constant and ¥(z’) is an undetermined

function of . Introduction of (6.1) and of the initial
conditions (A15) into the transformation (5.1) yields

z=a ' cosh[b( +¢¥)] —a'(0), (6.2a)
t =a 'sinh b 4 ¥)]. (6.2b)

Application of the condition that the transforma-
tion must take on the limiting form z = 2/, ¢t = ¢’ in
the limit when a(0) tends to 0, yields

b = a(0), (6.3)
and shows that, when a(0) tends to zero, @ must
behave as

a(0)[1 — a(0)z] . (6.4)
It is clear that Eqs. (6.2)—-(6.4) are identical with
Eqgs. (56.14) and (5.10) in which e = —1, A = 0.
Therefore, the proper time solution is included as a
limiting case in the general transformation (5.7)
through (5.10). The latter is the most general trans-
formation consistent with the postulates chosen in
Sec. IV and the full range of A is now described in the
following equation, which takes the place of Eq.
(5.8):
0s<Ag3 (6.5)
One physical peculiarity of the proper-time trans-
formation (6.2) is that for a given z’ the relation
between ¢ and ¢’ is singularity free and the range
(— oo, 4+ o) of ¢ corresponds to the range (— «,
+ ) of ¢’. For any nonzero value of A, there are two
singularities ¢’ = f; &= #’; in the ¢ function, and the
range (— o, + ) of ¢ is covered by the range (fs
— t', fs + t'1) of t’. This is a particular aspect of
the more general fact that the larger A, the larger the
time dilation in the accelerated frame; that is, the
time dilation is least in the proper-time solution and
greatest® in the case of the rational transformation
46a G. J. Whitrow [The National Philosophy of Time, Thomas
Nelson and Sons, New York (1961), p. 219, footnote 1] has
remarked that the time dilation associated with Page’s

transformation is greater than the dilation corresponding to the
proper-time transformation.
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(5.12). This property can easily be visualized by
roughly plotting ¢ against ¢’ for a constant «’.

As an example, take the case of strongest time
dilation [Eq. (5.12)] and assume the acceleration at
2z’ = 0to be 1 g. The value of ', at the origin of R’ is
then 2/g, which means a (natural) time of the order
of two years. In the same case, for example, the finite
value of the “age of the universe” could be accounted
for if our astronomical frame of reference had an
average uniform rectilinear acceleration of the order
of 10% with respect to the true inertial frames.

It will be noticed that the relation stated immedi-
ately after Eq. (6.5) is not reciprocal and that for a
constant z (fixed point in R instead of R’) there is a
singularity (in the proper-time solution) in the ex-
pression of ¢’ as a function of ¢. The transformation
(6.2), (6.3) can easily be inverted, and the singularity
is found to take place at t = =& [z + a72(0)].

Another physical characteristic of the proper-time
solution (which is easily understood from the defini-
tion that was given above for this particular case) is
the following:

The requirement for “rigidity”’ of R’ in Born’s
sense (i.e., that there exists at any time an inertial
frame with respect to which every point of the ac-
celerated frame is instantaneously at rest) is equiva-
lent*” to requiring that the paths (in R) of the differ-
ent points of R’ be concentric homothetic hyperbolas.
The necessary and sufficient condition for such a
situation is fo = const, as can be derived from Egs.
(3.14) and (4.4). What s called here the ‘“proper-time
solution’ is thus determined by adding the requirement
of Born’s ““rigidity’ to the set of postulates of Sec. IV .

VII. PARTICULAR CASES

The general transformation (5.7) through (5.10)
depends on a parameter A, ranging from 0 to 1/2, and
on two arbitrary functions a(z’) and f;(z), submitted
to limiting restrictions (5.9) and (5.10). The first
function a(z’) represents the distribution of proper
accelerations among the points of R’, while fs5(z')
describes the synchronization of the natural clocks
in R’. Let a few particular cases be considered.

1. Vanishing of f;
The specification

f5 =0 (7.1)

is a necessary and sufficient condition for each of the
following properties: (a) Speed of light in R’ is
direction independent at every point and (b) the

47J. E. Romain (unpublished).
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synchronization of distant clocks at rest is accelera-
tion independent (i.e., t = 0 and ¢ = 0 imply each
other, whatever z’). Condition (b) has generally
been assumed by earlier writers and condition (a) was
then derived as a consequence. Actually, it can be
seen directly that these two conditions are equiva-
lent.

2. Conformal Transformations

The necessary and sufficient conditions (3.5) for a
conformal transformation become, in the case of the
general metric form (5.11),

fi=0; o =d 0N + ud)
The latter equation can be integrated to

(7.2)

a(l =\) — (¥ + we’)'? = N'u ™" sinh [¢1%a(0)2]
¢==£1. (7.3)

The conformal transformations in this problem
are, thus, elements of a one-parameter set, with
parameter \. In the limit when A is 1/2, Eq. (7.3)
becomes

a=1+4 §¢a(0)2’,

and the transformation (5.12) becomes identical to
Page’s transformation.?#” Thus, Page’s transforma-
tion 1s the conformal transformation pertaining to the
limiting case N = 1/2.

In the other limiting case, when N\ vanishes, Eq.
(7.3) must be replaced by

a = exp [+a(0)z'] .

No conformal transformation seems to have been
used to date with a value of A different from 1/2.

Starting from the notion of observer equivalence
in the sense of Milne, Bourgin®® suggested to general-
ize Page’s transformation to a class of conformal
transformations characterized by the form

ds® = (dt”* — da'®)
X Gt —2)GE+ 2)/GH — 2HQW + &), (7.4)

where @ is an arbitrary function. The present con-
formal transformation [(5.7) through (5.10) and
(7.2)] cannot be put into that form unless X\ is 1/2
(see Appendix 4). Thus, the only Bourgin transfor-
mation consistent with the present postulates is Page’s.

47a Tt has been seen in Sec. IV (postulate 7) that the time ¢’
defined by the present postulates is not homogeneous, and
that the instant defined as time origin after postulate 7 is
particularized. This feature seems related to the ‘““discrepancy’’
discovered in Page’s transformation by E. A. Milne and G. J.
Whitrow [Z. Astrophys. 15, 342 (1938)].
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3. Proper-Time Transformation

The proper-time solution (f: = const, A = 0) is
expressed by Eqgs. (6.2) and (6.3).

The various earlier particular solutions of this
type were generally based on the assumption f5 = 0.
Therefore, the only difference between them is the
form of the acceleration function @ and they can be
reduced to each other (in the one-dimensional case)
by a transformation effected on z’ alone.

The transformation studied by Kottler,'**® Mpller,*
Crampin et al.,'* and Arzelies® is characterized by

f5EO:

The latter condition was explicitly postulated by
Mpller; it can obviously be fulfilled only in the
proper-time case (A = 0). This condition is usually
related to the assumption of a Euclidian three-
dimensional spatial geometry when the other two
spatial dimensions are assumed to be unaltered. It
entails [see Kq. (5.11)]

a=[l—eaz]".

The same transformation has also been derived by
Newman and Janis® as a particular case [their Eq.
(3.20) with n = a(0)f]; but the similarity with these
authors’ work does not go any further, for their ap-
proach is basically different from the present one
(see Sec. IV).

The condition gy = —1 considered above has the
following geometrical meaning: It is equivalent, in
the present one-dimensional problem, to the require-
ment that the infinitesimal natural length dz’ be
identical to the metric element [(—gi)¥? dz/] in-
duced on the 2’ axis by the space—time metric.*

The transformation derived by Kottler,5° Whittaker,*?
Meksyn,** and I. Gottlieb' is characterized by

=0, g=|lgsll = —1.

The condition g = —1, which was explicitly postu-
lated by Gottlieb, is equivalent to the requirement
that the Jacobian of the transformation be unity. It
entails A = 0 and

9{1 = —1.

a = a(0)[1 — 2a(0)z']™2.

VIII. CONCLUSION

Although the results derived for the simple case
considered in this paper could hardly be checked by
an experiment and do not seem to have any im-

48 Reference 13, Sec. 34.

4 1,. P. Eisenhart, Riemannian Geometry (Princeton Uni-
versity Press, Princeton, New Jersey, 1960), p. 45.

50 Reference 13, Sec. 35.
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mediate practical use, the investigation of such a case
is helpful in making clear that the definition of
“natural time” in an accelerated frame is by no
means a simple and obvious matter. Full realization
of this fact is the first step towards an improved
interpretation of physical evidence.

The presently available experiments are based on
the emission, transmission and reception of radiation
of some frequency. Tonnelat® has shown that the
very definition of frequency must be worded care-
fully. She discerns three kinds of “frequencies” for a
given phenomenon: the frequency (v;); of a vibration
from a source S; as measured by an observer S;; the
“relative proper frequency” (v;); measured in the
source itself in terms of its own natural time; and
the “absolute proper frequency’ we, which is the
number of emitted cycles per unit of the source’s
proper time. [In this paper’s terminology (v:): would
better be called “natural frequency’ and »e “proper
frequency.”] As was pointed out by Tonnelat, the
actual comparisons of frequencies (shift measure-
ments) that are available to date have consisted in
comparing either (v;); and (v));, or (»:); and (v;);.

The correct interpretation of such shift-measure-
ment experiments as those reviewed by Sherwin!
implies consideration of three items: (1) the relevant
definition of the source’s and observer’s natural times;
(2) the behavior, with respect to these times, of the
particular timing devices used; and (3) the transmis-
sion of frequency.

The argument in this paper was an introduction
to the study of the first of these problems. The second
problem has been painstakingly studied by Mpgller®
on the basis of the assumption that natural time is
identical to proper time. He derived the conditions
under which a material clock is an ‘‘ideal standard
clock” (i.e., ticks off proper time) to a given approxi-
mation. Those conditions involve mass of the moving
system, amplitude of vibration, frequency, speed,
and acceleration of the clock. They are satisfied by
currently available “atomic clocks” within present
experimental accuracy but Mgller’s analysis makes
it quite clear that his approach is only an approxima-
tion based on simplifying assumptions. Fokker?? pro-
posed a model of a light-ray clock that is unaffected
by acceleration if it undergoes a hyperbolic motion.
However, his result is hardly surprising in the light
of the analysis developed above: A one-dimensional
section of Fokker’s device complies with the postu-
lates in Sec. IV and, moreover, Born’s rigidity is as-

51 M. A. Tonnelat: Ann. Inst. Henri Poincaré 17, 59 (1961).
52 A. D. Fokker, Koninkl. Ned. Akad. Wetenschap. Proc.
B59, 451 (1956).
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sumed. It has been seen (Sec. VI) that these are the
necessary and sufficient conditions for the proper-
time solution. Thus, the beats of Fokker’s “clock” in
hyperbolic motion are isochronous because they con-
sist in timing, in proper-time units, a light-ray in a
Born-rigid system ; such a procedure implies assuming
that the acceleration is irrelevant.’

The third question mentioned (transmission of
frequency) does not seem to raise any special diffi-
culty since it can be handled in a single frame; for
instance, in this paper’s analysis frequency is propa-
gated unaltered both in the inertial frame and in the
accelerated frame (because of postulate 4).

The final solution of the problem of correctly
interpreting experimental evidence is not yet within
easy reach. It appears to involve the study of the
following:

1. The present analysis should be generalized to
four-dimensional space—time and to more realistic
types of acceleration better suited to experimental
check (e.g.,, harmonic motion, uniform circular
motion).

2. Dynamics must be developed in the relevant
accelerated frames without any physically unwar-
ranted assumptions. A possible approach, or even a
bias to bypass this step, might be the study of the
system under investigation in an inertial frame, fol-
lowed by transformation of the results to the acceler-
ated frame. Such a procedure would actually be
similar to Mpller’s analysis.?

3. Experimental checks must be devised and per-
formed. These checks may include direct time meas-
urements and frequency-shift measurements such as
those discussed above. Examples of the former might
be experimental outcomes of the celebrated twin
problem when such results become available, or
evaluations of spans of time comparable to the age
of the universe (see the end of Sec. VI). Although
there is not sufficient ground in Sec. VI to substanti-
ate a claim that the finite age attributed to the uni-
verse could be a consequence of an acceleration of
our cosmological environment with respect to the
inertial frames, the possibility of some related effect
must not be discarded a prior: and might well help
solve some discrepancies. Another possible check
might be related to the “gravitational red shift” in
an accelerated frame. In the conventional approach?®

% However, in view of postulate 4, a photon that bounces
back and forth in vacuo over a fixed limited segment of the
z' axis does slice off equal intervals of time between successive
passages at the same point in the same direction. In other
words, a one-dimensional Fokker clock remains a “natural
light clock’ if both the assumption of Born’s rigidity and the

assumption of identity between natural time and proper time
are waived.
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in which measurements are performed with “ideal
standard clocks” that show proper time, a light ray
is expected to experience a red shift, just as it would
in a gravitational field while traveling in the direction
of acceleration. On the other hand, if postulate 4 is
acceptable, no such effect can appear when the fre-
quencies are measured in terms of natural time.

The extension of the method to four-dimensional
space-time and to other types of motion is being
investigated and will be the subject of a subsequent
paper.
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APPENDIX 1. DERIVATION OF EQS. (5.7)-(5.10)

If Eq. (5.6) is multiplied by F’ [which cannot be
zero if the transformation (5.1) is to be meaningful
at all], and then differentiated with respect to ¢’, the
following equation is obtained:

afsFysinh F = fiF . (A1)

The transformation equations (5.1) can then be
written, by use of Eqs. (5.6) and (A1), in the more
convenient form .

z=fit+ (iFv + a/a)/df. (A2)
t = f4Ft’t'/a2f2,z'Ft' . (A3)

It will be noticed that the transformation is deter-
mined through knowledge of the function F./(z',t’)
and that it therefore will not be necessary to compute
F itself.

The key function F. will now be derived from
Egs. (6.5), (5.6), and (Al); the latter is a consequence
of Eq. (5.6).

Eliminating the undifferentiated F between Egs.
(5.6) and (Al) yields

up = {[fi + (a/d W)’ — fal}d/fl; (A4)
u=aqa/F,. (A5)

Multiplying Eq. (5.5) by F, differentiating with
respect to ¢’, and substituting cosh F from Eq. (5.6)
results in

Ut = foue — afs . (A6)

Equations (A4) and (A6) must be compatible in
the unknown function u; therefore (see Appendix 2),

fo = ea'(h + ka®)™"2, (A7)
fon = € (az’/)R*(h + ka®) ™, (A8)

where eis the sign of a.’ (this sign is invariant through-
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out the spacelike axis), ¢ = =1, and h and k are
integration constants.

Since fi: must be real, whatever the value of a, and
f2.» must not vanish, the constants h and & must
satisfy the conditions

h>0, £20. (A9)

When the expressions (A7) and (AS8) of f, f2.* are
used in Eq. (A4), the latter becomes

W =k’ + 2eu(h + ka®)'? + d®.  (Al10)

This equation is immediately integrable in the
particular case in which k& = 0, but as the corre-
sponding solution can be obtained as a limiting case
from the more general case k = 0 [see Eqgs. (5.12)],
it is sufficient to consider only the latter.

Equation (A10) can easily be integrated to

w = k7 {(¢'K"*) cosh [K*(t + fi)] — e(h + ka®)'"*},

(A11)

where f5(2’) is an arbitrary function of z’, and €’
=+ 1.

In order to maintain consistency, the solution

should remain meaningful when %k tends to O; the
necessary condition is

1
€ = €.

The solution (All) satisfies Eq. (A6) with f;.’
= f;. Equation (A8) can be integrated to

fo= — (/N (h + ka®) 4 ¢ ;

¢ is an integration constant.
The coordinate transformation (A2) and (A3) thus
becomes

(A12)

x = akh™?/E + q, (A13a)
t = — (ek”*/E) sinh [B*( + f5)], (Al3b)
E = 1" cosh [K2(t' + f:)] — (b + ka®)?. (Al13¢)

This transformation satisfies Eq. (3.14) simplified
by (4.4), and Eq. (4.1); it satisfies Eqs. (4.2) if

€ = e' . (A14)

The origin of the 2’,t’ coordinates may be chosen,
for convenience, so that

z=0, t=0correspondstoz’ =0, t =0.
(A15)
Such a choice results in
f:(0) =0, (A16)

g = —a@kh 2/ {B"* = [ + ka®(0)]'%} . (AL7)
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It is now apparent that the determination of the sign
of € (or €') is simply related to the relative orientation
of the x and 2z’ axes and is, therefore, physically
irrelevant.

The integration constants & and k can finally be
determined by use of postulate 2. For that purpose,
in view of the constraints of Eq. (A15) and postulate
7, it must be required that Eqs. (A13) take on the
limiting form z = 2/, ¢t = ¢ when the acceleration
vanishes. This requirement leads (see Appendix 3)
to

B2 = £\’ (0), k = ud’(0),
2N+ p =1 ’

(A18)
(A19)

whereas a(2’) is subject to a limiting condition
(A29).

On account of the conditions (A9) and (A19), the
following limitations are imposed on \ and u:

0<u<l, 0<r<4t. (A20)

When all the preceding results are gathered, the
desired transformation is finally expressed as stated
in Egs. (5.7) through (5.10).

APPENDIX 2. DERIVATION OF EQS. (A7) AND (A8)

The requirement that (u+).” = (w’), applied to
Egs. (A4) and (A6), yields a condition of the form

Bz’ + B:(z)u=0. (A21)

Now « must actually depend on ¢’. Otherwise, F
would be independent of ¢’ and Eq. (A1) would entail
either f;.» = 0 or F,/ = 0; the former has been ex-
cluded as a particular case treated separately in Sec.
VI, and the latter is obviously inadmissible in Eqgs.
(5.1). Thus, Eq. (A21) can be satisfied only if B:(z")
= 0 and B:(2") = 0, i.e.,

(f?a,z')z' + 2(az’/a - f4,x'/f4)f22,z' = 2(az'a;'x' (l4
— @ fuar/d'fe — d/a)
— @ fiz/a + filen/a — &/d + dfs.r) = 0,
(A23)

where subscripts 2’ denote derivatives with respect
to 2.
Equation (A22) can be solved for f. .

(A22)

foor = a2/a* — kfi/d®,

where k is an integration constant.
Substituting (A24) into (A23) provides a Bernoulli
equation for fj,

(A24)

J. E. ROMAIN

— ' fon + @ fs — kafi =0
which can be solved to
fo = ea(h + ka')™?,

where & is another integration constant and e is the
sign of a.’ (because fs must be positive).

This expression of fi, substituted into Eq. (A24),
leads to Eq. (A8).

(A25)

APPENDIX 3. DERIVATION OF EQS. (A18) AND (Al9)

The distribution of accelerations may be described
by

a(@) = a(0)a(x’), (A26)

where a(z’) is a dimensionless function of 2’ such
that «(0) = 1.

The limiting form of Eqs. (A13) must be z = 2/,
t = t’ when the acceleration vanishes everywhere,
i.e., when a(0) tends to 0.

This condition, applied to (A13b), can only be
satisfied if one of the constants A2 and k tends to
zero as a?*(0), and the other one at least as a%(0).
Therefore, let be

B = 2?(0) ; &k = ua’(0) .

It is easy to see that X\ and u are dimensionless
constants. Since a(0) and ¢ are the only constants
available in the present problem, N and u must be
pure numbers.

When the expressions (A26) and (A27) are carried
into Eqgs. (A13), the limiting procedure, applied to
¢, yields

(A27)

MNt+u=1. (A28)

Since the following condition must be required to
hold,
lm fy, =1,
a(0)—0

Eq. (A7) is such that, when a(0) tends to 0, the
acceleration function a(z’) must behave as
1+ ea(0)z'(1 — ). (A29)

It can then be seen that if the conditions (A28)
and (A29) are satisfied, z actually tends to =’ when
a(0) tends to 0.

APPENDIX 4. PROOF OF THE LAST STATEMENT
IN SEC. VII.2

As can be inferred from Eqgs. (5.11), (7.2), and
(7.4), the question is to decide whether D?/u? can
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be put into the form
HIY) =GQW —2)GW + 2)/GE — )G + z)
with a nonvanishing u. If the partial derivative of H

with respect to z’ is computed, and then 2’ and ¢
are set equal to zero, the result is, when (A15) is
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used,

H.(0,0) = —2[G"(0)/G(0)]4(0,0) = 0, (A30)

where G’ is the derivative of G with respect to its
argument. When due account is taken of (7.2), it is
easily seen that the condition (A30), applied to
H = D?/u?, cannot be satisfied unless p vanishes.
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1. INTRODUCTION

HAT structural information about the liquid

state can be obtained by application of x-ray
diffraction techniques, has been known since Debye
(1915) and Ehrenfest (1915) showed that the perio-
dicity of a crystal structure is not required for the
production of diffraction effects. Early experimental
diffraction work was done by Debye and Scherrer
(1916) on benzene and by Keesom and de Smedt
(1923) on liquid argon. This was followed by the
introduction by Debye (1927) of the concept of a
probability function for the distribution of inter-
molecular distances. The relation of this function to
the production of the diffraction pattern was dis-
cussed by Zernike and Prins (1927). These authors

* Present address: Dow Chemical Company, Pittsburg,
California.

also showed how to apply the Fourier integral theo-
rem to the determination of the probability function
from diffraction patterns. Debye and Menke (1930,
1931) made the first quantitative application when
they treated the case of liquid mercury.

X-ray diffraction measuremeunts were made in a
large number of liquids during the first half of this
century. In a few instances experimental work was
done over a range of pressure and temperature. The
results for liquids are summarized in reviews by
Gingrich (1943), Furukawa (1962), and Kruh (1962).

The techniques of data treatment by a number of
authors were summarized in a book by Randall
(1934). The method most commonly used at the
present time is that of Warren and Gingrich (1934).
A more general approach which treats subtle mathe-
matical points with considerably more elegance is
that of Filipovich (1955a, 1955b, 19564, 1956b). This
author rigorously presented the diffraction formulas
in terms of both the radial atomic density and the
radial electron density. He related these two func-
tions and quantitatively treated the “diffraction
error’” caused by trumcating the formal infinite
integral required for the Fourier transformation of
the intensity data. Filipovich also wrote expressions
for the effect of improper normalization of experi-
mental data. In a treatment applicable to the trunca-
tion error as a special case, Waser and Schomaker
(1953) discussed the use of intensity data weighting



