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I. INTRODUCTION

E distinguish two diferent kinds of assump-
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tions that occur under the heading of "rela-
tivistic invaria, nce" in theories constructed to give a
relativistically invariant description of interactions
between particles. The first of these reQects the
principle of special relativity that the laws of physics
should be invariant under changes of reference frame;
it is formulated in terms of the symmetry of the
theory under the group of frame transformations.
The second is an assumption of "manifest invari-
ance"; it requires that certain qua, ntities transform
under changes of reference frame in a particular
manner that is intimately related to the Lorentz
(or Galilei) transformations of space —time events.
The requirement of symmetry under the relativistic
transformation group can be satisGed in a very
general and simple manner through the construction
of quantities satisfying the Lie bracket equations
characteristic of generators of the group. A require-
ment of "manifest inva, riance" by itself also may be
satisfied quite generally and simply. But the com-
bined requirements of relativistic symmetry and
manifest invariance may restrict the theory so
severely that it is capable only of describing non-
interacting particles. We will show that this is in
fact the case in a Lorentz symmetric classica, l me-
chanical theory of the motion of a pa, ir of particles.
The positions of the particles as a function of time
trace out the world lines of the two particles. If the
coordinates of the space —time events comprising
these world lines are required to transform in the
usual manner of Einstein —Lorentz, it is found that
ea,ch particle must move with a constant velocity.

The idea, that relativistic symmetry can be built
into a theory through the construction of a realiza-
tion of the relativistic transformation group is
familiar in quantum mechanics and particularly in
rela, tivistic quantum field theory where the unitary
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representations of the Lorentz group have played a
central role. '-' The essential feature is that there is a
unitary operator which transforms a description of
the system with respect to a given reference frame
to the description with respect to each relativistically
equivalent frame, and that the set of such unitary
operators constitutes a representation of the group
of transformations of reference frames. That the
theoretical structures available for describing the
system are the same for two different reference frames
is assured by the unitary relation between them.
That the rule for transforming a description from
one frame to another is itself invariant under changes
of reference frame is assured by the group structure.
Since the dynamical transformations that relate
descriptions of the system at different instants of
time are identified with transformations to reference
frames displaced in time, the invariance of the
dynamical laws under changes of reference frame
follows from the group structure as a particular case
of the above. The relativistic symmetry is thus intro-
duced by the construction of a representation of the
Lorentz group. If this representation is continuous
it is sufBcient for the establishment of relativistic
symmetry to construct the ten operators II, P, J, and
K which are the Hamiltonian (generator of time
translations) and the generators of space transla-
tions, space rotations, and pure Lorentz transfor-
mations, respectively, and which satisfy the commu-
tation relations characteristic of generators of the
Lorentz group.

This method of introducing relativistic symmetry
by constructing the generators of the relativistic
transformation group is a very general one and is by
no mea, ns bound either to field theory or to quantum
mechanics. Dirac has pointed out that this method
could be used to construct a relativistically sym-
metric theory of the interaction of a fixed number of
pa, rticles in terms of functions of their canonical
variables. ' Thomas, Bakamjian, a,nd Foldy have

~ E. P. Wigner, Ann. Math. 40, 149 (1939).
s A. 8. Wightman, Phys. Rev. 101, 860 (1956).
3 A. S. Wightman, Nuovo Cimento, Suppl. 14, 81 (1959).
4 P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).
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shown how to construct the ten generators II, P, J,
and K for such a theory which include, in the struc-
ture of II, any of a large class of interactions. ' ' That
the requirement of Lorentz symmetry in a particle
theory which includes interaction can be satisGed
through the construction of a set of generators has
also been emphasized by one of the authors. ' These
theories can be constructed in classical mechanics
by requiring the generators of canonical transforma-
tions to satisfy Poisson bracket equations character-
istic of the group structure, as well as in quantum
mechanics where the generators of unitary transfor-
mations are required to satisfy characteristic com-
mutation relations. The theory can be made sym-
metric under either the Galilei or the Lorentz group
by requiring the generators to satisfy the respective
Lie bracket equations characteristic of that group.

In the following section of this paper we discuss
relativistic symmetry, or symmetry under a rela-
tivistic transformation group, in terms of a Lie
group formalism which abstracts the relevant features
common to both classical and quantum mechanics
whether of particles or of fields. In terms of this
formalism we show just what we mean when we say
that relativistic symmetry is established in the con-
struction of the ten generators satisfying the Lie
bracket equations characteristi c of th e l clat lvlstic
transformation group.

A. theory exhibiting relativistic symmetry in the
ten generators of the Lorentz (or Galilei) group may
still require a further assumption about the specific
manner in which certain quantities of the theory
transform. We may require, for example, that certain
quantities transform as tensors of a given rank so
that equations can be written in a manifestly co-
variant form. In relativistic quantum Geld theory it
is assumed that the basic quantities transform under
the unitary representation of the Lorentz group as
scalar, spinor, or vector fields. The importance of
this assumption in Geld theory can be seen in the
role it plays in the establishment of results such as the
TOP theorem, the connection between spin and
statistics, and the substitution law. In this paper, we
consider a classical mechanical theory in which the
motion of a fixed nulnber of particles is described by

s L. H. Thomas, Phys. Rev. 85, 868 (1952); B. Bakamjian
and L. H. Thomas, ibid 92, 1800 (1958.); B. Bakamjian, ibid.
121, 1849 (1961).

s L. L. Foldy, Phys. Rev. 122, 275 (1961).We recommend
that the reader who is unfamiliar with this point of view read,
in particular, the introduction to this paper.

~ E. C. G. Sudarshan, 1861 Brandeis Summer Institute
Lectures in Theoreticat Physics (W. A. Benjamin Company,
New York, 1962), and "Hamiltonian Dynamics of Relativistic
Particles" (University of Rochester report, NYO—9680, un-
published).

the time dependence of the positions of the particles
in space, and we assume the manifest invariance
property that the world line of a particle transforms
as a sequence of space —time events according to the
usual Lorentz transformation formula.

In the formalism used in this paper the transfor-
mations of a quantity under changes of reference
frame are determined by the Lie brackets of that
quantity with the ten generators of the relativistic
transformation group. A manifest invariance assump-
tion can therefore be formulated in terms of a set of
equations involving these Lie brackets. We show in
Sec. III, for a Lorentz symmetric classical mechani-
cal theory describing the motion of a fixed number
of particles, that if the coordinates of the space —time
events determined by the positions of a particle as a
function of time transform in the familiar manner

according to the Lorentz transformation formula
under the Lorentz group of transformations, of
I'efel'ellce frame, then tile quantltles Q;, 'L = 1,2,3,
representing the position of the particle satisfy the
equations

(Q',»f = 5f'

[Q;,&,] = e;;sQs

[Q',&j = Q [Q',&j
with the generators of the Lorentz group. (In the
Galilean case equations are obtained that are identi-

cal, except that the right-hand side of the last equa-
tion is zero. ) One of the authors has independently
established essentially these same equations by a
method which uses only the world line of the particle
and the geometric properties of the Lorentz transfor-
mations in space —time and which is independent of
the formalism used here. '

Thus, in a classical mechanical Lorentz-invariant
theory of particle motion there are two requirements
to be satisGed and these are formulated in two sets
of equations —the Poisson bracket equations satisfied

by the generators exhibiting the symmetry of the
theory under the Iorentz group and the above
equations which specify the explicit transformation
properties of the particle positions Q, . Of the latter
equations the first two are the more familiar ones and
are usually assumed to be valid in that the generators
P and J are assumed to have the standard form for
noninteracting particles. '-' (The usual description
of a Gxed number of noninteracting spinless particles
is outlined in Appendix A..)

D. G. Currie, Interaction contra Classica/ Relativistic
Hamiltonian Particle Mechanics (University of Rochester re-
port NYO —10242, to be published), and "The Hamiltonian
Description of Interaction for Classical Relativistic Particles"
(Thesis, University of Rochester, 1962, unpublished. ).
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We see no reason why in classical mechanics any
of these three equations should be considered as
fundamentally different from the others. In Sec. IV
we show that if one assumes these equations and
assumes that the generators II, P, J, and K satisfy
the Poisson bracket equations characteristic of the
Lorentz group, then at least for the case of two parti-
cles (not two particles and a field) one can conclude
that both of the particles must have a constant
velocity so that the theory is unable to describe any
m.ontrivial interactions between the particles. '

II. DYNAMICAL FORMALISM
AND RELATIVISTIC SYMMETRY

In this section we discuss the notion of relativistic
symmetry, or symmetry under a relativistic transfor-
mation group, as it is formulated in dynamical
theories. We can make our discussion quite general if
we note that the expression of this notion takes the
same general form whether we are talking about
classical mechanics, quantum mechanics, or quantum
Geld theory and whether we are interested in sym-
metry under the Galilei group or the Lorentz group.
The first thing we do then is to abstract from these
various theoretical structures those common features
which we want to use as a basis for our discussion of
relativistic symmetry.

Let, 8 be a real linear space (i.e., if A and B belong
to P and a and b are real numbers, then aA + bB be-
longs to 8). We think of the elements of 8 as repre-
senting the quantities descriptive of some physical
system. A. state of the system ("pure" or "mixed")
is represented by a real linear functional on R." It
assigns to every quantity A in 8 a real number (A)
which is its expectation value for that state; this
assignment is linear, i.e., for that state

(aA + bB) = a(A) + b(B)

for A, 8 in J]l and real a, b. We assume that the linear
functionals on 8 representing states of the system
have a particular form. Let 8 be a subset of 8, and
let (A,F) be a real bilinear functional defined for all

The only other investigations that we know of which are
at all similar to ours are those of T. D. Newton and E. P.
Wigner [Rev. Mod. Phys. 21, 400 (1949)], who consider posi-
tion operators in irreducible representations of the Lorentz
group, and of IVI. H. L. Pryce [Proc. Roy. Soc. (London)
A195, 62 (1948)], who considers the center-of-mass coordinate
in relativistic classical mechanics. There have been several
heuristic statements of our result, for example, L. H. Thomas
(reference 5). However, the necessity of a systematic proof is
illustrated by the fact that in models with one space dirnen-
sion, where rotational symmetry becomes degenerate but
where the heuristic statements still seem to hold, there exist
Lorentz generators which satisfy all of our conditions and
which give velocities that are not constant (see reference 8).

o I. E. Segal, Ann. Math. 48, 930 (1947).

pairs A, I', where A belongs to 8 and I' belongs to 8
[i.e., (aA + bB, F) = a(A, F) + b(B,F) and (A, aF
+ bG) = a(A, F) + b(A, G) for A,B in 8 and F, G,
aF + bG in 8 with a,b real]. We let each element F of
8 represent a state of the system by defining the
linear functional or expectation value associated with
I' by

(A) = (A,F)
for each A belonging to B.

Let us clarify these definitions by mentioning the
examples we have in mind. In classical mechanics 8
is a space of su%ciently regular real functions of
those basic dynamical variables that are coordinates
of the phase space for the system, 8 is the set of
density functions defined on phase space, and (A,F)
is the integral over phase space of the function A
multiplied by the density function F (see Sec. III).
In quantum mechanics 8 is a space of self-adjoint
linear operators defined on a Hilbert space, 8 is the
set of density operators, and (A,F) is the trace of the
operator A multiplied by the density operator Il."

The real linear space 8 and a linear functional on
8 specified by an element of 8 provide a complete
description of one possible instantaneous state of the
system. To each quantity A in 3 the linear functional
assigns the expectation value corresponding to the
result of a set of measurements that determine the
state. These measurements are made with respect
to a particular reference frame at a particular instant
of time. The dynamical aspects of the theory are
contained in a rule for relating a description of a
state of the system to the description of the state at
a different instant of time. We also would like to
have a rule for relating a description of a state of the
system to the description of the state with respect to
any relativistically equivalent reference frame.

To introduce such rules into our formalism we
de6ne a Lie bracket on 8; to each pair of elements A
and B belonging to 8 we associate an element [A,B].
in 8, such that the mapping of A and B to [A,B]has.
the properties

[aA + bB,C] = 0[A,C] + b[B,C] (linearity), (2.1)

[A,A] = 0 or [A,B] = —[B,A] (antisymmetry),

(2.2)

[[A,B],C] + [[C,A],B] + [[B,C],A] = 0

(Jacobi identity), (2.3)
for A, 8, C belonging to 8 and a, b real."Let L be a

T. F. Jordan and E. C. G. Sudarshan, J. Math. Phys. 2,
772 (1961).

rs C. Chevalley, Theory of Lie Groups (Princeton University
Press, Princeton, New Jersey, 1946), p. 103.
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e'""(A)~~=o = A. (2 6)

A.s H varies over the Lie algebra I, the automor-
phisms e'~' generate a Lie group 6 which has L as
its Lie algebra. ' (See further discussion of the defini-
tion of (r' from I in A.ppendix B.)

In the Lie group formalism of classical mechanics
the Lie bracket is the Poisson bracket, L is a finite-
dimensional subspace of real functions on phase
space which is closed under the operation of taking
Poisson brackets, and 6 is the group of canonical
transformations for which the elements of I are
in6nitesimal generators. For each real function A
belonging to P, etal'(A) is a function of the phase—
space coordinates and of the parameter t that satis-
fies the differential equation (2.5) (where the bracket
is now a Poisson bracket) with the boundary condi-
tion (2.6)."In the Lie group formalism of quantum
mechanics the Lie bracket is the commutator
divided by iA, L is a 6nite-dimensional subspace of
self-adjoint operators which is closed under the
operation of commutation, and 6' is the group of
unitary transformations for which the elements of L
are infinitesimal generators. " For each operator A

~3 For the general theory of Lie Groups and Lie algebras see,
for example, L. Pontrjagin, Topological Groups, translated by
E. Lehmer (Princeton University Press, Princeton, New
Jersey, 1939); G. Racah, Nuovo Cimento, Suppl. 14, 67
(1959); or P. M. Cohn, Lie Groups (Cambridge University
Press, New York, 1957).

i4 H. Goldstein, Classical Mechanics (Addison —Wesley Pub-
lishing Company, Reading, Massachusetts, 1950); D. ter
Haar, Elements of Statistical Mechanics (Rinehart and Com-
pany, New York, 1954).

~e P. A. M. Dirac, Principles of Quantum Mechanics (Qx-
ford University Press, New York, 1958), Chaps. IV, V.

finite-dimensional subspace of 8 which is a Lie sub-
algebra of 8; this means that the Lie bracket [A,B]
of any two elements A,B of L belongs to L. We repre-
sent transformations of reference frames by linear
(inner) automorphisms of 8 generated by the ele-
ments of L.

Let H be an element of L. We denote by e'~~', t

real, the automorphisms of 8 belonging to the one-
parameter group generated by H. We can think of
these as being defined by

c'""(A) = A q [A,H]t + —', [[A,H],H]t'+ . (2.4)

for each A in 8 for those values of t for which the
series is meaningful. Or we can think of 'e'a(A) as
being a family of elements of 8 depending on the
parameter t in such a way that they satisfy the first-
order differential equation

(~/~~)
' '(A) = [ ' "(A)»1 (25)

with the boundary condition

belonging to 8, clat'(A) is the operator UPA U„where

is the one-parameter group of unitary operators hav-
ing H as infinitesimal generator. "-"

We make two further postulates about the mathe-
matical structure of our formalism: that the subset
8 of 8 is invariant under the group 0 of automor-
phisms, and that the bilinear functional (A,F) is
unchanged when the same automorphism in 0 is
applied to both A and F. For any H belonging to L
and any real t, we have that e'""(F) belongs to 8
if F belongs to 8, and

(e' "(A),e'""(F)) = (A,F). (2.7)

~6 The rigorous connection between the one-parameter
groups of unitary operators and the self-adjoint operators is
given by Stone's theorem. See, for example, F. Riesz and B.
sz-Nagy, Functional Analysis, translated by L. F. Boron
(Frederick Ungar Publishing Company, New York, 1955), pp.
380-885.

~~ One can also formulate quantum mechanics in terms of
functions on phase space in which case the Lie bracket is the
Moyal bracket. J. E. Moyal, Proc. Cambridge Phil. Soc. 45,
99 (1949).

~8 For an outline and comparison of classical mechanics and
quantum mechanics in the Lie group dynamical formalism and
for a list of further references, see T. F. Jordan and E. C. G.
Sudarshan, Rev. Mod. Phys. 33, 515 (1961).

&9 The one-parameter groups of unitary transformations are,
in fact, the only one-parameter groups of linear automorphisms
of the operator space that leave the subset of density operators
invariant. T.F.Jordan, M. A. Pinsky, and E.C. G. Sudarshan,
Z. Math. Phys. 3, 848 (1962).

for any A in R and F in 8. The Lie group formalism
of classical mechanics satisfies thege postulates in
that each canonical transformation is equivalent to
a measure-preserving transformation of phase space,
so that the image under a canonical transformation
of a positive definite function on phase space is a
positive definite function, the integral over phase
space of a function is equal to the integral of the
canonically transformed function, and the image of
a product of functions is equal to the product of the
images of the functions. Canonical transformations
map density functions to density functions and pre-
serve the integral over phase space of a product of
functions. In quantum mechanics these properties
are c'onsequences of the fact that a unitary transfor-
mation preserves the self-adjoint property and posi-
tive definiteness of operators, the trace of an operator,
and multiplication of operators. Unitary transforma-
tions take density operators to density operators and
leave the trace of a product of operators invariant. "
From the form taken in classical mechanics, we can
see that the invariance of the subset 8 and of the
bilinear functional (A,F) is a generalization of Liou-
ville's theorem. "This will become more apparent as
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we see how this invariance allows us to relate trans-
formations of the quantities A in g to transforma-
tions of the representatives I' in S of states.

I.et II be an element of L. We may think of II as
the Hamiltonian or generator of time translations.
Suppose that A in 8 represents a particular physical
quantity (for example, the position of a particle), and
that E in 8 represents a particular state of the system.
We may think of these as being part of the description
Of the system at time zero with respect to a given
reference frame, so that the expectation value of the
quantity represented by 3 is (A,F) We .generate a
description of the system at time zero with respect to
a, second reference frame translated an amount t in
time by letting F represent the state of the system
in the second description as well as in the first, and
by letting e'""(A) represent, in the second descrip-
tion, the quantity that was represented by A in the
first description. The expectation value of this
quantity, in the second description, is then

This procedure for relating the descriptions of the
system with respect to different time coordinate
frames may be called the "Heisenberg picture" of
time translations. An alternative procedure is pro-
vided by the "Schrodinger picture" in which we let
c'"'&-'&(P) represent, with respect to the second
frame, the state which was represented by I' with
respect to the first frame, and let A represent the
same quantity with respect to both frames. The
expectation value of this quantity with respect to the
second frame is

(2 9)

which is equal, by virtue of the invariance property
(2.7) of the bilinear functional, to the expectation
value (2.8) obtained in the Heisenberg picture. The
Heisenberg and Schrodinger pictures are equivalent
ways of representing transformations of time co-
ordinate frames. In either case the change of the
expectation values of physical quantities, which is
all that is physically important, is the same.

For a given description of the physical system at
time zero with respect to a given reference frame, we
have a procedure for constructing the description of
the system at the zero in time with respect to a frame
of reference displaced in time from the frame with
respect to which our original description was given.
In general, we want to be able to translate the given
description to a description with respect to any
relativistically equivalent frame of reference; that is,
a,ny frame which may be displaced in space, rotated

in space, moving with a uniform velocity, or dis-
placed in time with respect to the given frame.
Besides the Hamiltonian H which generates transla-
tions in time, we want the Lie algebra L to contain a
triplet of elements P generating translations in space,
a triplet of elements J generating rotations in space,
and a triplet of elements K generating transforma-
tions to uniformly moving frames. We assume that L
consists of linear combinations of these ten elements
plus possibly "neutral" elements; that is, elements
which have vanishing Lie brackets with every ele-
ment of 8 (see A.ppendix B). To assure that L is a
Lie algebra it is necessary and sufFicient to assume
that the Lie bracket of any two of these ten elements
belongs to L or is a linear combination of these ten
elements plus possibly a neutral element. The specifi-
cation of these Lie bracket relations completely
determines the structure of the Lie algebra L and the
Lie group 6 of automorphisms generated by I.

We are interested in the two cases where 6 is a
realization of the covering group of the inhomogene-
ous proper Lorentz or Galilei group. The structure of
6 for these cases is determined in our formalism by
the requirement that L be a realization (up to neutral
elements) of the Lie algebra of the Lorentz or Galilei
group, respectively i.e., the Lie bracket relations
for the ten elements II, P, J, and K must be those of
generators of the Lorentz or Galilei group. In either
case we must have

[P,,P;] = 0, [P;,H] = 0, [J;,H] = 0

[J;,J,] = e;;gJg, [J;,P,] = e;,~g
[J;,K,] = e;;aKa, [K;,H] = P; (2.10)

for i, j, k = 1, 2, 3 (always in this paper 5 = c = 1).
In the case of the Lorentz group we must have in
addition that

while for the Galilei group we must have that

[K;,K,] = 0, [K;,P,] = 8;,3II. (2.12)

To insure a representation of the Lorentz or Galilei
group these equations actually need to be satisfied
only to within the addition of neutral elements to the
right-hand sides, since these added neutral elements
will not change the structure of the group 6 of
automorphisms (see Appendix B). Hence, the "con-
stant" mass 3f which is the "nonrelativistic limit" of
H appearing in the second of Eqs. (2.12) is not a
linear combination of the ten generators but is a
neutral element. ' One can show that by adding
appropriate neutral elements to the ten generators
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II, P, J, and K—which does not change the automor-
phisms they generate —one can eliminate all of the
neutral elements that may occur in the Lie bracket
equations for the Lorentz group and in the case of the
Galilei group one can eliminate all of the neutral ele-
ments except the M that occurs in the second of Eqs.
(2.12) (see Appendix B).Therefore, we will work with
Eqs. (2.10) and (2.11) or (2.12), as given, to charac-
terize the Lorentz or Galilei group, respectively. For
an example of generators satisfying these equations
the reader is referred to the description of noninter-
acting particles in Appendix A.

The point we want to make is that we can construct
dynamical theories which have the structure we have
outlined, including the realization 6 of the Lorentz
or Galilei group generated by ten elements of I
satisfying Eqs. (2.10) and (2.11} or (2.12). These
theories satisfy the principle of Einstein —Lorentz or
Galilean relativity or symmetry under the Lorentz
or Galilei group, respectively. To show exactly what
is meant by this statement we will use the formalism
we have introduced to outline the following: the
equivalence of instantaneous descriptions of the
system with respect to different relativistically
equivalent reference frames; the introduction of
dynamics or time dependence of descriptions; the
invariance of the dynamical laws or equations of
motion under transformations of reference frames.

We have already seen how a description of the
system at time zero with respect to a given frame of
reference can be transformed, by use of the one-
parameter group of automorphisms of 8 generated
by the Hamiltonian H, into a description. at time
zero with respect to a frame of reference displaced in
time from the given frame. We had a choice of using
either the Heisenberg or Schrodinger picture. Now
we want to use the same kind of transformation,
generated by P, J, or K, to construct a description
of the system with respect to a frame of reference
displaced in space, rotated in space, or moving uni-
formly with respect to the given frame. For the
moment we use only the Heisenberg picture.

Let T be an element of 1. In particular, we can
think of T as any one of the ten generators II, P, J,
or K. Suppose that in the given description, at time
zero with respect to a given frame of reference, Il

represents the state of the system and A represents
some physical quantity. We construct a description
with respect to a new frame of reference by letting F
represent the state of the system and letting e'"'(A)
represent the physical quantity at time zero with
respect to the new frame. If T is equal to II, I';, J;,
or K; then the new frame is translated by an amount

s in time, displaced by s in space in the j direction,
rotated in space by an angle s about the j axis, or
moving uniformly in the j direction with a velocity
8 (Galilei) or tanh s (Lorentz) with respect to the
given frame, respectively. The quantity represented
by A with respect to the given frame has the expecta-
tion value (A,F) in the given description, while it
has the expectation value (e'~'(A), F) in the descrip-
tion with respect to the new frame.

This construction gives us descriptions of the same
physical system (in the same physical state) with
respect to different frames of reference. The expecta-
tion values occuring in these descriptions represent
measurements made on the same physical system
with respect to the different frames of reference and
therefore are not, in general, the same in each
description. However, the form or structure of the
description is the same for every relativistically
equivalent frame. Although a specific physical state
of the system looks different from each different
frame, the theory does not distinguish the description
with respect to any one frame as being diferent
from any other. For every element A of 8, represent-
ing some quantity in the description with respect to
the given frame, there is an element e'~'(A) of 8
representing the quantity in the description with
respect to the new frame. For any element F of 8
representing a state of the system and giving the
expectation value (A,F) of that quantity in the
former description, there is an element e'~'(F) of
8 which represents a possible state of the system and
gives the same expectation value

( '"'(A), '"'(F)) = (A,F)
of that quant;ity in the latter description. With
respect to each frame of reference we can describe
the system in terms of the same set of quantities and
states or measurements giving the same set of possible
results.

So far we have only considered the transformation
of a description of a physical system at a given time
with respect to a given initial frame of reference to a
description with respect to a second frame of refer-
ence. The group structure of our formalism enters
when we ask if the rule for transforming the second
description to a description with respect to a third
frame is the same as that which we used to get the
second from the first—that is, if the description thus
obtained with respect to the third frame is the same
as we would get by transforming the initial descrip-
tion directly from the first to the third frame. To
satisfy the principle of relativity we not only need to
have a description with respect to each equivalent
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frame identical in form to the given description with
respect to the initial frame, but we also must be able
to transform from the description with respect to each
second frame to a description with respect to an.y
other relativistically equivalent frame in a manner
identical to that used in transforming from the
description with respect to the initial frame.

The fact that the group 6 of automorphisms of 8
is a realization of the group (Lorentz or Galilei) of
transformations of frames assures that the successive
transformations of a description from an initial to a
second and then from the second to a, third frame
yield the same result as a transformation from the
initial to the third frame. Suppose that the transfor-
mation of the description from the initial to the
second frame is realized by the automorphism e~~'

of the elements A of 8; this transformation is of
amount s and of the kind generated by T with respect
to the initial frame; for example, if T is J3 the second
frame is rotated about the z axis through an angle s
with respect to the initial frame. Suppose that the
transformation from the second to third frame is of
amount r and of the kind which would be generated
by the element V of I if this transformation were
made with respect to the initict frame; for example,
if U is I'~ then the third frame is displaced a distance
r in the x direction with respect to the second frame.
The representative of this generator in the descrip-
tion with respect to the second frame is e["(U), so
that the automorphism which realizes the transfor-
mation of the description from the second to third
fr MIle 1S

e l:exp(I &I s) (&) 1 &

The image of a quantity A under the combined
automorphism which realizes the transformation of
the description from the first to the third frame is
then

[exp[[~le) [&)]r( [~le(g) )
In our example this is

[exp[[Jr] s) (Ps)] r r [Zs]sr s x w [Ps ees s+Ps sin s]r r [Js]s (g) )

where we see that the rotation by the angle s about
the z axis with respect to the first frame is followed
by displacement by r cos s in the x direction and
r sin s in the y direction with respect to the first
frame, corresponding to displacement by r in the x
direction with respect to the second frame.

Now we can use the identity (see Appendix C)

&
[ "p([&l )[&)]

(
[&] (g ) )

[&]
(

Pl

to see in another way the relation between a Cransfor-

mation of a description from the second frame and a
similar transformation of the description from tht;
initial frame. This equation tells us that as an alterna-
tive to transforming the description from the first to
the second and then from the second to the third
frame (left-hand side) we may equivalently transform
the description from the initial frame to a fourth
frame related to the initial frame in the same way
that the third frame is related to the second, and
then transform, still with respect to the first frame,
to the description with respect to the second frame
(right-hand side). In other words, the transformation
between the descriptions with respect to the second
and third frames is the image under the transforma-
tion from the initial description to the second de-
scription of the transformation between the descrip-
tions with respect to the equivalently related first
and fourth frames. Still another way of seeing this
is to rewrite the identity (2.13) in the form

[exp([T]s) [v)]r (g )
[T]s

(
[v]r

(
[TI ( s) (g) ) ) p I4)

which shows that to obtain the image in the de-
scription with respect to the third frame of an ele-
ment 2 in the description with respect to the second
frame we can transform back to the initial descrip-
tion, do the equivalent transformation with respect
to the first frame, and then again transform to the
second description.

As yet, we have considered only descriptions of the
system at a single instant of time and transformations
of such descriptions between relativistically equiva-
lent reference frames. To have a dynamical theory
we must have a law which states how the description
of the system changes in time; in a relativistieally
invariant dynamical theory this dynamical law must
be invariant under changes of reference frame. We
introduce dynamics in our formalism in a familiar
and simple way. We postulate that the same transfor-
mation that changes a given description of the system
at time zero with respect to a given frame to the
description at time zero with respect to a second
frame displaced in time by an amount t also changes
the given description to the description at time t
with respect to the same frame. In other words, the
description at time t with respect to the given frame
is the same as the description at time zero with
respect to a frame displaced in time by an amount t.
If, at time zero with respect to the given frame, F in 8
represents the state of the system and 2 in 8 repre-
sents a particular quantity, then F and e[""(A)
represent the state and that quantity both at time
t with respect to the given frame and at time zero
with respect to the frame displaced in time by an
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amount t,. This is the "Heisenberg picture" of dy-
namical transformations. The equivalent "Schrod-
inger picture" is similarly defined in the obvious way.

That the dynamical law which we have introduced
is invariant under transformations of reference
frames follows as a particular case of the invariance
of the rule for transforming a description from one
frame to another. This invariance was shown above
to result from the group property of the automor-
phisms that realize these transformations. To ex-
plicitly exhibit the invariance of the dynamics we
consider the particular case of the above discussion
in which V is equal to the Hamiltonian II and 7.' is
equal to some other generator of frame tra, nsforma-
tions; for example, the generator K& of transforma-
tions to a frame moving uniformly in the x direction.
In other words, the second frame of the above dis-
cussion is moving with a uniform velocity e (or tanh

e) in the x direction with respect to the initial frame,
and the third frame is displaced by r in time with
respect to the second frame. Alternatively, we can
think of the displacement in time as giving a de-
scription at a different time with respect to the same
frame. Let t and t' denote the time coordinates of the
erst and second frames. Then, if 2 represents a
particular quantity at t = 0 with respect to the first
frame,

[H] r(A) (2.15)

elrr ]~(AI) (eÃ1"(A)) I (2.17)

which shows how a "complete dynamical descrip-
tion" with respect to the first frame is transformed
into a "complete dynamical description" with respect
to the second frame. We get the same result if we

transform a description from the first to the second
frame at t = t' = 0 and then to t' = r with respect

represents that quantity at time t = r with respect
to the first frame and

[exp ( [Ic~] I) (H) ] r
(

[K~]e
(A ) ) (2.16)

represents that quantity at time t' = r with respect
to the second frame. The images (2.15) of the quanti-
ties A give a description of the system at time t = r,
and as r takes on all real values they give a "complete
dynamical description, " that is, a description for
every time, with respect to the first frame. Similarly
the quantities (2.16), for all values of t,

' = r, give a
"complete dynamical description" with respect to
the second frame. Now, if we let e'"']'(H) = H',
e[~']'(A) = A' (in general, a primed element is the
image in the second description of an element in the
first description), the identity (2.18) is

to the second frame, or if we transform from t = 0
to t = r with respect to the first frame and then
transform to the description with respect to the
second frame. It makes no difference at what time
we choose to make the transformation between
descriptions.

If we consider r to be infinitesimal, expand both
sides of the identity (2.18) using power series of the
form (2.4) in r, and equate the terms of the first order
(see also Appendix C), we get

[e'"'(A),e'"*(V)] = e"'([A,V]), (2.18)

which expresses the preservation of the Lie bracket
by the automorphisms of G. In our particular case
Eq. (2.18) is

[A',H'] = ([A,H])',
which shows how the dependence of the quantities
(2.15) on t = r given by the "equation of motion"

(8/Br)e'"'"(A) = [e' '"(A),H]

with respect to the first frame is transformed into the
dependence of the quantities (2.16) on t' = r given

by the "equation of motion"

(Bj(] ) '"'(A') = [
'" '"(A'),H']

with respect to the second frame.
We can see that a theory constructed according to

such a general formalism satisfies the properties of
relativistic symmetry that":

a. Given a "complete dynamical description" with
respect to a given reference frame, a "complete
dynamical description" can be constructed with
respect to any other relativistically equivalent frame.

b. If the "complete dynamical description" with
respect to one frame satisfies the correct "equation
of motion, " the "complete dynamical description"
with respect to the other frame also satisfies the
correct "equation of motion. "

c. The "equation of motion" has the same form
in both frames.

If we wish we may, of course, translate this whole

discussion of relativistic symmetry into the Schrod-
inger picture. Previously, in the Heisenberg picture,
we let the same element F of 8 represent the same
state of the system in every description. %e trans-
formed the element A which represented a quantity
in the description with respect to an initial frame to
e[r'(A) in the description with respect to a second
frame and to the element (2.18) in the description
with respect to a third frame. Now, in the Schrod-

» K. P. Wigner, Nuovo Cimento 3, 517 (1956).
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inger picture, we let the same element A represent
the same quantity in every description. But, we
transform the element F of 8 which represents the
state of the system in the description with respect
to the first frame to c[T]( '(F) in the description with
respect to the second frame, and to

[V] (—r) r [T] (—s) r rsz z [essp([V] (—r)) (T)] (—s) r [V] (—r) (F))

(2.19)
in the description with respect to the third frame.
[Here we have used the identity (2.13).] The equiva-
lence of the two pictures for the second and third
frames follows from the invarianee property of the
bilinear functional that

(e'"'(A),F) = (A,e'"' '(F))

( [T]s( [Vlr(g)) F) (g [V](-r)( [T](-s)(F)))

From the left-hand side of Eq. (2.19) we see that
after having transformed from the erst to the second
frame with the automorphism generated by T, we
transform from the second to the third frame with
the automorphism generated by V—which is the
same element of L that we would use to generate a
similar transformation from the initial frame. The
generators are not transformed in the Schrodinger
picture as they are in the Heisenberg picture [com-
pare with the left-hand side of Eq. (2.13)]. On the
other hand, from the right-hand side of Eq. (2.19)
we see that if we first make the transformation
generated by V with respect to the first frame, the
generator of the transformation to the second de-
scription is changed from T to e[ '(-")(T) [compare
with the right-hand side of Eq. (2.13)].Let us illus-
trate this with the case where V = II and T = K~.
If the state of the system is represented by F at
f, = 0 with respect to the first frame, then it is
represented by

[TT](—r) (F)
at t = r with respect to the first frame, by I"
= e[~1]( ') (F) at t' = 0 with respect to the second
frame, and by

&[TTI(—r) (Fi) &[11](-r)(&[T(sl(—s) (F) )

=e je
[exp([TT] (—r))(K1)](—s) r [H] (—r) (F) )

at t' = r with respect to the second frame. The
Hamiltonian is the same in both descriptions. But
the generator of the transformation to the second
description depends on time. For either the Lorentz
or Galilei group it follows from the last of Eqs. (2.10)

that it is equal to

e'"" "'(K) = K —TP

at time t = r. If we had used a component of P or J
instead of K we would, of course, have found the
generator of the transformation to the description
with respect to the second frame to be time inde-
pendent, since P and J have vanishing Lie brackets
with H for both the Lorentz and Galilei groups [see
Eqs. (2.10)]. In other words, P and J are "constants
of motion" but K is not.

The main fact that we want to exhibit is that
relativistic symmetry, or symmetry under the group
of transformations of reference frames, can be
achieved in a standard simple manner in any theory,
constructed in accordance with our general formal-
ism, which contains a realization (T of the group of
frame transformations generated by a Lie algebra
Le The description of the system has an identical
form with respect to each of a set of equivalent
reference frames and the rule for transforming a
description from one frame to another is the same
for any two similarly related frames. This symmetry
property can be established for any group of reference
frame transformations. We need not specify what the
actual structure of the group is, for example, whether
it is the Lorentz or Galilei group. The requirement
that 6 be a realization of a particular group such as
the Lorentz or Galilei group represents an additional
independent postulate. This postulate is contained
in the requirement that the ten generators H, P, J,
and K satisfy a particular set of Lie bracket relations
such as those of Eqs. (2.10) and (2.11) or (2.12) for
the Lorentz or Galilei groups

Within our general formalism, the problem of
constructing a relativistically symmetric theory de-
scribing some physical system is essentially the
problem of finding suitable generators H, P, J, and
K satisfying the correct Lie bracket equations. The
choice of the generators depends on the physical
identification of the elements of 8 and reAects the
structure of the physical system. The simplest
structure for a realization 6 of the relativistic
transformation group, or for the realization L of the
Lie algebra of that group, is that of the "irreducible"
realizations which can not be broken down into
composites of more simple realizations. In quantum
mechanics all of the irreducible representations of the
Lorent, z group are known. ' They can be listed ac-
cording to values of a mass and a spin parameter
which are the characteristic invariant quantities.
The irreducible representations for which these
parameters have reasonably familiar values are used
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to represent "elementary" physical systems such as
"elementary" particles. The irreducible representa-
tions of the Galilei group are also known. "In classical
mechanics there has been no complete investigation
of the irreducible realizations of the Lorentz group
by canonical transformations, although the irreduci-
ble realizations corresponding to certain mass and
spin values can be constructed in analogy to the
quantum mechanical representations. A systematic
study of the irreducible representations of the
Galilei group in classical mechanics has been made
by Loinger. "

It is the reducible realizations that are relevant
for descriptions of systems of more than one particle
and it is these which interest us in this paper. The
simplest of these are direct products of irreducible
realizations and are taken to represent systems of
noninteracting particles. (The generators for such
realizations, corresponding to a fixed number of spin-
less noninteracting particles, are given in Appendix
A.) Each of the generator's is the sum of the corre-
sponding generators for the "single-particle" realiza-
tions. In particular, the generators H, P, and J are
identified with the total energy, total momentum,
and total angular momentum of the system, which
are equal to the sums of the individual particle ener-

gies, momenta, and angular momenta, respectively.
To describe a system of interacting particles it is

customary to write the Hamiltonian H as the sum of
individual "free-particle" Hamiltonians plus an "in-
teraction term" and to let the generators P and J be
equal (just as in the nonintera, cting case) to simply
the sum of the individual "free-particle" momenta
and angular momenta. "Interaction" is customarily
introduced by changing the total energy but not the
total momentum or angular momentum. In the case
of the Galilei group, one can introduce an interaction
term into H while the generators K are also kept in
the noninteracting form of the sum of the individual
"free-particle" generators. ' But in the Lorentz case,
Eqs. (2.11) make this impossible.

In the remainder of this paper we give more de-
tailed consideration to theories describing a fixed
number X of particles. %e consider the quantities
descriptive of the system to be real functions of the
BX pairs of canonical variables for the X particles.
(We could, of course, also include spin variables for
each of the particles by assigning to them the correct
Lie bracket relations, but for the sake of simplicity
we limit our study to the case of spinless particles. )
In a classical mechanical theory the linear space R

2~ E. In5nu and E. P. Wigner, Nuovo Cimento 9, 705 (1952).
22 A. Loinger, Ann. Phys. (N.Y.) 20, 132 (1962).

consists of real functions defined on the 6X dimen-
sional phase space, while in a quantum mechanical
theory 8 consists of the self-adjoint operators associ-
ated with the von Neumann algebra generated by
the 3E pairs of canonical operators. For either kind
of theory it has been demonstrated that one can
construct within 8 ten generators II, P, J, and K
satisfying the Lie bracket relations of the Lorentz
or Galilei group [Eqs. (2.10) and (2.11) or (2.12)] and
including, in the structure of H, any of a large class
of interactions. ' ' In this way, one can obtain a
theory of interacting particles that satisfies the
principle of relativistic symmetry, or symmetry
under the relativistic transformation group, as dis-
cussed in this section.

The investigation of such theories has not as yet
included a complete consideration of the transfor-
mation properties of the particle positions. It is to
this question that we now turn.

III. RELATIVISTIC TRANSFORMATIONS

OF PARTICLE POSITIONS

Our main interest in this section is to exhibit
equations which characterize the transformation
properties of the position of a particle in a relativistic
theory and which, therefore, may be added to the
Lie bracket relations (2.10) and (2.11) 'or (2.12) in
forming the requirements a theory must fulfill in
describing relativistically invariant motion of parti-
cles. For this purpose we deal specifically with classi-
cal mechanics and we consider the motion of particles
as being described by the time dependence of their
positions in space.

Each physical quantity is represented by a real
function

A(q', . q",p', . p )

of the 6X real variables q";, p";, n = 1, 2. N; i = 1,
2, 3. We denote the point (q', , q, , p'„. p", ) of
phase space simply by (q, p) and write A(q, p) for
the function defined on phase space. Each state of
the system is represented by a real positive-definite
probability distribution function F(q, p) on phase
space which is normalized to have unit integral over
phase space, and the expectation value of the quan-
tity represented by A, for the state represented by
P) is

(A,F) = A (q,p)F(q, p)dqdp,

where Jdqdp means integration over all of phase
space. %e use the Heisenberg picture of dynamical
transformations and transformations of reference
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frames. The same function F represents the state of
the system at every time with respect to every
reference frame, while the quantity represented by
A (q, p) at time zero with respect to a given frame is
represented at time zero with respect to a trans-
formed frame by the image e'T'(A)(q, p) of A(q, p)
under the canonical tra, nsformation generated by T
that represents the transformation of frames. [Here
T(q, p) is also, of course, a, real function on phase
space, the I ie bracket is the Poisson bracket

[A, &l = I:A(ap) &(ap)j . .

(BA BT BA BT)
n=1 ~ 1 ~gz Pz ~P'

and e~"'(A)(q, p) is the solution of the differential
equation

(~/»)e'"'(A) (as ) = Ie'"'(A) (q,p), q'(q, p)]...
satisfying the boundary condition e' '(A)(q, p)l, ,
= A(ap). ] We define

Q".(as) = q"', P"'(ap) = p'

for n = 1,2, X and i = 1,2,3 a,s the functions
whose values a,t a point of phase space are the co-
ordinates of that point. We then have that

e'"'(A) (ap) = A(e'"'(Q') (ap), e'"'(Q.")(ap),
e"'(&')(ap), . e'"'(s'. )(ap)),

which we write as

""(A) (q,p) = A(""'(Q) (ap), e'"'(p) (q,p))

In other words, a canonical transformation of the
functions on phase space can be represented by the
canonical transformation of the phase space co-
ordinates. The fact that a canonical transformation
of phase space is mea, sure preserving means that

e'"'(A) (ap)dip = A(ap)dpdp.

Let Q"; represent the ith component of the position
of the nth particle at time zero with respect to a
given frame of reference. Then, if H represents the
Hamiltonian of the system with respect to this frame,
the functions e'~'"(Q,".) (q, p) represent the positions
of the particles a,t time t = r. For the case in which
the state of the system is a, pure state with the proba-
bility distribution concentrated on the point (qo, po)
of phase space,

F(as) = ~'"(q —
q )~'"(p —p.),

the positions of the particles at time t have the exact

values

q'(&) = e (Q') (q P)~ (q —q )~ (P —po)dqdp

= e'"'(Q') (q.,p.) (3 1)

[These are exact values as well as expectation values
because the kth powers of the positions at time t have
expectation values for this state which are equal to
the kth powers of the expectation values (3.1), as can
easily be seen. ] Now the function e'""(Q";) obeys the
equation of motion

(~/~t)e'""(Qf)(q, p) = [e'""(Q".) (ap), &(q,p)1

= I:e'"'(Q"') (as ),e'"'(&) (q,p)l

= e'""(I:Q"'(q,p),H (ap) f)
= e'""(»/~p"') (q,s) (3 2)

from which we can deduce the equations of motion
satisfied by the functions q,"(t) which describe the
trajectories of the particles in space. To do this we
introduce the functions

which can be treated mathematically in complete
analogy to the functions (3.1).Corresponding to Eq.
(3.2) we find that

(~/~t)e'""( "') (q, p) = e'""(»—/~q ) (q,P) (3.4)

and from Eqs. (3.2) and (3.4), using the definitions
(3.1) and (3.3), we obtain the equations

(~/~t)q'(t) = [~/~p'Q)%(q(t), p(t)) (3 5)

(~/~~) p"'(&) = —
I ~/~q"'(t)Ã(q(&), p(~) ) (3.6)

which are just Hamilton's equations for the trajec-
tories of the particles. In the case of pure state
density distributions our formalism is thus equivalent
to ordinary Hamiltonian mechanics. It is capable of
describing, through the appropriate function H(q, p),
any intera, ction that gives particle trajectories de-
scribable by Hamilton's equations. This description
will be relativistically symmetric (as described in
the preceding section) if we can find nine other
functions P, J, and K which together with H satisfy
the Poisson bracket relations of generators of the
relativistic transformation group.

We will see, however, that there are further
questions that natura, lly arise when we transform
our description to another reference frame and which
suggest that additional assumptions are necessary
in a theory describing relativistically invariant parti-
cle motion. With respect to a transformed frame of
reference the positions of the particles are repre-
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is that

qj~(t) = q|(t) Cos s —q2(t) siI1 S,

q2 (t) = qy(t) s111 S + q2(t) Coa S, (3.10)

[J',Qi] = Q".

—[J8 Q2] = Qi.
Thus, for either Lorentz or Galilean symmetric
theories, in which the generating functions satisfy
Eqs. (2.10), it is natural to require that the equations

[Q",,P~] = &,~

[&;,Q."] = ~,~iQ~

(3.11)
(3.12)

sented at time t' = r by the functions

e'*" '' ""(e' '(Q"))( ) = e'"'"(Q'")( ) (37)
[2'(q,p) = e[']'(A)(q, p) for any function A(q, p); as
an exa,mple of functions (3.7) see the description
of noninteracting particles in Appendix A]. For
example, if T = J3, the second frame is rotated by
an angle s about the z axis with respect to the initial
frame. For the same pure state represented by the
probability distribution concentrated at the point
(qo, po) aa before, we obtain the trajectories

q'"(t') = e'"' (Q'")(q,p ) (38)
for the particles with respect to the second frame of
reference. Now Eqs. (3.1) and Eqs. (3.8) give the
values of the position coordinates of the particles as
a function of time with respect to the two frames of
reference. The question now is whether these quanti-
ties are related as we expect particle position co-
ordinates to be related under a transformation of
reference frames.

If T = I'1, corresponding to a displacement of the
reference frame by a distance a in the x direction,
we expect that

q,'"(t) = q";(t) + S8,, (3.9)

Since [H,P,] = 0 implies H' = e[~1]'(H) = H, we
have that

q (t) = ( ' (Q))(o, o)

= e'""(Q")(q,p )

+ -""([Q„P])(q.,p.) +
from which we see that the necessary and sufhcient
condition for Eq. (3.9) to be satisfied is that

[Q"P1] = &1 ~

Similarly, if T = J3, corresponding to a rotation
of the frame by the angle s about the z axis, the
necessary and sufFicient condition, assuming that
[J;, H] = 0, in order that

[Q",,Kp] = 0 (3.14)

for all n = 1,2, ~ X and j,k = 1,2,3.
Now, for the case of I orentz transformations, we

assume that the functions H, P, J, and K satisfy
Eqs. (2.10) and (2.11) and we assume that the
transformations of the particle positions under space
translation and rotation are of the type (3.9) and
(3.10) so that Eqa. (3.11) and (3.12) are also re-
quired to be valid. We then ask what further assump-
tions are needed to insure that the changes of particle
positions under a transformation to a frame of refer-
ence moving uniformly with a velocity v in the x

be satisfied for all n = 1,2, X and j,k = 1,2,3 by
the functions representing the position coordinates
of the particles.

We can investigate the change of positions of the
particles under transformations to uniformly moving
reference frames in an identical manner, but for this
purpose we must, of course, distinguish between
I orentz and Galilean transformations. We consider
the Galilean case 6rst and assume that the functions
H, P, J, and K satisfy Eqs. (2.10) and (2.12). If
T = K1, that is, if the second frame is moving with
a uniform velocity a in the x direction with respect
to the initial kame, the Galilean transformation of
the particle positions is given by the equations

q,'"(t) = q,"(t) —5,1st (3.13)

which, since (qo, po) is an arbitrary point of phase
space, are equivalent to the equations

[Kg] 8( [H] t{QR))
[H] t(Qn)

in terms of functions on phase space. Now at s = 0
the above equations are identically true, so they are
equivalent to the equations that result from taking
the derivative with respect to s, namely,

[e'""(Q",),K,] = —b, ,t

which in turn are equivalent to

—t;,t = [Q,","""-"(z;)]
= [Q,",K, —tP, ]
= [Q",,Ki] —8,it

if we assume Eq. (3.11).Therefore, in a theory which
exhibits symmetry under the Galilei group in the
ten generators H, P, J, and K satisfying Eqs. (2.10)
and (2.12), the necessary and sufFicient condition
for the particle positions to have the familiar trans-
formation properties of the type (3.9), (3.10), and
(3.13) ia that the functions Q,

" representing the
particle positions satisfy Eqs. (3.11) and (3.12) and
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direction with respect to the given frame are given by

gl" (t') = [{ti(t.) —vt.]/(1 —v')' '

q,'"(t') = g", (t.) for j W 1

t' =
I:t- —vv" (t-)]/(1 —v')"

or, equivalently, by

(t ) = g(t„) cosh 8 —
trs slllh s

q,'"(t') = q", (t.) for j W 1

t' = t. cosh s —qi (t.) sinh s

where a = tanh-'p. Vfe write these equations in the
latter form because, considered as transformations
of the particle positions, they form a one-parameter
group in the parameter a. In fact, the transformations
of particle positions under space translation and
rotation and transformation to a moving frame —of
the form (8.9), (8.10), and (8.15), together with
transformations under translation in time of the form

q,'"(t) = {t",(t + 8)

form a ten-parameter Lie group which is a realization
of the Lorentz group. ' In order for this group of
transformations to be identical to the group of
transformations of particle positions resulting from
the group of automorphisms of phase space functions
generated by H, P, J, and K, it is necessary and
sufhcient that it be identical to first order for each
one-parameter subgroup. " This is the reason that
the desired transformation properties of the particle
positions under space translations and rotations and
Galilean transformations could be obtained by
specifying the Lie brackets (8.11), (8.12), and (8.14)
of Q,

" with P, J, and K. In these cases it was rather
simple to see how the quantities behave under the
whole one-parameter group, but for the more com-
plicated case of Lorentz transformations we rely on
the fact that we only need to work to first order in
the group parameter. To 6rst order in s then we have
that

ro( )
[eeP{[Ks]s) (K)] r

(
[Ks]s (Qs) ) (

[H]r cosh s
(

[Ps] ( rsinh s)
(

[EC ]s(Qo)) )s(—
= ""'("""(Q:+ [Q;,m»(~. ,p.)
= c' '"(Q" + s[Q",&] —rs[Q",P])(z,p )

= V"(r) + s~' '"([Q."A']) (V,p ) —~, «, (8.16)

while from Eqs. (8.15) to first order in s we have

q,'"(t') = q,"(t„) —t),,t„s

t' = t„—{[",(t„)8,

from which we obtain

[Q.",&~] = Qi[Q",H1

is a necessary and sufFicient condition in order that
the particle positions transform according to Eqs.
(8.15) under Lorentz transformations. Thus, in a
theory which exhibits symmetry under the Lorentz
group in the ten generators H, P, J, and K satisfying
the Lie bracket relations (2.10) and (2.11), the
necessary and sufhcient condition for the particle
positions to have the familiar transformation proper-
ties of the type (8.9), (8.10), and (8.15) is that the
functions Q", representing the particle positions
satisfy Eqs. (8.11) and (8.12) and

[Q",&h] = Qhl:Q",H] (8.18)

for all n = 1,2, 7 and j,k = 1,2,8. (A.s we have
previously mentioned, one of the authors has derived
essentially these same equations by considering only
the geometrodynamical properties of the world lines
of the particles. ' This alternative method thus avoids
making any assumption about the validity of our
general dynamical formalism. ) We note that unlike
the other equations characterizing the transforma-
tion properties of particle positions, Eq. (8.18) in-
volves the Lie bracket with two different generators,
corresponding to the relation between time transla-
tion and Lorentz transformation, and is not linear in
the functions representing particle coordinates. It
requires not only the de6nition of the Lie bracket but
also the definitipn pf "ordinary" multiplication pf the
quantities in B.

In summary then, a relativistic classical mechanical
description of the motion of a fixed number X of
particles seems to require a theory involving two
different kinds of assumptions. First, the theory is
required to be symmetric under the group of transfor-
mations of reference frames. This requirement is
satis6ed in our formalism in the assumption that the
theory contains the ten generators H, P, J, and K
satisfying the Lie bracket equations (2.10) and (2.11)
or (2.12) of the Lorentz or Galilei group, respectively.

{t,'"(t') = g";(t') + s{ti (t') (d/dt') q", (t') —8,,t's (8.17)

to first order in s. If Eqs. (8.16) and (8.17) are to be
identical expressions for the functions q'," we must
have that

c'"'"([Q",,& ])(Vp, pp) = ei(r) (d/«) V"(r)
= c' '"(Q"[Q",H])(~,p )

or equivalently, since ({fo, po) is an arbitrary point of
phase space, we have deduced that the equation
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Secondly, it is required that the particle positions
transform in the familiar manner. This "manifest
invariance" requirement takes the form of the addi-
tional assumption that the generators and the func-
tions representing the particle positions satisfy Eqs.
(8.11), (8.12), and (3.18) or (8.14) for the Lorentz or
Galilei case, respectively. Whereas the first condition
alone allows theories which include a large class of
interactions between the particles, the combination
of the two conditions may restrict the Lorentz sym-
rnetric theory so severely as to rule out any inter-
action, as we will see for the case of two particles in
the next section.

Our argument in establishing the conditions (8.11),
(8.12), and (8.18) or (8.14) characteristic of particle
positions in a Lorentz or Galilean symmetric theory
was based on classical mechanics. %hat about
quantum mechanics? The situation in quantum me-
chanics is much less clear because there a particle
does not have a definite trajectory; that is, an exact
value for its position at each time. We would like to
discuss two of the many possible points of view that
one can take. One can argue that the particle position
conditions (8.11), (8.12), and (8.18) or (8.14) are
equations between dynamical variables which, being
independent of the specification of the state of the
system, should be maintained whether the states are
defined as in classical mechanics or as in quantum
mechanics. These equations are part of the structure
of the algebra of dynamical variables, just as are
Eqs. (2.10) and (2.11) or (2.12) which specify the
structure of the Lie algebra of generators. This
structure must be the same in both classical and
quantum mechanics; the only change to be made in
transition is to replace Poisson brackets with com-
mutators. "In particular, if the equations involving
the Lie brackets of the particle position with the
momentum and angular momentum are to be main-
tained, then the equations involving the Lie brackets
of the particle position with the generators of trans-
formations to uniformly moving frames must also be
maintained. [Note, however, that the fact that Eq.
(8.18) involves a product of functions distinguishes
this equation in an essential manner in this regard
from the other equations characteristic of particle
positions. To transcribe Eq. (8.18) into a quantum-
mechanical equation one needs to assume not only
that Poisson brackets are to be replaced with com-
mutator brackets but also that products of functions
are to be replaced by symrnetrized products of

~3The structure of the Lie algebra as functions of the
canonical variables will not, however, be the same for quantum
mechanics as for classical mechanics. See reference 18.

operators. "'] The above point of view is, in fact, the
one that is customarily followed in constructing the
generators for a, quantum mechanical description of a
fixed number of noninteracting particles (see Ap-
pendix A.).

On the other hand, one can argue that in order to
be valid for quantum mechanics these particle
position conditions must be established, just as they
were for classical mechanics, from the transformation
properties of space —time events. If we can not use
exact trajectories in our argument then we must use
the next best thing; for example, the expectation
value of the particle position as a function of time.
Thus if we de6ne

0(&) =( (Q))
= Ql

'"'Q" '"'l0)

as the expectation value of e'"&'(Q,") for a quantum-
mechanical pure state represented by the vector P,
we can require that q,"(t) transform in the familiar
manner under changes of reference frame. For
example, with respect to a frame translated a dis-
tance e in the x direction from the initial frame, the
average particle positions are

g"(t) = (e' "(e'""(Q")))
= ( "'(Q:))+ ("""(~Q„p.i»+

which we require to agree with those given by Eq.
(8.9). As a consequence, Eqs. (8.11) are established
for quantum mechanics just as they were for classical
mechanics. Similarly, Eqs. (8.12) can be established
for quantum mechanics by requiring that the changes
of the average values of the particle positions under
rotation of the reference frame be of the type (8.10).
For the Galilean case, Eqs. (8.14) also follow from
the requirement that the average particle positions
have the familiar transformation property —in this
case that of the type (8.18). In each of these cases
the desired operator equations follow from equations
satisfied by the expectation values for every pure
state. The success of this procedure is based on the
fact that the latter equations are linear in the expec-
tation values —a fact that fails to hold for Lorentz
transformations.

The desired change of average particle positions
under Lorentz transformation to a frame moving
uniformly in the x direction with velocity u = tanh e
is given by Eq. (8.17) to first order in the group
parameter e, while, in complete analogy to Eq. (8.16),
we have that

4"(~') = V"'(~') + '(e'"" (/Q",&])) —~ ~'e.
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(fQ" &]) = (Q")([Q"H)) (8.20)

for every pure state. This nonlinear equation does
not serve to establish an operator equation of the
type (8.18). In fact, for given operators Q,

" and H it
is not possible, in general, to define any operator
[Q,".

, K] by the condition that the above equation be
satisfied by the expectation value for every pure
state. (It is also instructive to consider the situs, tion
in the usual quantum-mechanical description of non-
interacting particles. In this case, one finds that the
average particle positions transform according to the
usual formula under Lorentz transformations only
when the expectation values are taken for a pure
state that is an "eigenstate" of the operators [Q,", H].
See Appendix A.)

Thus, we find that we have a natural method for
establishing the equations for the Lie brackets of the
particle positions Q,

" with the total momentum, total
angular momentum, and generators of Galilei trans-
formations, but that this method breaks down for
generators of Lorentz transformations. This failure
to generalize Eq. (8.18), which is due to the fact
that, in contrast to the other equations characteristic
of particle positions, it involves a product of func-
tions, could be viewed a,s a reason to proceed with
the construction of quantum mechanical theories
containing Eqs. (3.11) and (8.12) and in the case of
Galilean symmetry Eq. (8.14), but not including
Eq. (8.18) in the case of Lorentz symmetry. "How-
ever, we would tend to view such an attitude as
having only the temporary validity of expediency.
It is surely not completely or finally satisfactory to
rest on our inability to treat the question of Lorentz
transformation of a quantum-mechanical particle
position as an excuse for ignoring the question. %e
would hope to be able to find a way to make a more
decisive statement.

IV. CONSEQUENCES OF THE COMBINED
INVARIANCE ASSUMPTIONS

%e now investigate the implications for a classical
mechanical theory of particle motion of the combined

24 It seems to us that this attitude is evident in the work of
L. L. Foldy, 6 although Foldy does require that the particle
positions have the familiar Galilei transformation properties
in the limit as the velocity of light becomes infinite.

The condition that the latter expression be identical
to Eq. (8.17) for every pure state is that

(
'""

([Q,",&])) = (
'"" (Q"))( '"" ([Q"»))) (8 19)

for every pure state, or equivalently, absorbing the
time dependence into the state, that

assumptions of Eqs. (2.10) and (2.11) or (2.12) which
exhibit the symmetry of the theory under the
Lorentz or Galilei group, and Eqs. (8.11), (8.12), and
(3.18) or (8.14) which assure that the space —time
events comprising the world line of a particle trans-
form in the usual Einstein —Lorentz or Galilean man-
ner. For this purpose we limit ourselves to the con-
sideration of just two particles. All of the quantities
entering our theory are functions of the twelve real
variables gi pi ' Qj' pi &j ~)~r3' The result' is' roughly
that the addition of Eqs. (3.11), (8.12), and (8.14)
to Eqs. (2.10) and (2.12) imposes a rather harmless
condition for a Galilean invariant interaction be-
tween the particles, while the combination of Eqs.
(3.11), (8.12), and (8.18) with Eqs. (2.10) and (2.11)
for a Lorentz invariant theory essentially rules out
any interaction. One can not construct any functions
H, P, J, and K satisfying these latter equations
except those functions that give constant velocities
for both of the particles, or in other words give

[[Q,",H),H] = 0 (4.1)
for n = 1,2; j = j.,2,3.

First we will show that Eqs. (8.11) are equivalent
to the assumption that the generators P; have the
standard "free-particle" form

P; =P;+P, (4.2)
for j = 1,2,8. Clearly, the generators given by (4.2)
satisfy Eqs. (8.11). We want to show that any
generators P, that satisfy Eqs. (8.11) can be put in
the form (4.2) by a suitable canonical transformation.
If

P; = P,' +P,'+ F;-
it follows from Eqs. (8.11) that

[F,,Qg] = 0

for n = 1,2; j,k, = 1,2,3, so that J'; is a function only
of q& and qf', . Let us make the change of variables

1 2
r~ = g; + g;

g. = g
—

g (4 3)
in terms of which, using Eqs. (2.10), we find that

0 = fP;,Pi) = 2(BF~/Brp —BFp/Br, ) .

By using these new variables and the above equation
it is easy to show' that we produce a canonical
transformation if, while keeping Q,' and Q', fixed, we
transform J", and J", by
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where

The generator I'; undergoes the transformation

P; = P,' + P, + F, P,' + P,'
and the other generators H, J, and K are also trans-
formed to new functions of q,

"and p,".If we take these
new functions to represent the generators of transfor-
mations of reference frames we obtain a new repre-
sentation for our theory which is identical in content
to the given representation. But now the generators
P, have the form (4.2) which from now on we, there-
fore, assume.

Let us explain exactly why we say that we can
make the above canonical transformation on the
generators H, P, J, and K without changing the
physical content of the theory. Clearly, the new
generators satisfy the same Poisson bracket equations
(2.10) and (2.11) or (2.12) as the given generators.
Since the functions Q,

" are unchanged, the Poisson
brackets of these functions with the generators, and
thus the transformation properties of the particle
positions, are also preserved. Consider, for the
moment, any given canonical transformation and let
a primed function represent the image of that func-
tion under the given canonical transformation. Then,
for example, Q,'" and H' give the same set of particle
trajectories as Q,

" and H. For

and any (pure state) density function is the image
Il' under the given canonical transformation of a
(pure state) density function F. Thus, the motion of
the system as calculated from Q,

'" and H' with respect
to the initial conditions represented by F is de-
scribed by the particle trajectory functions

e' "(Q,'")F'dqdp = e'"'(Q", )Fdqdp,

which are the same as the particle trajectory functions
describing the motion of the system as calculated
from Q,

"and H with the initial conditions represented
by F. The canonical transformation leaves invariant
the set of all allowed particle motions corresponding
to the set of all allowed density functions. These con-
siderations can easily be generalized to include the
transformations generated by the other nine func-
tions P, J, and K which give the particle trajectories
with respect to transformed reference frames. Since
we are interested only in the motion of the parti. cles
as described by the time dependence of their positions

in space, we consider the canonically transformed
description to have the same physical content as the
original description. In the particular case that Q,'"
equals Q,", as is true above, we consider the new
generators H', P', J', and K', as functions of q,

" and
p";, to describe the physically same theory as the
original generators H, P, J, and K, while we maintain
our identification of Q,

" as representing the positions
of the particles. If Q,'" did not equal Q,"we would have
to let Q,'" and not, Q," represent the positions of the
particles in order to obtain an equivalent description
by the canonically transformed function, and we
would no longer be interested in the form of the
canonically transformed generators as functions of
q,
" and the conjugate variables p,".. [An alternative

procedure would be to also identify the functions P,
with the particle momenta, in which case the freedom
to do canonical transformations that change these
functions would be lost. This alternative is treated
in Appendix D. If one requires that the P," be un-
changed under space translations, as is familiar for
particle momenta, it follows that the generators P;
have the "free-particle" form (4.2); the canonical
transformations are not needed. By means of canoni-
c3,1 transformations we can secure the same result
from a weaker assumption. ]

Next we show that Eqs. (8.12) are equivalent to
the assumption that the generators J; have the
standard "free-particle" form

(4 4)
for j = 1,2,3. Again it is clear that the generators J;
given by (4.4) satisfy Eqs. (8.12) so our task is to
show that any generators J; satisfying Eqs. (8.12)
can be put in the form (4.4) by a suitable canonical
transformation. Again we want to keep the functions

Q,
" fixed to preserve our identification of these func-

tions as representing the particle positions. Now we
also want to keep Axed the generators I', which we
assume to have the form (4.2). Suppose then that

J, = ~,a~QaPI+ ~,~iQ~Pi+ F~

From Eqs. (8.12) it follows that

IF, , Q",] = 0,
so that F; is a function only of q' and q2. From Eq.
(2.10) that

[J,,P~] = ~,&ZAN

it follows that

[F,,Pg] = 0,
so that if we use the explicit form (4.2) of P; and the
change of variables (4.8) we deduce that F; is a



function only of the three variables g;. Finally from
Eq. (2.10) that

lt follows that

[J;,A] = e,~J~,

cl. .q (BF;/Bq.) —e; .q (BFp/Bq. ) = e,p(F(

If we use this result it is easy to show' that we pro-
duce a canonical transformation by keeping Q,' and

Q,' fixed and transforming P,' and P,' by

I", ~I", —V,R'

P, ~ P,'+ V,W.
Under this transformation the form (4.2) of P, is
preserved and

which, letting V be the gradient operator with respect
to the g coordinates, we can write in vector notation
as

(qx~) xF= —F

or, after some elementary manipulation with vector
identities, as

q(& F) = &(q F)

Now it can be shown" that if F satisfies the above
equation, there exists a function S of the variables

q such that

condition on the particle positions, namely, that in-
volving the Poisson bracket of Q,

" with E&, we turn
first to the case of Galilean invariance. Our problem
is to find the class of functions H (or, in other words,
the class of interactions) that allow Eqs. (2.10) and
(2.12) to be satisfied by the generators H, P, J, and
K when P and J are assumed to have the "free-
particle" forms (4.2) and (4.4) and K is assumed to
satisfy Eq. (8.14). Let us write

H = (1/2m, )(P')'+ (1/2m, )(P')'+ V

=H +V
as the sum of the "free-particIe" Hamiltonian H' and
the potential t/ and similarly

E, = m, Q,'pm, Q,'+ W,

=E,'+W;
as the sum of the "free-particle" Galilean generators
K' and an additional vector function W. If we substi-
tute these expressions into Eqs. (2.10) and (2.12),
and use the fact that the "free-particle" generators
H', P, J, and K' satisfy these equations, we find that
t/' must have a vanishing Poisson bracket with each
of the generators P and J, which means that V must
be a scalar function that is independent of the
variables r, of (4.8). In other words, V must, be a
function of the scalars that can be formed from the
three vectors p', y', and g. 9e also find that V is
further limited by having to satisfy the condition
that

J=Q' x P'+Q' x P'+F
is transformed to

[V,E,'] = [W, ,IX] (4 5)

Q' x (P' —VW) + Q x (P'+ VW) + F
= Q' x P' + Q' x P' —(Q' —Q') x VW + F
=Q xP +Q'xP,

so that the generators J; have been put in the form
(4.4). [If one also identifies the P," with the particle.
momenta and requires that they transform as vectors
under space rotations, one can deduce the "free-
particle" form (4.4) for the generators J, without
making any canonical transformations. See Appendix
D.] From now on we, therefore, assume that both P,
and j', have the standard "free-particle" forms (4.2)
and (4.4), respectively. In showing that this assump-
tion is equivalent to Eqs. (8.11) and (8.12) we have
used only Eqs. (2.10), so what we have done so far
is valid for both the Lorentz and Galilei eases.

Yo investigate the impLications of the remaining

2~ J. B. Keller, Commun. Pure Appl. Math. 14, 77 (1961},
Lemma 2.

and we find that 8'; must have the form

[J;,Pa] = e,7,iB(. (4 7)
These functions must also satisfy the equations

[B,,P~] = 0,
and are further hmited in that the equation

(4.8)

[E,,Ei] = 0 (4 9)
must also be satisfied. Under the conditions we have
listed, the generators H, P, J, and K obey Eqs. (2.10)
and (2.12).

The added requirement that is imposed by the
assumption that the generators E; satisfy Eq. (8.14)

W, = -', (3I —m, —m, )r, + 8, , (4.6)
where cV is the neutral element of Eq. (2.12) and R
represents functions of jp', y', and q that transform
as a vector under space rotation, that is, satisfy the
equat 1ons
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is simply that K, be independent of p' and p'. This
means that 8, must have the form

where R is a function of the scalar (q)'. Here we have
used Eqs. (4.7) and (4.8) which are now automatically
satisfied as is Eq. (4.9). In summary, then, any
potential t/ is allowed which is a scalar function of
the variables p', p', and q and satisfies Eq. (4.5),
where

W; = -', (M —mi —m, )r, + q, R

with R a function of the scalar (q)'. These are, in
fact, the only restrictions on the interaction that we
can derive from our assumptions of Galilean sym-
metry and Galilean transformation of the particle
positions.

Suppose that W, = 0. Then from Eq. (4.5) we
see that V has a vanishing Poisson bracket with the
center-of-mass coordinates

(1/M)K,' = (1/M) (m Q,' + m Q,'), (4.10)

which means that V is independent of (1/m&)p,'
+ (1/m&)p,'. For the equal-mass case mi ——m&, we
have that V is independent of the total momentum

p,' + p,' and depends on the p,"variables only through
the relative variable p,' —p,'. This result has been
used by Eisenbud and Wigner" and by Okubo and
Marshak" in deriving the "most general" form of
the two-nucleon interaction.

However W; need not be zero; there is a large
class of generators involving nonzero W; which
satisfy all of our conditions. Furthermore, we do not
feel justified in setting W; equal to zero by a suitable
canonical transformation. " The reason for this is
that K; is a function only of the q,

"and not of the p,".
To change the form of K, we would need to do a
canonical transformation that changes the Q,", and
we have chosen to let the functions Q", represent the
positions of the particles. If the generators are to be
rerepresented by the images of H, P, J, and K under
a canonical transformation, then the particle posi-
tions must be rerepresented by the image of Q,"., and
the image of K; will have the same form as a function
of the images of the Q,

"as K, as a function of Q,".

26L. Eisenbud and E. P. signer, Proc. Natl. Acad. Sci.
U. 8. 27', 281 (1941).

s7 8. Okubo and R. K. Marshak, Ann. Phys. (N.Y.) 4, 166
(1958).

28 Such a canonical transformation is used by L. L. Foldy, 6

4o reduce Kj to the standard form.

We ean find a justification for the requirement that
V have a vanishing Poisson bracket with the center-
of-mass coordinates (4.10) in an. apparently reasona-
ble additional assumption. The "time derivatives" of
these coordinates are

so the condition that the center-of-mass coordinate
(4.10) moves with uniform velocity (1/3II)P is that
it have a vanishing Poisson bracket with V. Note
that this does not require that W, vanish but only
[by Eq. (4.5)] that W; have a vanishing Poisson
bracket, with H. (If one identifies the P; with the
particle momenta and requires that they transform
under Galilei transformations to uniformly moving
reference frames in the manner that is familiar for
momenta, one can immediately deduce that 8", = 0
or that K, has the standard "free-particle" form. The
criterion of Eisenbud and Wigner is then established.
See Appendix D.)

Finally, we turn to our main task which is to find
the implications of Eq. (8.18) for a classical mechani-
cal theory of two particles in which the symmetry
under the Lorentz group is exhibited in the ten
generators H, P, J, and K satisfying Eqs. (2.10) and
(2.11).We assume that P and J have already been
put in the forms (4.2) and (4.4) by the assumption of
Eqs. (8.11) and (8.12). In contrast to the Galilean
case where Eq. (8.14) imposed rather mild restrictions
on the interaction, we find that in the Lorentz case
Eq. (8.18) has the devastating consequence of
eliminating any nontrivial interaction. This is also
to be contrasted with the rather mild restriction
implied by Eqs. (8.11) and (8:12) in the absence of
Eq. (8.18). The large class of Lorentz symmetric
classical and quantum-mechanical interactions con-
structed by Bakamjian and Thomas' and by Foldy'
allow the identifiea, tion of P and J in the standard
"free-particle" forms (4.2) and (4.4).

We begin then with Eq. (8.18) which we write as

BK,/Bp", = Q~(BH/Bp";) (4.11)

for n = 1,2; j,k = 1,2,3. If we take the derivative of
this equation with respect to p& and compare with
the result obtained by taking the derivative with
respect to p,"of the equation obtained from Eq. (4.11)
by changing the indices n and j to m and l, we find
that

(g —Q, )a'H/Bp;"Bp( ——0

[(1/M) (m, Q,'+ m, Q,'),H]

= (1/3II)P, + [(1/M)(m, Q,'+ m, Q,'),V],
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from which we deduce, for the case m / n, that"

8 H/Bp;(3pg ——0

for j,l = 1,2,3. This means that

H =Hr+Hs
where H1 is a function only of p', q', and q' and H2 is
a function OIlly of p ) q ) and q .

Equation (2.10) tells us that H must have a
vanishing Poisson bracket with I';, from which, by
using the variables (4.8), we see that

BH,/Br; = BHs/—Br; .

Now, since the right-hand side is independent of p'
and the left-hand side is independent of p', the above
quantity must be a function only of r and q. From
the fact that

s;zy(cl Hy/clr&BTs) = 0
&

we then conclude that there exists a function 6 of r
and q such that

BH,/Br, = BHs/Br—, = BG/Br; .

Hence, we can redefine H1 and H2 by subtracting 6
from H& and adding 6 to H2 so as to obtain a new
division of H in the form (4.12) in which the new H~

and H2 both have vanishing Poisson brackets with
I', and are thus independent of r;. We therefore as-
sume that H& is a function only of y' and q and that
H& is a function only of p' and q.

From Eqs. (2.10) we also know that H must have
a vanishing Poisson bracket with J; or

[H„J,] = —[Hs,J;] .

As before, the right-hand side is independent of y'
and the left-hand side is independent of jp', and we
can conclude that the above quantity is a function
only of q. Now, from the Jacobi identity and the
Poisson bracket equations (2.10) for J, we obtain

[J;,[H„J,]] —[J,, [H, ,J;]] = s;,s[H, ,Js]
which we can put into the vector notation

[H,J] = —(q «) ~ ([H,J]),
where V is the gradient operator with respect to the

q variables. We have already made use of an equation
of this form in our argument for the identification of

29 Our proof makes use of the requirement that all of the
generators be su%ciently regular functions of the canonical
variables. This rules out any generators that may contain
singular terms, such as delta functions, that could represent
contact interactions. Yo include the latter mould require an
extension of the usual classical mechanical formalism (see
reference 8).

J in the form (4.4) and we know that it implies that,
there exists a function W of the variables q such
that2'

[H,J] = —[H.,J] = q ~ «,
which is equivalent to

[Hi)J,] = —[Hs,J,] = [W,J,],
as can easily be seen by substituting the form (4.4)
for J; and evaluating the Poisson bracket on the
right in the above equation. This means that we can
redefine H1 and H2 by subtracting 8' from H1 and.
adding 8" to H2 so as to obtain a new division of H
in the form (4.12) in which the new H, and H, both
have vanishing Poisson brackets with J, and are
therefore scalar functions. Without loss of generality
we may assume that H& is a function only of (p')', .

p'q, and (q)' and that Hs is a function only of (p')',
p'q, and (q)-'.

If we substitute the form (4.12) for H back into
Eq. (4.11) we And that

K, = Q,'H, + Q,'H, + F;,
where Jf'; is a function only of q' and g'. From the-

Eqs. (2.10) t at

[K;,Ps] = 8;sH,

[O';,K,] = s;,sKg, ,

combined with our knowledge of the form of H and
K, we conclude that

[F;,Ps] = 0,
[J;,F;] = s;;sFs,

which means that F must be independent of r and a.
vector function of q only, or more specifically,
F; = q,F where I' is a function only of the scalar
(q)'. Then

K = Q,'(Hg + F) + Q,'(H, —F),
so if we again redefine H1 and H2 by adding I' to H1
and subtracting F from H2 so as to obtain a new
division of H in the form (4.12), we can put K in the.
form

K;= Q,'H, +Q,'H, (4.13)

without destroying the properties we have assumed.
for H& and H2. So far, we have shown that without
any loss of generality we may assume that H has the
form (4.12) and that K has the form (4.13) where H~

is a function only of (p')', p'q, and (q)' and H, is a
function only of (p')', p'q, and (q)'.

Now if we take our derivatives of H& and H2 with
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respect to these scalar variables and evaluate the
I oisson bracket

[K,,H] = H, [Q;,HI] + H2[Qj H2]

+ (Q,' —Q,') [HI,H2], (4.14)

we get a scalar function times (Q,' —Q,') plus the
terms

4HIH2[HI, H—2] = (p p )2, +I 2 ~WI ~W2

~p q ~p q

2( )2 BWI &W2 BW2 BWI
~(q)' ~(p' q) ~(q)' ~(p' q)

BW2 88 i BW2

aW aW, aW
& ~iI)' ~(2' 2) '(2' 2))

which must be equal to

(4.16)

2HIH, [BW,/8(p' q) + BW,/8(p' q)] (4.17)

in order for (4.15) to be equal to zero. Now HI, H2,

W„and W, are functions only of (p')', (p'q), (p')',
(p'q), and (q)', and the variable (p'p') is independ-
ent of these. Therefore, since (4.16) and (4.17) must
be equal, the coefficient of (p'p'), which occurs only
in the first term of (4.16), must vanish. Thus, we

have that

BWI/B(p' q) = —BW2/8(p' q)

2HI [BHI/O (p ) ]P, + 2H2 [BH2/8 (p ) ]P;
But from Eq. (2.11) we have that

[K,,H] = P, = P,'+ P', ,

so that we must have

2HI[BHI/8(p')'] = 2H2[BH2/8 (p')'] = 1,
which means that III and II& must have the form

H = [(p') + W]''
H = [(p')'+ W.]"

where WI is a function only of p'q and (q)' and W, is
a function only of p'q and (q)'. If we now evaluate
the Poisson bracket (4.14), we get the desired terms
P,' + P,' plus an additional term which equals

(Q,' —Q,') times the function

2 ~WI/~(p' q) + —,
' &W2/& (p' q) + [HI,H2] (4.15)

and so we conclude that this function must vanish.
It is a simple task to evaluate

(p'q) and the left-hand side is independent of
(p'q), this quantity must be a function only of
(q)'. Consequently, the functions WI and W, must
have the form

(p' q) [4Gl —F' —2(q)'«']

+ (p q)[«1 —F' —2(q)'«']

+ 2(q)'F(Gl —Gl) = o

where prime denotes differentiation with respect to
(q)'. Since (p'q) and (p'q) are independent of (q)',
each term in the above equation must separately
vanish so we have that

Gl = Gl = —: [F'+ 2(q)'«'] = —: Id/d(q)'j (q)'F'

which means that

G, = -', (q)'F'+ m', ,

G2 ———,
' (q)'F'+ m:,

where m', and m', are constants. Substituting these
into the expressions for WI and W, and these in turn
into the expressions for II~ and II2, we find that we

have

H = [(p')'+ (p' q)F + —: (q)'F'+ m']"
= [(p'+ —', Fq)'+ m', ]'"

H. = [(p')'- (p' q)F+-. «)'F'+ '.]'"
= [(p' —l Fq)'+ m:]' '

(4 18)

with F a function only of (q)'.
%e can now see that the Hamiltonian II is not

capable of describing any interaction. For if we keep

Q,' and Q,' fixed and transform P,' and P;'by

P,' ~P' —
2 F(Q,' —Q'),

P,' P,'+ -', F(Q,' —Q,'),
we generate a canonical transformation which causes

H& and II2 to undergo the transformation

HI -+ [(P')' + m', j' '

[(p2)2 p 2]1 2

WI ——(p' q)F + GI,

W2 ———(p' q)F + G2

where GI, G2, and F are functions only of (q)'. If we

substitute these into (4.16) and (4.17) and equate
the two resulting expressions, we obtain the equation

and, since the right-hand side is independent of In fact, this canonical transformation leaves the
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forms (4.2) of P; and (4.4) of J, unchanged, "so that
it puts the generators H, P, J, and K all into the
standard "free-particle" forms. Vile once again note
that we have not changed the functions Q,' and Q,'
which we have assumed to represent the positions of
the particles. (If one identifies the P", with the particle
momenta and requires that they transform under
Lorentz transformations to uniformly moving refer-
ence frames in the manner that is familiar for
momenta, one can deduce, without doing any
canonical transformations, that the generators have
the standard "free-particle" forms; see Appendix D.
By using canonical transformations we have arrived
at the result from a weaker assumption. ) Thus, we
can conclude, in particular, that

[[Q,",H],H] = 0

for n = 1,2;j = 1,2,3, which we could also have
computed directly without making the canonical
transformation. This last equation tells us that both
of the particles move with a constant velocity, that
is, essentially as free particles.

V. SUMMARY

We have seen that relativistic invariance may in-
volve two different theoretical postulates: symmetry
of the theory under the relativistic transformation
group, reAecting the invariance of physical laws
under changes of reference frame, and explicit
transformation properties or manifest invariance of
certain quantities. We have introduced a Lie group
formalism, for classical or quantum mechanics of
particle variables or fields, and have used it to show
how symmetry under the Lorentz (or Galilei) group
is provided by ten generators satisfying the character-
istic Lie bracket equations.

For a classical mechanical theory of a fixed number
of particles, the Lorentz transformation formula was
assumed for the coordinates of the space —time events
that comprise the world lines of the particles as de-
fined by their positions as a function of time. This
assumption of manifest invariance was expressed in
terms of equations involving the Poisson brackets of
the canonical position coordinates with the generators
of the Lorentz group. For a theory of two particles,
it was shown that the only generators satisfying
these latter equations plus the Poisson bracket equa-
tions characteristic of Lorentz symmetry are those

3O This is in fact the same kind of canonical transformation
as was used to put the generators J in the standard form
(4.4) since (1/2)gF = VR' with 48' equal to the integral of
F with respect to (q)2. That the generators P are unchanged
is obvious. That the generators J are unchanged can be seen
from the fact that q x qE = 0.

descriptive of free-particle motion; the combined
assumptions of Lorentz symmetry and Lorentz
transformation of particle positions rule out any
interaction.

((pa)2 + 2]1

I = Q„P"
J = g.Q" ~ P
K = Z. l I Q"f(P")'+ ']' '+ l:(P")'+ '-]"Q"},

where the summation is from n = 1 to X. For the
Galilei case P and J are the same as above but

H = g. (1)2m„)(I")'

K = Q„m„Q". (A2)

The last of Eqs. (Al) is written in a symmetrized
form so that these generators can be either real
functions in a classical mechanical theory or operators
in a quantum mechanical theory. In either case one
can easily verify that they satisfy the Lie bracket
equations (2.10) and (2.11) or (2.12) characteristic
of the Lorentz or Galilei group, respectively.

Let us limit ourselves for the moment to a con-
sideration of only classical Inechanics so that the
generators are real functions of the canonical varia-
bles arid the Lie bracket is the Poisson bracket. Then
we can easily verify that the generators (A.l) or
(A2) satisfy Eqs. (3.11), (3.12), and (3.18) or (3.14)
characteristic of the transformation properties of a
particle position Q," for the Lorentz or Galilei case,
respectively. In fact, we can write down explicitly
the functions that are images of Q,

"under the canoni-
cal tran. sformations generated by H, P, J, and K. For
both the Lorentz and Galilei case we have that

e' "'(Q,") = Q,
" + S,'e

e' ' (Q",) = Q", cos m —Q2 sin ie

e"' "(Q2) = Q2 cos m + Q& sin m

[Zg] 'I
(Q'R) Q'R

with similar equations for J1 and J2. These exhibit
the familiar transformations of a position coordinate
under space translation and rotation. For the Lorentz

APPENDIX A

We outline here the usual Lorentz or Galilean
symmetric description of X noninteracting spinless
particles in terms of the ten generators H, P, J, and
K as functions of the canonical variables Q," and P,",
n=1,2, X; j =1,2,3. For the Lorentz case the
generators are
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case we find that

e' "(Q";) = Q,
" + ( 1/H„)P,"t (A4)

where H„= [(P")' + m'. ]' ', while for the Galilei case
we find that

e'""(Q,") = Q,"+ (1/m. )P",t (A5)

showing that the velocities of the particles are
independent of the time parameter t and are repre-
sented by the functions (1/H„)P," and (1/m. )P,", re-
spectively Fo.r the Galilei case the equation

e' "(Q.") = Q~ (A6)

leads to the usual Galilean transformation of the
position coordinates as a function of time, as is shown
in Sec. III. For the Lorentz case we find that

' "(Qi) = Qi+ (I/H-)Q"P"[ oth —(I/H-)P"] '

(A.7)
fori& j, and

e' "(Q,") = Q",[cosh a —(1/H. )P," sinh a] '. (AS)

By using these equations we can easily show that

e' "[Q"+ (I/H. )P"t'1 = [Q", + (1/H-)

X P", (t' + Q", sinh a) (cosh a —(1/H. )P", sinh a) ']

X cosh a —(t' + Q,
"

sinh a)

X [cosh a —(1/H. )P", sinh a] sinh a

which, in view of Eq. (A4), is equivalent to

e' "(e'""(Q";)) = e' ""(Q";) cosh a —T. sinh a

in terms of the function T. defined by

T. = (t' + Q", sinh a) [cosh a —(1/H„)P", sinh a]
' .

[Here the expression e'~'~, where T. is a function of
phase space, is defined by

e'""-(A) = A+ T„[A,H]+ (1/2!)T„'[[A, H], H]+. . .

and Eq. (A4) remains valid if t is replaced by T„.] In
terms of T„, again using Eq. (A4), we can solve for

t' = T cosh a —e' '""(Q,") sinh a. (A10)

Using the same function T. we can similarly derive
the equation

" '(e"'(Q:)) = e'"'"(Q:)
for j 4 k. Intermsof theparameter v = tanhc, Eqs.
(A9) and (All) take the form

e' "(e'""(Q",)) = (1 —~') ' ' [e' ""(Q"') —»-]
t' = (1 —v') ' ' [T. —ve'"""(Q";)]

which, together with Eq. (All), lead, after integra-
tion with a delta-function density distribution, to
the usual Lorentz transformations of the positio~
coordinates. Note that, here, T. is not just a parame-
ter but is a function of the canonical variables. For
this reason we were very careful to introduce it in
such a way that it was not subject to any canonical
transformations. We were able to do this because we
knew the result (A4) for e'~"(Q,") as an explicit simple
function of t,. Our lack of this knowledge in the
general case prevents us from exhibiting the Lorentz
transformations of the position coordinates in such a
simple way and forces us to use other methods such
as the expansion to first order in the group parameter
in Sec. III.

Let us now brieRy consider the Lorentz transfor-
mation of the average value of a particle position as
a function of time in a Lorentz symmetric quantum
mechanical theory described by the generators (Al)
for X noninteracting particles. This question is dis-
cussed in general in the last part of Sec. III, where it
is shown that for a given pure state the average values
of the particle positions as a function of time trans-
form according to the usual Lorentz transformation
formula if and only if Eq. (3.19) is satisfied by the
expectation values for that pure state. For the case
of the noninteracting generators (Al), we have

[[Q";,H],H] = 0

[Q",&~] =
2 (Qi[Q",H] + [Q",H]Q".),

which is the quantum-mechanical analog of Eq.
(8.18).If we use these equations to expand Eq. (3.19)
for a given pure state as a power series in t' and equate
the terms to first order in t', we conclude that we
must have

(([Q"»])') = ([Q"»])'
for that pure state if Eq. (8.19) is to be valid. This
means that the pure state in question must be an
"eigenstate" of [Q,", H]. Conversely, we can see that
whenever the pure state is an "eigenstate" of
[Q,", H], Eq. (3.19) will be true. Thus, for the non-
interacting generators (Al), a necessary and suf-
ficient condition for the average values of the particle
positions as a function of time to transform according
to the usual Lorentz transformation formula is that
the averages be taken for a state which is an "eigen-
state" of the operators [Q,", H]

APPENDIX B

We have collected in a formal outline some basic
mathematical ideas involved in constructing a reali-



372 CURRIE, JORDAN, AND SUDARSHAN

zation of the relativistic transformation group as a
Lie group 6 of automorphisms of the linear space B
generated by the Lie algebra L (Sec. II). Particular
attention is given to the role of neutral elements in
the Lie algebra and the statements made about them
in the text are demonstrated here.

Since we do not intend to attain any mathematical
rigor, we abandon the more elegant and rnathe-
matically complete modern methods of treating the
relation between Lie algebras and Lie groups"" and
instead use a few directly applicable formal results
from the mathematics that was developed during the
first decade of this century. If T is an element of L,
let e' & be the automorphism of 8 defined by the
exponential series [Eq. (2.4)]

for every element P& of B. (H.ecall that the Lie algebra
L is a subspace of 8 and that the Lie bracket is de-
fined for all elements of B.) Then according to the
Baker—Campbell —Hausdorff identity, ""if T and V
are any two elements of L then

where W is an element of L that can be calculated
as a power series in repeated Lie brackets of T and V.
The leading terms in this series are

to terms involving two Lie brackets. The higher
order terms are also rational multiples of multiple
Lie brackets of T and V. Since real multiples, sums,
and Lie brackets of elements of L are contained in L,
it is clear that W as given by (B3) is in I; and from
this and (B2) it is clear that the set (r' of automor-
phisms (Bl) of B corresponding to all T belonging
to L constitutes a group. As stated, this is all com-
pletely formal and its rigorous meaning depends on
the convergence of the series. But it has in fact been
shown by Dynkin'4 that this Inethod can be used to
provide a rigorous connection between the Lie
algebra and the local Lie group.

We define a "neutral element" of 8 to be an ele-
ment that has a vanishing Lie bracket with every

3& H. F. Baker, Proc. London Math. Soc. 34, 91 (1901);3,
24 (1905).

ss J. E. Campbell, Proc. London Math. Soc. 33, 285 (1901);
Introductory Treatise on Lie's Theory of Finite Continuous
Transformation Groups (Clarendon Press, Oxford, England,
1903).

33 F. Hausdorff, Ber. Verh. Saechs. Akad. Wiss. Leipzig,
Math. —Phys. El. 58, 19 (1906).

34 E. B. Dynkin, Am. Math. Soc. Trans. No. 97 (1953).

element of B. If C is a neutral element and T is any
element, of B, then T + C generates the same auto-
morphism (Bl) of B as T, for T occurs only inside of
Lie brackets. Hence, we are interested in the speci6.-
cation of the generators of the group only up to the
addition of a neutral element.

The structure of the Lie group 6 is determined by
the Lie bracket equations, such as Eqs. (2.10) and
(2.11) or (2.12) for the Lorentz or Galilei groups, that,
are satisfied by a basic set of generators in L. But to
specify the group of automorphisms these equations
need to hold only up to the addition of a neutral
element. Suppose that the Lie brackets of some pairs
of generators are changed by adding neutral elements
to them. Then for any two elements T and V of L,
the element W of L calculated by the series (B3) will

be changed by at most an added neutral element, so
the automorphism generated by 8 and the composi-
tion law (B2) of the group will be unchanged. The
group 6 of automorphisms remains the same if the
generators or their Lie brackets are changed by the
addition of neutral elements.

If we are to assume that the generators H, P, J,
and K of the Lorentz or Galilei group satisfy Eqs.
(2.10) and (2.11) or (2.12), respectively, we need to
show that if they satisfy equations differing from
these by added neutral elements they can always be
changed, just by adding neutral elements, to genera-
tors that satisfy Eqs. (2.10) and (2.11) or (2.12)
exactly. This can be done quite simply by using the
Jacobi identity to put all of the unwanted neutral
elements inside of Lie brackets where their effect is
the same as that of the zero element. Thus, if Eqs.
(2.10) are true only up to added neutral elements we
still have, for example, that

= [[Ps,Pi],Js] + [I Js Ps] Pg] = 0

and we can conclude that

[P,,P,] = 0 (B4)
for j, A; = 1, 2, 3. In the same way we can prove that

[P,,H] = 0 (B5)

[J,,H] = 0 (B6)
for j = 1, 2, 3. We can always secure the equations

(B7)

by adding any neutral elements that may occur on
the right-hand sides to the three generators J~. For
the properties of the Lie bracket imply that these



[K2,K8] = [[J3Ki] K3] [[J8K3] Ki]

+ [[KS,K,],Jg] = —[J2,J3] = —J,

neutral elements must form an antisymmetric tensor elements, we have, using Eq. (8.7), that
in their dependence on the indices i and j'. Now from
the equation

= [O',J.),Ji] + [[J,P.],J.)
= [Ji,Pi] + [J2,P,]

and the similarly derived equation

[Ji,Pi] = [JI,P2] + [J3,Ps]

we can deduce that

[J,,P,] = 0

and, . in general, we can conclude that

[J;,P,] = 0

for j = 1, 2, 3. %'e also have that

(88)

and, in general, we have that

[K;,K,] = —e;,g,A (813)
for i, j = 1, 2, 3. If for the case of the Galilei group
we assume that Eqs. (2.12) are valid only to added
neutral elements, we can prove in the same way that

[K;,K,] = 0 (814)
for i, j = 1, 2, 8. For either the Lorentz or Galilei
case, that is assuming either Eqs. (2.11) or (2.12) to
be valid up to added neutral elements, we have that,

[P~,KB) = [[Ja,Pi),K~]

= [[K.,Pi), JS) + [[JS,K.],Pi] = o

[J2,&'3) = [[J8 Ji] P8]

= [[Js,P3],J,] + [[P„J,],J3] = —[Jg,P2]

and, in general, in view of Eq. (88), we have that

[J,,PI,] = —[Jg,P;] (89)

[J;,P,] = e;,7,PI, (810)

for j, k = 1, 2, 3. From Eq. (89) we see that we can
establish the equations

and, in general, we have that

[P,,KI,] = 0

for j 4 k. %e also have that

[KB,P8] = [Ka, [Ji,P2]] = [P2,[Ji,K3]]

+ [Ji,[K3,P2] = [K2,P2]

and, in fact, we can conclude that

(815)

by adding any neutral elements that may occur on
the right-hand side to the three generators I'& since
these neutral elements must form an antisymmetric
tensor in their dependence on the indices i and j. In
the same way we can show that the equations

[J;,K;] = c;,Aa (811)

can be secured by adding the appropriate neutral
elements to the three generators Kf,. Now using Eq.
(810), we have that

[K2,H] = [[Ja,Ki],H] = [[H,Ki],J3]

+ [[J8,H],K] = —[Pi,J3] = Pg

and, in general, we have that

[K,,H] = P, (»2)
for j = 1, 2, 3.Thus, by assuming that Eqs. (2.10) are
true only up to added neutral elements we have been
able, by a repeated use of the Jacobi identity and the
addition of neutral elements to P, J, and K, to prove
Eqs. (84)—(87) and (810)—(8.12) which are exactly
Eqs. (2.10).

For the case of the Lorentz group, if we assume
that Eqs. (2.11) are valid only to added neutral

[Ki,Pi] = [K2,P2] = [Kp,Pg] . (816)
For the Lorentz case, assuming Eqs. (2.11) to be
valid up to added neutral elements and using Eqs.
(8.15) and (8.16), we can establish the equations

[K,,Pg] = 8,W (817)
by adding the neutral element that may occur on the
right-hand side to the generator H. But for the case
of the Galilei group, assuming Eqs. (2.12) to be valid

up to added neutral elements and again using Eqs.
(8.15) and (8.16), we can only conclude that

[K,,P,] = b,~M (818)
where 3f is a neutral element upon which we can
place no restriction. From the assumption of Eqs.
(2.11) only up to added neutral elements we have
thus been able, by the use of the Jacobi identity and
the addition of a neutral element to II, to prove Eqs.
(818) and (817) which are exactly Eqs. (2.11), and
from the assuinption of Eqs. (2.12) only up to added
neutral elements we have been able to prove Eqs.
(8.14) and (8.18) which are exactly Eqs. (2.12).
This justifies our assuming Eqs. (2.10) and (2.11) or
(2.12) as characteristic of the Lie algebra of the
Lorentz or Galilei groups, respectively, and our
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ignoring of all neutral elements except the M in Eq.
(B18).These results are familiar and correspond to
the well-known fact that any representation up to a
factor of the Lorentz group can be reduced by a
proper choice of phase factors to a true representation
but that there are representations up to a factor of
the Galilei group that can not be so reduced to true
representations. ' "

APPENDIX C

%e continue, in the spirit of the preceding ap-
pendix, to give a formal proof of the identity (2.13)

[T]s

(
[V]r

(p) )
[exp([T] s) (V)] r'( [T]s

(p) )

for any generators T and V in I and any element I'
of B.If we expand both sides of Eq. (2.13) in a power
series of the type (2.4) in the parameter T and equate
the terms of the first order in r, we find that

'"'([~,T ]) = [ '"'(~), "'(I')] (Cl)
Equation (Cl), which expresses the preservation of
the Lie bracket by the one-parameter group of
automorphisms generated by T, follows as a corol-
lary to the identity (2.13). We first prove this
corollary (which is also used in the text) and then use
it as a lemma to prove the identity (2.13).

From the linearity of the Lie bracket it follows that

+ [e"'(j"),(d/ds)(, '"'(V)]
= [[ '"*(~)»] "'(I')] + [ '"'(~) I: '"'(I')»]I

which, by use of the Jacobi identity, can be put in
the form

(dld8) [~'"'(~),c"'(I')] = I [s"'(~),~'"'(I')]»I .

But the left-hand side of Eq. (Cl) satisfies the same
differential equation

(did ) "'(Ã,~]) =
I: "'(Ã,~]),&].

Since both sides of Eq. (Cl) satisfy the same first-
order linear differential equation and are equal at
s = 0, Eq. (Cl) must hold for all s.

Now we can use Eq. (Cl) to write

(d/d ) "'( "'"(~)) = "'(I: ' '"(~) I'])
= [.'"'(.'"'"(P)),.["'(V)] .

%e also have that

[e*p( [T]s) (V)] r (&[Tl s
(p) )
[exp([T]s}(V)]r( [T]s(p) ) [T]s(~)]

~5 V. Bargmann, Ann. Math. 59, 1 (1954).

Hence, both sides of the identity (2.13) satisfy the
same 6rst-order linear differential equation. Since
Eq. (2.13) is clearly identically true at T = 0, it must
then be true for all r.36

APPENDIX D

In Sec. III we derived equations characteristic of
the transformation properties of a particle position
and in Sec. IV we applied these equations, together
with the Lie bracket equations characteristic of the
relativistic transformation group, to determine the
possible relativistically invariant motions of two
particles that can be described by our formalism.
These equations involve only the functions Q,

" and
their Lie brackets with the generators H, P, J, and

K, and are based on the identification of the functions

Q," with the particle position coordinates. We show

here what happens if one also identifies the functions
I'," with the particle momentum coordinates and
requires that they also have the familiar transfor-
mation properties. The result is that the Eisenbud-
Wigner" criterion (see Sec. IV) is established for the
case of Galilean invariance, while in the Lorentz case
essentially the same conclusion of Sec. IV is again
obtained. The main difference for the Lorentz case
is that the canonical transformations used in Sec. IV
to put the generators in the standard "free-particle"
forms are no longer necessary or available. The
transformation properties of the P," simply require
that the generators have these forms. In other words,
for the Lorentz case the transformation properties of
the Q,

" alone imply that the theory is canonically
equivalent (from the point of view followed in the
text) to the one in which the P,"also have the familiar
transformation properties.

If we require that P" be unchanged by space
translations and transform as a vector under space
rotations, as is familiar for a momentum, we must
have that

[P,",PI,] = 0

[J;,P",] = e;,&Pp

for i, j, A; = 1, 2, 3. These equations, together with
Eqs. (3.11) and (3.12), imply that the generators P
and J must have the standard "free-particle" forms

(4.2) and (4.4) up to an added constant term. For any
additional term must have a vanishing Poisson
bracket with Q," and with P,".This is the same result
that was obtained in Sec. IV, but here it occurs as a
necessary consequence of our assumptions instead of

36 The authors are grateful to N. Mukunda for his help in
simplifying the formal proofs in this appendix.
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through the choice of a suitable canonical transfor-
mation of the P,".

Under a transformation to a reference frame mov-
ing with a uniform velocity v in the j direction, we
require Pp to change, in the Galilean case, to

e' ""(Pp) = Pg —8p,m.v

as is familiar for a particle momentum under a
Galilei transformation. This is equivalent to the
equation

[Z;,Pg] = bp, m.

which together with Eq. (8.14) implies that K has the
standard "free-particle" form, or, in the notation of
Eq. (4.6), that W, = 0 except for a possible constant
term. From this the "Galilean invariance" criterion
of Eisenbud and Wigner" follows immediately. This
is a result that is established in Sec. IV only on the
basis of an assumption about the center-of-mass
motion in addition to the Galilean symmetry ex-
hibited in the generators and in the transformation
properties of the Q,".

In the Lorentz case, once the generators P and J
have been put in the standard forms (4.2) and (4.4),
the treatment in Sec. IV continues unaltered with
the P,"- identified with the particle momenta to the
point where H and K have been shown to have the
forms (4.12) and (4.18) with H& and H2 given by Eqs.
(4.18). Now, instead of doing a canonical transfor-
mation of the P," to put Hi a.nd H2 in the standard
free-particle forms, we require that the P," transform
as is familiar for particle momenta under Lorentz
transformations. From the Lorentz transformation
formula

p~"(t') = pg(t)

for the y or z components of the particle momenta
under a Lorentz transformation to a frame moving
uniformly with a velocity v = tanh s in the x di-
rection, and from Eq. (8.15) for t', we can follow an
argument which is exactly analogous to that leading
from Eqs. (8.15) to Eq. (8.18) to derive that

%;,PP = Q,"[H,P."]

for y' / k. But we can explicitly evaluate the Poisson
brackets

%'»8 = Q'(~H~/~V~) + Q'(~H2/~V~)

Q,'[H, P~] = Q,'(BH~/Bqp + BH2/Bqa)

by using the variables (4.8) and the known forms of
H and K. Since these two expressions must be equal
we have that

g, (BH2/Bqg) = 0

for j / A: which means that F must vanish and B&

and H, must have the standard "free-particle" forms.
Again we have reached, as a necessary consequence
of our assumptions, the same conclusion as is reached
in Sec. IV by making a suitable canonical transfor-
mation of the P,".For the Lorentz case the identifica-
tion of the P," with the particle momenta, together
with the requirement that they transform in the
familiar manner, serve only to remove an arbitrari-
ness of representation by picking one set of generators
from a class of sets of generators which, from the
point of view followed in the text, are all canonically
equivalent by transformations of the P,".


