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INTRODUCTION

HILE preparing for experiments with the
~

~

~

~

~

Cambridge electron accelerator, we reviewed
the field of nucleon form factors as derived from
electron-scattering experiments. We haev concluded
that a more suitable basis for discussion of the
experiments is formed by the charge and magnetic
form factors G&(q') and GM(q') to be discussed below,
rather than the more conventional Dirac and Pauli
form factors F,(q') and F,(q'). The simplification
afforded by use of the former in the quantitative
treatment of the errors and error correlations has
had several interesting consequences with regard
both to critical evaluation of the existing experi-
mental data and to the interpretation of nucleon
structure in terms of the vector mesons, p and coo.

The possible use of 6& and G~ as alternatives to
I'& and I'& was 6rst mentioned by Yennie et a/. ,

' who
also pointed out that these linear combinations of F&

and F2 correspond to zero and one unit of angular
momentum transferred along the direction of the
virtual photon exchanged in the scattering process.
Sachs and his collaborators' conjectured that Gs(q')
and Gsr(q') might prove more physically meaningful
than I'& and F2 after noticing that the rms radii of
the charge and magnetic moment spatial distribu-
tions were given by [6dG&/dq']'* and [6dGM/dq', j&

respectively, at g' = 0. The descriptive terminology
"charge" and "magnetic" is derived from this fact.
We wish to emphasize our belief, however, that the
usefulness of the combinations is fully apparent in
momentum space and is independent of possible
ambiguities arising in interpretation of the spatial
I'ourier transform. ' Hand' has pointed out the non-
interference of 6& and 6'~ in the Rosenbluth formula
for elastic scattering and the consequent advantages
of this type of analysis over the method of intersect-
ing ellipses previously used. He also observed the
physical interpretation in terms of transverse Mid

longitudinal photons and the complete generality of
* Supported by the U. S. Atomic Energy Commission.
I D. R. Yennie, M. M. Levy, and D. G. Ravenhall, Rev.

Mod. Phys. 29, 144 (1957).
F. J. Ernst, R. G. Sachs, and E. C. Wali, Phys. Rev. 119,

1105 (1960); R. G. Sachs, ibid 126, 2256 (1962). .
3 L. N. Hand, thesis, Stanford University, 1961 (unpub-

lished); Phys. Rev. (to be published).

this type of angular distribution in the case of single
photon exchange for arbitrary inelastic reactions as
well. The form of the most general possible angular
distribution was known previously and discussed by
several authors, but we know of no attempt at either
applications or interpretation. A preliminary discus-
sion of the implications of this type of analysis was
made by Hand, Miller, and Wilson' in a brief com-
munication. This paper extends these arguments and
sumInarizes existing data analyzed in this way.

TIle theoI'e tlcal dlscusslon of electron —nucleon
interactions can be traced to early discussions of the
neutron —electron interaction by Foldy' ' and by
Zemach' (see also Yennie' and Drelis). The particular
formula used for electron —proton scattering is due
to Rosenbluth. ' The elements of the calculation are
Inade clear by the Feynmann diagram of Fig. l. It

Frc. 1. Feymann diagram
for electron —proton scatter-
ing with one photon ex-
changed.

ELECTRON
PR'0 TON
SCATTER'WS

is assumed that only one photon is exchanged be-
tween the electron and photon. The matrix element
for scattering then contains the term

—4~te( —u. 'I J.lu. &(&/q')(u 'Ij.lu & (I)
where J„,j„are operators describing the proton pnd
electron current, respectively, and q'-is the square
of the invariant 4-momentum transfer given in terms
of the initial and final electron or proton momenta
by

q„= P'„—P„= Ic„—Ic'„.

If we assume no structure of the electron we replace

i. by

We alw;hays need to calculate the expectation value
of j„„(u,'Ij„lu, ) between the Dim, c spinors u, u.
Since we anticipate structure for the nucleon, we

4 L. X. Hand, l). C. Miller, and R. Wilson, Phys. Rev.
I etters 8, 110 (1962).

~ L. L. Foldy, Phys. Rev. 87, 688 (1952).
6 L. L. Foldy, Rev. Mod. Phys. 30, 471 (1958).
7 A. C. Zemach, Phys. Rev. 104, 1771 (1957).
8 S. D. Drell and F. Zachariasen, Electromagnetic Structure

of the Nucleons (Oxford University Press, New York, 1961).
9 M. Rosenbluth, Phys. Rev. '79, 615 (1950).
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must replace J„by a more general form than that
for j„.E&oldy has shown that the most general form

momentum space, becomes: J& q~ = 0. In other
words, the current operator must consist of a scalar

for relativistic covariance, current conservation, and a transverse vector:
and a, spin 1/2 particle is

J'. = eG, (q')
J. = &h'.F (q ) + &~(v.v. —v.v )q.F (q')], (4)

where & is the anomalous magnetic moment in
nuclear magnetons. F&(q') and F,(q') are arbitrary
functions of q' and are here normalized to unity at
q2 0

We note that a difference of F~(q') and F2(q')
would imply a different spatial extent of the Dirac
particle and the anomalous moment subsequently
introduced by the Pauli term. The form factors PI
and P2 are conveniently called the Dirac and Pauli
form factors. (Sometimes they are carelessly called
the electric and magnetic form factors. Such usage
leads to confusion with other form factors to be
discussed. )

Although the form (4) for J„ is the most general
possible form, it is not necessarily the only simple
one. Others may be formed involving linear combi-
nations of J'& and F2. We may show, for example,
by direct use of the Dirac equation, that the follow-

ing formula for J„gives the same expectation value

&u,„iJ„iu;„)

Jp — 2 2 Ppg@ g &pg» g

where P„ is the mean of the initial and final proton
momenta and

r, = —i/2[v. (p q) —(q p)v.].
where (p q) = (p„y„.q„y„) .

Ja ——ieG~(q')(g x q)/M . (10)
This form is identical to that obtained in nonrela-
tivistic theory from a Coulomb field and an inter-
action ii d 8 with ii(q') = (e/2M) G~(q'). The Breit
frame plays a similar role for spacelike vectors to
that played by the center-of-mass frame for timelike
vectors in that a considerable algebraic simplification
results if cross sections are expressed in this frame.
The factor [1+ (q02)~,b/q']-", which appears in the
H,osenbluth formula, and its generalizations arises
from the relation:

(eot ~/2) = (cot ~/2) "/[1+ (q) ~ /q] (11)
Interaction with the convection current leaves the

spin unchanged while interaction with the spin
current Aips the nucleon spin with respect to q.

CROSS-SECTION CALCULATIONS

It transpires that if polarizations are not measured,
the terms corresponding to 6& and G» contribute
separately to the cross section.

If we complete the cross-section calculation, we
arrive at a, formula for the cross section for the scat-
tering of a,n electron by the proton:

cxrgm E
dQ 2E sin (0/2) L&'

X [Fi + (q /4' )bF,] + 2(q /4M ) (F, + xF,)'}

Then

G.(q') = F (q') —(q'/4M')~F (q')

G~(q ) = F~(q ) + bF2(q ) (&)

Ol

rL0. ur, m E' eot 0/2
dQ 2E ain (0/2) E 1 + q /4.1'I'

&& [G~g + (q'/4M )G,&r] + 2(q /43l ) Ci,ir

(12)

[We here adopt the metric q' = q q
—q,

' so that q'

is positive for electron scattering. ] We use G instead
of F because 6» does not tend to unity as q't ends to
zero. Others have used F „, = G~/p, ' F,i, ——G~. The
currelit operator wa, s first written explicitly in the
form (5) by Barnea" who independently arrived at
the ITlost iIllportant conclusion of tl1ls paper.

The matrix element (5) of the current operator
takes on a, particula, rly simple form in the Breit
frame [defined by (q0)& = 0] reached by performing
a Lorentz transformation along q. In this frame the
statement of charge conservation, as expressed in

&" E. S. Barnes, Phys. Letters 1, 166 (196'2).

where n, r, m are the fine-structure constant, the
electron Compton wavelength (3.86 )& 10-") cm, and
the electron mass. E and E' are the incident and scat-
tered electron energies, and 8 is the scattering angle.

Formulas (12) and (13) hold in the first Born
approximation and in the extreme relativistic limit
for the electron. Errors of the order of u and m'/q'
can appear.

Equations (12) and (13) show that in order to
separate the form factors E1 and F& or 6& and 6»
(which we remember are functions only of the square
of the 4-momentum transfer q'), we must measure
the cross section at two values of cot 0/2 for the same
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q'. Equation (12) shows that to separate F& and F2
two simultaneous quadratic equations must be
solved. The standard method of solving a quadratic
equation is to "complete the square. " When we do
this, we are led automatically to Eq. (18) as an
intermediate step.

To separate G~ and G& we may plot

2F sin |t/2
' E d~

nr, m E' dQ

against cot' 0/2. The intercept at cot 0/2 = 0 (0
= 180') gives G~', whence the slope gives G~'. The
ambiguity of sign of G~ and GE is a demonstration
of the ina, bility of scattering experiments in first
Born approximation to measure the sign of either
the charge or the magnetic moment. We know from
other measurements G~(0) = p (the total magnetic
moment) and G~(0) = 1 for the proton and 0 for
the neutron. The usual requirement that G(q') be a
smooth function gives the sign of all but G~„. Once
the sign is determined, I'& and F2 may be found from
Eqs. (7) and (8). It is easy to see that the errors on
F, and F2 will usually be more correlated than those
of Gg and G~ and la,rger. An expression of the
cross section in terms of G~ and GM is thus to be
preferred.

It is, of course, possible to consider I'1 and F, and
to use the full error matrix in all calculations. We
find it hard to think about simple errors and to
think about the error matrix is harder. At large
momentum transfers, for example, we will show that
G~(q') is well known and G&(q') hardly at all. F, and
I'2 are, therefore, not known separately and the error
correlation must always be considered.

A graphical method has sometimes been used in
the past to soh~e the simultaneous quadratic equa-
tions (the method of intersecting ellipses). The pro-
cedure is, however, the geometrical analog of the
algebraic procedure just described. Kith such a pro-
cedure it has not proved easy to obtain useful error
estimates. The algebraic procedure is more useful.
We note that much of the previous data is analyzed
by a plot against tan' 8/2 instead of cot' 8/2. The
latter procedure is preferable because it enables
points for 180' electron —proton scattering (proton
angle equal to 0') to be included in the plot.

EXTENSION TO INELASTIC PROCESSES

For inelastic processes the current operator may
still be separated in a way analogous to (5) for in-
elastic electron-scattering processes. This fact has
been slowly realized over a, period of years. We write
the general formula for scattering of electrons by

nucleons or by a nucleus with one photon exchange
term only:

do. ~ cot 8/2 2 cot 0/2
P&(qyqo) 2~ ~+ ~&(q)qo) 2+ 2i ~ y

qo/q qo/q—

(14:)

where g' = q q —q,
' is the invariant square of the

4-momentum transfer, qo its 4th component, and
1 & and F & are functions to be determined.

Equation (13) appears a,s a, special case for elastic
scattering when q, = q'/2»I.

Bjorken" first showed that the cross section could
be expressed in the form A + 8 cot' 9/2 using Eq.
(14).However, we wish to go further. The separation
of the constants I'~ and 1'~ in Eq. (14) appears more
complex than that of Bjorken, but it has a physical
meaning, of exchange of longitudinal and transverse
photons, respectively. Thus, 1'&(q') is just the total
photon absorption cross section. We remember here,
that the photon is transversely polarized and a
longitudinal field cannot be produced by real photons.
This distinction has been made before" for pion
production. Its generality was observed by Hand' and
by Gourdin. "

We may, for example, apply Eq. (14) to nuclear
physics. The term 1'&(q'qo) tends to the photon
cross section as q' tends to zero. The term 1'& (q', qo)
can excite 0 ~ 0 transitions inaccessible to photons.
In this connection we empha, size that the separation
of nuclear transitions into electric a,nd magnetic
multipoles is not the same as the separation we have
here into G& and Gjf (or I'& and I',), only electric
multipoles enter into I'~ but both electric and mag-
netic multipoles enter into I"&.

PROTON-ANTIPROTON ANNIHILATION

The cross section for proton —antiproton annihila-
tion leading to an electron —proton pair also involves
the current operator; in this case, we need the expec-
tation value (uf„u;„lJ„l0).Again we may define two
form factors in the region of negative q' by equations
analogous to (4) or (5). The cross section becomes

dagda = Inn'/2q[ (q'+ 4—»I')]' '}

&( l'(4»I'/q')G~ sin'9 + 6ir(1 + cos'8)]
= (~/2) I '/ql: —(q'+ 4»I')}' '}

X (lK + (q/4&I )~F2] (4)if /q ) sin'0

+ (Fi + ~F2) (1 + cos'0) } . (15)

» J. D. Bjorken (private communication).
I2 R. H. Dalitz and D. R. Yennie, Phys. Rev. 105, 1598

1957)
18 M. Gourdin, Nuovo Cimento 21, 1094 t', 1.961).
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Here g2 is negative and therefore represents the
erlergy transferred by the photon. It must clearly
be numerically greater than 43P. Also, from their
definition the form factors are, in general, complex.
It is obviously simpler to use GM and G~ than F& and
F2 iu. this context also. They are, so far, from the
positive q' region and separately defined, but it will

later be assumed that there is an analytic continua-
tion between the two regions.

For example, Frazer and Fulco" have discussed
the reaction N + N —+ m + m. . This can be regarded
as an intermediate state in the reaction N + N —+ m.

+ ~ —+ e + e, as shown in the diagram of Fig. 2.

FIo. 2. Feynmann dia-

/SO70p/C gism for isotopic vector
electron —nucleon scattering
with two-pion intermediate
state.

Frazer and Fulco show that the nucleon form factors
can be expressed in terms of the amplitude for the
N + N ~ ~ + m process multiplied by the pion
form factor. We can then (formally) continue this
relation for the nucleon form factors to the unphysi-
cal region. to q' & —4m' in terms of this process.
We further assume that an analytic continuation is

possible through the rest of the nonphysical region.
%e note, here, that while for electron scattering

(q' ) 0) it can be shown that G& and G& are wholly

real, they can be complex for the annihilation re-
action q2 & —43II' and in the nonphysical region up
to q2 & —4m'.

The close relation of the form factors to the re-
action vr + 7r —& N + N is formally written by ex-

pressing them in terms of the pion form factor and
the amplitude 7.' for the 7r + ~ ~ N + i7 reaction
as ln the expl"esslon

(e'e
~
J„~NiV) =- Q (e'e

~
J„~7r7r)(mxTNN) . (16)

The pion, being spll'lless, has orlly 011e form factoI'.
The difference between the two nucleon form factors
is thus seen to be a consequence of the differing
states in the second term of (16).

%e note here that two pious and even pion
numbers generally can only couple to a photon in

an isovector (7.' = 1) state. ' An odd number of
pions couple in an isoscalar (7 =- 0) state. A single

pion cannot couple. Thus the contributions of the
m + m. —+ N + N rea, ction to the proton and neutron
form factors are related and it is convenient to

'I W. R. Frazer and J. 8,. Fulco, Phys. 14ev. 117, 1603,
1609, (196O).

express this by forming the isotopic vector and scalar
combinations

G. = s(G, —G,v)

G. = s (G. + G~)

G„and 6, can couple solely through states of an
even and odd number of pions, respectively.

Helicity Representation

The helicity of a particle is defined as the angular
momentum of a particle about its direction of motion.
For a spinless particle the helicity is always zero.
X~'or a spin I/2 electron or nucleon the helicity is

~ ~; for spin 1 photons it is 0 for longitudinal pho-
tons or ~ 1 for transverse photons. H,eal photons of
mass zero can only have helicity + l.

The helicity concept has been most useful for
physical problems where one particle is extremely
relativistic. Calculations of neutrino reactions are
simplified by the definite neutrino helicity. The spin
of a relativistic electron follows the directiou of
motion as the electron is scattered.

Jacob and Wick" discussed the helicity representa-
tion for two-body reactions. Durand et at." even
calculated J„in this representation. Of course, they
encountered the abovementioned separation into
convection current and spin current for the virtual
photon is either longitudinal (corresponding to G&)

or transverse (corresponding to Gw).

FORM FACTORS IN THE NONPHYSICAL REGION

Equation (13) for electron —proton scattering de-
fines the form factors for the region q2 ) 0 and Eq.
(12) for proton —antiproton annihilation defines

them for the region q2 & —43P. There is no physical
process which defiries th.em in the intervening region,
We can give a meaning to a definition only irl terms
of arl analytic continu'l t:ion.

For the production of t~vo nucleons in the state
of angular momentum J, Frazer and Fulco" used
helicity amplitudes. f+ refers to both nucleons having
the same helicity and f~ denotes opposite nuclear
helicities. Of course, J = 1 for the form-factor prob-
lem so a longitudinal photon corresponds to f+ and
a transverse photon to f Miller" ex.pressed the
form factors for electron —nucleon scattering directly
in terms of these helicity amplitudes for the nucle-
ons. In. particular, the connection can be seen [from

"M. Jacob and G. C. AVick, Ann. Phys. (N. Y.) 7, 404
(.1959).

'6L. .I3urand, P. C DeCalles, and 14. B. Marr, Phys. H,ev.
126, 1882 (1902).

'~ 13. G. Miller, Phys. Rev. 12'7, 1%5 (1902).
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Im I& .I
= (e/2)F*-(f /-&2) V~'/&)

Eqs. (2.3a) and (2.3b) of reference 14 and Eqs. (7)
and (8) above] to be

(»)

or do we have to make the weaker assumption that
F(z)/z -+ 0 as z -+ ~, giving a subtracted dispersion
relation

Im I 61,:rI = (e/2)F*. (f~/cV) (II."/E), (19)

2 /2

F(q') =- F(0) +-
m' q (q q

—2e)
(21)

Relation of Positive and Negative
g'—Dispersion Relations

The processes of electron —nucleon scattering and
of proton. —antiproton annihilation may be related
in the first Born approximation or, more generally,
by dispersion relations. We must plausibly assume
that there are no discontinuities or poles in the non-

physical region, except for a branch cut on the real
axis from —4m' to —~.

In reference 14, for example, it is shown that with
certain plausible assumptions, any of the form
factors, Fi, F2, G&, G~ obey dispersion relations. The
question arises, does F(z) —+ 0 as z —+ ~, in which
case F(z) obeys an unsubtracted dispersion relation
giving for spacelike q'

F(q ) = —,2 —, .-dq',1 Im F(q")
g

—
cg

—te
(20)

18 S. Bowcock, N. Cot tingham, and D. Lurie, Nuovo
Cimento 10, 918 (1960) 19, 142 (1961).

I9 J. Hamilton, T. D. Spearman, and W. S. Woolcock, Ann.
Phys. (N. Y.) 1/, 1 (1962).

where k is the barycentric pion momentum.
Bowcock gt al is and Hamilton gt O,l i9 relapsed pjon-

nucleon scattering to isovector electron —nucleon
scattering through the amplitudes for m + 7r ~ N
+ N. Unfortunately, they followed Frazer and Fulco
in using Fi and F2 to compare with experiment.

From our point of view, pion —nucleon scattering
in which there is nucleon spin Qip, is very closely
related to magnetic isovector electron —nucleon scat-
tering. Non-spin-Rip pion —nucleon scattering is akin
to electric isovector electron —nucleon scattering. For
example, the reaction m + p —+ m' + n (which must
be T = 1 for the two pions) in the state I = 0 (no
spin fhp) can be related directly to the form factor
G~I. The details of this relationship are discussed
elsewhere. "

Now, another reason for our preference for electric
and magnetic form factors becomes clear. The de-
composition of J„ into convection current and spin
current focusses attention on the relative nucleon
spin. This decomposition can assist detailed com-
parisons between electron —nucleon and pion —nucleon
scattering —presently our two most precise ways to
study the pion —pion interaction.

Perhaps even a second or a third subtraction is
necessary. Experiment must decide and theory can
only give a guide. As we shall see the diferent form
factors may need different subtractions.

The dispersion relations (20) or (21) become
simpler if we assume that the integral is dominated

by the pion —pion resonances recently discovered. It
is, therefore, now customary to replace the integral
by a sum over resonances. Equations (18) and (19)
then become, respectively,

F( 2) 1 g Im F(q+)
gg —

g

F(') =F(0)+ —'Z '.— ™",'
gz Qg

—
g

(22)

(23)

We will follow this custom but will not discuss its
validity.

o. ==i —p .+g
R Ii q

—
qR

Gv = p .L — g
pz

A' z 1 q
—qg

(24)

What does this assumption imply for Fi and F2? We
note that at large q', 9 (q') ~ 1 —Zn. From Eq.
(6) we must have F,(q') ~0. We thus reach the
conclusion that F2 must either have no components
from resonances at large q' or, if we take the point
of view that the constant in G& corresponds to a real
limit as q' —+ ~ and therefore G& obeys a subtracted
dispersion relation, F2 must obey an unsubtracted
relation. In general, F& must have one less subtraction
than G~. This conclusion agrees with that from
perturbation theory.

For example, if we allow F2 to obey a subtracted
relation, or equivalently, to have a constant core,

Phenomenological Fits to Form Factors

The extensive use of the helicity amplitudes f+ and

f suggest that we should express 6& and 6» in the
form (20) or (21). If we wish to discuss the nucleon
form factors given by low-energy electron scattering
in terms of nearby resonances, we have no way of
distinguishing between a resonance at

q~m )) ~q'~ and
a necessity for subtraction as given by F(0).

Thus, we assume that we can express GL; and G~
111 the forIH



and one resoIlance

1+ q'/( —q') '

R (O,q') = cot' (()/2) [Gs + (q /4M )G~]

+ (q'/4M') (1 + q'/4M') Gu . (28)
This can reduce to the simple form (22) if and only
if' = l.

We note that, in general, it is not possible to ex-
press G& and G~ in the form of resonances plus a hard
core and simultaneously to express F& and F& in this
form. This is possible only if there is no core for F&.

We should not be surprised at this conclusion. The
form (24) and (25) is an approximation and only
experiment can tell us the behavior of 6 and I' as
q' —+ ~. o. and P in Eqs. (24) and (25) are not ex-
pected to be constants and will have variations of the
order of q'/4M'. Sachs' has speculated that there is a
hard core of a Dirac particle for which Fs(~) = 0
and GM( Oc ) = Gs ( 0c ) and Fi ( ao ) . Our fits which
will be derived later show that at low q' Gw„(q')
= Iu„(Gs„(q'), which is far removed from Sachs'
postulate. Above q2 = 10 F ' errors increase. The
most recent Cornell data show that Sachs' relation
holds at q' = 50 F~-'.

We plot B(e,q') as a function of q' at constant 0. A.

smooth curve is drawn through the points. At this
stage our procedure differs from the "smoothing"
procedure of Bumill. er. We do not read points from
the smooth curve. In.stead, we draw a line parallel
to the smooth curve through each experimental
point B(e,q ) aild. construct s, iiew lilterpoiated
point at even values of q'[q'. = 4F ', OF ', 8F ',
etc.]. We assign to this interpolated point the error
of the original point. Thus, if the original point lies
above the smooth curve, so does the constructed
point. The procedure is quite insensitive to the de-
tailed method of drawing the curve, as shown in
Fig. 3.

bined with the problem of solving the coupled

7 quadratic equations, has complicated attempts at a
1+ q'/( —q') proper error analysis in terms of I'1 and F&2. We here

use the same data and analyze in terms of 6& and
(26) G~.

The erst step in the analysis is to remove the
then

major part of the angular dependence of Eq. (3) by

G 1 & + sq
(1 ~) + & + sq /4M

(27) defining and evaluating
1+ q'/( —

q )

Numbers for the Proton Form Factors

We will here include the data of 8 experiments.
That of Bumiller et al. at Stanford, "of I ittauer et al.
at Cornell, " of Sanssens et cl. at Stanford, of I eh-
mann et el. at Paris, ""of Yount and Pine at Stan-
ford, " Berkelman e] cl. at Cornell, " Oriel-ey and
Hand at Sta11for,"and Gram at Stanford. "rior the
first two (and most extensive) sets of data, Bumiller
and Littauer, the data were not taken at the same
momentum transfer at different angles. This, com-

o F. Bumiller, M. Croissiaux, E. Dally, and B. Hofstadter,
Phys. Rev. 124, 1623 (1961).

2~ B.M. Littauer, H. F. S(:hopper, and R. R. 7Vilson, Phys.
Rev. Letters 7& 141 (1961).

2~ T. Janssens, R. Hofstadter, E. B. Hughes, and M.
Yearian, Bu11. Am. Phys. Soc. V, 488 ((g) (1962).

23 P. Lehmann, R. Taylor, and Ri(:hard Wilson, Phys. Bev.
126, 1188 (1962).

24 P. Lehmann, R. Dudelzak, Proceedings of the International
Conference on High-Energy Physics CERN, 1068).

s5 D. Yount and J. Pine, Phys. Rev. 128, 1842 (1962).
26 E. Berkelman, B.M. Littauer and O. Rouse, Proceedings

of the 1968 International Conference on High-Energy Physics,
CERN (Centre d'Etudes Recherches Nucleaires, Geneva,
Switzerland, 1962); Phys. Rev. (to be published).

sr D. J. Drickey and L. N. Hand, Phys. Rev. (to be pub-
lished).

P. A. M. (+ram and E. B. Dally, Bull. Am. Phys. Soe,
'7, 489 (1962).
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Fio. ', i. The function R(e,qs) for e = 60' shoxving the pro-
cedure for interpolation to even values of q2.

X, = (q'/4M')(1 + q'/4M')G'. „
X2 -——Gs+ (q/4M')G~

by solving the simultaneous equations

1C1 = Q' R '/o ' = X1511 + X2612

(29)

(30)

We then evaluated Ge(q') and Gjr(q') at each value
of q' by a least-squares fit to Eq. (28). Each measure
of R (8;) at the same momentum transfer is assigned
a weight equal to the inverse square of the quoted
statistical error (1/o„)'. Then we obtain the best
values of the quantities X1 and X&, given by
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1Cs Q~ (B'~ Cot 0,'/2)/0 ~' X)621 + X2622 ) (82) for Fj and P2'of Bumiller. This is because we have
refrained from smoothing. Our errors on each point
are truly independent, whereas Bumiller presents
errors which in some way represent errors on the
curve as a whole.

The error matrix is defined by the inverse matrix

I.O—

BUM ILLER DATA

(88)
Then,

Xi = dn g; 8,/o', + di. Q, 8; cot' (8/2)/o'; (84)

X2 —d21 Q ' +'/&' + d22 Q ' 8' Cot (0/2)/(T (8'5)

and G& and GM are deduced. The error on any combi-
nation of Gs and GM, and hence, on the adjusted
value of the cross section at any point, is determined
by the error matrix. Thus, the error on X1 is d'„' and
on Gsr is d'„'/(q'/43P)(1+ q'/41lI') The erro. r on
G~ is more complex and is

0.4

0.2—

0 I I

0.5 1.0

Fzo. 4. A least-squares
Bumiller's data.

cot 2 6
2

I I I I

1.5 2.0 2.5 3.0

fit to Eq. (28) for qs = 10 using

(1 + q'/43I')

1/2
11

o + q /43f ))''

(86)

The expected value of x' is the number of degrees
of freedom of the system which is X —2, where E
is the number of pieces of data. If we multiply the
error by (x'+ 2 —X)'~' we arrive at the error by
external consistency. In most cases, this was greater
than that by internal consistency.

Figure 4 shows such a fit for Bumiller's data at
q' = 10 F ', x' = 13 with an expected value of 4.
Visually, the data appear to fit quite well. This
shows the importance of correct quantitative fits.

This procedure has been followed separately for
the Littauer and Bumiller data for q' &~ 4 F-'. We
have raised the form factors of Bumiller by 8% at
large momentum transfers to allow for better radia-
tive corrections, the better calculations of Tsai,"and
a slight nonlinearity of this correction due to the
sma, ll value of DE/E used in the evaluation. We
note at once that the errors are larger than the errors

2~ E. R. Cohen, K. M. Crowe, and J. W. M. DuMond,
Pundamentat Constants of Physics (Interscience Publishers,
Inc. , New York, 1957), Chap. VII.

ss P. Tssi, Phys. Itev. 122, 1898 (1961).

These errors take no account of the fact that the
points do not always fit the stra, ight line [Eq. (26)]
well. The errors are called errors by internal con-
sistency. "The goodness of fit is found by evaluating

The scatter of both the Bumiller points and the
Littauer points is greater than the error. This would
be reduced if we increased the error to be that of
external consistency. This wouM increase the errors
by an average factor of 1.5 for the Bumiller data and
2.0 for the Littauer data. We prefer to leave the
errors as they stand to show, in the one plot, the
reproducibility of the data. Moreover, the systematic
errors are not clear and are omitted.

For q' & 2, using the points of Yount, Bumiller
and Drickey, it is not possible to separately derive
6'& and 6», so they have been analyzed assuming
6&& ——pt J„and values of 6& deduced. Likewise, the
value of CM of Yount at g' = 4.6 I&-' assumes a value
of Gg.

The new data of Lehmann et at. and Berkelman
et at. already a,re analyzed directly in terms of G& a,nd
G~ and we quote directly. The new data of Aitken
et at. are at constant q', in terms of I'& and I'2, and
it ls trivial to extend to Og and 6~.

The data of 180' electron —proton scattering"
measure G~„directly.

The data for CE„and |~, are tabulated in Table I
and are plotted in Figs. 5—7. Two lines are drawn on
the plots. The solid line is the authors' guess as to
the truth. This line satisfies 6'~ ——pg& for all q';
this is an amusing relation for which we can find no
meaning. The dotted line is an attempt, to be
described later, to fit the data with dispersion rela-
tions using Eqs. (24) a,nd (25).
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YxaLz I. Proton form factors. '

g2

(p—2)
pe

(BeV/c)2 fi2q2/43f2c A g'/M~2c2 Author

0.28
0.30
0.30
0.36
0.49
0.57
0.60
0.62
0.79
0.93
1.00
1.05
1.30
1.38
1.60
2.00
2.00
2.00
2.20
2, 98
4.00
4.00
5.20
5.64
6.00
6.00
8.00
8.00
8.87

10.0
10.0
10.0
12,0
12.0
12.43
14.0
15.0
16.0
16.23
18.0
20. 0
20. 2
22. 0
24. 0
24. 0
25. 0
30.0
30.0
35, 0
40, 0
45. 0

0.0109
0.0116
0.0116
0.0140
0.0190
0.0221
0.0233
0.0241
0.0307
0.0361
0.0388
0.0408
0.0505
0.0536
0.0621
0.0776
0.0776
0.077t'
0.0854
0, 116
0. 155
0. 155
0.202
0.219
0.233
0.233
0.310
0.310
0.344
0.388
0.388
0.388
0.466
0.466
0.482
0.543
0.582
0.621
0.630
0.699
0.776
0.784
0.854
0.931
0.931
0.970
1.164
1.164
1.358
1.552
1.746

0.0031
0.0033
0.0033
0, 0040
0.0054
0.0063
0.0066
0.0069
0.0087
0.0103
0.0111
0.0116
0.0144
0.0153
0.0177
0.0221
0.0221
0.0221
0.0243
0.0329
0.0442
0, 0442
0.0575
0.0624
0.0663
0.0663
0.0885
0.0885
0, 0981
0.111
0.111
0.111
0.133
0. 133
0. 148
0. 155
0. 166
0. 177
0. 179
0. 199
0.221
0.223
0.243
0.265
0.265
0.276
0.332
0.332
0.387
0.442
0.498

0.56
0, 60
0.60
0.70
0.98
1, 14
1.20
1.24
1.58
1.86
2.00
2. 10
2.60
2.75
3.19
3.99
3.99
3.99
4.38
5.95
7.99
7.99

10.38
11.26
11.98
11.98
15.97
15.97
17.71
20.0
20.0
20. 0
24. f)
24, 0
24. 8I
27.9
29.9
31.9
32.4
35.9
39 9
40. 3

47 9
47.9
4.(3 (3

59.9
59.9
69.9
79.9
89.9

0.973
0.959
0.974
0.967
0.933
0.915
0.940
0.922
0.920
0.848
0.881
0.884
0.867
0.873
0.849
0.810
0.825
0.784
0.790
0.725
0.650
0.749

0.557
0.654
0.400
0.473

0.419
0.558
0.417
0.30
0.466

0.256
0.416
0.281

0.350
0.316

0.295
0.249
0.204
0.396
0
0.359
0.258
0.436
0.00

0.014
0.010
0.006
0.040
0.009
0.037
0.007
0.010
0.037
0.034
0.009
0.009
0.025
0.036
0.004
0.024
0, 022
0.013
0.006
0.021
0.034
0. 173

0. 122
0. 186
0. 109
0.624

0.033
0.021
0 02
0.044
0.032

0.054
0.022
0.050

0.024
0.045

0.046
0.109
0.545
().037
0.2
(), 037
0.044
0, 073
0.250

2.437

1.703
2. 234

2.034
1.776
1.366
1.794
1.493
1.551
1.284
1.375
1.217
1.202
0.989
0.821
1.119
1.07
0.957
0.937
0.916
0.717
0.782
0.726
0.662
0.524
0.554
0.563
0.416
0.521
0.447
0.430
0, 382
0.314
0, 232
0.238

0.036

0.100

0.302
0.036

0, 016
0.119
1.567
0.049
0.017
0.400
0.056
0.251
0.031
0.023
0.030
0.034
0.045
0.051
0.050
0.014
0.048
0.019
0.038
0.011
0.016
0.025
0.024
0.015
0.041
0.037
0.016
0.026
0.014
0.012
0.018
0.022

YouIlt
Lehmann
1)rickey
Humiller
Lehmann
Humiller
Drickey
Yount
Bumiller
Bumiller
Lehmann
I ehmann
Yount
Humiller
J)rickey
Bumiller
Littauer
Lehm ann
1)rickey
Lehmann
Humiller
Littauer
Yount
Gram
Bumiller
Littauer
Bumiller
Littauer
Gram
Humiller
Littauer
Janssen
Humillel
Littauer
Gram
Bumiller
Littauer
Humiller
Gram
Humiller
Llttauer
Gram
Bumiller
I ittauer
Humiller
Berkelman
Littauer
Berkelman
Herkelman
Berkelman
Herkelman

"Errors by internal consistency only.

Several fea,tures emerge. In the region 4 ( q' ( 15
I&" ' I,ittauer et g/. find larger values for gE than does
Bumiller. This may be directly attributed to high
values of the cross section at 45'. The Bumiller data
in general lies closer to the smooth curves than other
data and is to be preferred.

At 15 & g' ( 20F-'Bumiller finds that gE flattens
oH at about OE ——0.25. For preliminary data this
wa, s even more prominent. This seems inconsistent
with the recent Berkelman data which shows GE 0
for q' & 20 F-'. A constant, value of 6E at large q'

implies a large charge core to the nucleon. This would

presumably be due to strongly interacting particles
and would show up in high-energy nucleon —nucleon
scattering. It doesn' t."The Berkelman data suggest
also that GE Battens oR a,t GE ——0.25.

If we assume AGE„——G~~, , early data of Hand" and
more of the Bumiller" data may be used to measure
6,&,. They agree well with the recent data, "which can
measure g,&„ independent of 6I.:„.

'.1A. N. Diddens, E. Lillethun, G. Manning, A. j»'. Taylor,
T. G. Walker, and A. M. Wetherell, Phys. Rev. Letters 9,
&11 (i962).

'"2 L. N. Hand, Phys. Rev. Letters 5, 168 (1960).
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check this. There are several arguments why second
Born approximation terms are small. A typical term
is shown in Fig. 8(a) and may be seen to be related
to a Compton-effect term [Fig. 8(b)].

Z PHOTON

ENCHAIVGE Fro. 8. (a) A Feymann
diagram for electron-proton
scattering with exchange of
two photons. (b) A Feyn-

CONPTO
mann diagram for the pro-
ton Compton eA'ect.

The first Born approximation gives a real scatter-
ing amplitude and the first eGect on the cross section
is expected to be an interference between this and
the real part of the second Born term. This inter-
ference term changes sign between electron —proton
and positron —proton scattering. Yount and Pine'4
have compared these cross sections to 1% up to
q' = 1.5 F-' and 3% at q' = 5 F-' and find no effect.

The Compton effect shows a peak in cross section
at an energy corresponding to the J = 3/2, T = 3/2
resoIlmlce. At first sight lt might be thought that
this gives a large eBect. However, this is associated
with an absorption and the related scattering ampli-
tude is imaginary giving no interference. Above the
3/2, 3/2 resonance preliminary data of Deutsch up
to 0.8 BeV shows that the Compton cross section
becomes quite small.

Third, we may note that the second Born ap-
proximation term corresponds to a virtual excitation
followed by a de-excitation of the nucleon. We expect
it to be large only when inelastic electron —proton
scattering is large. This has been studied by Hand'
who finds that the ratio of the cross section for
exciting the 3/2, 3/2 resonance, integrated over this
resonance, to the elastic scattering cross section, is
approximately constant as a function of momentum
transfer and is from about 7% of the elastic scatter-
ing at forward angles to about 20% at backward
angles.

Fourth, we may appeal to the fact that formula
(26) is well obeyed. Early data from Littauer et cl.
and Bumiller et cl. suggested a deviation from this
formula. The present data gives no such deviation.
Gourdin and Martin" have shown the general form
to be expected if two photon contributions appear.

33 M. Gourdin and Martin, Nuovo Cimento (to be pub-
lished); see also D. Flamm and W. Kummer, Proceedings of the
7968 Annual International Conference on High-Energy Physics
(Centre O'Etudes Recherches Scientifiques, Geneva, Switzer-
land, 1962).

If they add to form a state of angular momentum
and parity 0, 0+, or 1+ compared with 1- for the
single photon, the angular distribution remains the
same, but the interpretation of the constants is, of
course, different. A 1+ term will add to the forward
scattering. Thus, the angular distribution is a poor
way of picking two photon effects.

There are recent speculations that the photon
might be a Regge pole. Then an energy dependent
term would be expected to multiply Eqs. (9), (10),
and (26) and the forward scattering would be reduced

at high momentum transfers. The energy spread
over which data has been taken is suKciently small
so that this would not yet be noticeable.

Numbers for the Neutron Form Factors

There are three sources of information on neutron
form factors. First, the neutron —electron inter-
action has been extensively studied with thermal
neutrons. The data and analysis have been exten-
sively reviewed' and will not be repeated here (See
Table II). Three experiments agree on the value
which is a measure of (c)/c)q') (G&„) at q' = 0. In the
past this has been expressed as

(38)

The second of these terms is called the Foldy
term and accounts for almost all the experimental
ffete, cso that (c)/Bq') F,„O [F&. (q' = 0) = 0 also,

because the neutron has no charge].
No meaning for the zero value of F,„/q' has been

found and from our point of view it is an accident.
We quote

(c)/Bq )G~„= (0.021 & 0.001)F, (39)

which is probably the best determined of all nucleon
form factor data.

The next method is the measurement of inelastic
electron scattering from the deuteron. Intuitively,
this should give us a value for o,„+a,„multiplied
by a factor giving the probability of finding the low
momentum in the deuteron. This factor has been
evaluated relativistically by Durand. " There are
various small corrections which have been estimated
by Durand and by Bosco."Of these corrections the
most important is the interaction in the final state
of the two nucleons.

We note here that the general equation (14) applies
and therefore the corrections separate into those
applicable to Gs„' + GE„' and those applicable to

34 L. Durand, III, Phys. Rev. 123, 1393 (1961).
ss B. Bosco and R. B. De Bar (to be published).

I
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TABLE II. Neutron form factors. a

2 gf2

(F s) (BeV/c)s h~qs/43II c t = h q /mw
2

G~ dG~ dG~„—G~ d G~ Author

0.96
1.00
1.14
1.88
2.00
2.28
2.56
8.20
8.24
4.00
4.00
4.00
4.98
5.06
5.86
6.00
6.86
7.95
g. 00

10.0
12.0
14.0
16.0
1g.0
22.0

0.0878
0.0888
0.0442
0.0780
0.0776
0.0885
0.0994
0.1242
0.126
0.155
0.155
0.155
0.191
0.196
0.227
0.288
0.266
0.809
0.810
0.888
0.466
0.548
0.621
0.699
0.854

0.0106
0.0111
0.0126
0.0208
0.0221
0.0252
0.0288
0.0854
0.0858
0.0442
0.0442
0.0442
0.0545
0.0559
0.0648
0.0668
0.0759
0.0879
0.0885
0.111
0.188
0 ' 155
0.177
0.199
0.248

1.92
2.00
2.2g
8.75
8 ' 99
4.55
5.11
6.89
6.47
7.99
7 99
7 ' 99
9.84

10.10
11.70
11.98
18.69
15.87
15.97
19.96
28.96
27.95
81.94
85.98
48.92

0.00

—0.08 0.08

+0.054 0.05

—0.018 0.05

0.0 0.8
+0.095 0.05

0.087 0.18

0.01
0.01—0.01—0.09—0.012
0.086
0.11

0.16
0.06
0.05

+0.05
0.06
0.09
0.12

—0.018
+0 ~ 8
+0.006
+0.015
+0.1
+0.1
+0.1

0.0
0.0

+0.19
+0.88

0.04
0.2
0.04
0.04
0.8
0.25
0.28
0.28
0.28
0.15
0.14

—0.076 0.06
+0.014 0.009—0.028 0.06
+0.089 0.06

0.07 0.0 0.8—0.009 0.06
1.81

l.84

0.99
1.8

1.09

1.2

1.1
0.9
0.8
0.9
0.6
0.5
0.4

Friedman
0.20 Lehmann

Friedman
Friedman

0.4 DeVries
Friedman

0.18 Friedman
Friedman

0.18 Friedman
Friedman

0.10 Friedman
0.8 DeVries

Friedman
0.11 Friedman

Friedman
0.6 DeVries

Friedman
Friedman

0.4 DeVries
0.15 DeVries
0. 1 DeVries
0.1 DeVnes
0.1 DeVries
0.1 DeVries
0.15 DeVries

a Errors by internal consistency.

Gir„'+ Gir,'. For example, the final-state interactions
for the magnetic terms are in the '8 'P 'D states of
the two nucleons, and for the electric terms the
'8 'I' 'D states. Durand only calculates for g2 = 6.8
F-' and 11.6 F ' corresponding to the nucleon—
nucleon interactions at 150 MeV and 240 MeV lab
energies. He finds 2% effects with the 8 and P states
canceling. Bosco calculates S states only and finds

5% effects which for 8 states only are consistent.
For g' ( 6 the phase will predominate and be larger,
so the correction can be expected to rise. Bosco finds
10% to the electric terms at g' = 3 and 2% to the
magnetic terms.

%e use the factor Durand quotes in a form con-
venient for our units. The electron —deuteron scatter-
ing cross section at the peak of the distribution is
given by

I I I I I I I I I I I I

36— e =120'

9 illustrates this procedure. Using the error matrix
previously evaluated we find an adjust;ed value for
o, with its equation analogous to Eq. (28).

We repeat the analysis altering the consta, nt in Eq.
(37) by 8% to cover a five-percent calculation error
by Durand and a Ave-percent systematic error by
DeVries. We thus derive G~., with its error, and G&„'.

At low q', Gs'„ is found to be negative. This is con-
trary to the findings of DeVries (using the same data)
who did not use our interpolation procedure but who
forced a fit to a straight line. This we believe is a mis-
take of presmoothing the data.

The negative value of G~„' is within the error of
zero and would be raised if a larger final state inter-

dQdE' d0

" ('+4~')

(
da. 4.57 X 10
dQ .„(q'/4M') "

1
[1 + 2E/M sin 0/2] '

RATIO

ep
eel32—

28—

where dE' is in MeV and g' is in F-'. The estimated
error is 5%. DeVries" has measured the ratio 8(q', 8)
== o,/(d'o/dQdE') over a wide range of angles and
energies. From his data we interpolate S to the values
of g' for which we have derived G~„and Gg, . Figure

36 C. DeVries, R. Hofstadter, and R. Herman, Phys. Rev.
Letters 8, 881 (1962).

24—

q'IO" am '
2P I I I I I I I I I I I I

p 4 8 12 16 20 24

Fra. 9. 8(qs, s) at e = 185' showing the procedure for interpo-
lation to even values of q2.



HAND, MILLER, AND WILSON

action in the '8 state were included, as Bosco sug-
gests.

We do not include the earlier data of Yearian and
Sobottka which we regard as superseded by, though
not inconsistent with, that of DeVries, nor the
deuteron data of Littauer et at. , which is probably of
lower precision.

~Mn
20

1.5

x FR I EDMAN
~ DE VRIES
~ LEHMANN

1.0-

20
I

25

qz IO ~~cm z

30

Fra. 10. GM„vs qs. The solid line is given by Rcis. (51) and
(52).

GM„and GE„are plotted in Figs. 10 and 11. The
large error in GE at low q2 is due to the fact that it is
close to zero and Gs.' + Gs„' is what is measured.

Recent data by Yearian et at.'" give slightly smaller
values for Gs„' at low q' but agree at large g'.

The Durand —Bosco theory has not been exten-
sively checked and all Inay be in error. One check has
been made by Croissiaux" and Aitken. " Electron—
proton coincidences from the deuteron have been
measured and compared with the theory. The cross
sections are found to be 20 & 10'Po low. If this per-
sists, perhaps all data, are 20 jo low. The effect would
be to raise Gw„about 20%%u~ and raise Gs„about 0.1
which is within the error.

A third source of neutron form-factor data is elastic
scattering from the deuteron. We have, in analogy to
Eq. (18),

do' ( aroM E cot 0/2
dQ EE sin 8/2 E 1 + g'/16M'

2 2

X &d 2 GMd 2 GMd P16M'

where Gs, and G~, give the charge and magnetic
moment distributions of the deuteron. Intuitively,

GEd = GE,Fd, (42)
37 M. Yearian, R. Hofstadter, and E. B. Hughes, Bull. Am.

Phys. Soe. 'F, 489 (Q4) (1962).
ss M. Croissisux, Phys. Rev. 12'7, 618 (1962).
39 D. Aitken, and R. Hofstadter, Bull. Am. Phys. Soc. V,

489 (1962).
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Fxo. 11. O'E vs q2. The solid line is given by Eqs. (47) and
(48)

20

Isotopic Scalar and Vector Form Factors

For theoretical purposes, isotopic scalar and vector
form factors are useful. In general, the errors are cor-

4O H. F. Jones, Nuovo Cimento 25, 790 (1962).
4I N. E. Eramer and G. Glendenning, Phys. Rev. 126,

2159 (1962).
42 J. I. Friedman, H. W. Eendall, and P. A. M. Gram, Phys.

Rev. 120, 992 (1960).

where 26s, ——Gs„+ Gs„ is the scalar charge form
factor of the nucleon and F& represents deuteron
structure and will be the Fourier transform of the
deuteron ground-state wavefunction. A recent dis-
persion theory calculation" conCirms this intuition
for small g'. [Some previous ideas were that Gs. should
be replaced by I&'„ in (82), which is actually a neg-
ligible change. ]

Eramer and Glendenning" have used nucleon—
nucleon interaction information to evaluate Fd The. y
need the binding energy of the deuteron, the np trip-
let scattering length, the deuteron quadrupole mo-
ment, and also they use the fact that the distant parts
of the nuclear potential are given by one pion ex-
change. [In fact, the triplet scattering length is more
precisely known than they assumed a&

——5.40 + 0.01
F]

Using this they have derived Gs, from the data of
Friedman. 4' There is also one recent precise point of
Lehmann. '4 Since Gs, is comparatively well known,
we derive Gs„ from this and plot it in Fig. 11.

[Note added in proof More .precise numbers have
been obtained by Drickey" since this compilation.
These numbers suggest 6&. ——0 in contradiction to
Eq. (89). This is probably due to a breakdown of
Eq. (42).]

The intuitive formula for GM& in terms of GM, is not
given by dispersion theory. Nevertheless, we plot
GM„so derived with the other data in Fig. 10.
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related for these, so they were not calculated im-

mediately.
%e note that G~. is numerically large and quite

well known while G~, is small and poorly known.
Gz. and G~, are of the same order of magnitude and

poorly known because of the lack of knowledge of

However, for tentative use we suggest the vector
and scalar form factors in Figs. 12—15. Any theoret-
ical conclusion using these figures should be checked
against the proton form factors, or better still,
against the cross sections directly.

the masses of the contributing resonances are better
determined by direct observation of the resonances in
production experiments and not by a fit to the elec-
tron scattering data as was historically the case. We
begin by noting several features of the proton data.

GEU

.5

GMv

2.4 I I I I

2.0

l.6

l.2

0.8

4 8 ]2 !6 20
q' tO 26 cm '

Fia. 12. G~„vs g2, Eq. (51).
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great simplification of treating the combined effects
of both resonances as a single mass g& = 15 F-' and
considering the fit to the proton data alone, without
the necessary increase in errors if the uncerta, inties in

the neutron data were included. It is our belief that

Summary of Exyerimental Numbers for the Proton

From the above discussion it is possible to sum-

marize the salient features of the data and the degree
to which the T = 1, J = 1 p meson and T = 0,
J = 1-~ meson can be said to contribute to nucleon
structure. These will contribute "poles" in the form

factor at q& ———14.5 and —15.8 F-', respectively,
corresponding to mass values of 750 MeV and 785
MeV for the p and co. The near equality of these
masses and the present precision in determination of

the nucleon form factors does not justify treating 0.,
and n„or P, and P„[see formulas (22) and (23)] as

independent variables at present. This a,llows us the

I

IO
I

5 l5 20
q' 10" cm~

Fia. 13. G~„vs g', Eq. (47).

The accurate values of GE, at low q2 enable us to
state the derivative (dG~„/dq') at g' = 0 accurately.
%e use the data in Table I g' = 1.05 F '. It is
neeessa, ry to use a quadratic fit to G&„——1 —1/6(r')q'
+ Aq', using values of q' up to 3 F ' to determine the
parameter A. The data are quite consistent and we
deduce

(dG~, /dq ),.=0 ———0.108 & 0.003 F, (43)

where the rms radius of the proton is given by

(r')' ' = 0.805 & 0.011 F. (44)

Validity of the Relation G~~ = pz Gzz
In deriving some of the values of GE„ for the above

determination of (r') it was necessary to make a small
correction for the magnetic scattering even at low q'
and forward-scattering angles. The best data on GE,
and GM„as independent variables come from the work
of Lehmann et at. who find G~, = GM„/p, „ to better
than 2% for g' ~& 3.0 F '. Above q' = 3.0, the exist-
ing data, if the errors were to be taken literally,
would show oseillations of G~„about G~„/Ii„(see Fig.
6). There are, however, clear inconsistencies in the
data and it is better to await future precise work in
this region. For example, the latest point of Janssen
at g' = 10 F 'indicates G~„/p„G&„——0.96 & 0.06 and
is a change from previous values for the same quan-
tity of 0.53 & 0.04 (Littauer) and 0.85 ~ 0.08 (Bu-
miller). A.bove q' = 15, the recent data suggest that
the relation brea, ks down.

We do not wish to assert any particular significance
to the apparent similarity of the "charge" and "mag-
netic" distributions and have made use of this rela-
tion only in determining the slope of G~„at q2 = 0,
in a region where it is well verified by experiment.
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GMs

Fre. 14. G~. vs qs, Eq. (52).

I

20
q2 1026cm 2

core. The steep slope in comparison with the g& =
—15 F-' forces the vector meson contribution to be
larger and of opposite sign than that of the core. g~„
thus necessarily passes through zero between 20 and
25 F ', in contradiction with experiment. On Figs.
5—7, 10, and 11are plotted, in dotted lines, an attempt
at such a fit to the proton and neutron data. There
are several suggested ways to overcome this diKculty.
First, Devries and Hofstadter prefer to introduce
an "eRective mass" in the one-pole approximation,
which is, of necessity, lower than the p and co masses.
Attempts to fit the one-pole approximation with a
second mass lower than the p, co meson masses give
results much too high at high q', unless a canceling
core is added. If we vary the one-pole mass and the
amount of core it is possible to obtain a fit to the
data as DeVries and Hofstadter have shown.

Second, we can retain the (p, ~) pole term if one
allows the replacement of the constant core term by
a "soft" core possessing a mass squared in the range
20—40 F '. The amount of (p,~) coupling is strongly
dependent on the particular value chosen and varies
by a factor 1.7 for 3'',.„between 20 and 40 F '. The
fits obtained are quite similar and it is not possible
to decide between them by appealing to the accurate
data available for 6'~„. The true momentum de-
pendence of the "core" remains a mystery and thus
shields us from other than a rough determination of
the vector —meson coupling using electron-scattering
data alone. It might be mentioned in passing that the
"exponential model" formula G~„——p„/(1 + q'/18. 5)'
is consistent with all known data to g' = 45 F '. This
formula diRers only slightly from that obtained using
a soft core of mass 30 F ' over this g' range.

Third, another distinct possibility is that some

Fit to One-Pole Term

We select G~„as the most accurately known of the
nucleon form factors and attempt to fit in the one-
pole approximation (q', = —15 F-') to the formula
(25). From the accurate slope determination, we can
determine the relative amounts of (p, a&) meson and

(dGz /dq ) =p = 0.0645 & 0.0017 F (45)

(dGs, /dg'), .=o ———0.0435 & 0.0017 F ' . (46)

If we assume that there is a mass for the soft core

GEs
I I

oI EHMANN

& FRIEDMAN

I I I I I I I

2 4 IB 20 22
10 crn ~

6 8 10 12 l4 16
q'

Fxo. 15. G~, vs qs, Eq. (48).

which is the same in both scalar and vector states
3'' = 30 F-' we find

—1.68 2.68
1+ q/30 1+ q/14. 5

—0.80 1.80
G~s ——0.5 's/3 + 1 +

'.
/15 8

. (48)

part of the steep form factor slope is actually caused
by the breakdown of quantum electrodynamics. It is
well known that electron —proton scattering poses one
of the most severe tests of electrodynamics. The
great similarity between the shapes of proton and
neutron form factors and the fact, that G&„= 0 sug-
gest a single over-all multiplicative function, pos-
sibly arising from a modification of the photon propa-
gator or electron vortex. Were this to be the case,
eRects of the vector meson coupling would still be
expected to be present, further complicating the
situation.

We wish to emphasize here that we can see no
meaning to the coupling constants derived using a
constant core and ignoring the high momentum
transfer data or using an eRective mass diA'erent from
the known p and ~ masses. If we use the fit using a
"soft" core, which fits the high-energy data, we can
hope the coupling constants can have some meaning
whether or not the core mass represents a further
vector boson or bosons or a breakdown of quantum
electrodynamics.

Coupling Constants

We now have, from Eqs. (39) and (43), accurate
values for the slopes of G~, and t E.at low momentum
transfer. We then derive for the isotopic form factors:
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From the data on Gsr„and GM. we find

(dG jr„/dq ),.=p ———0.80 a 0.02 F '
(49)

(dGsr. /dq ),.=p = +0.20 a 0.08 F '. (50)

Assuming the same soft core mass 3P, = 30 I'-', we
find

—1.0 2.0
GMv 2.85

1 s/ ()
+

/
(51)

—1.7 2.7
G~s = 044 1+ s/ 0+ p/

. (52)

The fits of Kqs. (47), (48), (51), and (52) are shown
as solid lines in the figures. They fit quite well.

The values for n„p,n„, p„depend upon the soft
core masses as well as the experimental data. We thus
find that n„p„a„,are known to no better than 80%,
and p„hardly at all.

[Note added in proof These .fits to the electric
form factors ignore the recent Cornell data above
g' = 25 F ' which were only available in proof. ]

The Pion —Pion Interaction

The relationship of the coupling constants just
derived to the pion —pion interaction can now be re-
examined. In the work of one of us described earlier, '"

a 6t to the electric isotopic vector form factor was
discussed using a constant core. This, we now be-
lieve, is unrealistic. The coupling constant is 1.5
times greater than that previously assumed. In order
to obtain agreement with the pion —nucleon charge
exchange scattering, we must now take a smaller
width of 20 MeV for the p meson.

The isotopic vector magnetic form factor may be
related to the pion —nucleon scattering I' phase shifts
by the method of Ball and Wong. "The most recent
attempt to do this is by Singh and Udgaonkar44 who

43 J. S. Ball and D. V. Wong, Phys. Rev. Letters 6, 29
(196].).

44V. Singh and B. M. Udgaonkar, Phys. Rev. 128, 1820
(1962).

also fit the isotopic vector electric form factor and
claim agreement with a width of 120 MeV for the p

meson, which is the experimental width. Since they
also assume hard cores, which is palpably wrong, it is
hard to understand their claim that agreement has
been achieved.

Electropion Production

The latest work on electropion production is by
Hand' who measures the inelastically scattered elec-
tron up to g' = 20 F ' and compares with the
Fubini —Nambu —Wataghin dispersion theory. He
notes that only 1', in Kq. (4) is important. The dom-
inant term in this is the 8/2, 8/2 resonance which is
proportional to GM, (the photoproduction goes as
p,„—ii = Gsr. for q' = 0, as is well known). There
are smaller terms in 6'~,.

Since the spin separation of the current operator
J'„ is again useful, G& and Gsr should again appear
naturally. The theory predicts the total photopro-
duction cross section quite well. The agreement is
good if it is assumed that G~. ———0.2. This evidence
for a negative 6'~„must be rejected in the face of good
data from elastic electron deuteron scattering where
the interpretation is more certain.
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