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A systematic unified summary and review is given
of the basic statistical theory of the multiple scat-
tering of fast charged particles in the small-angle
range. The approximation considered ia that, of the
Snyder —Scott—Moliere theory, and only alight atten-
tion ia given to the less accurate Gaussian approxi-
mation. The single-scattering formulas of Moliere
are derived, along with the modifications of them
given by Nigam, Sundaresan, and Wu. Moliere'a
multiple-scattering calculation is presented by an
improvement of Bethe's method, and the work of
Nigam et o,l. is given by the same method with newly
computed t,ables. Snyder's calculations are outlined,
and previously unpublished work on spatial-angle
scattering is reported with tables. Calculations by
Eeil, Zeitler, and Zinn for very thin films are given,
as well as a detailed discussion following Lenz on
scattering at very small angles. The work of MQhl-
schlegel and Koppe on the multiple scattering of
polarized electrons is included, with the important
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correction that no depolarization appears in the
approximation to which they worked. The distribu-
tions of lateral deQections and other characteristics
are considered, but the details of applications to
emulsions, cloud and bubble chambers, etc. are not
entered into, nor are the electron-penetration and
path-length problems handled. Asymptotic formulas
for relatively large angles are treated, as are various
types of mean values.

I. INTRODUCTION

ULTIPLE scattering occurs whenever traveling
. particles or waves undergo successions of simi-

lar processes that change the direction of motion and
the successive seat terings are statistically inde-
pendent or almost independent. Successive scatter-
ings thus are considered, for a multiple-scattering
process, to be incoherent in the quantum-mechanical
sense; the occurrence of interference and diffraction
in the scattering by a crystalline medium is treated
as a correction, rather than as a principal effect.

Systems undergoing multiple scattering may be
classified in two ways: The scatter ers may be
nucleons in a single nucleus, individual nuclei or
atoms, successive crystallites, dust particles or other
aggregates of matter; and the particles scattered
may be neutral (neutrons or photons), charged (with
or without strong interactions with nuclei), or
primarily treatable as waves (electromagnetic radia-
tion of relatively low frequency).

Multiple scattering within nuclear matter has
been treated by Watson (1957) and others. Lax
(1951) has reviewed the case of electromagnetic
waves. A great deal of work has been done with
isotropic and nearly-isotropic scattering, for instance
of neutrons and X rays. Grosjean (1951, 1952, 1954,
1956a, 1956b, 1957) has turned out many papers on
this subject; Richards (1955) has made a valuable
contribution, and the whole question of neutron
transport theory is treated in a book by Davison
and Sykes (1957).

For charged particles, the multiple scattering is
dominated by electrostatic (Coulomb) forces; little
work has been done on the inclusion of strong-inter-
action (nuclear-force) effects with Coulomb scatter-
ing. Deviations from the Coulomb field caused by
the screening and inelastic scattering effects of the
atomic electrons and by the finite size of nuclei have
been taken into account and will be discussed (the
last only briefly) in this review article.

Charged-particle multiple scattering can be divided
into three realms. Low-energy electron scattering is
important in solid-state physics, plasma physics, etc.

Large-angle scattering at moderate energies involves
complex boundary conditions and path-length prob-
lems which are only partially soluble at the present
time; high-energy, small-angle multiple scattering
theory, on the other hand, is well advanced, and the
time seems ripe for the review attempted in this
article.

Large-angle scattering can be formulated rigor-
ously for the case in which angular and spatial
distributions after exactly n scatterings are sought
[Wigner (1954), Grosjean (1951)],but experimental
conditions for making observations of such scatter-
ings are dificult to arrange. A formulation for the
scattering distribution after a given path has been
traversed in an infinite medium without boundaries
has been obtained by Goudsmit and Saunderson
(1940a, b), but related observations are only possible
in track-visualization devices. The prediction of scat-
tering in thin foils or other geometrical arrangements
requires the knowledge of distributions at Axed points
in space; in addition, the presence of boundaries in-
volves albedo or absence-of-albedo problems as com-
pared with in6nite media.

These diKculties disappear in the small-angle
approximation, and in addition, computations with
the latter are very much simplified. Since most of the
scattering by Coulomb fields on high-energy particles
is concentrated in the forward direction, the small-
angle calculation covers many useful applications
and makes a good first approximation for studies at
larger angles.

Multiple scattering erst became relevant to parti-
cle physics in connection with Rutherford's (1911)
discovery of the nucleus by means of alpha-particle
scattering experiments. If the Thomson picture of the
atom were correct, only small angular deAeetions
could occur at each scattering, and any large angles
observed must necessarily be caused by multiple
scattering, under conditions for which a normal or
Gaussian distribution was to be expected [Thomson
(1910)]. The observations were in extreme contra-
diction to such a distribution, and were explained
quantitatively on the assumption of the now well-
known Rutherford single-scattering law and the
neglect of any multiple-scattering effects.

Wentzel (1922) recognized that multiple scattering
must have played a role in some of the later experi-
ments of the Rutherford group, especially on beta
particles, and gave formulas for plural scattering,
involving up to seven scattering events. Wentzel
also gave a criterion for the conditions under which
single scattering can be assumed to hold. Bothe
(1921, a, b, c) in a general discussion of the circum-
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stances under which a Gaussian distribution law
will hold for errors or fluctuations, showed that such
distributions do not hold when the elementary events
being combined have probability distributions with
long "tails." Each of the last named authors made
use of folding-integrals for successive events; Bothe
applied Fourier and Hankel transforms, and Wentzel
wrote down a summation formula (for 0,1,2, . . . scat-
terings) without evaluating it or using transforms.

Williams (1939, 1940) devised a moderately suc-
cessful theory of multiple scattering based on a
method of fitting together a Gaussian curve for the
central part of the distribution and a single-scattering
tail. Goudsmit and Saunderson (1940, a, b) exploited
the addition theorem for spherical harmonics, and
evaluated the sum over the orders of scattering for
arbitrarily large angles, using Legendre polynomial
expansions. This solution, exact except for the diK-
culties noted above, is essentially the same as the
later developments of Moliere (1948) and Snyder
and Scott (1949) in the small angle approximation;
Moliere briefly indicated the relation of his theory
to that of Goudsmit and Saunderson; Lewis (1950)
and Bethe (1953) discussed this relation in some
detail.

The Snyder development proceeded from a solution
of the Boltzmann transport equation, but it is equiva-
lent to the Wentzel —Moliere summation method.
Scott (1952) gave an explicit statement of the relation
between the two small-angle developments and
evaluated numerous mean-value quantities for the
combined theory.

Many applications of this theory have been made
to emulsion, cloud- and bubble-chamber, and foil-
scattering experiments, but we shall not list them
here. Some further improvements in calculational
methods [e.g. , Butler (1950)] have been developed
without modifying the basic theory. Basic changes
that have occurred are those of Fano (1954) on the
inclusion of inelastic scattering of the atomic elec-
trons; of Cooper and Rainwater (1955), and later
Ter-Mikayelian (1959), on the inclusion of finite
nuclear size effects; of Nigam, Hundaresan, and Wu
(1959) on the use of the improved single-scattering
cross-section; of Dalitz (1951), and of Miihlschlegel
and Eoppe (1958), on the multiple scattering of
polarized particles. An extension of the theory to in-
clude lateral deAections and other scattered-track
"characteristics" was made by Scott and Snyder
(1950) and much more elegantly by Moliere (1955).

It is the purpose of this review article to give a
connected account of the Moliere theory and the
various modi6cations above-mentioned.

Numerous brief reviews or summaries of small-

angle multiple scattering have been published—
several with formulas, graphs and tables —but none
have attempted to unify and clarify the basic
theory. Among these we mention Bohr (1948),
Goldschmidt-Clermont, Eing, Muirhead and Ritson
(1948), Maier-Leibnitz (1950), Paul and Frank
(1950), Camerini, Lock, and Perkins (1951), Beiser
(1952), Voyvodic and Pickup (1952), Rossi (1952),
Saletan (1952), Lawson (1952), Bethe and Ashkin

(1953),Goldschmidt-Clermont (1953),Mayer (1953),
Gottstein (1953), Voyvodic (1954), and Birkhoff
(1958).

tang. = tan 8cosP
tan P„= tan 8 sin P (2.1)

P = q4 = 8cos P

g„= 8 sin P; (2.2)

and (c) replacing the upper limit vr for 8 and the
limits & z for p by the values ~ and + ~, respec-
tively. This last substitution involves the assumption
that all the functions of 8 and P, over which integrals
are taken, fall oG suKciently rapidly for large argu-

~ The function f is the distribution of the absolute values of
the projected angle.

II. BASIC STATISTICAL THEORY

A. Distribution Functions

The basic statistical theory for small-angle Inultiple
scattering involves the calculation of either the
spatial-angle distribution function F(8,P, t) or the
projected-angle functions' P„(p,t) and f(p, t) = F,
(p, t) + F„(—p, t), when the single-scattering function
W(8, t) is known. We use 8 and P to indicate the polar
angle and azimuth of the track of a scattered parti-
cle, measured with respect to the initial direction,
and p is the angle of the track when projected on
a given plane containing the original direction of the
particle's motion. The distributions are taken to be
functions of the thickness t of scattering material,
measured along the initial direction; they are con-
sidered to be averaged over the space coordinates
normal to t. Distributions in angle as functions of
these coordinates, and distributions of tracks with
respect to these coordinates, will be considered later.

The small-angle approximation consists in: (a)
replacing sin 8 by 8, and cos 8 by 1; (b) replacing the
relations for the two projected angles p = g. and

6 (Fig 1),



~g gLy A. M . SCO&T

s t of X(t) independendent scat-

234

r,Sec. IX) that this su. We shall see later ec. his su s
cases be mo i e

(2.5)

must in certain ca
n be summarize

t 0. 8,t)dt.

error. The relation

the projection in

y

ttering centers

g
l 0

tions

e
' '

8 . The elemen
1 direction o a

t of solid ang w

the successive an

xn e 8the direction (8,P .
d8dP becomes 8d8dP.

Scattered
direction

~
"' '" '

techniques mus
1 ssical proba y

Fze. l. u

bilit t eor
re intro-

14 d

ation. T ese

projected ang es

absence of polariza idirection

e cosy"-ecos y

8d0 d Fe, ,t
0 0

I'„, an ad re normalizezed accord-The functions It',

lng to

(2.3a)

B. Transforms

Hankel transforms areourier an an
e de-op

fine the Fourier trans
distribution by

dyF„(@,t) = 1 (2.3b)
t = dpe F„(p,tF„,t =

with its inverse

(2 6)

d F, ,t) + dyF, ( y, t) = 1.—df(yt)= dF,
(2.3c)

'll be independentnt of
h

terest, II wi eIn mos
F willbeeven in, athe azimuth p, F„wi

(2 7)

f(k, t) = dQ cos fQ f(y t) = Re F„(&,t) (2.8

d~e '"F„(~,t) .F.(e,t) = —,

For t e
' ' '

of absolute valuesFor the distribution o a s

2~ 8d8F(8, t) = 1 (2 3d) with its inverse

(2 9)d$ cos g f($, t) .tt) = 1. (2.3e)dqI (,t) = 2 dyF„(y, t

er ' eenF, F„, and f is thatThe relation between

' ' ', tan 'qI„/y. , t]A,Fl:(~*+~,F„(qg,t)dg. = dP.

lindrical symme yetr holds,or, when cy in
Fl:(5* ~')", tan '~,/~.] =

f(~, )

is real and is= F„( —y, t), then F„(P, ) iWhen F„(g,t) = F„
itself equal t

th patial-angle
double Fourier trans orm

'

jected angles g. and g„:(2 4a) ]ec e a

dqt dQ„

f(y, t) = 2F„Q,t) =t =2 4.Fl:(4'+ e.)

inate" ele-n ul.ar-coor '
W haveused her cthe'recta g

inplaceo i sment of area dp.dQ„s
d8d8, in accordance wi

We shall use the qua
ent the probabili y o

' 't f one sca eri
If the

sen
n angle between a

scattering is in a medium t a co

(

$ sin n .cons,

= tan 't„/. ,k. +
(2.12)

~:)";t '
~,/~.]X exp (~f.q4+ ~$,P,,)Fi:(e'. + ~, '';

that in the spacace of the
variables (, an

"Cartesia



~ Y TEE,1+6LE MULTlPLKM~«-~~0

th the inverse0;„(2.10a) yields the tote that placing ~~

b n integrated o& F(g, t
form of the function that has een i

235

2.17c)«V. («)F(~,t)

= 0, or g„= 0 anl' d to the case n =If (2.17b) is applied
b use of (2.4), (2.6), and (2.8) tha$. = f, wesee y

d$ d$„
t =i(~, )

a sing e re uired lIl e

(2m. )

a single transform is q
'

Thus, only a sin
—i- .)F[(k.'+ 4X exp ( if.P,——i „„

t of FourleTh t p
ur oses is their pp

These formulas s can be written in
aces

s 0 ou p po
d' ates in both the origina an

t folding integrals. I

coor lIla

'ected sca e
'

dq)) an d

as follows:

ob b'1' i of
8dg L 8 os (P —~)]F(g,P,t,

0 0

00 Q~

a s b the ordinary ru epand/+ dais, y

—@) (2»)= d dy, F„(y,)F.„(y—F, (p)dy = d

a be calculated as follows:whose transform may e ca

f (2.10a) is obviouslyThe inverse o

F[(~-'+ ~.')";t. -',ly. =

«$ dnF(8P,t) =
(

s —n)]F(g,a, tX exp [ i)8 cos (—P — a t

nded in a Fourier series in p,If F(8,P, t) is expanded m a o

inpF(8,P, t) = g F.(g, t)e

a e o tion of Bessel's integralan
[se
fu

(2.14)
e' dye F,„(p~)F2„(y—F, (P) = dye'

ci(4c+4c&F
(@ )F (@ )d)t2 d$)e

~ 'n

2J.(z) =
2

we cancan then write

61 and 82.

gg cos P2 )gi» + )t)2o 81 COS Pl 2gcosP = P. = y»

2„——8, sin P)8 siPn= A~ = @)) + %2) =

I'Dl ls

gdg J.(y)F (g, t)F(et) = P[(g+ '„',t = 2m 0

(2.22)

Then we have

d Use ls IIl

43 p. 149] fore Jahnke —Emde (1943), p.

Fm, . (2.20)

nction J„(z):

F..(8inp+iz cos p

ral is t e pro

dpe
0

readily extended to n nte rais
=2 e'n 'in(p —~ iz —a

theorem ls r nded to n
loIl functions

2' p

dd to a pre e
f n distribution

d termined sum.
r we

argu fll we ch the
.-o cocc

gdgg (]8)F (8 t) I Wof t o spatial scat

h'h d sto

at~=2+ 2 e

can use a

nt

F(gn, = e

g(2.16) and n a, in=2~ 2 "F' 'g, t)e
prroductsof Han e r

e anded as a courier
2 nti "th

ansform expan esot a we
efFicients ls xi

f d b th'. t.'ld
series eac

of order n [signi e
1 lIlalfE"'"t '" "h

an
n ~ of the nth coe ciefollowed by (n) o

ment.
of, the trans-

6 = 8) + 82 .
fo x'2 times a Hanke

(py + ip„y„)F[(y. + 4.)d)t))c exp i o o )) )c

(2.17b) (2.23)

d
' ' )'", tan 'y, „iqh.]d,. dy, „F,[(y',.+ y,„

2 If', —~.,)1,X F.I[(~* —~*) + (~. —

X ta '[(~, —~,)i(~. — .*



&36

+,~ ~„]F(e,P)dy„exp

0

002'
@c'&'~-

g,d%~,a'e

F (g P, )F2(g2,P~)

J', g, n) F.(5&~) ~

27l

o
dPge

'

d$1~

) +,( (p,„+y.,)]&( exp [~5*(&'*+
'~', tan (&~ /~'*)]X F,[(e'*+ @'"
i/2 t n (P~„/q4z)])& F,[(e *+&'"

dPc"'F (g,P)

n fpr theb llty distributionth r a
h th ckn s yafter it has p .

ltingfromexac yd' tributj. pnsresu iert esumming ov
/he expression~ scatterin. gs0, 1, ~p

2~(gt gdeW(g) = "d' (2.30)

through anythaI- pne scatteringe probab ' y
dt The probab

gives
whatsoever wll o

d t '
well k»

occur in dt e
scattering is e

t the probability 0
no sc

't thic~ness ~t~that for a 6ni
scattering is

p.31)p(ht) =s
s pccur, «de„t „scatter»gsprobability

dg @ . . .tl„ in e de.„g,dp, dp, tl. i ' ' "
. . . t„tot-

Qections t!~

dt t to 4+ d 2to tq +positions tl

is the product+ "
d,dt, ~(e.».d'+- '

nit

F(e,p, o) = e, (e),
's a s atial Dirac function:where e, (e) is a spa m,

~h)

o e
' ' '

in 8 produced byof the distribution in pso the transform o e
S

p.33)
(2.27)

exactly n scascatterings i

= c "'[~(()t]"/n! .

at all ise
the transform o
forn = 0.

orar assumption oof the con-
F.(g, t) th dco0 in t, We Can Wri e

h ob hoity o
e

' '
on distribution. an

e ft tt n
have occurred (nth power o &u coo .

')"] = &(~*)e(~,), (2.28)&, (e) = &.[(~* + ~. ' =

gde dpe(@„y„)e, (e)

d ,e(~.,~.)&(~*)e(~,),
= g(0,0),

2' edM, (e) = 1.

g g de~dPydtlW (

p.32)
„,f the vectortrjbutgon

s of
o the transfprm o

t pf the transform~, +. tl, is the produc o
t s 4 a" ' The probability

1 to the total spac

sum ~ —— 1

f ge separate vec o '
~

b 2 3] with Qt eq

the dist
be iterated, sp

.
b g

t e dt s namely t '
thickness, ~t

relation ca
f F(~ ~) is given y tween ' .

th z integrals ov

transform

t taken 111 e +
.

h t achy ~ sca

+ '
— . .F (]n) (

mes t. Thus " p.
232) multp'tion rules (2 3

terings occu
~

b l t that scattering

~

1! be noted from t
s (2 6), (2.8) ~ c- &. To fInd

he nprmallza lpn

the roba i i y
t we inte-r a&ywhere»

n
f the transforms

~ e .
~ d angles occur a&.

. . & t. &

and the definitions o e s
d,2.17a), that

= F(0,t) = F(0,cx, t) =

ht, a gef

W's, for

entzel Summation Met o

Thus we have t"/n! times
ssume

f homogeneous m, a
g). (We suppress

are
g g

00

temporarily
the origina

' '
el direction, we

X Xd J.(kx)1'l'(x),

measured rom
1 ial distribution



SMALL-ANGLE MULTIPLE SCATTERING

p„(~ t) = [c ""(~,t)"/~f]I~(~)/~, ]" (2 84b) The property represented by (2.86) for homogene-
ous materials can be generalized for any successiveThe complete distribution in e is the sum over all

n, , so we have
thicknesses t1 and t2 in any materials. We simply
write

(2.85)
Q(qt, +t,) = ~((,t')dt' = ~(p, t')dt'

Since ~0 ——cv(0), we see that Il obeys the rule (2.26).
If the original beam lies at an angle 00 to some

chosen direction, the same distribution results if 8 is
measured with respect to 8,. If a beam scattered
through a thickness t' enters a second layer of thick-
ness t", we can use the folding-integral rule to find the
resulting distribution, since we can write 0 = 6

+ 6". We simply take the product of two exponen-
t,ials:

00 t

= 2' xdx dt'W(x, t') .
0 0

(2.87c)

When W(x, t) is independent of t, we write

Q($ t) = ~u)t = 2~t xdxJ'o(kx)W(x) (2.88a)
0

Qo(t) = Q(0, t) = ~ot = 2mt xdxW(x), (2.88b)

so that (2.87a) is the general expression for the
transform for small-angle multiple scattering in a
thickness t of scattering material. In accordance with
the usual properties of a cross section, and the rela-
tion (2.5), Qo is seen to represent the mean number of
scatterings occurring in thickness t.

Exactly the same result can be obtained if we
calculate the projected scattering in a given plane.
%e find a projected single-scattering distribution

m(p, t)dpdt by use of (2.4a), and exploit (2.20) just
as we did (2.24). Equation (2.18) shows that the
result is exactly the sa,me transform, and that the
same function Q(g, t) will be involved.

~(k t'+ t") = exp I[ (5) — ](t'+ t") I (2 86)

If, now, we have a series of layers of thicknesses
Dt', At", and W(x, t) is a function of t, so that it is
a diferent approximately-constant-in-t function in
each layer, we can write the transform with an
integral in the exponent, which we shall call Q(), t)
—00.'

F'(&,t) = exp [Q(&,t) —Qo], (2.87a)
t CO t

Q(g, t) = ~(~,t')dt' = 2~ xdx dt'J. (~x)W(x, t'),
0 0 0

(2.87b)
t t

Q. (t) = Q(0, t) = ~.(t')dt' = ~(o,t')dt'
0 0

(o (g, t') dt' (2.89a)

or, since we have not explicitly indicated that 0
depends on the material traversed, we can write

F(0,t) = e """5,(8)

g~s. (y)[c" " —c "]. (2.40)

However, since 8,(8) may be "represented" by

gdpJO($9),

Eq. (2.40) becomes the same as (2.87). Except in Sec.
X, we shall assume that 00 ranges from 20 to 10' or
more, and, hence, the n = 0 term makes no apprecia-
ble contribution for either way of writing F(8,t). To
neglect this term in evaluation without encountering
convergence difhculties, it is necessary to carry out
the P integral by an approximate method that does
not involve values of $ larger than a value at which
the first term just becomes of the order of the second.
Let us assume that angles below some minimum
value 0;.are not of interest (because of the difliculty
of measuring scattering angles near zero). The
Bessel function will oscillate rapidly for values of $
larger than say 10/9;„and the con.tribution of the
integral beyond this value of P will be negligible for
this reason.

A further consequence of the limit beyond which

Q(p, tl + t2) = Q(g, t, ) + Q(p, t2), (2.89b)

where the terms on the right-hand side are under-
stood to refer to successive thicknesses t& and t2.

The inclusion of the term for n = 0 in the sum
(2.85) leads to a mathematical error, for this term
is a constant independent of P, whereas every valid
Hankel or Fourier transform has the property (neces-
sary for convergence of the inversion integrals) that
it goes to zero as $ ~ ~.

The expression (2.87) does not obey this property,
for a&($) ~ 0 as $ —& ~ and F ~ e ".A proper treat-
ment would be to separate out the term for n = 0
and not calculate its transform. Then we would have,
using the inverse transform relation,
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values of F and Q(g, t) are not needed is that in the
expression

t CO

D, ([,t) —D. = 2~ dt' xdx[A(&x) —1]W(x,t')
0 0

(2.41)

the values of W for x below a certain limit are ir-
relevant. For small Px, J,(gx) —1 is approximately
equal to —Px'/4. If x ( 1/5$ where f 10/8
i.e., if x ( 0;./50, the value of 4'Px' is less than 1/100
and the contribution of W to exp [D —Qo] for such
values of x is negligible.

Now, the dependence of W on x for small x is
determined largely by the structure of the outer
parts of the scattering atom, and in condensed ma-
terials, by the overlapping parts of the wave functions
of adjacent atoms. %e see then that, unless extremely
small deviations are to be measured, the detw'l8 of
the screening inhuence of outer atomic electrons and
of molecular and crystalline combination, do not
inhuence the multiple-scattering distribution. The
screening itself cannot be overlooked, but as we shall
see in Sec. VII, only a single parameter characterizing
the screening will be relevant.

D. The Transport Equation Method

The form of the Boltzmann transport equation
appropriate to the determination of F(S,t) is

In either form, the transport equation is immedi-
ately reducible to an ordinary differential equation
by multiplying both sides by sdSdp Jo(&0) and inte-
grating. %e obtain

aF(),t)/at = [a&($,t) —(oo(t)]F(p,t), (2.44)

whose solution, subject to F($,0) = 1, is clearly
(2.37) with the definition (2.38).

Again, the same solution can be obtained by writ-
ing a transport equation for the projected scattering
distribution, using the projected single-scattering
law in place of F'.

E. The Fokker-Planck Equation and
the Gaussian Approximation

Although it is outside the scope of this article to
deal with the Gaussian approximation to multiple
scattering, we shall show here how it may be derived
from the transport equation by the method of Fokker
(1914) and Planck (1917). Let us assume that
W(x, t) is suKciently sharply peaked at x = 0 that
it possesses a finite mean square (x'),.and that the
only values of F(0', t) —F(S,t) that contribute ap-
preciably to the integral in Eq. (2.42b) are those for
which a Taylor expansion in 0' —0 taken to the
second order is suKciently accurate.

Furthermore, we can write the relation between
0' and 0 using p" and approxims, te it for small X:

0" = X' + 0' + 2XS cos p", (2.45a, )

0'ds'
0

0' 0 + X cos P" + (X' sin' P")/20 + . . (2.45b)
dP'W (X,t)F(0', t) (2.42a)

( )

8'+ g = 6 or X' = 0'+ 0" —280'cos P'. (2.43)

An alternate form for (2.42a) is

aF (s,t)
Bf,

dp" W(x, t) [F(0', t) —F(s,t)],

where the first term on the right represents the scat-
tering out of an angular range around 0 per unit path
length, and the second term represents the scattering
into the given range from another range 0' to 0' + d0'

at an azimuthal angle P' (which may be measured
from the same plane as is the deflection 0, or directly
from the plane of 0 itself). The single-scattering angle

x is that which when combined with 0' yields 0:

CO 2' 2 ~ 2 )/

xdx dP"W(x, t) x cos P" +
0 0

BF, 2 2 //BFX —+ &x cos P a02+

a'F(s, t) 1 aF(s, t)
as 0 as

X 2 x'dxW(x, t) + . . (2.46)

[Butler (1950) has included the next higher term].
By use of (2.5) we see that the mean square angle

of scattering after a thickness dt of material is

(2.42b)

where P" is the azimuth of x, and we have replaced
0'ds'dp' by xdxdl9"; the Jacobian a(0', p')/a(x, p") is
x/0' as can easily be found from Eq. (2.21), written
for O',P', x, and P".

(x')« ——2~ x'dxW(x, t)

so that the equation for F reads

2 BF 1 BF
Bt ()0 0 80

(2.47)

(2.48)
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It is easily shown that if the "Cartesian" angles
g. and p„are used, the bracket in (2.48) becomes
av'/ay. ' + av/a@'„.

The solution of (2.48), normalized according to
(2.8d) and satisfying (2.27), is

~(g, t) = [ &x')] 'exp [—g'/&x')], (249)
where we have denoted by (x'), the integrated mean
square

&x'), = dt'&x')«' —— dt' 2' x'dxW(x, t') .
0 0 0

(2.50)

istic of the track that is additive with respect to the
contributions made by each scattering event. Other
characteristics besides the lateral deflection include
the angle made by a chord drawn to the track,
(essentially proportional to x), the sum or difference
of chord angle and tangent angle p., one of the co-
ordinates of a line fitted to the track by a least-
squares-deviation method, etc.

Let us suppose that the probability distribution
of deflections p and x in a single-scattering event is
m(g, x, t) dpdxdt, with the projected-angle distribution
being given by the integral over x:

The results for projected scattering follow im-
mediately when we write 02 = qQ + qg, for then E
becomes a product,

m(p, t) = dxiii(p, x, t) .

The transform of w(p, x, t) will be written

(8.1)

~(g, t) = f(4* t)f(4. t) (2.51) $(g, f', t) = dP dxe'""" u (y,x,t) (8.2)

f(4*,t) = [ (x')) "e p [—0*'/&x')) (252)
We see that (2.50) is equal to the mean square

multiple-scattering spatial angle &8').„and by (2.51),
twice the mean square projected angle 2&&.'),„ in ac-
cordance with the standard theorem about the mean
of the sum of squares of a set of independent events.

We shall see later that the Gaussian approximation
is not very accurate for fast charged particles. How-
ever, it can make a good first approximation if the
divisor of 0' in the exponent is suitably chosen. For
the cross-sections considered in small-angle approxi-
mation in Sec. VI, (x'), does not exist; other methods
of finding a suitable "Gaussian width" are mentioned
in sec. VIII.

There are a number of useful applications of
multiple scattering with regards to boundary prob-
lems [gveras (1960)], joint distributions [Scott
(1949)], path-length calculations [Yang (1951)],
emulsion applications [Moliere (1955)], etc. which
have only been done in Gaussian approximation and
are beyond the scope of this article.

with, as a consequence,

io ($,0, t) = dye'"i'(y, t) = ~((,t) . (8.8)

The folding theorem can be used here as before. If

g (tf&,x, t) = dpi dxygy (Qy, xy)t )

then
X g2 (y —yi, x —x„t"), (8.4a)

y((g, t) = y~(g, f,t')y. ((,l, t") . (8.4b)

where
g(p, x, t) = exp [Qg,f, t) —Q(0,0,t) }, (8.5a)

and

t

n(~, l.,t) = dt'e(~, l-,t'),
0

(8.5b)

Now we ean follow the summation method of Sec.
II-C by combining the successive events (p&,x&),

(Q2 x2) (y„,x„) in place of the vectors 8, , 62, .e
Let us call the resulting joint distribution g(P,x,t) as
above. Then we have'

III. LATERAL DEFLECTIONS AND OTHER
CHARACTERISTICS 0(0,0,t) = dt'~(0, t') = n. (8.5c)

A. Basic Theorems

The distribution of spatial angles 0 could be
described as a type of joint distribution of P. and

p„, where independent contributions to each of these
are made at each scattering event. It is also possible
to find the joint distribution of p. —= p and x, where
x represents the lateral deflection in the x direction,
or could be taken as any other observable character-

by (8.8) and (2.88).
This formalism can easily be extended to more

variables, for instance to the combination of q4,

p„, x, and y. A fourfold Fourier transform will be
needed in this case.

2 We use the symbol Q for the exponent, of any transform,
although in its different uses it refers to different actual func-
tions. The context will always make clear which function is
intended.
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So far we have said nothing about the relation, if
any, between (t and x in each scattering event. There
is no need that they be independent. In fact, if x
represents the contribution to the net lateral de-
Qection in the x—t plane, produced by a given scat-
tering event, , and p represents the contribution to
the over-all angular deflection, (t) and x are strictly
linked. If a deflection p, occurs at a distance t —t;
from the end of the track being considered, the lateral
deflection resulting at the end of the track will be
x; = (t —t,)(t)„(Fig. 2). In the small-angle approxi-
mation, the total deflection will be a sum of all such
individual deAections. Thus x is additive as required,

add the Q's if we wish to And the distribution after
two or more successive thicknesses t&, t& ~ ~ ~ . If we
observe characteristics Xl&",X2,(" - of the tracks at
tl, t2 . we can 6nd the corresponding transform
exponent in the same way as before if we know the
probabilityof acontribution X "to the jth character-
istic produced at the ith scattering. Insofar as the
characteristics are the direct result of transport re-
sulting from angular deAections, we will have a
delta-function multiplying w(p, t) of the form

()[X' —a" (t;)y~], (8.10)

where the a"'(t,) are called "coupling constants" and
in general will depend on some of the tl, t2 t at
which observations are to be made, in addition to
the t; at which a scattering is considered to occur.

The result will be, if we let |") be the transform
variable corresponding to X"',

;t) = «' [&+ f"'""(t')
track + l"'a'"(t') +;t'] . (3.11)

initial
direction

I"&G. 2. A scattered track showing the contribution of a
single scattering at depth t; to the lateral deflection at depth t.

and the direct relation between x; and @; can be
introduced into w(p, x,t'), by writing

w(y, x,t') = w(y, t')t')[x —(t —t')y], (8.6)

where the 5 is the ordinary Dirac function, and t

refers to the end of the track. With this relation,
which obviously satisfles (8.1), (8.2) becomes

e(((f) = f &e, ~,*v (~(e+ 0'i& —t )el~(e&)', '

A more symmetrical form can be written, if we de6ne
a coupling constant for (t) itself as being unity, count-
ing (t) as one of the X(" and omitting the special
term with f in (8.11).

Linear combinations of the X("may sometimes be
of interest. The joint distribution of any number of
such combinations can be found from the following
general theorem relating to Fourier transforms. Sup-
pose we have given a distribution J((X('),X(')
X'"') and its transform FQ (') f (» ~ t ("'). We wish
to find the joint distribution of the m linear combi-
nations

= ~[~+ f(t —t'), t'], (8 7) Y, = ga„X";r =12, m.
j=1

(8.12)

and we have

n((, t.,t) = dt'~[) y |.(t —t', t'] . (8.8)

The chord angle P of a projected track is equal to
x/t. We can find the transform of the joint distribu-
tion of (t) and P by replacing the argument of the
delta function in 8.6 by P —(t —t')Q/t. Thus the
joint distribution of P and f may be found from a
transform with the exponent

Q(&,q, t) = dt'(d[$ + q(t —t')/t, t'], (8.9)
0

where g is the transform variable corresponding to f
We have noted above in Eq. (2.89) that we can

This distribution may be written, by use of delta
functions, as

G(Y), Y2) Y ) = dX"' dx"' dx("'

m

dY, dY„exp i g q), Y,
I(:=1

and integrate, and simultaneously replace I' by the
n-fold integral of its transform, we will have a 2n-fold

X j (X"),X(", X'"')t (Y, —Za„X")

X t)(Ys —&a;2X' ). tI(Y„—Za, X") . (8.18)

If we multiply this equation by
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integral over all the X('& and i"'. The jth pair of
integrals reads

yx(P)
27l 00

df'' exp —g"'X" + i gX"'a,;q,
00 It: 1

X e(f"', t'"') (3.14)

B. One or Two Segments of Track

Figures 3 and 4 show some quantities of interest,
respectively for one and for two segments of track,
and Table I gives the expressions for 0 of some of
these quantities.

which operation, by the two Eqs. (2.6) and (2.7),
amounts to replacing the variable f"' by the fixed

value P a, ~g~ in the function F. Thus we find the
It: 1

general result

g(g, ,g, g ) = F(&aiggp, &a2ggi, &a.~pi, ) . (3 15)

The theorem about the distribution of the sum of
independent variables is s, special case of (3.15) in
which F is a product of functions of the separate
f"', m = 1, and c;& ——1 for each j.

If we add to the above the remark made already
below Eq. (2.12) that when the distribution function
is integrated over one or more of its variables, the
corresponding transform variables are set equal to
zero, we have a set of rules adequate to determine the
transforms for the distributions of a number of
quantities of interest.

on the total length t, + t2 and not on t, and t2,

separately. Thus the distribution is unchanged if
t, = 0, or in other words n = $2.

This theorem was given by Scott and Snyder
(1950) and applied to the calculation of scattering-
produced curvatures by means of a calculation of the
distribution of x. A number of further examples of
coupling coeKcients and resulting distributions are
given by Solntseff (1957) and Moliere (1955). The
above-mentioned paper by Snyder and Scott derives

Fra. 4. A scattered track showing chord angles and the
deQection a between two chords, for two segments of track.

the transform for the joint distribution function

g(g, x,t) from a transport equation, namely

q(47 7 ) + y
g(41 7 ) dpi (y y/)

Bf l9$

X [g(4'* t) —g(4»»t)] (3 16)

initial
direction

Fj:o. 8. A scattered track showing the tangent angle p, the
chord angles p and

hatt
', and the lateral deQection x, for a depth t.

The last entry of Table I is of particular interest.
It can be derived from the previous line by setting
gi = g2 = 0, gg = g2 = g, t' = t"'tgj(tg + t2) and t"
= t2 —t"'t2/(t& + t2); 6nally t"' is relabeled t' It is.
evident that the distribution of the angle between
two chords drawn to two successive projected track
segments depends, in the case that the elementary
scattering law does not vary explicitly with t, only

which was solved, with a result equivalent to that
given in Table I, by the use of Fourier transforms
in p and x and a Laplace transform in t.

For spatial-angle scattering, lateral deHections and
other characteristics can be included in a similar
way. We illustrate with the lateral deQections x and

y, whose coupling coeKcients are a. = (t —t;)p.
and c„= (t —t;&p„, but the extension to other, and
more, characteristics is straightforward.

Each individual scattering generates deAections

g. and p„ that are independent of each other, in the
sense that we can write W(8, t) = W[(p'. + p'„)' ', t]
as a function W.(p.,p„,t) of p. ,p„, and t Thus the i'th.
scattering event contributes a factor W.(p.;,@„;,t;)
8[x; —p.,(t —t;)]8[y; —g„;(t —t;)] to the product in-
volved in the summation method. The transform 0
will be of the form

ft(4, 4,f'*,f.,t) = «'W. [4 + f*(t —t'),

g„+ i-„(t —t'), t'], (3.17)
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Txsr.z I. Expressions for the exponent 0 in the transforms of the distributions of
several variables and combinations of variables. The symbols are explained in

Figures 3 and 4.

Independent
Variables

Transform
Variables

t

dt'co ($,t')

0

dt'co g 1 ——,t'

1) 2) 1) 2

A

[when cu = (u(()]

/ /
gl) gl) g2)$2

t t'
«'cs $+ q 1 ——

0

«a) g 1 ——+,t
0

gt/ j t/

t2 t// /t//

+ dt"(o g 1 ——+ , t + t"——
0 4 t2

t~+t~ g/
/

(t, +t, )

where W.(p„t„,t') is the "Cartesian" form of the Berger (1952) has treated lateral deHections by a
transform of the single scattering law W, (p.,g„,t). moment method based on the theory of Goudsmit

In the event of cylindrical symmetry, which we and Saunderson (1940, a, b).
are assuming at present, W. = ~[(t,' + g)'~', t] is a
function o» «$ = (P + 5')" Thus 0 becomes C. Several Segments of Track

If we ask only for the distribution in x and y, we
integrate over p, and @„, i.e., set $. = $„= 0. Then
the result simplifies to

(3.19)

so that the spatial lateral deAection has the same
transform as the projected one (see Table I). The
combined distribution as given by (3.18) does not
have a simple relation to the projected distribution,
owing to the correlation between 6 and the vector
displacement r, whose components are x and y.

Pollowing Moliere (1955), we shall now consider
several different measurable quantities or character-
istics associated with the observation of the track of
a scattered particle at several successive points,
which may or may not be equally spaced. As before,
we shall consider only the projection of the scattering
in a plane. The quantities we shall consider are:

1. The slopes of tangents measured at several
points along the track or the angles between them
(Moliere's case Ia);

2. The lateral displacements at several points
along the track, measured from some arbitrary
straight line that is roughly parallel to the track,
or equivalently the angles between the chords drawn
between the points where the displacements are
measured (Moliere's ca,se IIa);

3. The slopes of a set of least-squares-fitted
straight lines, 6tted to the track at several locations.
The lines may be contiguous, or they may be shorter
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For angles
between
successive
tangents

=0; 0~&t~&t, g

g)(')(t)& = I; t, g ~&t~&t,

= 0 (3.20)

In order to handle the cases involving the lateral
displacement of a track, it is convenient Co suppose
that the lateral position of any particular track is
given by a function

than the distances between their centers (Moliere's
case Ib for contiguous lines);

4. The lateral displacements of the centers of the
least-squares-fitted lines referred to above (Moliere's
cases IIb and IIc); and

5. The use of linear combinations of these primary
quantities, such as second and higher differences, or
combinations of chord and tangent angles.

The inclusion of grain and measuring "noise, " for
emulsion tracks, will not be taken up here. However,
the folding theorem would allow the calculation of
the distribution of the sum of deQections caused by
scattering and by noise by multiplying together the
Moliere type of Fourier transform for the scattering
(See. VII) and a Gaussian type of transform for the
noise.

Suppose that tangents to the particle track are
constructed at points whose coordinates on a straight
line approximately parallel to the track are tp, tI,
t2 t„. The lengths of the track segments we shall
callgy = ty tp 82 = t2 —tI '''8 = t„—t j.. Letus
then take as measured quantities the angles between
successive tangents —i.e., let X"' = p; be the angle
between the tangent at t = t, and that at t = t; &.

This angle is just the projected multiple scattering
angle g; for the segment of track or "cell" 8;. The
individual scattering angles that occur in a; con-
tribute to p;, but scattering angles in other cells do
not. Thus, we have

S~'+z X&' X&' X&'-& S&'+& S&'
u&

t;+& —t; t; —t; j s;+&

(3.22a)

If the ceH lengths are of equal length s, we have

n; = (x,„—2x, + x, ,)/s

= a'x;, /s, (3.22b)

where 6'x; ~ signifies the second difference of the
lateral displacements.

Writing (3.2lb) successively for t equal to t;+» t;,
and t;, , we can substitute into (3.22a) and pick out
the eoeKcient of p; to get expressions for the coupling
constant. It is convenient to drop the subscript i,
writing t; = t, and to introduce the auxiliary variable
v; = v, (t), defined only in the region t, ~( t ~( t;+& by

t, ~& t ~( t, +g, (3.23a)
~g+i

which represents a linear function of t having the
properties

v, (t, ) = 0 i, (t,+, ) = I . (3.23b)

where the summation is over all the scattering events
that have occurred for that particular track between
its beginning and the point t; t, is the coordinate of
the ith single scattering.

It is then a straightforward matter to derive
coupling constants for the lateral displacernents
xo, x&, x„measured at the points 0, t, t„on a
track. Since the initial displacement xo and direction
&0 are arbitrarily determined by the conditions of
observation, the simplest meaningful characteristics
derived from the x; are the angles n, between succes-
sive chords. In the small-angle approximation we
have

x = x(t). (3.2la)

This function can be written in terms of the actual
single-scattering angles p; by the method illustrated
in Fig. 2. If the initial direction and lateral position
of the track are, respectively, p, and xo, we have

t

x(t) = x. + @.(t —t.) y g (t —t, )y, , (3.2lb)
ti=p

v;(t) = t —t, t —g's t= ——j . (3.23c)
8 8 8

Then we find

If all the cells are of equal length s, v;(t) has the same
shape in every cell. It can be written in this case in
the simple form

For angles n;
between
successive chords =0 t~&t; I and t&~t+)

t, &~&t~&t;

a'(t) = I —i, t, ~(t~(t~g
(3 24)
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This coupling constant can also be obtained from
inspection of Table I.

The coupling constants for the second differences
(in the case of equal cell lengths) are obtained by
merely multiplying u~" (t) in (8.24) by s.

The third and fourth differences of the lateral

displacements are sometimes useful in efforts to
eliminate distortion and spurious scattering errors.
Their coupling factors are easily found by differenc-
ing Eq. (8.24) [Solntseff (1957)].Including the second-
difference result for completeness, we have

For second differences,
2Axjg=

xj+g 2xj + xj —1

= sv, -& (j —1)s ~( t ~( js
a"'(t) ( = s(1 —v, ) is ~« ~& (i + 1)s

= 0 otherwise. (8.25)

For third differences,

Axjg=
x;~p —8x;pg + 8x, —

= —sv, & (j —1)s ~( t ~( js
= (2v, —l)s js &( t &( (j + l)s
= (1 —v, ~, )s (j+ 1)s ~& t ~( (j + 2)s

, = 0 otherwise. (8.26)

For fourth differences,

Axjg=
xi+8 4xj+2 + 6xj+1

—4x;+ x;,

= (1 —8v, )s
a'4'g(t) & = (8v, ,i —2)s

= (1 —v...)s
, =0

(j —1)s && t ~& js
js ~( t ~& (j + 1)s

(j + l))s ~& t & (j + 2)s

(j + 2)s ~( t ~& (j + 8)s

otherwise . (8.27)

t +".'/2
[g, y j, (t —t, ) —x(t)]'dt,

"t —s /2
(8.28)

Suppose now that a track is observed by the
locations of photographic emulsion grains, or droplets
in a cloud-chamber photograph. In order to make
measurements of track direction, it is necessary to
fit segments of straight lines to portions of the track.
Although this process may generally be performed
visually, it is convenient to assume that the fit is
made by the method of least squares, for in this case
an analytical procedure is possible. In fact, we shall
assume that we Gt lines directly to the continuous
(but zigzag) function x(t), Eq. (8.21).' We shall

divide the track up as before into cells, and construct
the straight lines at the centers of the cells, using
cell lengths sj for the lines that may or may not be
equal to the full lengths s;. Let us describe the jth
line by its lateral displacement, x, and slope P; at its
midpoint t, . Then the sum of the squares of the dis-
placements of this line from the curve x = x(t) be-
comes the integral

x(t)dt,
7 -s/2

(8.29a)

az P~3j =
7+s /2

(t —t, )x(t)dt (8.29b)

Note that
$.+sj/2

(t —t, )dt = 0.
,—s, /2

Using (8.2lb) in (8.29), we have

X,s, = xps, + Pp(t, —tp) + Q P;
interval

(t' —t;)dt'

~3 y z3
~~P,s; —~~ /ps, + ~$;

interval

(8.80a)

(t —t, ) (t —t;)dt',

an.d the conditions on i, and p; that make Q; a
minimum are found by setting 85,/Bx, and cia,/gp,
equal to zero. We obtain

t+s /2

(8.80b)
3 This assumes the presence of sufficiently many emulsion

grains or cloud-chamber droplets. Alternatively we may say where the interval over which the integra]. s are
merely that the grain noise and reading error are not included
at this stage of our calculation. calculated is
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interval = t, —s, /2 to t, + sj/2 if

to tj + sj/2

=0

t; ~& tj —s;y2

Sj/2 ~( ~f ~& t; + s, /2

t;) t, +S/2. (8.80c)

We can read directly from (8.80a) the coupling factor for the quantity x, —zp —pp(f, —tp). We
shall, as before, drop the subscript i, setting t; = t.

=0
t; —S, /2 & t ( ij + S, /2

ij+ s, / 2( / j = 1,2,8 .n —1.
If all the sj are allowed to go to zero, the second range disappears and we get the result expressed by
Eq. (8.6).

The coupling factor for p, —1tp can be obtained from (8.80b).
For slope of fitted line, P, —

@p

t ( tj —Sj/'2

d~p" (t) ' = —,
' —„(t, —t)'+ -—„(f„—/); i, —s;/ & / ( t, + /s

sj 2sj

t, + s, /2 ~( t j = 1 2, n —1 . (8.82)

The result for sj = 0 is the expected one for the angle between tangents at to and tj.
Now we can find the coupling factors for the simplest measurable quantities. The angles between

successive lines, p, = p, —pj 1 have coupling factors derived by calculating dtj —djI-' from (8.82):

for&;=pj —p, i, s;&s, ,
=0 *

t ~( tj-I —Sj-I/2

2 A 3 3 A

2 + Ap (~i-1 ~) 8 (~j-1 ~) j ~j-1 Sj 1/2 N+ ~-N+ ~j-1 + Sj 1/2-
sj 2sj

ape(~) f =1

Eq. (8.20) results from (8.88) when s, —+ 0.
When the sj are equal to the full cell lengths we have

tj —1 + Sj 1/2 ~( /—~+ 31 Sj/2

/,, —Sj/2 ~( t ~( t, + S, /2

t, + S, /2 ~& /, . (8.88)

A

hj 1 + sj 1/2 = ~j —1 = fj sj/2y (8.84)

and we can write a simpler formula for the coupling constants (if all the s, = s, we have Moliere s case
IIa).

S. =S.
=0 t ( tj-2 = tj 1

—Sj-I/2

a,"'(t)
Sj = Sj

2 3 3 2
1 + 3 (~J—1 t) 2 ($j—1 &l

s)
tj —2 ( t ( tj 1 = tj —2 + Sj—1

(8.85)
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For the slopes of lines joining the midpoints of successive least-squares-fitted lines, we have from
(8.81):

for& =
t; —t;1

A

~ ~& ~j 1
—sj 1/2

(t/ —t) — . (t/-i —t+ 28J-i) /(t, —t; i); t, i —s; ». ~& t ~& t, i+ s, i/2
2sj

„(j) 4ap(t)'=. t/-i + 8/-~/2 ~( t ~( tj —S/. /2

(t, —t + —', 8;)'
2P, (t, —t", , )

=0
t, —8, /& ~( t ~( t; + S, /2

t;+ s, /. ~( t, j = 2,8. n —1. (8.86)

The angles 0.; of actual interest are the differences of the slopes just calculated. We define cx; by

0!j
~j+1

A A A

Xy Xy Sj
A (8.87a)

and we have for the coupling factor:

for d;

sj (sj
=0

A 1
(t; y

—t+ gSg z)
sj

t~&tj g
——, sj g

tg g
—2s, g~&t~&tg )+ 2m, g

t —tj 1
t, ~ + s, ~/2 ~( t ~& t, —s, /2

a" (t) & = t, ~~ —t ——„(t, —t + —', s, )'
sj

~j+1

~j+1 ~j

(t;„—t + —', 3,„)'
2P, +& (t;+g —t, )

* ~ i t/ ks/ ~( t ~& t/+
2S;~tj —tj 1)

t, + 2 s, ~( t ~( t, pg
—

2 s;p,

tj+1 2 8/+1 N( t N( ted+1 + g 8/qz

=0 ted+I + p sj+f ~( t j 2)8) ' '8 2

(8.87b)

The result of setting the 5, = 0 in this expression is Eq. (8.24b). If all the s, are equal, and the 8, are all

taken as the same fraction of the sj, so that

sj = s i=&)2~. & )Sj = rsj = f'S

we have the somewhat simpler result (Moliere's case IIc);
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for o.;
S~ = f'S~ = t'8

=0 t ~( t; —(1+ —,
' r)s

2 [t, —t —(1 + -,'r)s]' ; t, —(1 + -', r)s ~( t ~& t"; —(1 ——,' r)s

d(i) (t)

= 1+
8

a~ $j.

8

t, —(1 —-,'r) s & t ~( t", ——', rs

t, ——', rs ~( t ~( t, + 2 rs

t, + -', rs ~& t ~( t; + (1 ——,
' r)s

, [t, —t + (1 + —; r)s]' ; t, + (1 —-', r)s ~« ~& t", + (1 + —', r)s

=0 t, + (1+ —,'r)s «, ~ = 2,3 "n —2. (3.88)

The result is still simpler when r = 1 (Moliere's case IIb):

for o.;
Sq =Sq =8

o"(t)

=0
1 3 2

28
2 [t —t ——'s]

t~&t, —~38

t; —-', s ~( t & t; + —', s

=
2

2 [t, —t + q s]; t, + ~ s ~( t ~( t, + $ s
28

t; + —,
' s ~& t . (3.39)

IV. ASYMPTOTIG EXPANSIONS

Although a detailed study of asymptotic expan-
sions will be given later after explicit expressions for
Q(g, t) have been introduced, some general properties
of these expansions can usefully be introduced at
this point. We use the method of Snyder and Scott
(1949), applied primarily to the spatial case.

The method consists in rewriting the integral for
I"(8),'

F(8) = — )d)J0($8) exp [Q($) —Q,], (4.1)

in such a way that the path of integration can
legitimately be bent away from the real axis into the
upper half of the complex plane; we then approxi-
mate its entire value by the integral of a portion
along the imaginary axis. %e first observe that the
Hankel function of zero order, Ho&" (z) can be written
in terms of two real functions Jo(z) and Xo(z) and
also in terms of the Bessel function of the second

4 We suppress the variable t in this section.

kind of purely ima, ginary argument, Ko(—iz), as
follows:

IIO" (z) = Jo(z) + i%0(z) = —.Ko( —iz) . (4.2)
gran

The function Xo(z) is the Neumann function [see
Sahnke —Emde (1943), Sahnke —Emde-Losch (1960),
and Watson (1952); the latter author uses the sym-
bol I'0 in place of Xo].

Now, when r is large, Ko(7) behaves like e-'. Thus,
if we set z = i ~ on part of an integration path, the
combination J,(z) + imp(z) behaves like e ', al-

though neither of them separately decreases.
We write, therefore, before changing the integra-

tion path,

F(8) = —Re &d&II,"'(&8) exp [Q(g) —Q,]

= ——,Re i PdgKO( —i(8) exp [Q($) —Qo] .
7r 0

(4 3)
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b3 b4 b{j b62«~(x) = 3+ 4+ 5+ s+;x&xi,
x x x x] Ti

—,Re i 7d~K. (~0) exp [Q(ir) —Qo] . (4.4)
7r 0 (4 ~)

where we have chosen the lowest inverse power for
which the integral for Q, , (2.38b), will converge, ' and
carried it to x-' for purposes of illustration.

We can then write, using (2.38a) and (2.38b),

We shall shortly see that Q(g) —Qo behaves for
small $ a,s —P or as +7'. Hence, the exponential
factor will increase with 7.. However, if O is large
enough, the e~' behavior of K0 will produce a rapid
decrease before the increase of the other factor is
important. The value r& is to be chosen so as to give

Q(t) —Q. = 2 ~ xdx~'(x)P. (hx) —11
0

Xi

x&xll (x) [~0(tx) —1]

Now let us deform the path of integration from expansion of W(x) that is valid above some angle
C in Fig. 5 to C', where 7.1 is to be chosen later. X1. We write

Along the vertical portion of the path, we have

G Fze. 5. The
plane;& = 0+ iv-.

+ XA[J.(rx) —1] —.+ —.+ —.+ —.ba b4 b5 b6

Xl -x x x x

(4.8)

an approximate minimum of the product of the two
factors. The integral on the horizontal part of C'

will decrease because of the (presumed) convergence
of the exponential factor and will contribute in its
entirety only a small amount to the result.

If now the exponential factor is approximated by
the first few terms of its expansion in powers of 7,
which should be adequate under the assumption
made about the size of O, the integral of each separate
term will be very nearly the same as if 7-& were infinite.
We can then use the integral formula [Erdelyi et ct.
T. I.T. (1954) 10.2(l); and Watson (1952), p. 388]:

Let us now assume that the necessary values of P
are small enough that we can use only three terms
in the expansion J,((x) = 1 —x'P/4+ x4P/64
This will be true if ~Px&

~

is of the order 1 or less for
the largest $'s required —e.g. , if y&r& is of the order 1
or less. This in turn requires that Or& be enough
greater than 1 for the t,

-"behavior of K0 to have re-
duced the integrand for F(8) to quite a small number—e.g., Ov-& of the order of 4 to 6 or more. The asymp-
totic expression will begin to be valid for O roughly
4 to 6 times larger than x1.

The integral 2«j, 'x'dxW(x) can be interpreted.
as the mean-square angle of scattering produced in
a thickness t by the cutoff distribution

2"
2 v+1

&~KO(~8)~" = „+i r (4.5)
~ = ~(x); x & x.

X&X1) (4.9)
Since we shall find that terms involving ln 7- ap-

pear in the expansion, we need the formula obtained
from (4.5) by differentiating with respect to v.

2 2 v+1
d7KO(~9)r" ln r = „~i 1'

0

x» —+0( z ) (4.6)

where P(x) is the logarithmic derivative of the
gamma function, defined by P(x) = &'(&+ 1)/1'(&
+ 1)

In accordance with what has been said, we need an
expansion of Q(g) —Q, for relatively small values of

g, which will in turn be partly but not entirely deter-
mined by W(x) for large values of X.

Let us assume then that we have an asymptotic

since for any distribution whatsoever that has a,

mean square, the mean-square, multiple-scattering
angle is just the mean-square, single-scattering angle
multiplied by the mean number of scatterings.
Hence, we shall write

and similarly

2mt x'dxW(x) = (8')&
(4.10)

Xi

2«x'dxW(x) = (0'), ,
0

(4.11)

5 We shall see in Sec. IX that the inverse second power
appears using the Dalitz cross-section, and a modification of
the small-angle approximation is necessary.

where the subscript refers to the cutoff chosen. (The
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(8'), = 2~t X'dXW(X) + 22l.t X'dXW(X)

last integral will turn out to disappear when we only
calculate to terms in 8 '.)

The final result should be independent of this
cutoff; this can be seen by calculating (8')2 for a
larger cutoff x2.

considerably dependent on Xl, so the procedure is
quite arbitrary; the expansion will be of doubtful
validity just for those values of f that are supposed
to establish the main part of the Gaussian.

If we proceed to use (4.14) with $ = i7 in (4.4),
and use the integrals (4.5) and (4.6), we obtain after
some reduction

0 Xl

= (8'&I + b3(X2 XI) + b. » (X2/Xl)

») 2»

from which we see that

(4.12)

21I.F(8) = —,+ —,+ b, + —b,b, ln ———bpb4
b3 b4 9 48 39

ga

——b, —,+ bp+ 4b, ln ——4b, —Sb,b,
3 3 1 2 0

ga

(4.16)
(8 )2 b3X2 b4 ln X2 + b5/X2 + bp/2X2

= (8')I b3XI b4» Xl + b5/Xl + bp/2XI

= —b, (ln x. + -', ) (4.18)

is a constant independent of the cutoff, as long as
the cutoff is in the region in which (4.7) is valid. The
last line of (4.18) defines the screening constant X,
for use in later calculation.

Now we can use the results of Appendix I, and
write out an expression for Q(g) —Qp.'

0 ($) Qp = bp& [(8 )I bpXI b4 lil (&XI/2e)

+ b5/XI —bp/2XI] (3'/4) + 2 b5$'+ [(8')I —
3 bpXI

—
2 b.xl —bpxl —bp» (vxI/2e' ')] (5'/64)

We note that to order 0-' the asymptotic formula
is identical with the single-scattering tail expected
for the given thickness, and that if bp and b4 were each
zero, the formula would agree with the 0 ' and 8-'

terms in W. Furthermore, if b4 is the dominant term,
multiplying the W by a correction factor (e.g. , for
spin effects) will multiply F(8) by nearly the same
factor, as speculated by Bethe (1958) and approxi-
mately verifmd by Spencer and Blanchard (1954).

A similar procedure can be used for the projected
scattering. We write cos g = Re (e'~P) and proceed
similarly.

We can also find directly a relation between the
asymptotic formulas for F(8) and f(4t)) Using (.2.4b),
we And that if

+ —,
' b4(' ln &

—(b,/64) ]' ln & .
F (8) A../8", (4.17a)

f(4) —2 I' ( 2 ) A./I'(n/2)4 ', (4 176)".
and by differentiating under the integral sign, treat-
ing n as a continuous variable, if&(() —~l. = b.k+ ——.

' b.h» (vx-$/2e )

+ ;b k'+ —~.k' —( /64)&'» 5 (4'5) F(8) B.ln 8/8",

The coefFicient of $' simplifies by use of (4.18); the
then

coeKcient of $4 also simplifies if the corresponding
calculation is made for (8 )I, but since this coeflicient
disappears in what follows, we shall simply call it
A4. %e have

It is tempting to seek an expression for F(8) which
would be a folding integral of a Gaussian multiple-
scattering distribution and a single-scattering distri-
bution corresponding to the "tail" given by (4.7).
This could be achieved if exp [Q(g) —Qp] were written
as a product of a factor like exp [——41$'(82)I] and a
factor like [1 + 2IitW, .;1(p)], hopefully resulting from
an expansion of the part of Q($) —Qp foi' X ) XI (the
unity here will produce a pure Gaussian that is
negligible in the asymptotic regions). The trouble
with this procedure is that the terms to be expanded
are of the same order as the term lef t in the exponent,
and the choice of the multiple-scattering "width" is

X 3„ ln4 ——', 4 ( )

r — " '. 4.18b

F(8) = C. ln'8/8" (4.19a)

For later use, we shall need the result of another
differentiation with respect to n. If



250 WILLIAM T. SCOTT

(per unit solid angle, etc.) of getting a count at,

(O,P), and c *c P*P = (1 —c+*c+)P*P will be the
probability of a particle passing and not registering
a count.

It is more convenient and general to use an arbi-
trary pair of spin directions as basis for representa-
tion instead of those for which the detector is set.
In this case, the ~ states for the detector would be
linear combinations

V. MULTIPLE SCATTERING OF
POLARIZED PARTICLES

alp 1 + a2$2

0 a1+
4 + a2

0 a2
(5.2a)

+p +

(5.1)

where f is a function of position or linear momentum
of the particle. We use here the Pauli spin formalism;
if for relativistic particles we define the spin direction
to be the one that would be observed if the particles
were brought to rest by a purely longitudinal de-
celerating electric Geld, we can treat the spin by the
Pauli formalism applied to the two "large" compo-
nents of the Dirac spinor —P3 and P4 in the usual nota-
tion when electrons are under consideration [Tolhoek
(1956), Fradkin and Good (1961)].

If, for instance, the detector is set to count particles
with positive spina, c+*c+P*P will be the probability

A. Density-Matrix Treatment of Spin

As we stated in Sec. II-A, polarization must be
treated quantum-mechanically even while angular
defiection probabilities are combined in a classical
way. Specifically, 0.(8,P) = ~u(O, P)~' represents the
absolute square of the scattering amplitude in which
the diferent components of spin, if any are averaged
over.

When we consider spin (and the only important
cases are for spin —',) we have to consider two spin
states along with u(O, P). Since in nearly all cases the
beam of particles under consideration will not be in
a pure spin state —i.e., the beam will be at least
partially unpolarized —we must consider mixtures
of states. The appropriate technique for dealing
with mixtures is that of the density matrix [Fano
(1957), Tolhoek (1956)] which we shall now intro-
duce.

The spin of a traveling particle is detected by re-
solving the beam in which the particle is contained
into two opposite spin directions or channels, and
determining into which channel the particle is de-
Qected. A pure state, resolved in this way, could be
represented by the two-column matrix

with orthogonality and normalization given by

together with

a, a, + a2 a2 = 1,
at ay + a2 a2 = 0, (5.2b)

g*Pd~ = 1. (5.3)

Since Pi and P& are also normalized and orthogonal,
we have the further conditions

+g + -g — +g +
a~ a~ + a~ a~ ——1, a2 a2 + a2 a2 ——1,

+g + -g — + +gaf a2 + aj a2 = a&a2 + af a2 0

Now, if we have an arbitrary state given by

(5 4)

with

$8 = Cy1/ly + C2lp2
Cy

C2
(5.5a)

CgCy+ C2C2 = 1,
we ca,n expand it in terms of the P

&8 = &+&++ &-&-,
where A+ is given by

(5.5b)

(5.6)

P+Psd7 = a& a2
+~ +~ C

C2

+g +g= ay Cy+ ag C2. (5.7)
The probability of getting a count in the detector
is 3+ 2+ which we can write in summation notation

P(+) = a;c*;a;*c, . (5.8)
If we have a mixture 3II of states, by which we mean
an incoherent superposition, the probability of a
count is just the ordinary classical weighted sum of
terms like (5.8). Let us describe the mixture in terms
of two orthogonal states P "'= c"'gfg + c"'2/2 and
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Pdet =

and

+ +Qa1 a1
+ +g

a2 a&

+ +Qa1 a2
+ +g

a2 a2

+ +g
; (p„,);, = a;a, (5.10)

(» (» (»g
y P C1 C1

p~ = ~ (» (» (»~
~yg p C2 Cl

(PM);, —QiP c, c,

(» (» (»~
y P C1 C2

(» (» (»~
Ic P C2 C2

(5.11)

f(2) = c(2)&f& + f(2)2/2. The probabilities of the two
states will be denoted by p"' and p").

Then the probability PM(+) can be written

P (+) = g p'"',+c,'"*,+*c,'" . (5.9)
This sum can be written as the trace of the product of
two matrices, defined by

to write the matrix of the state S in vector-matrix
form

ps = —,
' (I+ P &), (5.16)

where I is the unit matrix, and d is the vector whose
three components are the Pauli matrices.

For relativistic particles when four-component
Dirac matrices are required, the mean values of the
components of d are no longer given by the c's of
(5.18), which belong to the two "large" components
only. Tolhoek (1956) has shown that the matrix
whose components give the direction of the magnetic
moment, which is the observable quantity, and which
do yield the formulas in (5.18), may be written
[Miihlschlegel and Koppe (1958)], taking the di-
rection of the linear momentum as the z-axis

Then we have

PM(+) = Tr (pq, &pM) = Tr (pMpq. &) . (5.12)
E

X =0.1, + 2[d —0,1,],mc
(5.17)

Note also that

Tr (p~.,) = Tr (pM) = 1. (5.18)

P~ = (o;) = cyc2 + c2cy

Pq = (oy) = 'L(cyc2 c2cy )

Pg = ((T,) = cycg —c2c2

(5.14a)

(5.14b)

(5.14c)

The matrix p~ is called the statistical matrix of
the mixture 3II. A pure state 8 would have a statisti-
cal matrix p~ without the sum over p(»; in fact,
p&., is the statistical matrix of the pure state f+. The
formula (5.12) allows us to obtain all information
obtainable from the given mixture of states by use
of all possible detector states (orientations) f+. It is
a special case of the general formula for the mean
value of an operator Q, as given for instance by Fano
[1957,Eq. (8.5)].The operator represented by p&„has
the value 1 when the spin is plus and 0 when it is
minus, so P(+) is its mean value.

For any state 8, as given by (5.5), we can find the
expectation values of the Pauli spin matrices' 0., 0-„,

0..in the representation based on f~ and f2 We find.
using P., P„, and P, to represent these values,

where 1, is the unit vector in the direction of z, and
E and mc' are the total energy and rest energy of the
particle, respectively. When the particle is at rest,
E = mc' and the longitudinal and transverse com-
ponents of 6 are weighted equally.

For a mixture, we take a summation over each
P., P„, and P, and can write (we continue to use the
Pauli d)

0
pu =

0 p
(2) (5.19)

= ll~+P &];
P g (&)P(&) o)P(~) y (2)P(2) (5 18)

Note that knowledge of P as given by (5.14) is.

enough to determine P~, since the four equations can
be solved for the four matrix elements; the c; them-
selves can be determined to within a common phase
factor. Similarly knowledge of P as given by (5.18)
is sufhcient to determine p~.

If now we choose a representation (orientation of
axes) in which the two states of the mixture are just
P( and $2, we have c(')i ——1, c'"2 = 0, c("& ——0, and.
c(')2 = 1, and

1 = cgcy + c2c2 (5.14d)

with the further relation added for completeness P. =P„=O
P —p(1) p(2) (5.20)

Note that the length of the vector P is unity:

P. + P„+P2 ——(c,c,*+c2c2) = 1. (5.15)

Using these results and the Pauli matrices, it is easy

6 We use x,y, z for three spatial coordinates, and only when
we deal with the small-angle approximation will we specify
that z coincides with the thickness t,.

Since p") + p(2) = 1, we see that for a pure state
P is a unit vector, whereas for a mixture, ~pj is less
than unity. In the case that p(') ) p(') we could
describe the original mixture as a combination of
two mixtures: one actually the pure state P('& with
the probability p"' —p(", and the other a completely
unpolarized mixture with equal probabilities p") of
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either P&'& or P&'&. Thus p~" —pi'i = ~P~ = P is the
degree of polarization of the mixture. The vector P
itself characterizes the polarization state completely,
just as does the density matrix p~, for any mixture.
However, the density matrix will be of more direct
use.

The detector matrix can also be written in the form
(5.18), by introducing P+ whose components are
formed from the a+'s instead of the c s:

component wave function. If the initial wave is a
plane wave in the 0 = 0 direction, we can write the
resulting wave after scattering in terms of a matrix

Cl I All A12

c2 As, As,
(5.27)

where p' = u(g, p) as above mentioned. The new
density matrix can then be found from the old as
follows. We have from (5.27),

p" = s [I+ P' &]. (5 21)
c,'f' = A;i,esp,

For detection of the opposite sign, we have merely to
write

(p")- = l [I+P 6) (522)
where P = —P'. [That P = —P' follows by use
of (5.4)].

We can then compute the trace of pd, tp~ by use of
the rules of spin matrix calculus: 0-'. = 0-'„= 0-',

= I; o.o„= io, = —o„o., etc; Tr (o.) = Tr (o„)
= Tr (o,) = 0; Tr (I) = 2. The following corollary
is useful, where P and P' are any two vectors:

(P.d) (P'. 6) = (P P') I + id. (P x P') . (5.23)

We readily obtain the result

Tr (p&.,pu) = -', (1+ P P) . (5.24)

Now if we have an unpolarized detector that detects
both signs of spin, the resulting counting rate will be
the sum of the traces (5.24) for P+ and P, namely
unity.

B. The Transport Equation

Now consider a scattering event. Scattering theory
describes the relation between initial and final states,
before and after scattering. In the ordinary case
without polarization, the amplitude u(e, p) multiplies
the final outgoing wave and may be considered a
multiplying operator that converts an initial plane
wave at angle (0,0) into a final wave, plane within an
infinitesimal solid angle, at angle (g,p).

The appropriate way to describe the state of a
beam of particles will be by means of a product of the
density matrix for the spins and a probability func-
tion for the angular distribution. We write the
product as

F(t),p)p(P) = l [F'(g,p)I + ~(e,p) d], (525)
where the vector II is given by

c,'c,'*P'*P' = A;~c~A;*,c*, /*if

= A;,c,c*, A „P*if (5.28)

in matrix form. The symbol A~ denotes the Hermitian
conjugate of the matrix A. In terms of the cross
section 0- = u*u, we have

g(8,P)p' = A.pA, (5.29)

F, (0,P)p' = Nf 0'dk' dP'A ((1",P")p(P)
0 0

X A (0",P")F.(&',P'), (5.30)

where as before the vector relation e = e'+ e"
holds. The matrix p' is a function of P, and, by
writing it in the standard form -', (I+ P' 6), it is
possible to determine the new polarization vector
P' in terms of P. We can obtain an equation for Il2

by itself by taking the trace of both sides of (5.30),
co 2'

F&(O,P) = Nt 0'dg'
0 0

x A (&"p")]F (0' p')

dp' Tr [A(0",p")p(P)

(5.31)

Waldmann (1958) has given a derivation of the
Boltzmann equation'for scattering on fixed centers
by polarized particles. In the special case for which
the forward scattering does not alter the polarization
(isotropic scattering centers), and the small-angle
approximation is valid, the equation reads [Miihl-
schlegel and Koppe (1958)]':

where the components of A are functions of 0 and p.
Although we have not indicated it explicitly, u itself
must depend on the vector P.

If a particle before a scattering event has the
distribution matrix F~(e,P) p(P), then the distribution
after a single scattering (in thickness t, to use the
definitions of Sec. II) will be

II = F(e,p)P. (5.26)

The elementary scattering probability must be
derived from an operator acting on an initial two-

~ Waldmann's Eq. (91.12) is modified by the use of his Eq.
(89.16), the "optical" or "shadow" theorem, on the assumption
that A(0, 0) is a multiple of the unit matrix.
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——[F(g,p)l+ n(g, p) 8] = — 0'dg'8 g
2 8t 0 0

X IA(0",P")[F(O',P') I + 11(0',P') ~]A (0",P")
—A(0",p")A (8",p") [F(g,p) I + rr (8,p) n]] .

(5.32)

With these results, (5.29) becomes

(H, P)(l + P' ~ 8) = —', I[J(8) + sin HD(8)lo P]l

+ [J(8)P —sin HG(0)P + sin HD(0)10

+ sin'8(lo P)G(8)lo + sin 8E(8)(1, x P)] ~ rt

(5.37)
This equation is the generalization of (2.42) to the from which we see that
case of spin-~~ particles.

a (H,P) = J(8) + sin HD(0) 10 P

C. General Solution for Small Angles

We must now specify the matrix A. Any 2 &( 2
matrix can be written as a linear sum of I and the
three Pauli matrices. The matrix is a scalar, and to
preserve rotational invariance (in the general, large-
angle case), A must clearly be a linear combination
of a multiple of I and a scalar product of 8 with a
vector. The only relevant vector direction associated
with a defi.ection from an original direction along
unit vector 1, to one along 1,. is the orbital-angular-
momentum direction along 1, x 1,. = 10 sin 8, where
8 is the angular defI.ection. Thus we expect to find

[Miihlschlegel and Eoppe (1958)]that A is of the form

A(g, p) = j(0)I + ig(0) sin 81o ~ 6

= f(0) I + ig (g) sin 8[—r, sin P + o.„cos P] .

(5.83)

In fact, application of Dirac theory for a central
force gives just such a form [Mott and Massey
(1949) Sec. 4; Tolhoek (1956)]. We use here the
de6nition of the functions f and g given by Miihlschle-
gel and Eoppe (1958); those of Mott and Massey,
and Tolhoek, are equivalent to our f and —g sin 0,

respectively.
A lengthy, but straightforward matrix calculation

leads to the follovnng properties of A:

+ [sin OD(0) + sin'0(1. P)G(0)]1.

+ [sin HE(8)](10 x P) . (5.38b)

It will be observed that if P = 0 (originally un-
polarized beam)

P' = sin HD(8) lo/J(8), (5.39)'

and the resulting beam is polarized along the orbital-
angular-momentum direction. This is Mott polari-
zation [Mott and Massey (1949), Sec. 4.1]; sin
HD(8)/J(8) is the usual asymmetry factor 8(0)
[Sherman (1956)]. Further, when 8 = 0, P' = P. If
P is not parallel to I&, the term 10 x P shows that
P' cannot have the same direction as P. The polari-
zation eBects, being due to spin-orbit coupling, are a,

relativistic phenomenon. For nonrelativistic particles, ,

g(0) = 0 = D = E = G, A is a multiple of the unit
matrix, and p' = p. Other consequences of (5.37) are
given by Miihlschlegel and Eoppe (1958).

To apply these results to the transport equation,
we replace 0 by 0" and evaluate 10 as follows. Let the
direction of the beam before scattering at angles
(O', P') be given by 1, and that aBer at angles (H,P)
be given by 1.. In the small angle approximation,
with 1& the original beam direction and 8', 6", and 8
vectors normal to 1&, we have, to sufFicient accuracy', ,

and

[J(8) + sin HD(0) (1,.P)]P' = [J(0) —sin' HG(g)]P

AA = J(8)f+ D(g) sin810 8 (5.34)

A@A = D(8) sin 81/ —E(0) sin 810 x g

+ [J(8) —sin'HG(0)]d + sin'8G(8) (10 d)10,

(5.35)

1,'=1, +6',
1. =1&+8, (5.40)

= g"1, x 1,". (5.41)

0"1, =1, x 1, =1, x (8 —8') =1, x8"

where

J(0) = f*(8)f(0) + sin' gg*(8)g(8),

D (0) = 'I f*(0)O(0) —f(0)g*(0)],

E(0) = -
I:f*(0)g(0) + f(0)g*(0)1,

(5.36)

Now if we multiply (5.34) by —,'[F(H,P) I + II(H,P) .6]
and (5.37) by F(8',P'), replace 8 and sin 8 in each of
these equations by 0", and use (5.41), we can write
the transport Eq. (5.32) in a form suitable for
analysis. After writing the two integrals in terms of

8 Note interchange of z and z' in 10.
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~ fr (&,u) (5 44)

afr ($,a) = [ (5) — (0)]fr(f, ) + &(5)(I 1-)

X F(),n) + ie(p) [(1, x 1 ) x II(&,a)]
—y(5)fr (5, ) + [y(k) —»(5)l[I x 1- fr (5, )]

X (I I-) +»(r)[l-.fr(&, )]1-, (545)
where the various transforms are

I and d, we can equate the coefFicients of each matrix,
and obtain the set of equations:

00 2x

= X 8'd0' dP'{J(0")[F(8',P') —F(8,P)]

+ 8"D(0")[1, x 1,- rr(0')], (5.42)
00 2K

= X 9'dk' dP'{J(8")[ (O',P') — (8,P)]

+ 0"D(0")F(0',p')[1, x Ig ] + 8"E(8")

X I (1 1-) ~ ~(0',p')] —0"'G(0")~(0',p')

+ O'"G(0")
l (1, x 1,-) Il(0',p')] (I) x 1,-) } .

(5.43)
In deriving (5.42), and (5.43), terms arise from

the scattering-out expression (5.34) that involve a
function of 8 times the integral over 0' and P' of a
function of 0" multiplied by a vector expression in
Ig". Since 0' does not enter the integrand, we change
8'd8'dP' to 0"dk"dP" and find that for each component
of lo", the p" integral is over cos (p' —po), where po

is some constant, yielding a zero result for each such
term.

Now let us take the double Fourier transform of
Hqs. (5.42) and (5.43), in the "polar coordinate"
form (2.10b). We multiply both sides by kdkdP exp
(ig e) and integrate. In the combined fourfold
integral, we can change variables from (O,P,8',P') to
(8",P",O', P'), except in the terms with F(O,P) and
II(O,P) where we change to (O,P, O",P"). In the former
case, we can write exp (iP 6) = exp (i$ 6'+ ig e")
= exp [ipk' cos (P' —n) + ipk" cos (P" —n)], where
a is the azimuth of the vector g.

With the new choice of variables, the angle of lo"
no longer enters into O'. We can then use the theorems
(A.19) and (A..20) of Appendix II. When Io. appears
once in a term, the transform will have 1 in its
place, where I is a unit vector in the x —y plane at
azimuth n. When Ig" appears twice, the transform
will have I twice, and another term with 1~- re-
placed twice by the normal I& x I, or what is
equivalent, I& x Ie" replaced twice by 1 . We find

= [~(~) —~(0)]1'(~, ) + '~R) (1 ~ 1.)

f(P) = 2m% kdkJ(8)Jo($8); f(0) = jo,

d(P) = 2~X kdk OD(0) J, (&8),
0

e(q) = 2~% kdk. kE(0)J,(g),

Iro(f, n, 0) = Iroo = Pp, . (5.51)

Standard methods readily yield the solutions of the
two sets of diA'erential equations. We have

F(& n t) = "
sinh t(h' —d')' '

)n) =
(ho go) )go SIII

+ cosh t(h,
' —d')' '

exp t[y(&) —jp —h(&)],

(5.52)

IZ($) h ($)1120 ~

(
2 g2)1/2

(h' —d')'"

+ IIop cosh t(h,
' —Z')' '

exp t[yg) —
yp

—h(&)],

II, (~,~,t) =

(5.53)

y(P) = 2~X kdk. k'G(0) J.(g),
0

h($) =
2 or% kdk OG(8)[Jo($8) + Jo($0)]. (5.46)

Note that we have used —i in place of i as used in
Miihlschlegel and Koppe (1958).

Following the same authors, we can separate this
set of four coupled equations into two independent
pairs, if we choose components of II along l, l& x I,
and I&, respectively. Set

II, = 1 .fr;11 = 1, x 1 fr;1I = 1, fr, (5.47)
and we have

aF/at = (j—g())F + idfI, ,

afro/at = iZF + (j —fp —2h)II, , (5.48)

afr)/at = (j —jp —
y + 2h)IIi + ieII, ,

afr, /at = —ieir, y (y —~. —y)fr. . (5.49)
The initial conditions for these equations are

determined by (2.27); F(O,P,O) = B~(0) and II(O,P,O)
= 8&(0) Po where Pp is the initial value of the polari-
zation vector. Hence, we have

F((,n, 0) = 1, fr(p, a,0) = Pp. (5.50)

The axes chosen for II& and II2 rotate with the
angle n, so we must write the initial conditions in
terms of the components of P0 with respect to fixed
axes. We have then:

II) ($ u, 0))= 11)o = Po~ cos u + Poo sill u )

Iro())A)0) = Iloo = —Pp); s111 tx + Ppp cos a )
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($ t)
~e(k)+30 + ~(t)II& 0

h (/p -&)&/2
1 i~

()
2 + 2)i/2 sin t e

+ 11)0 cosh t(h'+ e')' '

The 0. dependence of these functions is given by
use of (5.51). Before inverting the transforms, we
must express Ij: in components with respect to the
fixed axes x, y, and z, namely by the combinations

x -ptlj(&) - j.—g(&) + h(&)],

(5.54)
(' (r)11.+ &(~)11-)

3( )0!) ) =
()-2 + 2)i)2 S1I1 ( e )

II = III cos cL —II2 sin A )

II„= II) sino. + II2 cosn,

II, = II3 . (5.56)

Making these linear combinations of (5.53), (5.54),
and (5.55), using (5.51), multiplying the resulting

X exP t[j(k) jo g($) + &(5)] equations, along with (5.52) by e 't'$d$do/47(', and

(5.55) integrating over n by means of Appendix II, we find

+ II&0 cosh t(E'+ e')' '

+ exp t[j(&) —jo —g(k) + &(5)] - »nh t~(k)PO* cos PJ)(Ã) —exp tl j(t) —jo —&(()]e($) .
~(k)

F(8,P,t) = — tdg exp t[j(() —j() —h(P)] sinh tp(t) + cosh tp($) Jo($8) + [ Po sin)8+Pa„COSP)
1 - hg

2r Q ~(k)

X sinh tj(1)J, (ie)),&(5) .

II, (8,p, t) = — (de —', exp t[j($) —j 0 —)I(()] — sinh tp($) + cosh tp($)
1 ", - h(&)
'r Q r(&)

[PozJo($0) + (Po cos 2P + P()„sin 2)8)J~ (&8)] + -', exp t[j(&) —jo —
g g) + &($)]

X sinh tv($) + cosh t) ($) [Po Jo($8) (Po cos 2p + Po„sin 2p) J2($8)]
) (~)

X sinh t)(h(&) Ji($0) sin p
&(5) .

II„(8,P, t) = — $dP 2 exp t[jg) —jo —h($)] — sinh t)(), ($) + cosh tpg)E(p) .
271 Q r(k)

x [P.,J.(Ã) + (P.. 2P —P., o 2P)J.(Ã)] + l p t[j(k) —j —g(k) + &(&)]

sinh tv(p) + cosh tl ($) [PohJ0(&8) —(Po si'n 2p —P&» cos 2p) J2(p)]
) (~) .

+ exp t[j(&) —jo —g(&) + h(&)] sinh th (&)Po. sin pJ&(&0) + exp t[j($) —jo —h(&)]
e(k) .

(5)

X slIlh tP(hh) cos)8Ji(h0)&(5) .

II,(8,p, t) = —
$d& exp t[j(p) —j, —

g (p) + h, (&)] —— sinh t) (g) (Po. cos p + Po„sill p) J, ($8)
e(E) .

7l Q V

+ — sinh i (() + oosh i (&) P..J.(E6)) .
&(3) .

(5.58)

(5.59)

(5.60)

In these equations, we use the abbreviations

r(k) = K'(k) —d'(t)]' ' (56»)
~($) = [&'(5) + e'(t)]" (5 61b)

These results agree with those of Miihlschlegel and
Koppe (1958) if the angle P ia set equal to zero, and
a mistake in the exponent in the last part of their
formula for II„ is corrected. Further evaluation of

these results requires a knowledge of the scattering
matrix A, which will be taken up later (Sec. XIV).

VI. THE SINGLE-SCATTERING LAW'

A. Rutherford. Law

The scattering of fast charged particles by atoms
is determined by a modified form of the basic H,uther-
ford law. This law yields, for the scattering of a non-
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V(r) = W(zZe'/r)e "" "' (6.5)

relativistic particle of charge ze by a bare nucleus use of a pure exponential factor, yielding the so-
of charge Ze into the angular range x to x + dx, the called Wentzel (1927) or Yukawa potential
cross section

(2zZe'/mv')'
ea. (x)2m- sin xdx =

[, , 2 ~4
2~ sin xdx, (6.1)2 sill (x 2

where —,
' mv2 is the kinetic energy of the particle, and

the nucleus is assumed to have infinite mass.
When there are X(t) scattering centers per unit

volume, relativistic as well as nonrelativistic particles
are considered, and only small angles are involved,
we can write the single-scattering probability W(x, t)
as [Mott and Massey (1949)j

II'(x, &) = &(~) .(x) = ~(~) '/&'x', (6.2)

ao = A /m. e = 5.292 && 10 cm, (6.7)

and p is a factor of order unity used by Nigam,
Sundaresan, and Wu (1959).With this potential, and
the standard erst Born approximation method, one
Ands

where ro is a screening radius which is usually taken
to be the Thomas —Fermi (T F) r—adius,

r, = 0.885c,Z ' ' = 0.468 )& 10 'Z' '
cm (6.6)

with ao the Bohr radius (m, is the electron mass)

where the so-called Born parameter is given by

n = zZ/137/ = zZe'/hv, (6.3)

4V (t)n' 4N (t)n'

It."[2 sin' (x/2) + p'/k'ro)' fj (x' x„')',

(6.8)

1/k = X, = A/p (6.4)
where the Born screening angle x„is given by

is the reduced incident wavelength of the scattered
particle; k is the reduced wavenumber.

This law requires modification because of several
effects:

1. The effects of the screening of the nuclear
Coulomb field by the atomic electrons. This leads to
the most important modification, which is carried
out by one or another degree of Born approximation.

2. Spin and relativity effects when Born approxi-
mations higher than the first are considered.

3. The contribution to the total scattering of
scattering by the atomic electrons.

4. Effects of the Gnite size and the structure of the
scattering nuclei.

5. Recoil effects when the scattered particle has a
mass comparable to that of the scatterer.

6. Effects of crystallint: structure in condensed
material (and for light elements, modification of the
screening resulting from close packing).

7. Effects of mixtures, included by replacing 1VZ'
in (6.2) by P,X,Z'„summed over the different atomic
species, and by a corresponding replacement in the
screening-correction calculation.

Considerable attention will be given in this section
to the erst two eftects, with brief remarks at the
end on the others.

B. The First Born Approximation
with Exponential Screening

The simplest way in which the screening of the
atomic electrons may be taken into account is by

p pA pA0
Xp = PXo =

A;r0 Pr0 r0

Using 6.6 and 6.7, we find for xp

(6.9a)

V(x) = x'/(x'+ x.')'. (6.11)
The screening factor goes to zero as x —+ 0 (small

angles of scattering occur classically for passage of
the scattering particle far from the nucleus where the
screening is most effective) and goes to 1 for large
angles where the screening effect is negligible (in
Sec. IX this upper limit will be seen to differ some-
what from 1 for large n).

It is to be seen in Sec. VII that we can use (6.10)
without, needing (6.11), obtaining a good approxima-
tion to the multiple-scattering distribution with

Z (m,c/p) radians
XQ lo13 I/3

ro 137

= 0.472 Z' '(m. c/p) degrees, (6.9b)
which becomes less than 2' even for the largest
values of Z when y m, c, corresponding to an
energy of 210 keV for electrons and 255(m./m) keV
for heavier particles of mass m. We shall assume that
xo is always less than 4' or 1/15 radian. The function
(6.8), with p —= 1, was used by Snyder and Scott
(1949).

The result can be written as a product of the basic
Rutherford formula with a screening factor q(x):

(6.10)
with



SMALL-ANGLE MULTIPLE SCATTERING

knowledge only of the general behavior of q as charac-
terized in the previous paragraph, and a single
parameter calculated from its actual form. It will
be seen later, however, that the small-angle ap-
proximation used in (6.10) must be applied with
caution for more complicated types of screening
factor than (6.11).

C. Improved Screening Potentials

Moliere in his detailed study of single scattering
(1947) proposed a useful fit to the Thomas —Fermi
function for heavy atoms. If we write the potential as

V(r) = &(eZe'/r)~~(r/ro) (6.12)

and set r/ro ——r', we can write Moliere's fit to ~w as

co~(r') = 0.10e " + 0 55e .' " + 0 35e ". ". (6.13a)

According to Moliere, this expression Q.ts the more
exact T—F function within 0.002 for 0 & r' & 6.
Rozental (1935), gives a similar but different, sum
of three exponentials valid in the region 1 & r' & 10,
namely

(vg(r') = 0.164 e
' + 0.581 e

+ 0.255 e (6.13b)

The exponential falloff of these expressions is more
realistic than the well-known r'-' asymptotic be-
havior of the T—F function, this latter behavior being
one of the chief defects of the T—F method. Further-
more, Moliere actually calculates the result of using
the usual T—F function involving fractional powers
of r' for a certain range of scattering angles, and
shows that only a small discrepancy is made by the
use of (6.13).

Nigam, Sundaresan, and Wu (1959) use the form
(6.5) and adjust p to the value 1.80 to fit experi-
mental data for gold, and also to fit calculations using
the approximate analytic wave functions of Fock and
Petrashen (1935) for beryllium (see Sec. IX-D
below).

Fleischman (1960) fits the Hartree —Fock calcu-
lations of Hartree and Hartree (1935a, b) for berylli-
um with the formula, adjusted to include exchange
eSects,

2

V( ) = „{"'""+ 1.43( / .)' ' """

and complete to the second power of n (second Born
approximation) is used. (In particular, certain mis-
takes in evaluating integrals in earlier calculations
were corrected by Dalitz. ) The method uses the
rules of Feynman and Dyson for the S matrix for a
static potential of the form (6.5). The result for the
screening factor is [Nigam, Sundaresan, and Wu
(1959), Eq. (48)].

4 Sill X/2
. ,

( /2)
1 —p sin (x/2)

+ 2n —. " + 4 Xtan 'X„X
sill x 2

2

+ nP'[x'„+ 4 sin' (x/2)] . 2 ", , —1
2 sin (x/2

)& X tan ' x,X —-,'tan '
(2/x„)

) —, sin (x/2)
)tan

2 sin (x/2)
(6.15)

with the abbreviation

X = sin (x/2) [y'„+ 4[x'„+ sin' (x/2)]]
' '. (6.16)

The small-angle approximation can be used for
most of the terms in this expression, but care is
needed in handling the terms with sin (x/2) and
sin'(y/2) in the numerator (see Sec. IX). It can be
seen that for small n and x, and fairly small P (6.15)
reduces to (6.11). Dalitz' result has been corroborated
by Mitter and Urban (1953), Lewis (1956), Kacser
(1959), and Mitra (1961). [But see the different,
result obta, ined by Biswas (1952)]. Our final con-
siderations will be based on this formula, but its
limitation in using only a single exponential will

have to be discussed.

E. Moliere's Method. for Single Scattering

Moliere attempted to calculate a scattering for-
mula valid for large u (i.e., not restricted to first
Born approximation) and for large angles x, (up to
90'). Although the validity of his results is open to
some question, they are important enough to be
summarized here.

Moliere writes the nonrelativistic first Born ap-
proximation result in the form

00 2

pdp Jo 2kp sin —4 (p) (6.17)
0

+ 0.0010(r/ao)'e " "}. (6.14) with J, the usual Bessel function and C (p) given by

D. The Dalitz Formula

Nigam, Sundaresan, and Wu (1959) use the cross
section for electron scattering calculated by Dalitz
(1951) in which a relativistic procedure that is correct

1
h,v

V[(x' + p')' ']dx (6.18)

2
"

V(r) rdr
C p hv, (r' —p')'"



258 WILLIAM T. SCOTT

If (6.5) is used for V(r), C (p) becomes 2oÃp(pp/rp),
where Kp ls a Bessel function, and (6.17) yields (6.8).
(Moliere takes p = 1.)

Moliere then calculates a cross section for arbitrary
n and small x, by a combination of WEB-type ray
optics for the passage of the particle through the
atom, and wave optics for the spreading of the
particle's wave function between the vicinity of the
scattering atom and the point of observation. The
ray-optics calculation proceeds by finding the phase
shift of the particle along a (nearly) straight tra-
jectory through the atom. This shift is given by

values of x for which screening effects are noticeable
is that for y & yo. There will be little scattering for
angles appreciably greater than, say, 10xo. Hence,
we must have xo « 1 if the small-angle approxima-
tion is to be valid over the entire effective range of
scattering, and (6.22) must hold. (Fig. 6 shows that
the eGects of screening extend out to x 10xp for

Ik, [(x + p ) ] —kIdx, (6.19)
0.5

where k, (r) is the relativistic wavenumber for the
particle at a distance r from the nucleus:

Ack, (r) = {[E—V(r)]' —m'c'I' '. (6.20)

The quantity p is seen to be the impact parameter
of the trajectory or "ray."As before, A; is the initial
or asymptotic value of the wavenumber.

If k, is expanded as a series of powers of V (r)/hkPc,
the first-degree term yields the same expression for
4(p) as Eq. (6.18). It is readily seen that this ex-
pansion of k„(r) is essentially in powers of o.xp, as-
suming that the values of r important in the integral
in (6.19) are of the order of rp. Since 2Ep(1) = 0.84, it
is seen that 4(p) when expanded to the first order
in Q.xo is itself of order g.

This phase shift is used to establish the wave-
function at a plane just beyond the in'. uence of the
atomic field. A Green's function calculation is then
used to find the wavefunction at a distant region of
observation.

The final result is

( ) = k' pd J,(k „)[' '" —1], (6.21)
0

where the Bessel function arises out of the assump-
tion of small scattering angles and the fact of observa-
tion at a point far from the scatterer in comparison
to atomic radii. The first Born approximation for
small angles is obtained by expanding C(p) to first
order in nxp, and expanding the exponential in (6.21)
to first order in u.

Let us digress at this point to show that the small-
angle theory requires for its validity the general
condition

ago « 1 (6.22)

In the first place, when ~ && 1, the first Born approxi-
mation is valid; by (6.11) we see that the region of

0

log, o(X/X)

Fig. 6. The screening factor q(x) as a function of logip(x/xp)
Solid lines represent the calculations of Moliere as described
in the text. The two circles represent Moliere's two numerical
checks.

small n, and to x 100xp for large o..) For general

n, we can write

o!xp —V (rp) /pPc

and this ratio of energies will give approximately the
angle of scattering on a classical picture for particles
just at the inside of the region of screening. By a
similar argument to that given in the previous
paragraph, we again find (6.22), which applies
therefore to all cases of interest.

Using (6.3), (6.6), and (6.9), we can write nxp as

ngp ——[(0.885mzZ xp/m, ) + (e'zZxp/hc) ]' '

xp ( [em, /mzZ' ']' ', (6.23a)

which constitutes an additional restriction to that
given just below Eq. (6.9). Using the nonrelativistic
expression for kinetic energy, we find that this upper
limit on xo corresponds to a lower limit on the kinetic
energy of the scattered particle:

20 Z"
E — eV 100 zZ' 'eV for e 1/5. (6.23b)

In order to get a still more accurate result, Moliere

so that the condition nxo ( e implies that the square
bracket and a fortiori the first term is less than e'. We
find an upper limit of X0 itself, dependent on the
choice of e.
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proceeds from the exact [Faxen—Holtsmark (1927)]
phase-shift analysis. According to this method

(I 2

()(x) = . g (2l+ 1)(e"'—1)P1(eosx), (6.24)
2iIc l=o

where P1 (cos x) is a Legendre function, and the
phase-shift 5& is given exactly by the integral equation
[Nigam et al. (1959), Morse and Feshbach (1953), p.
1072]

2m mkr
sin ()1 ———„rdr J1„/2(kr) V(r)R&(r),

2 0

(6.25)

where B&(r) is usually taken as satisfying the non-
relativistic wave equation

d'
k2 l(l + 1) 2mV (r)

dr r l

(6.26)

and behaves asymptotically like

R)(r) ~ sin (k,r —hr/2 + 51)/kr (6.27)

The first Born approximation is obtained for
(6.24) and (6.25) by replacing e2*'1 —1 by 2i()1, and
replacing (6.25) by

bl = —
2 rdrJl+1/2 Icr I/ r ) 6.28

0

i.e., by using for R& under the integral sign the ap-
propriate solution for V = 0. Higher approximations
would involve terms with (), under the integral sign,
so that the final value for bl would be a series in
powers of o.. In accordance with the behavior of the
expansion of 4 (p), we would expect this series to be
actually in powers of (2x() —0(/1/kr2.

That this is so may be made plausible by the
following argument. The first Born approximation
leads in the limit of no screening to the exact H,uther-
ford cross section. Higher Born approximations will
thus vanish in this limit, and the corrections they
produce with screening will depend largely on the
values of the integral in (6.25) for r in the screening
region. If we describe the carrying out of the next
approximation as roughly a matter of replacing one
factor J$+1/2(kr) in (6.28) by J)~1/2(kr + ~l) —Jl+1/2

(kr) + 5,J',+„2(kr), the correction term will be of
order 8&/kr, compared to (6.25), multiplied by n
= zZe2m/I))2k which gives the order of magnitude of
that integral, so we have, very roughly,

~l (oorr) 1/(1()(2/ krO)

It is not hard to see from the Dalitz formula that
for nonrelativistic particles (0.1 ( P &(1) the cor-

V (r) = —
4 + „«'[k'(r') —(l + 2)'/r")"

(6.30)

(r" is the value of r' for which the integrand vanishes).
The unseattered wave, with k,(r) replaced by k,

yields a Bessel function of order l+ -', (actually
H&+'&/2 for the outgoing wave) whose phase shift ean
be written [cf. Jahnke —Emde (1943), p. 140; and
Jahnke —Emde —Losch (1960), p. 148 (4.26)].

The phase shift 5& is then given by

(6.32)

and if k'„ is expanded as above in powers of V(r)/hkPc,
we find

2~&= C ~'), (6.33)

using (6.18). Moliere conjectured that this calcula-
tion should yield a quite accurate value of ()&, and
Fleischmann (1960) considered that the smallness of
the correction for x & X0 as indicated in the Dalitz
formula is an indication of the correctness of this
conjecture.

The next step in the calculation is to replace the
sum in (6.24) by an integral. Moliere uses the rather
accurate asymptotic formula for P1 (cos X):

P (e»x) = (x/»nx)' 'J.[(l+ 2)x), (634)

rection terms introduced by the correct application
of the second Born approximations are all of the
order o.x0, both for small and large X, which consti-
tutes an indirect verification of the above conjecture.
However, the Dalitz formula shows that this con-
jecture cannot be correct for the relativistic region,
where only for X & X0 are the corrections negligible,
being of order 0. for large X.

Moliere calculates the phase shift by an approxi-
mate, %KB-type, method that allows for a ready
expansion in powers of nx0. He replaces Ic'
—2mU(r)/h2 in (6.26) by the relativistic value
k„(r) given by (6.20) and rewrites the now relativistic
Schrodinger equation for 8& in the form

—.+ ———,+ k, (r) r 81(r) = 0.d' 1 d (l+ -', )'
r

(6.29)

Assuming the asymptotic form of B&(r) to have a
phase factor e"1("),he finds by WEB methods
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2zZe' "
«~(r/ro)

Av, (r' —p') '"

(r" —y')'" '
ro

'

(6.40)
Using (6.18) and the integral [18.2(17)] of Erdelyi
et gt. (T. I. T., 1954), [see also Watson (1952), p.
170] we have

Z f(t+ l) = f(x)dx + —f'(0) + . (6.85)24

The result obtained is (setting x = kp)

~(X) = Io'(X/»n X) p&p~. (kXp) [e""—1]
'

which is not only very good for large t, but even for We have, in fact,
l = 0 involves only a 7% error at x = n./2.

Then the Euler sum formula is used, according to @(p)
which

(6.86)

Moliere makes one further correction to this
formula, with a view toward improving its behavior
at large angles. He observes that for x large compared
to the screening range, but small in the absolute
sense, and for small n, the small-angle Rutherford
result should ensue, so that the angular behavior
of (6.86) is 0(x) x '. For angles wherein x/sin x is
appreciably diferent from 1, i.e., when A; is small, the
integral will behave as x ', and the overall result will

be proportional to

2 4

(x»~x) =x &+ —+ w )
3 ~ -1 -4 x x

6 360

C (p) = %2n[0.10Ko(6y) + 0.55Ko(1.2y)

+ 0.85K, (0.8y)], (6.41)
where KD is the usual Bessel function of the third
kind:

K.(.) = —; ~iH."'(iz) .

For small z, we have

(6.42a)

K, (z) —ln (yz/2) + —', z'[1 —ln (yz/2)] +
(6.42b)

and for large z,

Ko(z) = (~/2z)"e *(1 —1/8z + .), (6.42c)

where ln y (often denoted by y) is Euler's constant

The exact Rutherford result can be written as
proportional to

ln7 = 0.5772;y = 1.7811.

The derivatives of Ko(z) are given by

(6.48)

2

(2 sin x/2)'~ x
' 1+—+ x'+, (6.88)

720

(A:x)'
q(x) =

4n
pdpJo(kXP)[e"'" —1] (6.89)

where as defined in (6.10), q(x) is the ratio
~(x)/~R.a(x).

The problems of evaluating multiple-scattering
results at angles for which this correction is im-
portant are complex and difricult (involving es-
pecially the "detour factor") and are beyond the
scope of this article. Hence, we shall not try to
distinguish (6.21), (6.86), and (6.89).

F. Moliere's Scattering Formula

To evaluate (6.89) with (6.12) and (6.18a), we
need to calculate C(p), using Eq. (6.18) which as
indicated below (6.20), is good to terms of order nxo.

which agrees within 0.5% up to 60' with (6.87).
Hence, in order to obtain a result that agrees as it
should with the Rutherford result to 90' and beyond,
Moliere replaces (x/sin x) with X4/(2 sin x/2)' and
writes

Ko(z) = —K, (z) = —', 7rH,"'(iz), (6.44a)

K,"(z) = Ko(z) + K;(z)/z. (6.44b)

The functions Ko and K& (or H,'" and H,"') are tabu-
lated in Jahnke —Emde (1948), Jahnke —Emde —Losch
(1960), and Watson (1952).

For sufFiciently small n, exp [iC (p)] can be replaced
by 1 + iC(p) in (6.89). Using entry [8.18(2)] of
Erdelyi et aL (T. I. T. 1954), we find, using (6.9)
with p = 1, that the limiting value of g(x) as n —+ 0 is

v(x) = 01
x. (x/x. )' + 86

0.55
(x/x. )' + 1 44

0.35
(x/xo) + 0 09-

When x/xo is large that is, considerably larger
than 6, we can write (6.45) as

[0.10(l —86 o/ + )

+ 0.55(l —1.44xo/x + . )

+ o 85(1 —0 o9X'/x'+ . . )]'
= [1 —4424x./x + ] =1 —885xo/x .

(6.46)
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[The number 8.85 would be replaced by 7.32 if the
expression (6.18b) were used].

For large values of n, we cannot expand the
exponential in (6.39) . In fact, this exponential func-
tion oscillates rapidly as p varies with u large. The
Bessel function also oscillates, and, in fact, the term
with —1 contributes nothing for x —+ 0 since it yields
a (two-dimensional) delta function. Strictly, its
effect appears for x near zero, for which large values
of p are important, C —+ 0[cf. Eq. (6.42c)], and exp
[iC(P)] —+ 1. Hence, we shall assume the x is not too
llear zero.

The product of two oscillating functions will only
make a substantial contribution to the integral if the
oscillations are approximately in phase. Since one
"half-cycle" of the Bessel function occurs for a
change Ap in p given by lcxdp x', we must have
I ~C'(P)l =

I
~PC" (P)I —w or

I x ——Ic"(«) I
(6.47)

Since ICI behaves for small P as —2o. ln p, C'(p)
= d C/dp varies inversely with P and (6.47) gives the
value of p at which the oscillations are most in

phase. For values of p that make Jo oscillate, we

expect that we can use the asymptotic expression
for Jo

alp(k)fp) = (wk}fp/2)
' cos (kxp —pr/4) . (6.48)

In fact, from (6.47) we see that kxp lpdC'/dpi~ 20. and if n » 1, we are in the region where the
asymptotic expression is valid. "Thus, we write

P~P~p(EXP) [e'"' —1] = (2~}'px) " «'"dP
0 0

X {exp (i[C (P) + kXP —w/4])

+ exp (i[C (p) —kxp + s/4]) ] (6 49)

The phase agreement involves a particular maximum
in the integrand, where the phase of one of the two
terms is stationary. If C is positive, (and dC/dp
negative), it will be the first term, and the second
term will not contribute appreciably to the integral.
In saddle-point calculus fashion, we expand the
contributing phase about its extreme value.

Specifically, we determine po by the equation

d* exp {—s ~'IC "(Pp)l] = {2~/IC"(Pp)l]"

where further approximation enters in assuming that
this expression can be integrated between the indi-
cated limits.

%e Anally arrive at the result for large a

V(x) = P.I Y/4~'IC"'(P. ) I
(6.51)

This expression may be evaluated by choosing a
set of values of yo = P,/r, which with (6.50) and
(6.44a) lead to a set of values of kit'p = x/xp snd
with (6.51) and (6.44b) to the corresponding values
« v(x)

For large values of x/xp, as we have indicated be-
fore, only small values of p are important in the
integral. Let us then consider the expansion of
(6.41) for small y = P/rp. Using (6.42b), we find

C (P) = Ha[0.516 —2 ln y —0.8ly'
—2.21y'ln y + ] . (6.52)

Using the prescription just given for large n, with
small yp, we can take, using (6.52) and (6.50),

x/~xp ——2/t«.

and, keeping only terms in ln y and 1/y',

q(x) 1 + yp (9.86 + 8.85 ln yp)

1 —[35.4o.'/ (x/xp)'] ln —ln n —1.12
~Xo

and write for the exponent in the contributing term

[C'(Po) ~ ~XPo ~ /4 + (P Po) C' (Po)] ~

The pI/' we replace by p0'/' which will make little
error if p is large enough. "

%hen a complex function such as the exponential
we are considering has an extreme value, it will

show saddle-point behavior in the neighborhood.
The method of steepest descents for calculating an
integral through such a point involves distorting the
integration path so that the point is a maximum for
the new path. In this ease, we let p —po = ~ 2 x
where the sign corresponds to that of C' and C". The
integral to be evaluated is then

A'x = Ic"(Po)l (6.50) (6.53)
P If we assume n = 10 and take C(p) = 2ai'pp(p/rp), then

inspection of (6.42c) will show that oscillations are unim-
portant for p/rp ) B, or kyp ) By/'yp. This range of p will be
important in the integration if 8g/xp ls considerably less than
1. Hence we shall assume x ) x0/8.

0 Even fora = 1, itis not too bad. The erst two roots of Jo
occur at 2.405 and 5.520, with a minimum at 8.88 of value—0.4028. The asymptotic expression gives roots at 2.86 and
5.52, with a minimum at 8.79 of value —0.406.

For general o. and large x/xp, we again throw away
the —1 in the bracket of (6.39) and expand that part
of exp {iC(p)] that does not involve 0.516 —2 ln y.

II Saddle-point calculations showing the relative effect of
ignoring more drastic variations than this one are reported by
Scott and Uhlenbeck (1942).
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Moliere carries this only to first order in n. Vsing the
integration variable z = kpX = yX/X&&, we obtain

1
C(X) =

4O. 0

x' "dxJs(g)
' '2

X 1 — s 081+ 2.211n
(X/X.)'

' '
X

(6.54)

This integral is not convergent for real n, but if we
temporarily allow the condition —1 ( Re (1 —2in)( 0, we can use formulas [8.5(7)] and [8.6(25)] of
Erdelyi et at. (T. I. T. 1954) together with the
identity

I"(I —in) ' 1(I —in) r(I + in)
r (in) I'( —in) I'(in)

= (—in)(in) = n'
(X/X.)' = ~. + n'&. . (6.58)

TasLz II. Coefficients for Eq. (6.58)

On the other hand, they are right in saying that the
first, Born approximation has been used for C'(p),
omitting terms of higher order in n than the first,
and that therefore the term in n' in (6.57), and the
absence of a term in o., cannot be correct.

Moliere has calculated g for all x for n = 0 by
(6.45) and for n = 9.6 by (6.50) and (6.51), and for
large X/Xs by (6.57). Prom these results, he devised
an interpolation scheme, based on a linear relation
between (X/Xs)' and n' for fixed q. The results were
tested by direct numerical integration of (6.39) with
n = 0.6 and (X/Xo)' = 1 and 10, and the error in X
for a, given g is estimated to be less than 10'Po.

The results are given in Table II, for the co-
efBcients in the relation

1 1+ —,
' P(—in) + 1 'bO! 22 A

2

—ln I
2X0-

(6.55)

q(X) = 1+ s 0.81+ 2.21 s f(in)
X X&& 0.05

0.1
0.2
0.3
0.4

0.102 0.059
0.209 0.214
0.525 0.891
0.977 2.31
1.675 5.20

0.5
0.6
0.7
0.8
0.9

2.75
4.68
8.71

19.5
61.7

10.85
22.8
50.8

128.8
421

The negative imaginary part of n can now be allowed
to go to zero, by analytic continuation.

Moliere has fitted a simple formula to the sum of
P functions in (6.55):

—,
' P(in) + -', P(—in) = Reit (in)

2
i ln n+ —+ 0.13

3 (6.56)

Using this expression in (6.55), and expanding with
neglect of higher orders in n' and (x/xc) ', we obtain

8.85
g(X) 1 —

( / )s

71 X 10 '(X/X. )'1+ n ln
(

'. . . 013), (6.57)

where 7.1 X 10-4 signi6es 2 4e '". This expression
reduces to (6.53) for large n, and to (6.45) for n = 0.

Nigam, Sundaresa, n, and Wu (1959) have criticized
this development on two grounds. They suggest,
incorrectly, that failure to expand x ""in powers of
~ leads to inconsistencies to order of n2. As we have
seen above, this factor is kept in this form to provide
convergence, and a diferent method of including it
would still not change the expansion to this order. "

Figure 6, from Moliere, shows the various results
indicated above.

It will be seen in the next section that the only
property of the single-scattering law that is needed
for Moliere's method of calculating multiple scat-
tering is the Moliere screening angle x defined by

ln x = ——,
' —lim V(X)

dX —ln X (6.59a)

x——', —lim if(x) ln
~00 +0 0

dq ln — —In y„
1

—-', + ln xs+ dqln
0 X0

(6.59b)

where we have used the fact that q(0) = 0 and

lim q(x ) = 1.
Xm~

This screening angle was used in Eqs. (4.13), (4.15),
and (4.16).

Equation (6.59a) can be evaluated directly for
n = 0, using (6.45). The result is

is Fieischmann (1960) points out that the errors made by ln X = ln X&& + 0.0793 '

Moliere in this step of the approximation at the most amount
only to a few percent. 1.0825xo = (1.174) xo, for n = 0 . (6.60a)
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If we use (6.58) for n = 0, and perform a numerical
integration, assuming the area between the curve of
ln A (q) and the q = 1.0 axis above the value of ln

A for q = 0.9 to be equal to that between the curve
and the q = 0 axis below the value for q = 0.1, we
find

section, the multiple-scattering distribution is in-
sensitive to the exact value of x . (See, for example,
the relatively small effects of changing x by the
factor 1.80/1. 12 in the calculations in Table IX.)

Moliere has also proposed a simple functional
form for q(x), namely a form similar to (6.11)

ln x = lnxo+ 0.0679;

x. = 1.0700xo = (1.145)' 'xo, for = 0. (6,60b)

For large n, substitution of (6.50) and (6.51) in

(6.59a) yields (the use of x = 0 as a lower limit in
place of x,/3 as suggested earlier will make a very
small error)

dx —» x- = ~ pdpc" (p)
q(x)

0 x 4o.

—ln iC'(p„)i + ln A:,

where p is the value of p corresponding to x . As
x„—+ ~,

i
C'(p)

i
~ 2n/p = 2n/yro by (6.52), so that

we get [using (6.41) and (6.44a)]

ln x = —-,'+ 111 2nxo —lim 4 ydy[1. 2%i (6y)
ym —+0 ym

+ 1.32K'(1.2y) + 0.21K'(0.3y)] + ln y„

The Bessel-function integrals can be done in closed
form [Watson (1952), p. 134],"yielding a result that
differs from the a = 0 result by exactly ln np

ln x = ln xo + 0.0793 + 1n ny;
x = 1 93nxo = xo(3 72n )' (6 61a)

q(x) = x/(x+ xi); xi = x-e" (6.64)

(cf. Fig. 6). This latter form will be useful for one
method of estimating higher-order corrections to the
Moliere theory of the next section.

We have indicated in reference to the Dalitz
formula that for nonrelativistic scattering, and also
for small n in general, the first Born approximation
result (6.11) appears to be a good approximation. To
compensate the use of only a single exponential in
V(r), Nigam, Sundaresan, and Wu (1959) propose
to introduce the coefFicient p, in (6.5) and (6.9), which
leads to a result not greatly different from that
obtained by use of Moliere's formula (6.63) with a
different determination of x than that given by
(6.62). In fact, x is in all cases very close to x„as
long as nxo (( 1 [see Eq. (9.19) below]. Nigam ef, al.
quote the result of a numerical integration, based on
work of Goudsmit and Saunderson (1940a,b) and
Mott and Massey (1949, pp. 188—90, 196—8), which
yields

q(x) = x'/(x'+ x.')', (6.63)

which satisfies (6.59a). However, Fleischmann (1960)
has suggested that a better fit, especially for large
n, can be made with

If in Eq. 6.58, we neglect, A (q), which is justifiable
for n & 2, we can again perform a single numerical
integration and obtain

ga —Xy —1.12' ', P, = 1.12,
or, to compare with (6.60),

(6.65a)

ln x = ln nxo + 0.6729;
= 1.96nxo ——xo (3.84n ) . (6.6lb)

Assuming a linear relation between x' and n',
Moliere writes the following interpolating formula
based on the above information

x'„= xo(1.13 + 3.76n') . (6.62)

In view of the two-figure accuracy in the initial
Fermi —Thomas function (6.13), the uncertain charac-
ter of that function, and Moliere's incorrect method
of including the o.2 terms, the numerical discrepancies
among (6.60), (6.61), and (6.62) are completely
negligible. Furthermore, as we shall see in the next

iz The reader may verify from (6.44) that (bo —az)
fzdzKi(az)Ki(bz) = z[aKo(az)K&(bz) —bKi(az)Ko(bz)], and by
a limiting process may End the result for a = b.

ln x, ln x, + 0.113. (6.65b)

The justification of Moliere's conjecture that his
calculation method is essentially correct is upheld
[Fleischmann (1960)] by the smallness of the cor-
rection terms in Dalitz' formula, but invalidated by
the use of only the first Born term in the exponent.
Further discussion of the relative merits of the two
results will have to be postponed to Sec. IX.

G. Syecial Calculations for Beryllium

Because of discrepancies between theory and
experiment for beryllium [Hanson, Lanzl, Lyman,
and Scott (1951)] special calculations for this case
have been made by Nigam, Sundaresan, and Wu
(1959) and Fleischmann (1960). The former authors
use the analytic functions of Fock and Petrashen
(1935) which allows a new first Born approximation
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with its value of xp to be evaluated. The resulting
value of p, was 2.18, larger than, but not in serious
disagreement with, these authors' empirical value
1.80 (cf. Sec. IX-D).

Fleischmann, on the other hand, uses the Hartree-
Fock formula given in (6.14) with the small-n de-
velopment that let up to (6.45). The ca,lculation in-
volves similar but much lengthier operations with

parameter related to the angle of scattering, and 8
itself is defined as (1/Z) times a sum over all electron
states of the generalized atomic form factor. Grod-
stein (1957) has given a survey of available calcula-
tions of 8(v~, s); the results are given in Figs. 7 and 8.
Just as for Moliere's q(x), 8 approaches zero for
small x and unity for large x.

For electron —electron scattering, we use the varia-
ble v& given by

).0- -l2 -IO
u(s2kn V)-8 «6 «2 v) ——(3s-/256)' 'Z '

'~q~ ac/h, 0.333Z ' 'pxac/5

0.333Z xao/xo = 0.376Z p(x/xc) (6.66)
.8—

0
OOI I.O.OI O. I

V

Fro. 7. Incoherent scattering function S(v), for H, Li, C, 0,
and Pb [Grodstein (1957), Fig. 6].

where q is the momentum transferred to the scatter-
ing electron; for small angles, ~q~ is equal to py, to a
good approximation. (Strictly, ~q~' = (s/Pc)'+ p'x',
where s is the energy loss and Pc the speed of the
scattered particle. The discrepancy is only important
in the region where screening effects reduce the
scattering anyway. ) Most of the variation of 8 occurs
for values of vl between 0.1 and 1.0, so that 8 becomes
important for angles smaller than approximately
3Z1/3x

The eGect of electron —electron scattering is thus
included in the total by replacing q(x) as given above
by

Bessel functions, which lead to an algebraic function
for q(x) of considerable complexity. The resulting
value of x is x = (1.13 & 0.01)xc which compares
favorably with the values in (6.60b) and (6.65a).
Fleischmann then estimates the effect of the modifi-
cation of the screening by virtue of the close approach
of beryllium nuclei in the crystalline state as modify-
ing the value of x —x„ to 1.6xp which also agrees
reasonably with the empirical value of 1.8xp.

«4
M[a2gnV)

«

(6.67)

H. Corrections for Scattering by Atomic Electrons

The scattering of fast particles, electrons or others,
by the electrons of the scattering material has been
treated by Fano (1954). For sufficiently large angles,
the scattering by each electron is given by the
Rutherford formula with Z = 1. Since there are Z
electrons per atom and each scatters independently
of the others in the energy range we are considering,
the effect will be that a term of order Z is to be
added to that of order Z' as given by 6.1—i.e., we
should repla, ce Z'-by Z(Z + 1).

However, this does not hold down to the smallest
angles, for the cross section goes to a constant value
at zero angle instead of increasing indefinitely. The
effect is given by Fano in terms of multiplying the
Rutherford cross section by 1/Z times the incoherent
scattering function 8(v~, s) where v, , is a convenient

0-
,Ol

I I, ! lIll
.IO 10

V

Fra. 8. Incoherent scattering function S(v) for Ne and A
[Grodstein (1957), Fig. 7].

It will be noted that g„(x) —+ 1 + Z-' = (Z+ 1)/Z
asx~ 00.

For heavy incident particles, a simple correction
to q(x) is not possible, because the incoherent scat-
tering no longer resembles Rutherford scattering.
The recoiling electron may take a substantial amount
of energy E„which varies from a minimum value,
essentially zero (low-energy recoils contribute negli-
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gibly to multiple scattering), to a maximum value
given by

2m, P'c'E' 2m, P'c' 2m, p'
m'c' + 2m, c E 1 —P m'

where E is the total energy (including rest-energy), p
is the momentum and pc the velocity, of the incident
particle, and the approximation assumes that E/mc'
((m/m, . The electron recoil energy and the angle of
scattering are related to good approximation by

(6.69)p' E, ,„S(vp)

where the argument u2 of the incoherent scattering
function is given by

v, = 0.333Z ' '(a, /h) (2m,E,)' '. (6.70)

For this type of scattering, there is an upper limit
for x', which can be estimated from (6.69) by assum-
ing that 8(vs) is constant. Then the bracket is —,'for
the maximum value of x', and we have

m,E, ,„S( )vp/2p = (m, /m) . (6.71)

Unless p/me & 1/137 and the incident kinetic
energy is therefore less than mc'/2(137)', we have

x ..')) xp'. [See Eq. (6.9b).]
The scattering cross section is most conveniently

written in terms of the variable E, [which is a double-
valued function of x according to (6.69)].Fano gives
the formula corresponding to (6.10) as

)
4iV(t) o.

'
8(vs) p' E.P'

Lh X. g g I
2 z 4 E2 E e.

(6.72)

A method of including this cross section in multi-
ple-scattering theory will be given after Moliere's
calculation is presented in Sec. VII.

I. Other Corrections

i. nuclear size sects These bec.ome important for
scattering angles of the order of lip/r~, and larger,
where r~ is an appropriate nuclear radius. Since rp

is at least 10' times r~, the angles at which nuclear
effects are important are very much larger than those
where screening is effective. Nuclear size effects can
be described by multiplying the already-modi6ed
Rutherford cross section by a nuclear form factor
F&(x), which goes to 1 for angles considerably less
than xp/r~ and to some small value for large X. If we
can assume that for very large angles at high energy,
the incident particle passes through the nucleus and
is scattered independently by Z point protons, the

limit of S~(x) will be just 1/Z, by analogy with the
electron —electron scattering. If the 6nite extension of
each proton is taken into account then P&(x) may
hover around 1/Z for intermediate values, but will

go to zero in the limit. A survey of available calcu-
lations of this effect is given in Sec. XV.

ii. Correction for massive scattered parti cles. 'If the
mass of the scattered particle is comparable to the
mass of the scattering nucleus, recoil of the latter
must be considered [Bethe and Ashkin (1953)].The
effect is negligible for very small angles, and may be
treated along with 5:p (x) for larger angles (see Sec.
XV).

iii. Crystal structur-e effects. The effects of crystal
structure will become important when the crystalline
or microcrystalline character of the scattering ma-
terial is such that there is an appreciable probability
of two or more coherent scatterings with one crystal.
If this is so, a crystalline form factor similar to those
used in electron-diffraction theory must be included.
In fact, if we assume the material to be composed of
numerous very small randomly oriented identical
crystals, each containing N atoms, the usual X-ray
and electron-diffraction structure factor becomes, in
small-angle approximation,

1 g sin (&rjj/Kp)
(6 73)

Xr~

This is the type of factor used in X-ray powder
pattern photographs. No adequate application to the
case of fast charged particles has yet been made. "
However, if the individual crystals of the scattering
material are suKciently microscopic and random, its
neglect is probably quite well justi6ed. Reference to
two experiments in which small crystal-structure
effects may have been observed is given in Sec. XI
[Lens (1954)].

iv. The eflects of mixtures and energy toss. These
effects are readily included by suitable averages
over the different atomic species that may by present,
and suitable integrals along the path involving the
variable momentum of the particle. They are taken
up in the next section.

VII. THE MOLIERE CALCULATION

A. The Transform

We proceed to calculate the transform exp [Q(g, t)
—Qp] as given in Eq. (2.37), using the form (6.10)

r4 See, however, the diseussioa by Hoerni, (1956 a,b). Several
references are given there to other work on electron diffraction.
Shinohara (1949) has made some calculations of this effect by
the Williams method.
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I et us use this fact to estimate the range of P which
will contribute appreciably to the calculation of the
inverse transform integral for F(8,t) or f(p, t). Using
the same rough approximation to q(x), we have

I

close to the limiting value indicated in the definition
of the screening angle x, Eq. (6.58a), we can write

0 & p & I/x. « I/X. (7.ii)
This limitation on the range of P that needs to be

considered allows us to divide the range of integration
over x in the correct expression (2.41) into two parts
that allow of two different good approximations. %e
choose the dividing point to be xd, with

Xo « X~ && X. . (7.12)
(Only for the smallest values of x,/xc will the double-
inequality signs be hard to justify. )

Then for x ) x~, we replace q(x) by 1, and for
X & X~, we replace J'0($X) by the first two terms in
its expansion, since gx & gx& & gx, & 1. We then
have

Xd

Q(() —Qo-—2X'. —
8 q(x) [——:&Yj

X

+ 2x'. —
s 9'(&x) —IJ (7 13)

xd
X'

Q(&) —Q. = 2x'. —'. V.(&x) —Il
Xo

—.tJ.( ) —Il (7 10 )
&X. &

If gxo ——1, the two terms in the integrand give
the values

d'll
Jp (u) 8 = 0.213 and 8

——0.500,
1

so for P = x, ', the approximate value of iQ —
Qo~ is

about 57% of Q, itself. For larger $, the ratio will be
even higher, because of the oscillations of the Bessel
function. For smaller g, we can use the expansion of
Eq. (A.12) in the Appendix, yielding

2 2

Q ($) —Qp —2x,p ln gxo 0.279 +2 kx
c 128

(7.10b)

This expression will be of the order of —2 if )x. = 1,
and will get much more negative if $ is much greater
than 1/x„so we have for the range of $,

(7.15)

which is Moliere's expression for the exponent 0
—Qc of the Fourier —Hankel transform of the multi-
ple-scattering distribution.

Equation (7.15) is also obtained if (6.63) is used
for q(x) in (7.13), for then the infinite integral yields
exactly ($/2x )K(px~) —(1/2x '), where K, is the
modified Bessel function. Expansion up to terms in

P yields (7.15).
The next approximation to Q —Qo can. be calculated or

estimated for the various expressions for g(x) given in Sec.
VI.F. The correction terms to (7.13) may be written

dX
(fI —II0),.„= — [)I(x) —1] —ln xg —lim

X

ra dX
[V(x) —1] —»x- + 32 xdxV(x)

+ 2x. —.[~.(Ex) —1][C(x) —1] + ",x.k ~ dx

(7.16)
where the next terms in the expansion of J', and of (A.12)
have been used. H the asymptotic expression for q when x
is large is written

then (7.16) after some rearrangement can be written

Xgg

(II —IIo)-* = A xY xdx[V(x) —1] —& x.
0

—Bgx, (ln xg —1) —2, In x, ——', B, In' x, +. —,
' x',3,('

2 4

+ 2x.E& (,7 ——ln 4]) — ln ———,
'2 3 X.A.&

9 32 2
2 4

+ — ln ~/2 + —' +X.~25 2 &V
(7.1S)2e

The expression in [ J is independent of x& for x& large
enough; in this approximation xd may be taken as infinite.
In deriving (7.18), using (7.17) in the last term of (7.16), the
integrals given in (A.17) and (A.18) are needed, along with
other results from Appendix I.

If we use Moliere's formula (6.62), we set 2, = B, = B,
= 0 and A2 ———2X') and find

If we use again the development (A.12), we have »4
(fl —fI.)-*.= —.6 x.x k» — —x2 (7.19)

D(k) —0 = —-'*x t fq(x)'
X

~, ;.(, vx.s, ) (7.14)

For Fleischmann's formula (6.63), we have Ai = —xi
= —X e' ', A2 = XI& 8& = B2 = 0& whereupon

If we further assume that X& is large enough to give (7.20)
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g((1 ) —ln Xee
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~mXm
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Z xp
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Ee max dE
2Z, =2Z, . E.

' '(")
1

' *E S(v)
2Z; 0

' E,

E
Ee max

8(v, )p'

Ee max

E,p
Ee max

(7.28)
e max e max

In the second term we can put S(vo) = 1 since most
of the integral comes from the upper range of E,
where this is approximately correct. For the first
term, we can use v2 as a variable in accordance with

(6.69):

' s (u. ) = 2 J 8 (u. ) .

In accordance with (7.24), if vo is suKciently large,
we can write this expression as

—1 —2 ln x
'" —2 ln (0.376p/Z novo )

= —1 —2lnx" —2 ln p(2m, E, .„) '

—1 —2 ln x'" —2 ln (m/2m. ) . (7.29)

We have then, for D;,

D; = 2 ln (2m, /m) —2 ln x' ' —2 ——', P . (7.30)

We finally have, for ln x, the expression

x', ln x = 47(. „o,) g;N, cx'; ln x;+ (1/Z;)
0

(el)

X ln
' + 1+ o p', (7.31a)

2me

which becomes for the case of homogeneous material
and no energy loss

lnx = Q;X;Z';Ilnx;+ (1/Z;)

X [ln mx,""/2m. + 1 + —,
' P']I/Q;X;Z'; .

(7.3lb)
It is seen in Figs. 7 and 8 that 8(v) gets close to 1

when v is about 1. The condition that v2 is large
enough becomes

(m, /m)' 'pao/AZ' ' & 3 (7.32)

which is always satisfied for relativistic heavy parti-
cles, and. implies, for nonrelativistic particles, merely

expression q(x)dx/x we must add the product of

8(vo) p' E.p'

4Zm E' E
from (6.72) and x', as given by (6.69); the integral
goes only to E, . Thus we add to the integral for
—ln x&

—
2 the quantity D;/2Z, (Fano's notation):

that the kinetic energy be in excess of 120 eV. A.c-
cording to Fano (1954), the integral over the in-
coherent scattering function, given in (7.24), is
approximately

lim —8(v~) + —', —ln v„~ 2.9, (7.33)
d01

em-+0 0 ~l

where the constant ranges from 1.8 for hydrogen to
3.1 for lead, with some discrepancies among the
results of using different atomic models.

The theory of inelastic scattering, according to
Fano, depends for its validity on the Bethe collision
theory which assumes the incident particle to be
much faster than the electrons. This condition is
reasonably well satisfied for low-Z materials where
the corrections are important.

We conclude that with proper definitions of x', and
x, the Moliere form (7.15) for 0 —Qo may be used
in all cases up to the degree of approximation indi-
cated. We shall see in Sec. IX that although x is
defined differently in the calculation using the Dalitz
expression, the same methods of averaging for x', and
y may be used in that calculation.

B. The Moliere Expansion

The multiple-scattering distribution is obtained
from the inverse Hankel or Fourier transform of
exp [Q($) —&o] We shall use (7.15) for values of g

up to 1/x„and assume that there is no contribution
to the integrals beyond this value. Equation (7.15)
gives a large positive exponent for very large P,
making the integrals diverge if taken to infinity. We
shall see that after the Moliere expansion is made,
the separate integrals of each term may be taken
convergently from 1/X. to ~ without appreciable
contribution.

The function P ln (y'x 'P/4e) has a minimum
when the logarithm is equal to —1, or when $~ 1.12/x, considerably larger than 1/x, . It can be
written as the sum of two terms, one a negative
multiple of P and the other with a minimum within
the interesting range of P, by writing

2 2 2 2 2 2 2vxk, (1 vx +, (1 x5

(7.34)

where 8 may be arbitrarily chosen. The minimum
of the second term occurs when P = 4/eBx'. which is
within the range if eB is greater than 4. Since
x'./x')) 1, the logarithm in the first term will be
considerably more negative than —1, so that the
second term will always be smaller in magnitude than
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Fro. 9. Graph of Mo-
liere's B against Qp. The
crosses represent Moliere's
6gures, the circled points
represent further calcula-
tions of the solution of Eq.
(7.39), and the straight line
is a plot of Eq. (7.40).

1 ~ 158 + 2 588 log&e Qo . (7.40)

Equation (7.86) becomes with this choice of B
2 2 2

Q(~) —Q. = ——+'9 -'9 '9

4 48 (7.41)

of which the larger of the two roots for 8 & 1 is to
be taken. An approximate interpolating formula
[Scott (1952)j which is good to 0.5% for Q&& from 10'
to 10', and good to 8% out to Q, = 10', is (see Fig. 9)

0 I 2 5 4 5 6 7 8 9 10

LOG to Qo

the first (when x',P = 1, the second term is still
smaller than the first).

Moliere's choice of 8 is governed by the desire to
have 8 appear only as an inverse coeKcient of the
second term. This is accomplished first by choosing

where the interesting range of q is from 0 to 8'~2

Moliere's expansion method is to consider the
second term in (7.87) small enough that its exponen-
tial may be expanded to second-order terms:

exp [Q(rt) —Qe] e
"' '

2 2 2 2 2

X 1+ -"—In —"+ -',
" ln —" + . . . (7.42)48 4 ' 48 4

a new integration variable The inverse transforms are those of (2.9) and (2.17c).

n = hx.B' ' (785) In each ease, we can use the variable rt in a con-
venient way if we introduce the reduced angular

in terms of which Q —Qo becomes writing Q ~ in blvariables 8 and y given by"
place of Q $

2 2 2 2 2

oi

2 2
7 Xa——ln-, — = —18 ex,8 (7.87a)

2

B —ln B = ln, ' . (7.87b)
Xag

The ratio x',/x' is a measure of Q„ the mean number
of scatterings that occur in thickness t. Actually, Qp

is not well-defined, because the uncertainties in the
screening function for small x affect Qp considerably,
but have almost no inBuence on 0 —Qp. For most of
the calculations in Sec. VI-F, it is either not possible
or not practical to evaluate Op, but for the Moliere
formula (6.62), it is. Using (7.8), we find exactly the
ratio x',/x'. Moliere calls this ratio Q&, but we shall

continue to use Qp for it:

Q. = x'./x'. , (7.88)

which is taken as a definition of Qc in place of (7.8).
In (7.88), the values of x. and x are to be taken from
(7.4) and (7.25) or (7.81), or their equivalents.

%e find, then, for 8 the transcendental equation

B = lnB+ ln (Qce/y') = ln B —0.1544+ lnQc

(7.89)

Q(r)) —Qo =
B ln sB+ -B ln — (7 86)

ex,8
and second by choosing 8 so that the first term be-
comes —r)s/4:

f- (wt)dv' = f(4't)d4'.
Then we have for the spatial distribution

Bl /2

(7.44b)

2 .s,F. (s8,t) = rtdrtJe(8rt) exp [—rf /4 + (rt/4B)

or

X ln (&'/4)]
00 2 2

48 4
rtdrtJe(8rt)e~' '

1 + -"—ln —"

2 2 2

+ — —ln —+1
48 4

F...(e,t) =—1
2x

(7.45)

X 2.-'+ —F "(8)+ ', F"'(8)+ "
(7.46)

«5These reduced variables bear a simple relation to the
angular variables 8 = pve and C = @vs sometimes used in
cases of no energy loss. From (7.4) we see that

e/e = c/p = (4~ e'e Xtp(Z )») t
where (Zs), must be replaced by (Z(Z + l))„when the scat-
tering of electrons is under consideration.

8 = 8/x.B", (7.48a)

v = 0/x.B", (7.48b)

together with the normalized "reduced" distribution
functions

2sF„s(r'f, t)rM8 = 27rF(8, t)8d8, (7.44a)
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For the projected distribution, we have
gl/2

f,.&(v', t) = — dg cos ((pg)
Q

(7.58)

with new terms in the integrals (7.45) and (7.48). To
terms in B.', we have

F'"'(a) = —
~

gdgA(ag) exp (—g'/4) I

—" ln —"—I.
A p 1 —8'/a' 1F,.~(8) = 2 2e + 2B F"'(8/a)

(7 47) 2' a c B.
2

—+'/ '+21na, —1 e +c

or

X exp [—g'/4 + (g'/4B) ln (g'/4)]

2
dg cos (rpg) exp (—g'/4)

Q

2 2

X 1+—ln—
4B 4

2 2 2

+ — —ln —+.
4B 4 (7.48)

/...(p, t) = „,exp (—q') + —f"'(q)

+ —f (~) +1 (2) (7.49)

where

2
dq cos (yg) exp (—g'/4)

XIX p

( 2 2 n

X I

-"—ln —" (7.50)

Properties of these functions will be discussed in
Sec. IX and Appendix III, in connection with the
related functions that arise from the use of the Dalitz
approximation.

Moliere's expansion may be characterized as a
particular method of separating the distribution into
a Gaussian part and a series of functions having long
"tails."However, it must be noted that the functions
F"', f"', F'", and f'" provide substantial contribu-
tions for small angles, especially when B is not too
large.

To illustrate the relative arbitrariness of the above-
mentioned separation, let us show what happens if
we replace the right aide of (7.85a) by a constant —a'.
Eq. (7.89) can then be written

a B. = ln a B, —0.1544+ ln (Qo/a ), (7.51)

where B. ia the new value of B. In (7.86) we set g'
= cg, and find that

/2 /2 /2

Q —Qo ————+ 2 ln ——ln a . (7.52)
4 4c B. 4

The second term in brackets leads to an expansion

1 2 8'/ ' 1
f«&(v ) = — »2 e + 2B f (~/a)c 7i cB.

22 —y'/o'+ „,Ina ~ ——, e + ).7r c
(7.54)

If a' is taken to be small, Qo/a' and a'B. will be
large and the relative contribution of the "non-
Gaussian" terms may be reduced. However, the
presence of —ln c', and its square in the next term,
makes the errors hard to estimate. The convenience
of choosing c = 1 is clearly evident.

The over-all error in Moliere's method arises from
terms of order 1/B' in the expansion (7.42) and from
the neglected terms involved in [Q —Q,],.„. The
latter are [except for the form in (7.20)] of the order
of x'.x'.5» (x.b/2) = n' » (x.Ev/e)/B'Q. by use of
(7.85) and (7.87) which in turn gives a correction of
the order of 1/BQ0 e ~. When B = 4.5, the two
corrections are of the same order, and for larger B,
the 1/B' terms predominate. [For Eq. (7.20), the
corresponding correction is of the order B-'/2~p-'/2

e ~~'/B which is equal to 1/B' for B = 1.48].
Moliere (1948) considered his method to be good
for B & 4.5 and ~p & 20.

C. Ayylication to Lateral DeQections
and Other Characteristics

Let us now consider how by Moliere's method we

may calculate the distribution of any single one of
the various characteristics of a scattered track whose
coupling factors are given in Sec. III-C, or of a single
linear combination of characteristics. We use (8.11),
setting equal to zero $ and all the 1's except the
particular f &" belonging to the quantity X&" whose
distribution we seek. The value of 0 —QQ is then to
be found by substituting a"'(t')1'"' for t in the calcu-
lation of part A of this section for either electron
or heavy particle scattering, with the factor a&"(f')
placed under the integral sign.

Considerable simplification can be made if energy
loss and inhomogeneity of material do not need to
be considered. Let us introduce the two coupling
factor integrals
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t

C(j) dt/t (j) (t/)]&
~a p

(7.55a)

t

dt'[a" (t')]' ln [a"(t')]', (7.55b)

(a) 2
gc = Xc&1 )

C, ln x'."= C, ln )t'. + Cs,
(a)2 2 C, /0,

Xa = pa& )

(7.56a)

(7.56b)

(7.56c)

(7.56d)

where s. is a path length that may be chosen as equal
to the range of t for which c") is different from zero,
or may be chosen as equal to a cell length s when

equal cells are under consideration. Then if x., y, and
Qp are defined in the normal way for the path length
s., we have, using a superscript to indicate that a
particular type of characteristic is involved,

(&')

(;) (;) (;) dX 2(+ )d+ / srv(i)gxi/s i/s

X exp (—I'"/x', Cio'B)

y(i)g (j)/( pC(j)g)l/2]

j/ /(~/'//( 'c( &s) /) y )
(7.59)

Table III gives results, due to Moliere (1955), for
several quantities, including some linear combina-
tions.

The problem of a satisfactory calculation in the
Moliere approximation of the joint distribution of
two or more variables has not been solved.

Tear E III. Correction coefFicients for calculating distributions
of several track characteristics by Eqs. (7.58} ar)(l (7.59}.~

0"($,,t) —0p" = —,
'

$,')(." ln (y'g)t."/4e) (7.57a)

(a) (a)' t (a)' (7.57b)

In the case of linear combinations of measured
quantities, the integrals C& and C2 contain in place of
a"'(t'), the same linear combination of the corre-
sponding c's.

It will be noted that if s. is changed to some other
length s.', Ci becomes Ci(s/s ) and Qp() is likewise
multiplied by the factor s.'/s. . Furthermore, if the
coupling factor refers to a length instead of an angle,
so that it contains as a factor, a unit of length, say t,
it is easy to show that x,"and x" each contain the
factor /, but that 0,"does not. For instance, a,''p(t)
= a.(')(t)s; Ci and Cs for the second difference con-
tain 8, but Q,"is the same for both the second diGer-
ence and the chord angle.

We can then write for the exponent of the multiple-
scatterlng transf orm

Quantity

(0 + 0)/& 2

(0 —0)/ & 2

4i

j j+1
—4'+i

4» + 4»+i

it) —4»'+i

(rj + &j+i

1

7/6
1/8
1/6

26/85
2/8

11/20
2

61/85
48/85

5/8

28/15
2/8

(2/8)s'
S

(8/8)s'

5 logip «p

0
—0.030
—0.188
—0.188
—0.050
-+0.118
—0.192
+0.801
+0.801
—0.325
—0.280
—0.337
—0.290
—0.360
—0.370

0.118
0.290
0.264

The Moliere analysis can be applied and the
distribution obtained in the usual way. The general
rule for calculating the distribution of any such
quantity X") can be stated as follows. Find Qp for
the track length under consideration, and modify
its logarithm by adding the correction

logip Qp log1p Qp = 6 log]p Qp
(a)

= logic (Ci' —Cu' )/2. 808Cio (7 58)

Then find B from the modified logarithm; the final
distribution function will be (normalized for positive
values only)

'All values are calculated with equal cell lengths s, and with
S =8=8a.

VIII. THE SNYDER CALCULATION

Snyder's method, as used by Snyder and Scott
(1949), consisted of a direct numerical integration of
the inverse transform for the projected scattering,
using the form (6.8), which is mathematically equiva-
lent to the use of (6.68). The results may be taken
as applying to the latter, so we shall use the corre-
sponding notation here. (The Snyder —Scott work
was done before Moliere's (1948) results had become
available). With the de6nition (7.86) for Qp, which
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is a measure of the thickness or mean number of
scatterings, we have

s = Ex-

' = 0/x- = ~(Q.&)".

(8.2a)

(8.2b)

Then we have, using the Snyder —Scott notation
8' for the projected distribution normalized from

Qo to Qo

W(p„Qp) = — ds cos sq, exp Qp[sK, (s) —1] .1
7I Q

(8.3)

f(Q, t) = — df cos P$ exp IQp[)x Ki(jx ) —1]}
2

(8 1)

[see paragraph following Eq. (7.15)].
Let us introduce a new integration variable a and

a new reduced-angle variable q., by

result within 2% everywhere, and in most cases
within 1%.

As we have seen in the last section, the distribution
depends primarily on q = p, (QpB)-'~' and only
secondarily on B. An even sharper division of de-
pendence can be made if we use yB'~' = y,QQ

'~' as the

qloo

2

IOI
spooo~ gQ

This integral wa, s evaluated by finding sK(s) —1

to as many as ten significant figures, from the first
three terms of its series expansion [Watson (19M),
p. 80), and by using ten-figure cosine tables. Numeri-

cal integration with Meddle's rule was then used
for Qp ——100, 1500, 3000, and 9000, with a final

accuracy of three significant figures. Results for other
values of Qp were obtained by folding integration,
using (2.20) and (2.39). We have, in fact,

IO

84000

~9000

K~9,
IOOO

IOO—

W(y„Qp+ Qp) = dp!W(q.',Qp)W(q. —q'. ,Qp) .

(8 4)

In this way, tables of W for 29 values of Qp from
100 to 84 000 were constructed. " Each of these
tabulated functions satisfies the normalization rule
to within 1%, and the values agree with the Moliere

3
IO

2 8 e
Qp~q.

FIG. 11. Semilogarithmic graph of Op /28' against Qp /' ps

for Qp = 100, 1000, 9000, and 84 000.

angle variable. Let us use the first approximation to
sK~(s) —1, which is just the Moliere term (s /4) ln

(y's'/4e), and rewrite (8.3) as follows

0

0.200
2'1500 i lo0

840pp

~Q
O. IOO l

I 2 5 4 5 6 7 8 9
~p'q s

Frc. 10.Linear graphof Qp / 8'against'& /' q, for Qp = 100,
1500 and 84 000.

Qp'W(q. ,Qp) = — d(sQ.")cos [(sQp') (q,Qp")]
X Q

)& exp [4 s'Qp (ln s'Q, + ln y'/4Qpe)],

(8 5)

showing that if we use Qpi/2g and y,QQ
1/2 as variables,

the dependence on Qp is quite minor. Figs. 10—12
show graphs of these two quantities for several values

of Qp. Fig. 13 gives a set of graphs for the probability
6'(b, Qp) of getting a deflection greater than y, = 5Qp'~'.

O (S,Qp) = d~', W(~'. ,Qp)Copies of the complete set of tables and also the Snyder
functions of Sec. VIII may be obtained from the American
Documentation Institute, 1728 N Street, NW, Washington,
D. C. as a function of QQ for various values of 8.

(8.6)
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functions of Qp and log1pQp so that interPolation is
straightforward. We have

iO'
W(q„Qo) =Ate *'*'+ A, e ""*';

W & 0.007W(O, Q ), (8.7a)

Z-100

, IO

lO

4000 A1 = Qo' (—951 + 865 log, ti Q, )
' ',

Ao ——Qo (6.3 + 10.0 logto Qti)
' ',

at = Qtt (10.96+ 4.381 log„Qo) ',
ao ——Qo'(0.216 + 2.326 logto Qo), (8.7b)

lO

-5
IO

fO 20 50
~ps' s

1.

Pre. 12. Semilogarithmic graph of 00 ~ W against Qp ~ p.
for Qp ——100 and 84 000, showing their agreement for large
values of Qp~~2y, .

These functions may be represented with moderate
accuracy by a sum of two Gaussians down to a point
at which 8 is 0.007 of its maximum value, and by a
"tail" equal to a sum of q,-' and p,-' terms for larger
angles. The coefFicients can be written as simple

o. 11.666. iog, . !too. )
)W q„Qo), 1 2

W ~& 0.007W(O, Q, ) . (8.7c)

These approximations are good to 4% out to
angles for which W = 0.02 W(O, Qit), when 2000 & Qo

& 42 000, and to 8% for such angles when 100 & Qo

& 2000 and 42 000 & Qp & 84 000. The greatest
errors are not more than 10% for any Qit, this amount
of error occurs over small regions near the "junction"
of the two approximations and also near the angles
where W = 0.001 W(O, Qo). Fig. 14 shows the Snyder
function and the approximations (8.7a) and (8.7c)
for Qp ——3000.
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ability (P(t3,no) of getting a deflection
greater than q, = 800 ~, as a function of
Qp, fol twenty values of 6.
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2s n, dix, P(n„Qp) = 1.
0

(8.10b)

We now expand the function exp [—-', o'Qpp ln

(Qp/Qpp) j and obtain a series for (P:

H. S. Snyder (private communication) has also subject to the normalization
made calculations of the spatial-angle distributions,
but only mean-value results (see Sec. XIII) have
been published (Goldberg, Snyder, and Scott, 1955).
Three methods were utilized, a direct calculation for

+~Awny

P( o!,Qp) = Pp(u„Qpp) + 111 (Qp/Qpp)Pi(n Qpp)

+ ln (Qp/Qpp)Pp (n Qpp)

+ ln' (Qp/Qpp)Ps(n„Q„), (8.
where

Approx. w

n

2sP. (n„Qpp) = —— o "+'do Jp(on, )S0 0

X exp [-', o'Qpp ln (yV/4e)] . (8.12)
The integrals for I'., n = 0, 1, 2, 3, were evaluated

numerically; the results are given in Table IV and
Fig. 15. Table V gives values of P(n„Qp) for seven
values of Q, (Fig. 16). These values were checked by
use of asymptotic formulas for large n. (see Sec. XII),
by the inversion method (below) and finally by com-
parison with Moliere's tables. Agreement with the
latter at zero angle is within 0.4% except for Qp

——100

l
ilt~I!!i~Approx,

3xlO

400 800 I200

Fra. 14. The Snyder function W(p. ,np) and the approxima-
tions (8.7a) and(8. 7b), as functions of q, for Qp = GOOP.

0& ——3000 and an expansion about this value, use of
asymptotic formulas, and a numerical inversion
method working from the projected distribution.

The spatial distribution given in terms of 8„
8, = 0/x = 8(QpB)' ', (8.8)

may be obtained from (8.3) by replacing cos sp, by
issJ'p(H, ). Letting Qp, represent the value 3000, we
write the distribution P(n, Qp) for arbitrary Q, in

terms of the variable n, given by

Ixlo

PlxlO

-P&xlOOO

-. = ~.(Q-/Q. )'" = ~(Q-~)'" = (0/x-) (Q-/Q )' '

(8.9)
%e also change the integration variable from s to

c. = s(Qp/Qpp)'~'. From (8.5), we readily find

- lxlO 200 400 600

Fia. 15. The coefficients P„(cr.,npp) in the expansion of the
spatial-angle distribution P(a.,Qp) in powers of ln (Qp/Qpp), as
functions of n, .

P(o.,Qp) = p.d(r Jp (on. ) where the error is 2% and at Q, = 1 024 000 where
X 0 it is 0.6%. Graphical comparison shows no significant

X exp t-,' o'Qpp[ln (yV/4c) —ln (Qp/Q„)j} discrepancy between curves of the two results for

(8 10a) other angles.
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-', W(q„Qo) = W"[4"+ 4' ) Qo]4 (8 I3)

TABLE IV. The Coefficients P„(o.'„Dpo) for n = 0,1,2,8 and
for several values of u. . The numbers have been multiplied

by 109.

The numerical inversion method made use of Eq.
(2.4b), which in terms of oo, and so, becomes, using
W.,(A,Qo) to represent the spatial distribution func-
tion in 8, :

The second integral requires values of 8'„ for 8,
equal to and larger than 6,„+&, the 6rst for values
between 8,. ~ and 8 +~. The first integral is then
approximated by using central-diA'erence interpola-
tion formulas with the values 8'„&, W„, and 0'„+&,
yielding an equation that can be solved for W„&.The
results agreed quite satisfactorily with the I' inte-
grals discussed above.

i05

0
50

100
150
200
250
300
350
400
450
500
550
600
700

11030.6 1292.10
10007.6 1042.96
7507.05 511.598
4710.42 +54.0298
2534.98 —136.537
1207.54 —140.441
536.252 —85.3825
283.159 —40.9519
106.972 —17.4607
52.7199 —7.24451
29.0674 —2.89543
17.8319 —1.31679
11.4541 —0.649853
5.42409 —0.197978

161.804
114.064

+25.4318—26.5639—25.7744—8.91581
+1.09597

2.61506
1.69430
.795825
.306759
.118015
.046753
.009752

21.2211
+12.8780—.667869—4.87599—1.79162

+.605793
.786536

+.252099—.158029—.034399—.022216—.009293—.003899—.000514
10

P(a Qy
5

Values of W(s. ,Qp) were available, and also values of
W„ for tt, )~ 0,& within the range of validity of the
asymptotic formulas. Values of W., were sought at a
series of equally spaced angles 6,&, 8.2, . 0, up
to 8,~. Starting with larger angles, the calculation
proceeds stepwise. If W„(P,„,Qp) = W„ is known,
we find W (t9' y Qp) by writing

(+sn+1& -+sn —1')i /s

—,
' W(8.. .,Qo) =

X W.„[(8.. .. + 1(')' ',Qo]

10.

lO'

I
0 200 08

400

(&sn+1 —&sn —i ) /

X W.,[(+..-i +P')' ',Qo]. (8.I4)
Fzo. 16. The spatial-angle distribution P(n„Qp) as a function

of a„ for Qp = 100, 3000, and 102, 400.

TABLE V. The spatial-angle distribution P(u, Qp) for seven values of Qp. Values have been multiplied by 10 .

0
50

100
150
200
250
800
850
400
450
500
550
600
700

100

18109.3
15649.7
9518.67
4394.67
1702.37
650.633
289.559
157.939
60.9699
35.9467
21.9249
14.3529
9.62633
4.84333

400

14452.9
12679.9
8634.67
4671.67
2140.79
893.883
375.099
187.209
77.3767
41.0867
24. 3267
15.5733
10.3238
5.05999

1600

11916' 7
10711.7
7887.99
4732. 67

, 2488. 53
1115.87
482. 333
232.949
96.6267
48.4867
27.3919
17.0467
11.0633
5.29999

Qp
3000

11030.6
10007.6
7507.05
4710.42
2534. 98
1207.54
536.252
233, 159
106.972
52. 7199
29.0674
17.8319
11.4541
5.42409

6400

10134.3
9277.33
7134.33
4686.99
2624. 47
1308.57
601.533
265.57
121.233
58.6933
31.4733
18.9033
11.9783
5.57999

25 600

8791.33
8168.99
6533.67
4520. 67
2727. 18
1461.67
716.599
830.499
153.749
72. 2633
36.9299
21.2989
13.1009
5.89867

102 400

7589.99
7181.38
6047. 67
4403. 33
2775.33
1565.67
816.733
899.267
196.683
89.7433
44. 1167
24. 3599
14.5067
6.26699
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w

& (8) &0 = 2x
[2

'
( /2)]4 [&o ($x) 1] (9 1)

when q(x) is given by (6.15), and we have put back
sin x and sin (x/2) respectively in place of x and

x/2 (cf. 6.1), and put m. for the upper limit, in order
to proceed with suitable caution in applying the
small-angle approximation. (Nigam et at. also use the
I.egendre polynomial sum for which the Hankel
transform is an approximation and replace it by the
transform at a later stage. The results of the two
different methods of approach are the same within
the accuracy of either. ) We consider first the case of
homogeneous material, no energy loss, and no con-
tributions from scattering by electrons.

As indicated in Sec. VI, we take X„Xp( 0.033
so that we may immediately approximate the X of
(6.16) by —', sin (x/2)[x, '+ sin' (x/2)] '~' which is
always less than 1/2, and set X tan 'x„X = x„X'.
The largest corrections to the Moliere result come for
large x in the sin' (x/2) terms, and are seen to involve
amounts of the order vrup in the curly bracket. The
estimate of 00 made in sec. VII will not be seriously
affected by these corrections, nor will the estimate
made there of the important range of $. We can
therefore repeat the method of Sec. VII by dividing
the integration at a value x& given by Eq. (7.12).

We shall assume that X, itself is a small angle, so
that sin X, X,. Before separating the integral into
two parts, however, we can simplify q(x). I&or in-

creasing X, the combination

—,
' [x'„+ 4 sin' (x/2)] [x'„+ sin' (x/2)]

'

becomes closely equal to 1 well before we need to
distinguish between x/2 and sin (x/2). We can
therefore replace it for all X by

ratio = (x + x )/(4x + x ) (9.2)

This ratio appears twice, the second time with a
factor px'„/4 in comparison to the first, so we can
neglect this second term. We can write tan ' (2/x„)
= ~/2 —tan-' (x„/2) —', (~ —x„) and the product
of this expression with X„ is also negligible. Further-

IX. THE NIGAM —SUNDARESAN —WU CALCULATION

A. Evaluation of the Transform

We shall develop in this section the results of
Nigam, Sundaresan, and Wu (1959) for spin 1/2
particles, using a method similar to that of Sec. VII.
We wish to evaluate (7.8) in the form

more, for the term —nP'[x'„+ 4 sin' (x/2)]x„X' we
can write —nP'x„sin' (x/2){1+ 3~ x„'[x'„+sin'

(x/2)] '
I and can neglect second terms in the bracket;

the ratio (9.3) differs from 1 only when sin' (x/2) is
verysmall. This term will then cancel with the prod-
uct of 2np sin' (x/2) and the ~i x„ from tan '(2/x„).

The only terms for which the small-angle ap-
proximation cannot be used directly are those of the
remaining ones that contain sin2 (x/2) or sin (x/2)
tan ' [sin (x/2)/x„]. The resulting expression for
q(x), valid for all x, is

V(x) = x (x + x.) '[1 —P'(1 + ) sin' (x/2)

+ 2~x. (x'. + x')/(4x', + x')

+ -'; nP'(x'„+ 4 sin' (x/2)]csc(x/2)

X ta» ' (»n (x/2)/x„) . (9.3)

nP'(x'„+ 4 sin' (x/2)] ~ sin (x/2)tan
2 sin (x/2) Xp

0lx. + )~x—
(

x
) (g4

X Xp

and for X ) X&, we write

Figures 17—20 show the separate terms of the bracket
in (9.3), the first Born approximation formula
x'(x'+ x'„~)-' and the resulting q(x), as well as
Moliere's g(x), Eq. (6.63), for a relatively extreme
case in which the correction terms are large, namely
for Xo = 0.0167, p, = 1.80, X„=0.030, o. = 6, and.

P = 0.20. The difference between the Moliere calcu-
lations and those of Nigam et c/. is strikingly evident.

However, for smaller Xo and X„the differences tend
to disappear. The inverse-tangent term may be
approximately written as X„ times a function of
x/x„which will shift both to the left and down in the
graphs as x„ is reduced. It still will in a rough way
cancel the sin' (x/2) term. The main change as x„ is
reduced will be to reduce the magnitude of the re-
maining fractional term and shift the knee of its.
graph to the left.

I et us now consider the integral for 0 —00. The
first term in (6.15) will give in small-angle approxima-
tion just the Moliere result (7.15) with x replaced by
X„, and we do not need to treat it separately. We can.
also carry out exactly the integral with the fractional.
term. For the other terms, we replace sines by angles
for x ( x„and J,(gx) —1 by —-', Px'; for x ) x&.

we need special treatment. Particularly, the last,
term must be approximated in two different ways
for the two parts of the integral. For small X, we
write
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).5

I.O

0.5

FIG. 17. Graph illustrating the terms
in Eq. (9.8), against logqo(x/xo). The
curves marked 1, 2 and 8 represent in
order the three last terms in [ ] in
(9.8), and the curve marked "sum" rep-
resents the entire bracket. The "Born"
curve is for the factor x4(xs+ x„s) s, and
"9(x)NSW" denotes the entire expres-
sion (9.8). Values of parameters chosen:
gp = 0.0167, p, = 1.80, x& = 0.030, a =
6.0, P = 0.20.

log io (x/xo)

~P'I:x'+ 4»n' (x/2)] t,, „- »n (x/2)
2 sin (x/2)

2o.P' sin (x/2)

= s-nP' sin (x/2)

71 gp
2 sin (x/2)

—2~4'X. (~ 4b)

With these considerations in mind, let us write 0
—00 as a sum of six integrals:

where

X~XV.hx) —i]
(x'. + x')' (9.6)

1.(k) = 2~X, ~ ~
4 ~ .), (97)

"
xdxÃ. (kx) —&]

0 Xp X Xp X

~(r) —(). = 2x'. Z I.(&),
n=1

xg

1.(() = —,'. rY(&+ )
Xy X

1.5

I.O

r
/

I
~ BORX

I
I

FIG. 18. Same as Fig. 17, plotted a-
gainst x on a linear scale.

0.5

0
0.5 1. 0 1.5 2.0 2.5
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l.5

Fzo. 19. Graph of q(g) by the NSW
formula (9.8) (from Fig. 17) along with
the Moliere formula (6.68) and Moliere's
numerical results (Table II), plotted a-
gainst log&p(y/xp). Same values of param-
eters as in Fig. 17.

I.O

05

0--2 0
lcg ~c (X/Xc)

I.(&) = —p (1+ ns')

X&x
' ' (x/2)[~. (kx) —1]
[2 sin (x/2)]'

sin xdxI.(&) = [2„„(/2)]. [J (tx) — ]

&& [nP's. sin (x/2) —2nP'x„) . (9.11)

= ——,
' P'(1+ ~~) dx[JO(kx) —1]

tan (x/2)
Let ns consider these integrals in order. By (7.15)

with x replaced by x„, we have
Xd

I, ($) = —
4 nP $ s s tan, (9.10)

xy x Xp I, (g) = —', ~' ln (~'x„'~'/4e) (9.12)

l.5

I.O

FIG. 20. Same as Fig. 19, but against
y, on a linear scale.

0.5

0.5 &.0 1.5 2.0 2.5
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For I2, we write

2 2
Is(k) = (P'/32) (1+ n~)& Xd . (9.14)

the tern1s in brackets. WeFor I4, let us separate e
have for the second,

dx/tan (x/2) = 2 ln sin (x/2

= —2 ln sin (x,/2)
——2 ln (xd/2) + xd/12 +

n ( /2) becomes infiniteFor the first, wewe note that tan X e
tion contributes little.that the upper portion con

'll t nsiderably for Px, will osci a e coIn addition, Jo(gx,
'

(which is less than
d o1 fo

of). W th
/2 th f t t, dfore shall set tan (x/2) = x in

use (A.7), obtaining finally

I.(k) = —s= —-'P (1+ ~)[—ln (Y~x./2)
. ] —-'P'(1+ n~)[ln (x./2)+ s tXd+

—x:/24+ "]=!p'(1+ -)[ln v

——:'x:+ ]; (»1 (9.15a)

is o hold as f —+0, for if $ is smallThis formula cannot o as
enoug ,ugh we can write

Id($) 32 (1+ a~)A XdX
x, t» (x/2)

~/2

Qc4 cot%'p'(1 + nir) u du c

= —' $ P (1 + am )[0.658 —'sx„''+ ];4

$m « 1, (9.15b)

I (~) = xdx[J. (kx) —1
3xp

1 1
2 2 2

—ln 2]2n/3x. )E.(Ex.) —&.(2(x.)—
d

'
. (T I. T. 1954), formula,

tar i t' "t
d l i et al. T.

o steps of elemen ar
es for the Bessel functions [Watson

(19M), p. 80; Erdelyi et cl. H.T.
(12) and (87)], we find

/e) + —,', g'x„ ln 2] . (9.13I.(h) = 2 [-'kx. l (vx.k

e observed that the integrand can
rills lil X~ an X~) so)be written as X plus terms

'

the latter, we have

2 2I.(~) = —!-p~
Xd

Xdx tan

2 taI1'"
~ x'. + x' 2x.

Xdln 1+—
d nPY xdt»

2
—x,

4X~
2

dX tall X AX„
2 )1+ 4 2xd0

t term, we first assumed that tan-'zwhere for the last term, we rs n x

i t tio fo,/2 „toXp d )

the logari m,l 'thm and writing tan
—2 xd, we havex./

Xd 2xp 2xp ill (Xd/ Xp

similar method to thatFinally, for I,(&), we use a similar me
for I,(P) writing

dx[J (~x) —1]
,„ ts,n (x/2) sin (x/2)

~ [J (tx) —1]
Xd X

"dx~o Rx)
2

xd X

I.(~) = -,'p'~

2—2nP x~

1 2= —, npm.
dx cos (x/2)

sin' (x/2)

[J Rx) —1]—2nPx, s 0
Xd X

A.10, and (A.12),we find [settingBy means of (A.2), (A.10, an
»n (x./2) = (x./2)]

1I.(&) =-.'A&, txd PXd

+ —.
' P' (1 —2/x. )

—-', nP'x„~' ln h«.~/2e) +
'

(-'. ——;&+-'.&X. + )

$x ))Xp

(9.17a)

g cothe numerical value owheIe 0.65»s
t 1 and since forextends up to Xsince the range o . t be valid, we mustthe small-angle pp
the range f

I oxlmation
much less than x, t e raix. y

(9.15b) must be used is a sma rac io
'

h 9.15a) is required.
l I ($) may be writtenThe next integral, &, m
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this formula is also wrong for very small P. By a
calculation similar to that for (9.15b), we find

Is($) = np'ir( —0.2992$ + s )xs+ )
——: Px.t» hx.h/2e)+ "; h «I,

(9.17b)

where 0.2992 is the value of —,
' Jc/'u'du cot u csc u.

If the six integrals in Kqs. (9.12), (9.13), (9.14),
(9.15a), (9.16), and (9.17a) are added and the terms
rearranged slightly, we find for the exponent of the
transform

Let us next define a correction constant t by

t = 2nx„(1 —P'). (9.20)

This constant is small compared to one, particularly
for relativistic particles and low™atomic-number ma-
terials.

Tanzx VI. Screening angles for Moliere (1948) and for Nigam
et aL (1959), for multiple scattering of electrons on beryllium

and gold (from Nigam et al , corr.ected).

Beryllium, 2 = 4; z = 1; aP = 0.0292

pter/go —1,13, Moliere y~/g& —1, Nigam et al.

I~ —I1 = -'kx. » (vY/4e) + i 5'x'.
I.inx,

+2 „l 2'' „+2 p' „(1.448 —l „)]
+ 5 x.x.n(1 —p )» (v~/e) + -' x.p (1+ )

X ln v& + X'. p' (-; —p) . (9.18)

0.6
0.7
0.8
0.9
0.99
0.999

0.0174
0.0134
0.00982
0.00634
0.00187
0.00059

0.00890
0.00655
0.00501
0.00396
0.00327
0.00321

—0.00625—0.00282—0.00078
+0.00036

0.00034
0.00011

p, = 1.12

—0.00671—0.00302—0.00075
+0.00043

0, 00038
0.00013

p = 1.80

—0.00894—0.00388—0.00076
+0.00081

0.00061
0.00021

Gold, Z = 79; z = 1; aP = 0.576
y~/yo' —1.13, Moliere x~/y& —1, Nigam et al.

Following Nigam, Sundaresan, and Wu, we define
the screening angle X by setting the square bracket 0
equal to ln x (our previous definition needs modifi-
cation to the large-angle case before it can be applied
here)" 0.999

lnx = lnx„+ 2nx„ln2' 'x„

0.0470
0.0360
0.0265
0.0171
0.0051
0.0016

3.48
2.56
1.96
1.55
1,27
1.25

—0.218—0.895—0.0113
+0.0276

0.0180
0.0061

)u, = 1.12

—0.229—0, 0927—0.0092
+0.0319

0.0202
0.0068

p, = 1.80

—0.269—0.0970
+0.0082

0.0584
0, 0327
0.0109

+ 2nP'x„(1.448 —ln x„) . (9.19a)

It is the difference between the values of ln x
given by (9.19a) and (6.62) that provides the main
contrast between the present calculation and that of
Moliere and may be taken as a numerical measure
of the contrast between the respective q's in Figs.
17-20.

It should be noticed that, since (9.19a) involves

ax„ in place of n itself, and since o|x„ is small in
accordance with (6.22), x and x„cannot differ great-
ly. In fact an expansion in powers of nx„may be
taken to first order, yielding the good approximation

x'- = Xs I1 + 4nxsI:(I —p')» xs + o 231o

+ 1.448P'] } . (9.19b)

The principle difference between x and xs is thus
determined by the value of p, in x„= pxo.

Table VI shows a comparison of screening angles
calculated from (6.62) and (9.19b), using for the
latter, the values p, = 1.12 and 1.80 as given in the
article of Nigam ef al. (see part D of this section) as
well as p = 1.

Using the definitions (9.19) and (9.20), we find

( s(s i+r ( 4
n —n. = i ]'x'. ln I,

'
&4e I e

+ -', x.P (1+ n~)» vh + x nP ~(-. —
&) .

(9.21)

Again following Nigam et at. in essence, we define
8& by the relation

8& ——ln, ' — 2, 9.22

which obeys an equation similar to that for the
Moliere 8, namely,

= ln [8„/(1+ t)] + ln (e/y')

+» I:(I + l )x'.x '"'"(e/4)"'"'"']

(9.23a)

In order to use the results in Eqs. (7.39) and (7.40),
let us set

(9.24a)

i7 Nigam et aL. assert in their Kq. (56) that ln (2/x ) ——', is
given by f&&idyl(y)/y (where y = sin x/2), a quantity called
ln t by Goudsmit and Saunderson (1940a). Actually, as defined
above,
ln (2/x~) —

2
i= fords(y)/y + —', P (u~ —1) + terms in y

so that

= ln (
"

) + 1n (Q. e/y') . (9.2Kb)
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When l may be set equal to zero, as is frequently the
case, QON becomes 00 and BN becomes B.

For small but not negligible l, we can use ex-
pansions taken to the first power:

8& 8{1+ l [0 614. + ln x'/(8 —I)]} (9.23c)

Qo~ Qo{1 + l [0.614 + ln X']}, (9.24b)

where 8 and Q, are computed with l = 0, i.e., by
Eqs. (7.38) and (7.39).

We finally have for the transform exponent as a
function of g

Q (g) —Q, = —g'/4 + (I + f) (g /48 ) ln (g'/4)

+ l x.P'(I + )» (4v'/x'. 8 )

+ —,
' x'.P'(I + nm) ln (q'/4) + —', x', Pn'm.

—X,np m-q/B~ (9.25a)
with

I/2
'g = pxcBu ~ (9.25b)

This expression agrees with Eq. (62) of Nigam et al.
with the exception of a term —,', yP [8 —(1 + l) ln

(g'/4)], which they obtain from setting l + -', equal
to the variable we call $, and then putting l(l + I)
= (l + —,')' ——,'. The —I/O leads to the extra term;
in their final calculations its effect is neglected;
furthermore, the errors made by them in using the
asymptotic formula P(l) ln (l + -', ) down to l = 0
are of the same order. Still another error of this
order is involved in the difference between (9.15a)
and (9.15b), which we shall consider below.

In Eq. (9.25), there are two variable terms in

addition to the Moliere-like terms. The coefFicient of

g, x,nP'7rB&' ' ——x,zZP~/1378&~' will generally be less
than I/O for singly or doubly charged incident parti-
cles, since BN will be greater than 4.5 and we may
assume that the "Gaussian width" X,BN ' of the
distribution is less than I/O of a radian to allow use
of the small-angle approximation. The coeKcient ~ of
ln (g'/4),

i = ~ x,P (1 + nm. ) = ~ x, (P + zZPm/137) (9.26)

will be less than 0.02. These limits will be diferent
for z & 2, but the development to be given below

may be readily modified for any case in which ~ be-
comes appreciably larger than 0.02.

since the third Born approximation would introduce
terms in n2 in (9.25a). That is to say, x.nP'mBz'~' must,
also on this account be small compared to 1. Terms
involving co. contain 0.2, when 0. is small, the small-
angle restriction on x.(i.e., x', ( 1/98) will make
terms in ~(x,np'n) generally negligible. One such
term, however, has been included for the sake of
completeness.

Terms thus neglected can readily be included and
evaluated by the methods given below, in the event
that it is desired to calculate the errors due to their
neglect (which may be comparable to errors due to
the neglect of the next higher Born terms).

We find then, for the spatial distribution

2~F,.a(g~, t) = K gdg Jo(g~g)e ' 1 + (I +1)
0 N

(I + &)' n'
1

n' '
~(I + l)

2x.nP'~(I + 1-) ~',„~' x.nA(I + l )'
B3/2 B5/2

2~y..np m.

ln (9.27a)—"- ln' —"

and the coeKcient K is

~N ~/xcBx
Ii2 (9.28)

Nigam et al. do not have the terms with ~ in
(9.27a), nor do they give the next-to-last one. For
small BN, the omission of terms involving the third
and higher powers of B~' ln (g'/4) will make a larger
error than the omission of the terms containing ~,

but we have not included the former because compu-
tations relating to them are not available. The in-
verse transforms of each of these terms can be found
from the two integrals {Erdelyi (1954) T.I.T
[8.6(14)] and [1.4(14)]}

K = exp I-', x', [nP'7r + P'(I + n~) ln 2y/y, B~']} .
(9.27b)

The maximum value of the exponent in (9.27b) is
seen to be about I/32 + 0.11 = 0.14.

The reduced angle 8N is now given by

B. Calculation of the Distribution Functions

We now expand exp [Q —Q, + ~~ rP] in a power
series. The terms in n represent contributions of the
second Born approximation, so it is not legitimate to
carry the expansion to powers of o. beyond the first,

21'(a),F, (a;I; —8 ) =

I'(a) F (a;-'„' — ') =

pe J,(g8)e " '(g'/4)

(9.29a)

dg cos (qy) e
"' '(g'/4)

(9.29b)
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The function &F& is Kummer's confI.uent hyper-
geometric function. Differentiating these expressions
with respect to c once or twice will give the trans-
forms of terms with ln (q'/4) and ln' (ri'/4). Let us
define a set of functions D„(a; b; z) by the relations

D.(1,1, —a') = c ',

2D, (2,1, —a') = F"'(a),
(2/~)D (2 s, —s') = f "'4),

(9.32a)

(9.82b)

(9.32c)

(9.32d)

D.(a,b,z) = (a"/dg")r(a), F, (a;b;z) . (9.29c)

The spatial-angle distribution may now be written

27rtreg(8~&f) = 2K Dc(1 (1& 8jy) + LDy (111i 6'~)

2)(,nP 7r
[Do(-'„1) —+„) + ~D, (-'„1, —d„)]3 2

N

+ [D, (2,1, —8~) + ~D, (2, 1, —8~)]
(1 + I-) 2

N

2x. pn'~(1+ I) D, 1 ~s (1+ &)
p3/2 2B&

~ D (31 ~. )
x..np~(1+ l)

~N

D, (3,1, —6') = J'"'(q), (9.32e)

(1/~)D. (-', s, —s') = f "'(s) (9.32f)

Details concerning the D„ functions are found in
Appendix III; Figs. 21—26 and Tables VII and VIII
give some numerical values. "

Table III of Nigam et at. contains a column for
their function f&"' = 4)(,nP'sB'~'D, ( ss1, —8'), calcu-
lated for p = 1.80, Z = 79, B = 6.98, P = 1. The
results agree with ours for 8 = 0, 1.0, 2.0, 3.0 and
4.0, but disagree considerably for the intermediate
values. It is not possible from their article to detect.

LO

X D, (-'„1, —es~) (9.30)
0.75

and correspondingly, the distribution in projected
angle is

f-a(y—x,&) = K Do(s, s, —yN) + &Di(s, s, —q~) 0.50

22x,np 7r 2[Do(1)-„—q~) + ~Di(1,-„—q~)]
N

+ [D (s, s, —
v ~) + ~D.(s, s, —

s ~)]
N

2x. P' (1+1)D,3/2

(1+ t)'+ 2B. D(s, 2, —s~)
N

x.np ~(1 + i ) D (3, s
) (9.31)

O. O

The terms in (9.82) and (9.33) are given in order of
increasing inverse powers of BN, but the actual rela-
tive orders of magnitude will depend on the values
of B~, x,nP s, I, and c

The results of the Moliere calculations are in-
cluded in the above, if we seI 8N = 6, qN ——y, BN
= B and i = f = 0, (all of which equalities are
justiCiable for nonrelativistic scattering, as indicated
in Sec. VI) and ignore the terms with x.np's-. In fact,
we have the relations [cf. Eqs. (7.47) and (7.50)]

-25
0 I,O 2.0 5.0 4.0 4.5

Fra. 21. The functions Dc(1,1, —H) and Dc(~»l, —H).
against 8.

the source of their mistake. "The mistake was con--
tinued by Fleischmann (1960), who evidently de=
rived his function g = 4 Dc(-', , 1, —zP) from their-

rs M. E. Sundaresan has indicated (private communication)
that he and his coauthors have also detected the existence of.
mistakes in their numerical values.
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l.5

l.0

D&( ~i2, I,-& )
2

0.0

-0.5

- I.O
0 4.0 4.53,0I.O 2.0

Fxa. 22. The functions Di(1,1, —H), Di(-', ,1, —8 ),
D)(2 1 8)and Dl(-'„1, —8's) against

-2
6 I 2. 3 4 4.5

Fza. 23. The functions D)(2,1, —8s) D)(3,1, —8s) and
Dq(-,', 1, —8&) against 8.

TABLE VII. Selected values of the D functions for spatial-angle scattering. 17 The notation E-02 means that a factor
10 ~ is to be appended, etc.

D, (l, l —8') D, (3/2, 1)—8') D, (l, l, —8') D, (3/2, 1,—8') D, (2, 1,—8') D, (5/2, 1,—0') D, (2, 1,—0') D, (3,1 —8") D, (7/2, 1,—8')

0.
0.1
0.2
0.8
0.4
0.5
0.6
6.7
6.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
.2.2
2.4
2, 6
.2.8
.3.0
3.2
3.4
3.6
3.8
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
].2.0
13.0

1.0000
0.9901
0.9608
0.9139
0.8521
0.7788
0.6977
0.6126
0.5273
Q, 4449
0.8679
0.2982
0.2369
0.1845
0.1409
0.1054
0.7730K-01
0.5558E-01
0.3916E-01
0.2705E-01
0.1832K-01
0.7907K-02
0.3151K-02
0.1159K-02
0.3937K-03
0.1234E-03
0.3571K-04
0.9540K-05
0.2353K-05
0.5355E-06
0.1125K-06
0.1389K-10
0.2320E-15
0.5243K-21

0.8862
0.8?30
0.8344
0.7781
0.6935
0.6011
0.5017
0.4010
0.3044
0.2159
0.1386
0 .7422K-Ol

+0.2322E-01—0.1488E-01—0.4184E-01
—O. 5789E-01—0.6648K-01—0.6905E-01—0.6789K-Ol—0 . 6301E-01
—0.5712K-01—0.4414K-01—0.3261E-01—0 .2880E-01—0.1756E-01
—0.1326K-01—0.1028K-01—0.8177E-02—0.6644K-02—0 .5498K-02
—0.4606K-02—0 .2207E-02—0.1237K-02—0.7647K-03—0.5068E-03
—0.852SE-03—0.2558K-03—0.1914K-03—0.14?QE-03—0.1153K-08

—0.5772—0.5814—0.5934—0.6117—0.6389—0.6571
—0.6784—0.6950—0.7045—0.7055
—0.6972—0.6796—0.6537—0.6207—0.5824
—0.5407—0.4972—0.4536—0.4113—0.3713
—0.8842—0.2700—0.2193-0.1804—0.1507
—0, 1278—0.1100—0.9583K-01—0.8436E-01—0.7491E-01
—0.6702E-01—0.4175E-01—0.2860E-Ol—0.2084E-01—0.1588K-01
—0.1250E-01—0.1010K-01—0.8334E-02—0.6993E-02—0.5953E-02

0.0323
+0.0231—0.0036—0.0447—0.0955—0.1505
—0.2041—0.2509—0.2870—0.3097
-0.3180—0.3126—0.2951—0, 2682—0, 2349
—0.1988—0.1612—0.1256—0.9385K-01—0.6531K-01
—0.4193E-01—0.8731K-02
+0.9518K-02

0.1769E-01
0.2009K-01
0.1965E-01
0.1807E-01
0.1620E-01
0.1439K-Ol
0.1276E-01
0.1134K-01
0.6642K-02
0.4230E-02
0.2870K-02
0.2044E-02
0.1511K-02
0.1151K-02
0.8992K-03
O. 7166K-03
0.5812K-03

0.4228
0.4045
0.3519
0.2712
0.1718

+0.0648
—0.0888—0.1292—0.1990—0.2443
—0.2642—0.2609—0.2885—0.2026—0.1591
—0.1134—0.6978K-01—0.3149E-01—0.3050K-03
+0.2813K-01

0.3911K-01
0.5271E-01
0.5039E-01
0.4131K-Ql
0.3124E-01
0.2275K-01
0.1644K-01
0.1201K-01
0.8953K-02
0.6828E-02
0.5319K-02
0.1915E-02
0.8700E-03
0.4540E-03
0.2606K-03
0.1604E-03
0.1042E-08
0.7065K-04
0.4961E-04
0.3586K-04

0.9347
0.8985
Q 7944
0.6358
0.4425
0.2373

+0.0427—0.1224—0.2448—0.3186
—0.3446—0.3295—0.2834—0.2183—0.1458
—0.7559E-01—0.1481K-01
+0.3251E-01

0.6504K-Ol
0, 8355K-01
0.9027K-01
0.7996E-01
0.5609E-01
0 .3313K-01
0.1678E-01
0.7167K-02
0.2310K-02

+0.1828K-03—0.6006K-03—0.8041K-08
—0.7884E-03—0.3759E-03—0.1766K-03—0.9108K-04—0.5076K-04
—0.3017E-04—0.1888K-04—0 . 1232K-04—0.8336K-05—0 .5810K-05

0.8237
0.7990
0.7283
0, 6208
0.4899
0.3514
0.2205
0.1098

+0.0278—0.0220
—0.0411—0.0344—0.0094
+0.0253

0.0619
0.0941
0.1176
0.1304
0.1825
0.1253
0.1111
0.7182K-01
0.3245E-01

+0.2828K-02—0.1496K-01
—0.2320E-01—0.2536E-01—0.2434K-01—0.2201E-01—0.1935E-Ol
—0.1681E-01—0.8364K-02—0.4548E-02—0 .2686K-02—0.1692K-02
—0.1122'-02—0.7748K-03—0.5588K-03—0.4064K-03—0.8056K-03

2.4929
2.3827
2.0694
1.6014
1.0488

+0.4896
—0.0044—0.3794—0.6068—0.6852
—0.6359—0.4959—0.3086—0.1151
+0.0525

0.1740
0,2422
0.2603
0.2387
0.1911
0.1316

+0.1964K-01—0.4672K-01—0.6489K-01—0.5460K-01
—0.3569K-01—0, 1923K-01—0.8470E-02—0.2643E-02
+0.4572E-04

0.1074E-02
0.8326K-03
0.3495K-03
0.1583K-03
0.?833K-04
0.4176E-04
0.2868E-04
0.1413K-04
0.8801E-05
0.5684E-05

5.1423
4.8926
4.1857
3.1399
1.9229

+0.7191
—0.3074—1.0407—1.4295—1.4873
—1.2799—0.9043—0.4648—0.0524
+0.2692

0.4685
0.5440
0.5164
0.4188
0.2868

10.1513—0.0526—0.1291—0.1141—0.6668E-01
—0.2519E-OI—Q. 1440K-02
+0.7684K-02

0.8902K-02
0.7215K-02
0.5111K-02
0.7141E-03
0.1449K-03
0.8840K-04
0.1197K-04
O. 4131E-05
0.1511K-05
0.5604K-06
0.1963E-06
0.548K-07
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Fza. 24. The functions D&&(-'„-',,
—

q ) and Dc(l., ~ —y ) Fzu. 25. The functions Di(-'„-', , —s ), D&(1,—,', —
q ),

against q. D&(-'„—,', —qs) and Di(2, —',,
—

q ) against q.

TABLE VIII. Selected values of the D functions for projected-angle scattering. ' Notation same as in Table VII.

D (gg, Pg, —y') D, (l, gg, —P') D (gg, /&g, —p') D, (l, gg, —P') D, (8/2, gg, -y') D (2,g, —y') D, (8/2, g, —y') D, (5/2, i/, -y') D (8 gg, —P')

0.
0.1
0.2
0.8
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.8
1.4
1.5
1.6
1 ~ 7
1.8
1.9
2.0
2.2
2.4
2.6
2.8
8.0
8.2
8.4
8.6
8.8
4.0
5.0
6.0
7.0
8,0
9.0

10.0
11.0
12.0
13.0

1.7725
1.7548
1.7030
1.6199
1.5104
1.8804
1.2866
1.0859
0.9846
0.7885
0.6520
0.5285
0.4199
0.3271
0.2497
0.1868
0.1870
O. 9851E-01
0.6942K-01
0.4795E-01
0.8246K-01
0.1401K-01
0.5585K-02
0.2055E-02
0.6978K-08

0.2187E-08
0.6330K-04
0.1691E-04
0.4170K-05
0.9492K-05

0.1995E-06
0.2462K-10
0.4111E-15
0.9293K-21

1.0000
0.9801
0.9221
0.8804
0.7120
0.5756
0.4308
0.2858
0.1486

+0.0267
—0.0618—0.1577—0.2175—0.2568—0.2782
—0.2847—0.2798—0.2667—0.2484—0.2278
—0, 2054—0.1688—0.1295—0.1088—0.8888K-Ol
—0.6963E-01—0 . 5896K-01—0.5076E-01—0, 4480K-01—0.3908E-01
—0.8478E-01—0.2184K-01—0.1451E-Ol—0.1053E-01—0.8003E-02
—0.6291E-02—0.5077K-02—0.4185E-02—0.8509K-02—0.2S85E-02

—8.4802—8.4808—8.4818—8.4812—3.4759—8.4622
—8.4864—8.8958—8.8369—8.2600
—8.1651—8.0587—2.9286—2.7981—2.6511
—2.5064—2.8624—2.2228—2.0888—1.9621
—1.8449—1.6886—1.4683—1.8290—1.2146
—1.1196—1.0895—0.9709—0.9118—0.8590
—0.8127—0.6417—0.5812—0.4585—0.8958
—0.8513—0.8158—0.2868—0.2627—0.2424

—0.5772—0.5855—0.6091—0.6488—0.6886—0.7218
—0.7499—0.7682—0.7570—0.7294
—0.6898—0.6186—0.5828-0.4418—0.8476
—0.2547—0.1678—0.0887—0.0207
+0.0357

0.0806
0.1894
0.1663
0.1728
0.1682

0.1587
0.1476
0.1866
0.1264
0.1171
0.1087
0.7786K-01
0.5877K-01
0 .4618K-01
0.8729K-01
0.8085K-01
0.2600K-Ol
0 .2224K-01
0.1927E-01
0.1688K-Ol

0.0828
+0.0189—0.0386—0.1171—0.2098—0.8028
—0.3827—0.4387—0.4683—0.4541
—0.4128—0.8451—0.2590—0.1687—0.0680
+0.0204

0.0960
0.1556
0.1980
0.2241
0;2857
0.2269
0.1942
0.1554
0.1208

0.9240E-01
0.7155K-01
0.5684E-01
0 .4524E-01
0.8700K-01

0.8074E-01
0.1436K-01
0.7951K-02
0.4884E-02
0.3221E-02
0.2238K-02
0.1620E-02
0.1210K-02
0.9285K-08
0.7280K-03

0.4228
0.8864
0.2880

+0.1290—0.0515—0.2814
-0.8851—0,4922—0.5412—0.5299
—0.4646—0.8587—0.2288—0.0925
+0.0847

0.1412
0.2203
0.2696
0.2910
0.2887
0.2689
0.2004
0.1261
0 .6741K-01
0.2958K-01

+0.8772K-02—0 . 1066E-02—0 .4935K-02—0.5988E-02—0.5867K-02
—0.5851K-02—0 .2826E-02—0.1559K-02—0.9281E-03—0.5878K-08
—0.8912K-08—0.2710K-08—0.1941E-03—0.1428K-08—0.1076E-03

0.8296
0.8088
0.7802
0.6202
0.4898
0.8575
0.2404
0.1515
0.0981
0.0810
0.0950
0.1808
0.1770
0.2220
0.2564
0.2787
0.2710
0.2487
0.2098
0.1589

+0.1015—0.0188—0.1052—0.1680—0.1894
—0.1936—0.1850—0.1706—0.1545—0.1888
-0.1245—0.7457E-01—0.4798E-01—0.8278E-01—0.2846E-01
—0.1742K-01—0.1831E-01—0.1043K-01—0.8880E-02—0.6769K-02

1.8091
1.2080
0.9289
0.5112

+0.0465—0.8875
—0,7192—0.9014—0.9189—0.7880
—0.5495—0.2576
+0.0818

0.2727
0.4850
0.5074
0.4958
0.4182
0.2991
0.1640

+0.0344-0 ' 1535—0.2212—0.1990—0.1387
-0.7854K-01—0.8495E-01—0 .9289K-02

0.8491K-02
0.8610K-02

0.9916K-02
0 .5680E-02
0.2718K-02
0.1416K-02
0.7942K-08
0.4740K-08
0.2976K-08
0.1948K-03
0.1820E-08
0.S217K-04

2.4929
2.2785
1.6610

+0.7820—0.1864—1.0578
—1.6773—1.9581—1.8699—1.4842
—0.8945—0.2594
+0.8274

0.7653
1.0070
1.0499
0.9271
0.6988
0.4112

+0.1848
—0.0971—0.3528—0.8570—0.2835—0.9870K-Ol
—0.8888K-02
+0.8280E-01

0.4185K-01
0.8641K-01
0.2788K-01

0.1928E-01
0.8812K-02
0.8120K-08
0.2475E-03
0.8554K-04
0.8159K-04
0.1179K-04
0.4082E-05
0.9982K-06—0.2150K-06
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table. The values given by Nigam ef a/. for their f"'
= Di(2, 1, —P) which were obtained from Bethe
(1953) agree exactly with ours; their table of f&'&

2 Dp(1, 1, —6') = 2 exp (—6') contains 3 mis-

takes.

oa(&, ~a, -%' ~

only a first-order expansion is needed. Thus we find

r (2~P...) =

4y—ln
Xc~X

vdsJp(e~s)e "
~

'
p

—ln—,./4 1.316'
0 x,B~ 4

0.299''+ 2xnP m — 2 +—
(9.88)

%e may set e-'1'/4 equal to 1, and for 8& of the order of 1
or less, also Jp(pivot). It is easy to see from (9.88) without,

detailed evaluati. on that the correction is very small com-
pared to the value 2K of expression (9.30) for 8p ——0.

For large g~, we can use the method of Sec. IV to calcu-
late an asymptotic expression for (9.33), assuming that pn is
large enough that the shift of path is justifiable. Using (4.5)
and (4.6), we find

2c x,o.P m.

+ (21I Fred) 2 1/2 3 y

Ã N
(9.84)

which will just cancel the leading terms in the asymptotic
expansions of D&(l, l, —8&) and Dp(-,',1, —8'pi) in (9.80)
(assuming we can take X = 1 for these terms).

For the projected-angle distribution, we can also show

that the correction for small qN is negligible, and that
asymptotically we have

-2
0

I

' 4,5L 2

FIG. 26. The functions Dp(pP, ~~, —pp2), Dp(Pp, ~~, —pp2)

Dp(8, —,', —q2) against p.

Let us consider the errors made by neglect of the behavior
of Q($) —Qp at small $ given by (9.15b) and (9.17b). We
note erst that normalization of the distribution functions
reiluires by (2.26) the vanishing of Q —Q, for p = 0. Equa-
tions (9.15a) and (9.17a) do not provide this feature, but
(9.15b) and (9.17b) do. Thus, we expect that (9.80) and
(9.81) will fail to be normalized; the fact that K A 1 is an
indication of this.

If we denote the approximate exponent used in (9.27a) by
(Q —Qp).„... we can write the difference between (9.27a)
or (9.80) and the correct result as

which again cancels the leading terms in D&(-,',—',, —

gpss)

and

Dp(l, —'„—q y) in (9.81).
However, even for pi& or q» up to 18 (the range of our

tables), the corrections as estimated directly from (9.84)
and (9.85) will remain smaller than the value of the leading

terms in the DI functions, so no correction of them is
actually called for. If the normalization is to be considered,

however, such a correction will be necessary, for the func-

tions D&(l, l, —P) and Di(-,',-'„—q') as they stand are not
normalizable. It is not dificult to show by direct integration
of the term in ln vPyP/x', B~ that the corrected functions

D„„,(1,1, —8 ) = D (1,1, —6 ) + [1 —Jp (8wvp) j/&

(9.86a)

+ pr/2 — du sin u/u /y, (9.86b)

where s is x,B&~'/y or any value of that order of magnitude,

will represent properly normalized. and adjusted functions

for the respective terms in (9.30) and (9.31).

6(2p.F.~) = vds J,(e~v)
0

&& [exp (Q —Q, ) —exp (Q —Qp) p ].
The difference between the integrands is only appreciable

for $ ~& 1/pr or s ~& pn ——x,B)/ r, anpd pif the "width" x,Bp/'
of the distribution is as sts, ted above less than 1/4 radian,
we have vi ~& 1/12. We assume that for pi & si, the cor-
rection vanishes. It is easily seen that for 0 & g & gl, the
terms beyond the first in the exponent are small enough that

C. Inclusion of Atomic —Electron Scattering,
Mixtures and Energy Loss

The different behavior of g(x) for large x in the
Dalitz formula as compared to that of Moliere makes
the inclusion of the eQ'ects of inelastic scattering and
mixtures somewhat more complicated than the corre-
sponding method of Sec. VII.

The correction is basically to be made on Eq.
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(9.21), by adding the effects of atomic electrons and
of scatterings at different thicknesses and by different
atomic species. Thus we expect to use integrals and
sums like those in (7.4b) for x', and in (7.25) and
(7.27) for x, assuming that t is negligible or at least
constant.

Following the procedure used in Sec. VII, we can
write, for the scattering of fast electrons,

2 2 1+r

0(&) —Q. = ~ &' dt' g; x'.;(t') ln

4 2 2 (el)24
( ) y 1

( ) I
'Ykx' (~)

t

+ —,
' dt' g; x.;{P'(t')[1+n, (t')~] ln ~$

0

+ ~'(t') P'(~') ~(l —5) } . (9.87)

The small quantity f', if it is not entirely negligible,
can generally be taken as constant, although its
variation can be included in (9.87). If it is negligible,
then it becomes legitimate to use (7.4b) or (7.26) for
x', and 7.27 for ln x, but of course, (9.19) must be
used for each x;.

Similarly, the corrections for scattering of heavy
particles can be made by use of (7.81a) when f is
negligible, and by adding —, P times the terms in

(7.81a) with subtraction of ln ygx;/2e'i' in the { },
to (9.21).

D. Application to the Experiments
of Hanson et aI.

As an example of the theory presented in this
article, we give its application to the results of Han-
son, Lanzl, Lyman, and Scott (1951), which were
also treated by Nigam, Sundaresan, and Wu (1959).
It was the discrepancy with the results on beryllium
whose clearing up was taken by Nigam et at. as
experimental validation of their calculations.

Table IX gives results for measurements by Han-
son et al. of spatial-angle electron scattering on two
different foil thicknesses for both beryllium and gold.
The "1/e width" equi„or angle at which the measured
distribution falls to 1/e of its value at 0 = 0, is used
as a measure of scattering.

Hanson et al. also calculate an equivalent 1/e
width 80 from the value of the normalized distribu-
tion, on the assumption that the curve is Gaussian.
We shall show in Sec. XIII (Table XII) that, for the
Moliere theory, 00 is expected to be larger than 0&/, .
%e can deduce from that section the following
results:

e|(, ——X.(1.0078 —1.88)'

00 ——X.(1.012B —0.64)

The expected differences between these values are
given in the table for the Moliere calculations and
show greater differences than found experimentally,
probably because the unmeasured "tail" of the
distribution affects 00 but not 8&i,. The irregular
experimental differences between the two angles
may, in fact, be a measure of the (unstated) experi-
mental errors. No correction was made for the Gnite
angular divergence of the incident beam; such a cor-
rection would reduce the values given by 1 or 2%,
which is less than the other errors.

If we first consider the two thicker foils, we see the
results quoted by Nigam et at. (our numbers are just
slightly different than theirs), namely (1) that the
Moliere results for 8&/, 6t the Au data and are too
large, beyond experimental error, for Be; (2) the use
of the Thomas —Fermi value p = 1.12 [see (6.65a)] in
the new theory gives results too large for both sub-
stances; and (8) the use of p = 1.80 reduces results
for both elements to a good fit. However, these
results do not hold for the thinner foils. Although the
accuracy is presumably greater for the thicker foils,
the data does not appear conclusive. However, we
are not attempting in this article to survey the experi-
mental results and only wish to point out the need
for more comparisons between theory and experi-
meIlt.

One important fact must be noted about the
calculations in Table IX.The correction terms to the
Moliere expansions are negligible for Be; the only
modification introduced by Nigam et a/. is in the use
of g„ in place of Moliere's x . However, the correction
terms are important for Au, and account for the large
value of 4.05' for 01', when p = 1.12. Thus for the
choice p = 1.80 two corrections for Au cancel each
other, and the one important correction for Be
allows a fit to be made for this case (considering only
the thicker foils for each element).

E. Use of More General Screening Functions

Nigam et at. assert that the eGect of using a po-
tential of a different form than (6.5) can be included,
to the accuracy of their calculations, by merely
choosing y properly in (6.5). However, different
functional forms than (6.5) can surely make a con-
siderable difference.

An illustration of the difference that can be made
at the smallest angles, where, of course, the screening
eGect is the largest, is given below in Sec. XI, where
a comparison is made between the single-exponential
form (6.5) and the sum of three exponentials used by
Moliere (1947) and by Rozental (1985).

Mitra (1961) following Vachaspati (1954) and



WILLIAM T. SCOTT

Tznz, z EX. Multiple scattering of electrons on beryllium and gold [Hanson et aL (1951)].

Be, Z=4, A =9.02,
o. = 0.0268

Au, Z =79, A =197,
n = 0.576

Experiment:
pt) g/cm
Ek;, MeV
x„degree
gp, radian
~1/e
Op

Moliere Theory.
' x.'/xo'

Qp
@=1 ~B

~I/s
ep

Nigam et at. Theory.
y,aP2x
K —1
L

'
(x '/xs')

y = 1.12 Qp

, OIts
'
(x '/x, ')

p = 1.80 Qp

, 01ie

0.257
15.47
1.074'
4.20 X 1O-4
8.06'
8.01'

0.4918
15.24
1.506'
4.25 X 10 4

4.25'
4.88'

1760
9.59
8.10'
8.28'

1.183
8890
10.80
4.58'
4.70'

—1
1892
9.80
8.04'

—1
616
8.89
2.87'

0.00172 0.00241
0.82 X 10 3 1.45 X 10 3

0.96 X 10-4 1.88 X 10-4
&5X10 8

0.88 X 10 4

8060
10.19
4.50'

1.8 X 10 4

1184
9.14
4.21

0.01866
15.69
1.087'
1.117 X
2.58'
2.55'

0.08728
15.67
1.589'

10 3 1.119 X 10 3

8.76'
8, 78'

122
6.58
2.49'
2.65'

2.885
242
7.88
8.78'
4.01'

229
7.26
2.68'

74.8
5.94
2.87'

0.0848 0.0486
2.5 X 10 3 4.6 X 10 3

2.52 X 1O-4 5.08 X 10-4
&8X10 6

4, S X 10-3
457
8.05
4.05'

7.8 X 10 3

177
6.96
8.71'

Lewis (1956) has given the results of a calculation of
Dalitz' type for a screening potential which is the
sum of three exponentials. This author, however,
only evaluated the scattering cross section at 90' for
four special cases, and did not present the results in
a form easily amenable to multiple scattering calcu-
lations. Use of these results with the methods of this
section will be necessary if the assertion of Nigam
et cl. just referred to is to be corroborated or modified.

Other corrections which have not yet been in-
cluded are those arising from higher terms in the
expansion of Q(g) —Qs as given in Sec. VII and those
arising from inverse powers of 8 beyond the second
in the Moliere development.

X. MULTIPLE AND PLURAL SCATTERING
IN VERY THIN LAYERS

The Moliere expansion is not valid for small B,
i.e., for small 0,. Eeil, Zeitler, and Zinn (1960) have
Inade an alternate, numerical calculation for 0.2
~&. Qp ~& 20, which we report in this section. We note
first that in accordance with (9.21) and the knowl-

edge that values of fx, up to about one are needed,
the last two terms of (9.21) (without P) are negligible
when x'. is very small. Thus, the Moliere expression
which is derivable from (6.63), modified to read

may be used, along with the use of (1 + f') x'. in place
of y', . With this assumption, further terms in the
expansion of 0 —Qp may be found, for we will have
as in (8.1),

n —n. = g[Px.'K, (~x.') —1]
where we have

(10.2a)

(10.2b)

(10.2c)

F(m, r'), )AdA = r'),dA sdsF(s)"J, (As) . (10.3)

We follow Eeil et al'. by using the normalization

F(mP, )AdA = 1,
and the transform F(s) for 0,' = 1 is given by

F(s) = exp t'sZ~(s) —1] .

As shown in Sec. IX, X on the theory of Nigam st al.
is nearly equal to pxp, and less dependent on o. than
as indicated by the Moliere calculation in Sec. VI-F.
Leisegang (1952) found experimentally for thin-foil
scattering that x should be taken close to x, .

For integral values of Qp' = m, say, we can write
the spatial-angle distribution function in a managea-
ble form as follows. We use the Snyder variables 8

and 8., from Eqs. (8.2a) and (8.8), writing
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The device used by Keil et a/. , who follow Leise-
gang but use a modern computing machine, is to
approximate F(s) to within 0.002 for all s by the
formula

b&
——2.10667 c1 ——0.935

b2 = —0.888888 e2 = 5.000 . (10.6b)

This approximation gives the correct values F(0) = 1
and F(~) = e-'.

The m'th power of (10.6) is then written out:

e ™(b,e "'+ 1+ b,e "')"

= e g ( ) ge '"(1+ (ee )"'
= .-" g P ( „I(, ") (,'t.'e '" '", (M.2)

and use is made of the Bessel function integral

I Erdelyi, T.I.T. (1954), [8.2(20)] and Watson (1952),
p. 886, (6)}

sdse "Jo(8s) =, 2 ~2)3/2 a & 0
0 (a 6

=B,(8), a=0
Thus, we have

(10.8)

m rn —k

F(mee )= e "Q Q, . ) ( ) A.'(c,)+ c.k)
k 0 l,=0

X [(c(t + e2ic)' + 0'.]
' '. (10.9)

The term with k = l = 0 gives the contribution of
the unscattered particles, e "(),(8,).

Machine computations were made of the non-
singular part of the distribution G(mg, ), given by

G(m, 8.) = F(mP, ) —e "8.(8,) (10.10)

for integral values of m from 1 to 18, and for m = 20.
The error in these calculations due to the error

remaining in the approximation (10.6) may be esti-
mated by writing

F(s) e '(1+ b,e "'+ b2e "') (10.6a)

with the coeKcients

(10.6) are high by 8.2%, whereas the Moliere ex-
pansion gives results that are 4.8% too low. For 8,) 5 and m = 20, the two methods give very closely
the same results. Since the errors in Moliere's method
decreases as 00' increases, and those of Keil et at, .
increase, we see that 00' = m = 20 is indeed a good
division point between the two methods.

For very small 00', less than 1, Keil et cl. use the
direct sum corresponding t,o (2.84) up to n = 2. For
n = 0 we have, of course, the delta function, and for
n = 1 the single-scattering law; for n = 2, the fold-
ing-integral can be calculated directly, so we have

F(Qtp. ) = e "'
[h, (8,) + QtF, (8,) + —', Q,"F2(y,)]

(10.12)

with

F, (a) = 2/(1+ e')'. (10.18)

)c (8) =
&. 4 &

~ Ie2 (cc'+ 2ce —()) + (1+ e2 )

X (48 +8)
(6 +48 +2)+ (2+8)(48 +8')''
(8 + 48 + 2) —(2+ 8 )(48 + 8')'"

(10.14a)

F.(o) = 3 (1o14b)
Using (10.12), the distribution was calculated for
0,' = 0.2, 0.4 and 0.6.

To estimate the error, we note that the coeKcients
of the F in (10.12) are just the Poisson distribution
coe%cients which sum to unity, and furthermore, if
8, ) 0, F.(8,) & F„(0) & F2(0) = 2/8, so the error
caused by stopping after F2 is

"'
(Q.')"F.(a,) & -', [1 —e

"' (1+Q.'+ -', Q.")]
n 3 A m

c

which is 1.6% for Q,
' = 0.6, 0.58% for Q,

' = 0.4 and
0.18% for Q,' = 0.2.

Keil et cl. also report values of the integral of
F(mP.), namely

6[F(s)]"= mF(s)" 'A[F(s)] G(mP, ) = auG(mP) .
+s

(10.15)

AF(m, 8.) = m s/jsh[F(s)]F(s)™1JO(8,s)
0

& 0.002mF(m —1,a.) . (10.11)
The greatest error, of the order of 4%, occurs for
m = 20 and 8, = 0. Exact numerical integration for
8 = 0 shows that for m = 20 the computations using

The value of 6 for 8, = 0 is not unity because the
unscattered beam is not included. For m between 1
and 4, this fact may be used to estimate m —the
difference in intensity with and without the foil will

give a measure of G(m, 0). A more precise determi-
nation may be made if the distribution of the incident
beam is known, but we shall not pursue the matter
here [see Keil et al. (1960)].



290 WILLIAM T. SCOTT

TanLz X. Values of g(m, g, ) from Keil st aL (1.960). The notation E-2 signifies that a factor 10 is to be appended, etc.

0.0
0.1
0.2
0.4
0.6
0.8
1.0
1.25
1.5
2.0
2.5
3.0

0
6.0
8.0
10
15
20

0.2

0.338
0.336
0.313
0.253
0.186
0.129

0.883K-1
0.550K-1
0.348K-1
0.152E-1
0.741K-2
0.396K-2

0.139K-2
0.291K-3
0.948E-4
0.381K-4

0.4

0.572
0.569
0.531
0.431
0.319
0.224

0.155
0.995K-1
0.655K-1
0.288K-1
0.147K-1
0.800K-2

0.285E-2
0.605K-3
0.195K-3
0.780K-4

0.8808
0.8658
0.8233
0.6833
0.5229
0.3834
0.2770
0.1853
0.1262
0.6276K-1
0.3402K-1
0.1975K-l
0.7733K-2
0.1737K-2
0.5359K-3
0.2040K-3
0.3273K-4
0.8744K-5

0.8137
0.8020
0.7685
0.6573
0.5270
0.4096
0.3158
0.2293
0.1688
0.9574K-1
0.5720K-1
0.3567K-1
0.1531K-1
0.3745K-2
0.1187K-2
0.4531K-3
0.7099K-4
0.1851K-4

0.4114
0.4076
0.3969
0.3601
0.3147
0.2703
0.2311
0. 1900
0. 1566
0.1073
0.7449K-1
0.5229E-1
0.2667K-1
0.7894E-2
0.2723K-2
0.1072K-2
0.1656K-3
0.4146K-4

10

0.8188K-1
0.8179K-1
0.8152K-1
0.8049K-1
0.7892K-1
0.7692K-1

0.7459K-1
0.7130K-1
0.6771K-1
0.6008K-1
0.5234K-1
0.4495K-1

0.3215K-1
0.1536K-1
0.7132K-2
0.3349K-2
0.5964K-3
0.1434K-3

20

0.2911K-1
0.2911K-1
0.2909K-1
0.2901E-1
0.2888K-1
0.2871K-1

0.2849K-1
0, 2814E-1
0.2773E-1
0.2673K-1
0.2551K-1
0.2412K-1

0.2104K-1
0.1473K-1
0.9506K-2
0.5824K-2
0.1559K-2
0.4289K-3

Finally, these authors give the results of averaging that quoted above for 0,' ( 1, for 0, = 1 and 2; the
6(m, 8,) over m: results by his rather rough method are in good a.gree-

ment with those of Keil et at.
g(me, ) = |(m'P. )dm'. (10.16)

m p XI. SCATTERING AT ANGLES NEAR ZERO
Tables I and XI give some of the results of Eeil,

Zeitler and Zinn.
Leisegang (1952) gave preliminary results for
& m ( 10 using the same method as Eeil et ct. ; in

addition he discussed the statistical eGect of ir-
regularities in the thickness of thin films and de-
scribes experiments in which a good fit to the theory
is obtained for the case n = 1.3 when x is neverthe-
less set equal to xo.

Eompaneets (1955) made a calculation similar to

A. Inelastic and Elastic Cross Sections
for Single Scattering

Lenz (1954) has discussed the scattering of
medium-energy electrons at very small angles (10 '
to 10 ' radian), with the inclusion of inelastic as well
as elastic scattering. By medium energy is meant a
range around 100 keV such that relativistic effects
are not important but P is still large enough that n
is small and the first Born approximation is useful.

A
'lannz XI.Values of the integrated distribution G(m, 6,), from Keil eL aL. (1960).Notation

as in Table X.

0.0
0.1
0.2
0
0.6
0.8
1.0
1.25
1.5
2.0
2.5
3.0
4.0
6.0
8.0
10
15
20

0.6321
0.6728
0.6151
0.5701
0.5104
0 4478

0.3892
0.3256
0.2731
0.1956
0.1437
0.1080
0.6483K-1
0.2786K-l
0. 1424K-1
0.8252K-2
0.3031K-2
0. 1538K-2

0.8647
0.8606
0.8488
0, 8062
0.7475
0.6825

0.6179
0.5424
0.4749
0.3642
0.2812
0.2191
0.1374
0.6098E-1
0.3118K-1
0.1788K-1
0.6378K-2
0.3172K-2

0.9817
0.9796
0.9736
0.9509
0.9192
0.8766
0.8317
0.7729
0.7137
0.6007
0.5003
0.4146
0.2840
0.1379
0.7236E-1
0.4134K-1
0.1411K-1
0.6758K-2

10

1.000
0.9995
0.9983
0.9935
0.9855
0.9746
0.9609
0.9404
0.9166
0.8608
0 ' 7977
0.7311
0.5980
0.3752
0.2277
0. 1390
0.4686K-1
0.2062K-1

0.9999
0.9998
0.9993
0.9976
0.9947
0.9907
0.9855
0.9779
0.9680
0.9441
0.9148
0.8806
0.8018
0.6524
0.4593
0.3248
0.1302
0.5643K-1
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The results are of use in electron microscopy and of
interest for the light they shed on the screening
calculations discussed earlier in this article.

The Grst step in Lenz's method is to calculate the
cross-section at zero angle, without depending spe-
cifically on the Thomas —Fermi theory or Moliere's
(1947) or Rozental's (1985) approximations to the
latter [Eqs. (6.18a) and (6.18b)]. We assume that
the electron density is some known function p(r) of
the radial distance r from the nucleus, normalized so
that

4x rdrp r = Z.
0

(11.1)

Then the potential energy of a scattered electron
when it is at radius r will be

Zco" (r/rp) = 4nrrop(r) . (11.8)

If we use (11.2) in the standard Born formula for
elastic scattering

dr sill fdfd&p

X exp [2ik sin (x/2)r cos P]V(r), (11.4)

we find after some reduction the Mott (1980) result
for the elastic scattering differential cross section

4(Z —f*)' 4(Z —f )'"(")=:(2k.
where f, is the scattering factor as used in x-ray
analysis:

( )
[ k (&/2)] (11 6 )2kr sin (x/2)

2 2 CO

V (r) = — r"dr'p(r') —47te' r'dr'p(r')
r 0 r

(11.2)

which corresponds to taking the function &o(r/r, ) of
(6.12) in accordance with the equation

or for the potentials given by (6.18). We find

6=4m rdrpr —= Zr . ,
0

(11.9)

we see by (11.5) that the value of 0,~(0) is determined
by 0:

~,((0) = e'/9a', . (11.10)

Let us consider values of 0 calculated by various
methods. If we use the Thomas —Fermi expression
(6.12), we fmd readily using (11.8)

8 = 6Zro id'(v(t) .
0

(11.11)

The integral may be evaluated numerically from
knowledge of the Thomas —Fermi function co(l). This
function falls off so slowly with increasing f that the
integral must be performed with care. Lenz reports
that an error of 18'P0 is made by stopping the inte-
gration at f' = 100. (This fact alone, which brings
the calculation well into the range of neighboring
atoms, shows that the T—F function is unrealistic
for small-angle scattering. ) Several other calculations
of the same function give quite diA'erent results. The
various results are [using (6.6)]

28.1Zr, = 22.0Z ao (Bethe 1980)

84.5Zro = 27.0Z ao (Bullard and
Massey 1980)

52.5Zro = 41.1Z' ao (Sommerfeld 1982)

51.2Zro = 40.1Z ao (Eoppe 1947)

( 54.82Zro = 42.5Z ao (Lenz 1954)

(11.12)
with the last number evidently the most accurate.

The Moliere approximation (6.18a) gives readily
[cf. Eq. (6.45)]

f, = Z ——,
' (kx)' 4~ r'drp(r) + O(k'x') +

(11.8)
Denoting the mean-square-radius integral by 8,

or in small-angle approximation,

. = 4m r drp(r)
sin j(;xr

0 A;Xr
(11.6b)

0.10 0.55 0.35
86 1.44 0.09

= 25.6Zr() ——20.1Z e0 (11.18a)

p(r) = (Zy, '/4~ror)e "" "' (11.7)

On the assumption that p(r) falls off sufficiently

rapidly with distance the integrand of (11.6b) can
be expanded in powers of kx and the integral evalu-
ated termwise. This will be valid, for example, for the
potential of (6.5), corresponding to

(11.14)

a result which is most sensitive to the value of the
smallest exponent in (6.18a). Rozental's exponential
fit (6.18b) yields

0.164 0.581 0.255
4.856 0.947 0.246

29.2Zr0 = 22.9Z C0 .



292 WILLIAM T. SCOTT

Lenz (1954) point, s out that for substances without
paramagnetism or appreciable interaction between
neighboring atoms —i.e., for noble gases —a value of
0 which we denote by 0, can be related to the dia-
magnetic suscepibility.

In fact, the elementary classical theory of diamag-
netism yields, for the suscepibility in Gaussian units,

x ., = —(Ee'/6m. c )(Q r')., (11.15a)

where X is the number of atoms per unit volume and
(gr';)..is exactly the quantity 8,. From this result,
we get in terms of atomic weight A and density d

+. = —1 267 X 10 (Ay .p/d)ap . (11.15b)

For carbon, Z = 6, we find (graphite form, values in
Hodgman 1 957)ts8

result of using the analytic functions of Fock and
Petrashen (1985).

It will be noticed that the chief difference between
these results of Nigam et cl. and those given in
(11.18) and (11.14) arises from the terms with the
smallest exponents, which represent the detail of
screening omitted by Nigam ef, cl., and most relevant;
to the zero-angle intensity.

Although the Hartree calculations are probably the
most accurate„and the unmodified Thomas —Fermi,
the least, the results in condensed materials cannot
be taken with much certainty because of the effects
of neighboring atoms and also of crystal structure.

Lenz suggests using the Wentzel-potential form
but letting the radius rp/p be an arbitrary value 8 to
be determined by experiment. Thus, we set

e = 6'';6, = 28.4Zrp ——22.2Z Yp,' —170 C

= 16.6Zr, = 18.0Z 'ap ' 20 C . (11.16) and using (6.8)

(11.21)

For beryllium, argon, and neon we obtain

Be:
Ar:

Ne:

0, = 5.0Zrp = 8.9Z' 'ap, ' Z = 4, 20 C,
e. = 1.11Zr. = 8.7Z''c. ; Z = 18,
e. = 5.0Zr,'= 8.9Z' 'o. ; Z = 10. (11.17)

Gombas (1956) has given a useful summary of
material on diamagnetic susceptibilities.

The most reliable results are those calculated from
the Hartree or Hartree —Fock atomic distributions.
For carbon, using the 8p ground state (Torrance,
1984) one obtains

8 = 1 .6Zro = 9.10Z ao; Z = 6. (11.18)

The formula deduced by Fleischmann (1960) for
beryllium, Eq. (6.14), above, yields

(k x'+ 8 ')' (11.22)

4Z'
2 kp 2 ~—p p for nonrelativistic electronsapkg R

(11.22a)

4~'Z'm'
ge e al. (11.22b

This result can be seen by (11.5) to correspond to
setting

(kgb)' + 1 (k'x'8/6Z) + 1
'

From (11.22), we can calculate the total elastic cross
section

on ——16.16Zrp ——12.66Z ap,. Z = 4 . (11.19)
8+Z' xdx 4m Z'8'

arel, tot 2 (k2 2 + g-2)2 2k2 (11.24)

The single-scattering formula resulting from the
Wentzel potential (6.5), namely, (6.11) together
with (6.9a), gives

0~ ——6Zrp/IJ, = (4.70/p')Z' 'gp . (11.20)

The same result is of course, obtained for small 0.

from the Dalitz formula (6.15). The use of p = 1.80
by Nigam, Sundaresan, and Wu (1959) yields a value
1.45 Z'~'c,', considerably below the already low values
given by the diamagnetic susceptibility, and the
same consequence ensues if Moliere's x is used in
(6.68) along with (6.62), except for the smallest
values of n. Even worse results (1.05 Z' Pap) come
from the value p, = 2.12, quoted by Nigam et cl. as a

Inelastic scattering may be included in the cross
section by introducing the inelastic scattering func-
tion 8 in the Morse [(1982); Mott and Massey
(1949)] formula for the combined cross section

~(x) = ~
k

~ [(Z —f.)'+ Sj (1125)
Op kx'

For inelastic scattering, Lenz refers to work of
Koppe (1947) which corrected earlier work of Heisen-
berg (1981)and Bewilogua (1981).The latter authors
used a T—F model and obtained the inelastic scatter-
ing actor 8, for small kx, as proportional to kx,
whereas Koppe (as corrected himself by Lenz),
showed that

rs'Lenz (1954) has a mistakenly low value for carbon
because of omission of the factor A. S= —, ek'x' as kx 0. (ii.26)
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Since for the smallest angles the usual inelastic
scattering results (See. VI-H) do not give the correct
limit (11.23), Lenz proposes to use the classical-
physies formula of Raman (1928) and Compton
(1930) which does satisfy (11.23):

S = Z —f',/Z. (11.27)

A more exact result would be to replace the second
term by a sum over each electron P;f,';, but the
additional correction would not be large and Lenz
has not made it. Using (11.23), we have

1
[(k'x'6/6Z + 1)]'

As indicated just below Eq. (6.66), k'x' which
measures the square of the momentum transfer,
should be replaced, strictly, by k'x' + (e/fw)', where
~ is the energy loss on scattering. The chief result of
such a modification will be to change the lower limit
for (11.27) from Icy, = 0 to kx;. = e&/hv where e& is
of the order of the mean ionization energy I of the
atomic species in question [Eoppe (1947) takes
ci = I/O]. The lower limit enters logarithmieally into
the total inelastic scattering cross section, but eGects
multiple scattering only for angles less than 10 '
radian.

In fact, we have y;. I/2pv = I/4E, where E
is the energy, assumed nonrelativistic, of the scat-
tered particle. Taking I = 12.5Z eV as a reasonable
approximation for estimation purposes, we see that
only for high-Z materials and energies almost too
low for the first Born approximation to be valid, will
we have x,.as large as 5 X 10 '. The factor k'x' 8/6Z
= k'x'R' in (11.22) or (11.23) which gets small com-
pared to one when screening is important, is for x;.,
if we use (11.20) and (6.9) and I = 12.52 eV

k x;.R = x;./xo ——2.9 X 10'Z' '/m, c E, (11.29)

where m, c2 and E are in electron volts. This number
is also less than 10 ', and generally much less.

The total inelastic cross section can be calculated
from the term in 8 in (11.25). We obtain, using the
smallness of k2y;.82,

replace 6 by 12, changes (11.30) by a factor 2 under
the logarithm and changes the total elastic cross
section by a factor 7/6. Thus, our results are not
very sensitive to the exact choice of 8.

The ratio of inelastic to elastic scattering at any
angle x is readily found to be from (11.23) and
(11.26)

7g7

d(+PC)

Fry. 27. The dif-
ferential cross-section
(here denoted by
d(X/Xo)/do) for the
elastic and inelastic
scattering of 50 keV
electrons on 10 6

g/cm2 of carbon. The
Hartree distribution
was used for the
atomic electrons. The
dashed line repre-
sents the sum of
elastic and inelastic
cross-sections [Taken
from Lenz (1954)].
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The ratio of the total cross section is, from (11.24)
and (11.30),

8 Z+f. 1 2
(Z —f.)' Z(Z —f,) Z k'x'R'/ '

(11.31)
so that for small angles, within the screening region,
the inelastic scattering may become quite a good
deal larger than the elastic, while for larger angles it
rapidly goes to 1/Z of the elastic value as discussed
in section VI-F (see Fig. 27)

4m 0 6Ze' 8~ZR
spinel, tot 2q 2 In y 2 2 2~ 2 ln ~ xmin p3CPk L +min ~QL

— '"'"' = ——In O'X'„; g',
0 el, tot

(11.32)

(11.30)

which can readily be generalized for relativistic
scattering. Lenz points out that a modification of f
and correspondingly of 8 which gives the same cor-
rect behavior for small kx, and fits the case of hydro-
gen more exactly, namely to use the fourth instead
of the second power of the bracket in (11.28) and to

which varies primarily with Z and only in a slow
fashion with energy. Figure 28, taken from Lenz
(1954) shows this ratio for 50 keV electrons as a
function of Z, using R = QQZ /' and taking values
of I from the literature.

Biberman, Vtorov, Eovner, Sushkin, and Yavor-
skii (1949) have performed. an experiment with a
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chromium foil in an electron microscope, under condi-
tions for which 00 ——0.38 and the angular range
studied was from 3 )( 10-' to 2 &( 10-'. Figure 29
shows the results of their experiment for 60 keV
electrons, the elastic scattering distribution using

2~xdxI]'(x, ~) = 2x'.xdx

1 XpX (,+,), + Z + 1,(,~,), , (11.88b)

where x'. is the value given in (7.4c) for electrons.
Thus we seek

Q(f) —Qp = 2x. xdx[~p(kx) —1]

$0

0,1

Fro. 28. The ratio
n of the total inelastic
scattering cross-sec-
tion to the elastic for
50 keV electrons,
plotted logarithmi-
cally as a function
of Z, using Eq.
(11.30) with values
of the ionization po-
tential I taken from
the literature [Taken
from Lenz (1954)].

(, +,„)' Z+1, (, +,„)
The first term, as in Eq. (8.1), gives (x'./x'„)[(x„
X K(gx„) —1]; the second can be evaluated in

terms of the integral

1 1 1
dx[xJp ( s)x—1]

0 x x 1 x 1

= [——', sK&(s) + —,
' —Kp(8) —ln sy/2] =—L(s),

(11.85)
so that

10 ~ Z 100

(11.22), the total including the term with 8, and the
calculations of Bullard and Massey (1980). The
Hartree distribution for Cr++ [Mooney (1989)] was
integrated to give 0 = 20,0a', = 6.9GZ'~'a,'. The
experiments clearly show the inhuence of inelastic
scattering. The discrepancy showing in Fig. 29 be-
tween theory and experiment may be due to interfer-
ence effects, which for body-centered Cr of lattice
constant 2.88 A with 60 keV electrons should show a
peak at 0.024 radians, broadened if the crystallites
are quite small. The discrepancy may, of course, be
due to the oversimplification of the theory. [Lenz
also suggests that an experiment of Leisegang (1952),
which shows a discrepancy with his theory, indicates
an interference effect, this time on gold of 150 A

thickness, with 68 keV electrons],

B. Multiple Scattering

In view of the discussion above, we need to calcu-
late Q($) —Qp for the cross section

4Z ZB
(k' 'B'+ 1)'

(kx)' (k x'B + 1)'

4Z (Z+ 1)B' 2B
azp (k'x'B' + 1)' k'x'(k'x'B' + 1)'

(11.88a)

or, using x„= 1/kB, we have

f.(0.) = «»p(&.s)

X exp IQp[sK, (s) —1 + 4(Z+ 1) 'I (s)]J .

(11.86)

Fzo. 29. Compari-
son of experiments
of Biberman et cl.
(1949) with theory
(see text). Curve 1,
elastic diQ'erential
cross-section; Curve
2, sum of elastic and
inelastic cross-sec-
tions [Lenz (1954);
Curve 3, earlier cal-
culations of Bullard
and Massey (1930)
using the T—If' model.
Open circles, experi-
ment. The symbol cH
signifies our a0 [Tak-
en from Lenz (1954)].

'o[~~

1g

L

fg 2 zoo~ +~ze~

In this formula, we have used

2 2 2
Xc 2I 2g2 Xck

6Z2 Xc

4z.Z' '(~ + l)iVpfd(0. 885)'
A p'm', v' (11.87a)

4x'.x',
"

xdxP p Rx) —I] 4(x'/x,')
Z+ 1 ~ x'(x'+ x;)' Z+ 1

X [—z $x K(4p) + z
—Kp(&xp) —]&& ($x v/2)]

4x.—=
(Z ~ 1)

p L((x,)

Using 8 = Px„and 0, = 0/x„as in Sec. VIII, we have



SMALL-ANGLE MULTIPLE SCATTERING 295

which differs from I.enz's parameter p by the factor
(Z+ 1)/Z:

Qo = pl~, (Z + 1)/Z . (11.87b)

Lenz has evaluated (11.86) numerically. The loga-
rithmic term in L(8) prevents rapid convergence of
the integral, so he has calculated numerically the
value of

Finally, I enz takes up the case of an incident beam
of 6nite width, either Gaussian or square, and dis-
cusses the use of measurements of a(0) and the width
of the initial beam to obtain values for p and 8,
but we shall not discuss these results here.

Sd8Jo (8,8) [exp I Qc [8K& (8) —1 + 4 (Z + 1) 'I~ (8)] j

—exp IQ,[—(Z —1) (Z + 1) ' —4(Z + 1)
'

X» sy/2]}],
and then has established the value of the second term
analytically by showing that

seg (g )
1-400/(8+1)

—2+4 Qo /(X+I )

Fxo. 31. Multiple
scattering distribu-
tion f(8) for chro-
mium (Z = 24) cal-
culated by Lenz for
thickness correspon-
ding to six values of
his parameter p(see
text). The angle 8p is
g/ld. tTaken from
I.ens (1954)].

10

Fro. 30. Multiple
scattering distribu-
tion f{8) for carbon
(Z = 6) calculated by
Lenz for thicknesses
corresponding to six
values of his parame™
ter y (see text). The
angle 6p is y/R
fTaken from Lens
(1954)j.

S

To show the deviation from a Gaussian distri-
bution, I enz gives the curves we have reproduced in

Fig. 33 showing his distribution and a Gaussian one
of the same maximum and same area for p = 16 and
Z=6.

{using properties of the hypergeometric function; cf.
Erdelyi (1954) T.I.T., [8.6(7)} and H. T. F.
[2.1.8(14)}}.

Figures 80-82 give Lenz's results for f,(8,) for
carbon (Z = 6), chromium (Z = 24) and gold (Z
= 79). The results for gold, for p = 16 or Qs ——16.2,
agree as closely as the figure can be read with the
calculation of I&eil et aL, (Sec. X.); for this value of Z
the inelastic scattering is negligible.

7g 1

XII. ASYMPTOTIC FORMULAS

Using the methods of Sec. IV on the calculations
of Secs. VII, VIII, and IX, we can arrive at asymp-
totic formulas by a method independent of the
Moliere expansion. The relation between the formu-
las found by this method and by the Moliere method
will shed some added light on the nature of the latter
expansion.

The Moliere formula for Q —Qc and the various
corrections derived in sec. VII, the Snyder formula
using SKl(8) —1 of sec. VIII, and the Nigam,
Sundaresan, and Wu formula (9.21) can, with the
exception of the P and ln $ terms of the last-named, "
all be written in the general form:

Q QQ Qp[C/8 111 C/8 + C28 ill C2S + Css ln' Css

+ CsS lnCsS+ ' ] (12.1)

where we use the variable s of Sec. VIII. The term
with t,2 comes in only with the correction formula
(7.22); that with cs arises if we carry the expansion
of 8K~(s) —1 far enough. In fact, we have for the
Moliere expansion, by (7.15) as well as for the
Snyder expression in (8.1), and also for Eq. (9.21)
by choosing s properly,

c, = -', ; C, = y/2e' ', (12.2)

I9 The asymptotic behavior resulting from the p and ln p
terms was discussed in Sec. IX-8 above.
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s = $X

Moliere, Eq. (7.15) and Snyder, Eq. (8.1);
) /([+r)

(4/e)
r/s(~+r)

Xigam et a/, Eq. (9.21);
2 2

1). = x./x. ,

Moliere and Snyder, Eq. (7.88);
(1 + 1.)

2
( /4)(/((+f) —/s( +(i')

Xigam et a/, Eq. (9.28)

~ . (12.8)

The final result is, in terms of 8. = 8$/s,

4c& 64c& 2304cs 128cs

8, 8, 8, 8,
2

X (in (2C'/8. ) + P(2)] + 0o
0,

X I:1 (2C/8. ) + O(2)l+

2304
X I: s»& (4C)Cs/8) + 4(3)]+ 8s' '

Z-79'(Au)

70

7g 2

Fzo. 32. Multiple
scattering distribu-
tion f(c) for gold (Z= 79) calculated by
Lenz for thickness
corresponding to six
values of his parame-
ter p (see text). The
angle 80 is xjR.
[Taken from Lenz
( 1.954)].

drKp(r8)r" ln Cr = ln C +
BV

drK[)(78)r"

drKO(r8)r" ln Cr ln C'r = ln C +
V

X ln C' + drKO(r8)r"
Bv 0

(12.6)

For the Snyder expression, we find froru. the
expansion of Ki IWatson (19M), p. 80; Erdelyi,
H.T.F. (1953) [7.2(12) and (37)]I

c, = 1/16; Cs ——y/2e; cs ——— 0 )
Snyder. (12.4)

c, = 1/384; C, = p/2e' '
Let us now set s = i r, expand exp (0 —

1)(&) up to
powers of 7-', collect the real parts after multiplying
by i as in (4.4), and integrate. In addition. to formulas
(4.5) and (4.6), we need the following generaliza-
tions:

2

ln 2C2 0,

+ 211 (2C'/8. ) + a(3))I1 (2C/8. ) + a(3)l
3 3 2

+ -,'4'(3)) + . —
2 + [[n (2 c/ )8

+ 4 (3))'+ 2 4'(3)l +. (12.7)

It is evident that whenever terms in 0, ' are im-
portant, (and the neglect of 8," is still justifiable)
and when Qo ) 20, the terms with Qo 0, ' can be
neglected compared to those with Qo 0 . Similarly,
terms in Qo 0, ' and Qo 0, ' may reasonably be omitted
fi'om (12.7). It is interesting to note that if (12.3) and
(12.4) are used, the first three terms are just the
first three terms in the expansion of 20, (8', + 1) ',
which is the single-scattering law in terms of 0,.
Neglect of terms beyond 2QO 0, ' amounts to neglect
of the inQuence of screening in the asymptotic region
for that part of the entire asymptotic expansion that
represents single scattering.

It is, in fact, easily seen that if we restrict the
asymptotic expansion to terms of the form 8, -(Q()8, ')"
only the coefficients c, and C& of (12.1) will enter.

FIG. 33. Curves
showing Lenz's cal-
culation for the mul-
tiple scattering for
carbon (S = 6) with
p = 16, ("Mehrfach-
streuverteilung") and
a Gaussian distribu-
tion of the same max-
imum and same area
("Gaussverteilung").
The difference be-
tween the two curves
is greater for larger
Z. [Taken from Lenz
(1954)].

This is a justification for using only the first term of
(12.1) in the Moliere expansion and neglecting the
various correction terms in Eqs. (7.19) to (7.22).
However, for small values of Qo the additional terms
may become important.
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where we have used P(n) = —ln v + 1 + s +
+ 1/n a,nd P'(n) = 7r'/6 —1 —1/2 —. —1/&'.

By use of (4.1'7)—(4.19), we have for the projected
distribution-"

2

f, (y, ) = —,' +,' [ln 2y. —19/12]

, '
[(ln 2@, 39/20)' + w'/12 —5869!8600] .

e

(12.9)

In similar fashion, we can find asymptotic formu-
las for the functions P„(n„Qpo) used ln Sec. VIII.
%e obtain

2 3

2 p ( )
2Qoo 16Qoo

(1 )
144Qoo

ne Ae Ae

X [(ln n, ——,') —49/72] + (12.10a)

8~oo 14&~oo
2~P, (n„Qop) = —,— . (ln n, —-', )

ae Ae

2304@'..
I[ln n 19/12] 205/288}

86Q op 1152Qoo

(12.10b)

X (ln n, —19/12) +, (12.10c)

2m'Pp(n„Qpp) = 192Qpp/n' + ' ' ' (12.10d)

Now let us find the corresponding results by use
of the Moliere expansion. By (7.46), (9.82c), (9.82e),
(A.30) and (A.82), we have, neglecting the e 0' term,

If we use (12.2) for c, and (;&, we can write to the
approximation given above

2s.F, (0.) = 4 + p [ln0, —1]
200 160o-
0, 0,

+, '
[(ln 8, —-';)' —49/72], (12.8)

2 1 4 18
2sF,.o(tl, f) = ~ . + o + s +

2 8
p [4'(2)8

+ ', [ll (8) —ln0] + + . (1211)36

Using (8.8) and remembering that F,.p(&)~d8
= F,(0,)0,d0„we have, after collecting terms:

2sF, (0,) = 2sF,.p(p), t) /Qo&

[lt (2) —ln 0, + rs ln QpB —
2 8]2~0 16~o

e e

144m'. B
g (3) —ln0, —-', lnQo&]+

(12.12)

If we use (7.89) for 8, we obtain agreement with

(12.8) for the first two terms. It is clear that only

by use of F'"(0) in Moliere's expansion, could we

obtain agreement between the 8, ' terms. Exactly the
same relationship can be shown for the projected
scattering.

It will be noted particularly that contributions
from both F"'(t)) and F&'&(0) appear in the 0, ' term.
In fact, the former term contributes the —', B term
which is nearly canceled by -', ln QDB. Thus, for large

angles, we see that we need the first term of F&'~ as
soon as we need the second term of J'&"—i.e., as
soon. as the single-scattering result represented by
the first term of F"' becomes inadequate.

The formulas of Appendix III can be used of

course, to furnish the asymptotic behavior of the
correction terms introduced in Sec. Ix.

Bethe (1958) has given an extensive discussion of

asymptotic formulas for the Moliere calculation,

using among other methods, one that is essentially
that of our Sec. IV. He suggests that an asymptotic
formula of good convergence can be obtained for
R-', the reciprocal of the ratio of actual scattering to
Rutherford scattering. Using (12.11), we have

2/6'—1

2 8 36 16 , 144, +, +, + ~ p (ln y8 —ss) +, (ln y0 —ll/6) +.. .

4 2 2 12 41+ (» v& —$) + 4
—1+ — ([n v0 —-') +B 8 8

so The formula for W(y, ), which is ~~f,(y, ), is given in Snyder
and Scott (1949) with numerical errors. The (correct) square
bracket can be written

[(in q, + 0.6159)P —8.7456 (ln y. + 0.6159) + 2.88841 .

(12.18a)

(Bethe does not include the term —8(ln y0 —-s)/B0'
and replaces ln y —8/2 by its approximate value

ln 0.4). If we write this result in terms of 0, we

have
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2

= 1 —,'
(ln 8, —1) + ', (B+ 16 —4lne, ).

S s

(12.18b)
On the other hand, if we use (12.8), we find

8 =1 —,(lng, —1)
800
0,

2+,' (—8 ln' e. + 64 ln 8, —15) + (12.14a)
s

1 — 2 1 + —(ln y8 —-')
B

2 12 4 41
B B

—1+ ——(ln y6 ——',) + B'
48 8 3 2+, (ln y8 —g) —,(ln y6 —-,') +

(12.14b)

It is clear from the comments above that (12.14}is
in general more accurate than (12.18).

Bethe has given an interesting formula for g
itself, namely

(12.15a)
where

2
—I/2

y, = y 1 + —lln qa ——,
' + ln (1 —8/e') j

(12.15b)

The angle 0& is a new variable in place of 8, so chosen
that the contribution of F'2i(8) is negligible. Its use
corresponds to a certain choice of the variable a
used in Eq. (7.51).

Butler (1950) has another method of calculating
asymptotic expansions (see the brief description in

Section XV). This method gives essentially the
Snyder result (12.9), but with a choice of a certain
arbitrary constant in a way that Butler considers
unsatlsf act 01 y.

The other methods of calculation discussed in Sec.
XV also have a bearing on asymptotic results. In
particular, the calculation of Spencer and Blanchard
(1954) shows how to take into account deviations at
intermediate angles from the small angle approxima-
tion, and puts a limit on the extent to which the
type of analysis used in this section should be pushed.

XIII. MEAN-VALUE CALCULATIONS

For many experimental purposes, some type of
mean value that characterizes a scattering distri-
bution is determined, rather than a histogram or
other plot of the distribution itself. In this section,
we calculate several types of mean value for small-
angle multiple scattering. We shall focus attention

on mean values for the Moliere theory, and then
specify how they may be determined when, for
llistallce, the correct1ons of Nlgam ct Gl. (1959) must
be taken into account.

By "mean values, "we refer to any of the following:
the vth moment or mean value of the sth power of
0 or @; cutoff and "shaveoff" moments for truncated
distributions; the mean value of cos (,g or Jp((yg),
where P& is a fixed number; the 1/2 or 1/e widths;
the height of, or curvature at, the maximum; or the
median value of 8 or p. We shall also include two
measures of the "tail" of the distribution, namely
the angles at which the function or its area out to ~
has fallen to 1%.

A. Moment Calculations

It, is not hard to show from (2.4b} that (9"), a,nd
{p"}.„are related by the formula

(18.1)

for those values of v for which both moments exist.
Thus, it is only necessary to calculate one set for
the desirable values of v, namely 1/2 and 1. Second
moments do not exist in our approximation since
the long Rutherford scattering tail leads to a diver-
gent integral. (In other words, the actually finite
second moment is quite sensitive to details of the
single-scattering function at large angles. ) Further-
more, fluctuations in experimental estimates of the
mean square are large compared to those for the
first moment [for projected scattering, we refer, of
course, to the "absolute-value" or "arithmetic" first
moment found from f(p, t) rather than the vanishing
first moment for F„(@,t)]. The 1/2-power moment, is
included because of the possibility of redu rin
fluctuations even more by its use.

For the spatial distribution, we can also calculate
the moment for v = —1, which is useful in the "Hat-
chamber" distribution. By "Hat-chamber" distribu-
tion we mean the distribution in one projected angle
Q. when the other, p„, is equal to zero within narrow
limits, p„= 0 & hp„. This function ean be derived
from F(8) by setting 8 = p. = p and renormalizing.
We have, in fact, for the Hat-chamber distribution
function fgo($),

(18.2)

(18.8)
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(Note that, (0 ')., generally exists, but that (@ '),„
generally does not. ) We also find

(13.4)

Because of their ~videspread use in nuclear emulsion
studies, we shall emphasize projected moments. Us-
ing (9.31) and (9.28), and choosing the reduced angle

q as variable [(13.1) holds, of course, when reduced
angles are used on both sides[, we see that evaluation
of

dye "f,.s(p, t); —1 & v & 2 (13.5)

involves the calculation of the general integral

M„(v,a) = — dye" „drf cos q rie
* '(tf'/4)' '"

BQ p

(13 9)

The value of (tl"),„is given by the same bracket with
I'(v/2 + 1) in front. "It will be noted in either case
that the zeroth moments yield the normalization
condition as expected —in fact, when v ~0, only
Me(v, ', ) of (1-3.8) gives a finite, nonvanishing value.

The results for various values of v can then be
written for both distributions:

(13.10)

2 g i2 0.9818 0.1170
1/2 av = s 0' sv =

II IIs

If we restrict v to the range —1 & v & 0, me may
interchange the order of operations a,nd write

a-I/2

M. (r,a) = ——; dr)e8a" p 4

(~")- (s '")-
0.9064 0.6914

0.2714 0.0774
8 8'

(13.11)

~ ~ ~

(13.12)"

)( dye cos pq .
0

(13.6) ( its) 0.0569 0.1383

Formula, [1.3(1)]of Erdelyi (T.I.T., 1964) gives
(13.13)

p

dye cos qg = „„+&
0 2q I ~

—v) cos 2vm

1/2 V 1
2 )

rt""I'( —i /2)

We have then

(8 ~) = 1 + 0.0182+ 0.3693 + (13 14)

The additional quantities needed in case the correc-
tions of Nigaln et al. are made, can easily be obtained

(13 7) from (13.8).
In Sec. VIII) it was noted that if q Qp ' ' = yB' '

= P/x, is used as a variable, the distribution will be

M, (p,a) =

M, (va) =

Ms(v, a) = s-'"I' (—v/2)

(13.8)

The restrictions on v above-mentioned may now be
relaxed, by the theory of analytic continuation, so
(13.8) is valid for —1 & v & 2.

For the Moliere functions, according to (9.82d)
and (9.32f), we need M~(v, ss) and 3IIs(v, —'s) and find,
ln fact

sr The integrals corresponding to (18.6) for the spatial-angle
case may be found from f Odds(qe)e"+i
= 2"+rr(-', v + 1)/rf+s I'( —-', v)
{Erdelyi, T.I.T. 1954, [8.5(7)]} .

22 Moliere (1948) seems to have a numerical error in his
formula for this result.



300

almost inde eependent of Qp. Thus we cai1 expect that
n vaue, or 8 times its

.11.)
way with 0 In fact )

LLI~1 T. SgpY&

moments would h
the

m y ariation. The sn1allavean v
' '

. esn1 ll

(13 16) s dth
s as given in Table

s us a me le closeness of tlo le actual

which, b

8
y use of (7.40) becon1es

(~)'.B =—B + 1.9636 +- ~ ~ ~ (13.1o)

(y).,B = 1.026 0.819 lo

as e relation be
e useful ran~e

etween (p)..B' '
o uctandlo '

i e
y other

( .16) d i ths own in 13.
i e y nonlinear

35 [Scott (1952in &igs. 34 and
in e strai ht

c (1955)j which w

ables m

relativel
0 with Qp a

partiall ,-d-. -din
term in (13.15 . y aso be

cult t- o-calcu-
catter-

y oes exist
are angle of sc

e we -known
e, an in acc

for aset f
'

d t tn s is proportional to the

!0

!0 io' io'

I2

a culated valFiG. 85. Gale va
q ant&ties related to

eng, gi i Tb o berg, Snyder, and

10

TlllsCO

Teed

B. Measasm. es of the Distrie istribution "T

y er tables for ro'or projected scatt .a ering)
yL% at which thc e
vaue at q Oi,

T~ar, m XII. C
'

s j.n le
a mean-value quantitieser, an Scott (1955)]. Tha Sco e symbols 7s and 8

0
IO io' lo

fitt d l' r quantities relate
t- 1")

52)l

ean values for pro-
in able XIII

sum of the mean sq
1 0 t, that ls to so

s vary in only a slow f
ssian, none of the

7
f/1

1ftp CO

EL/2
TL/
~' .d
ff1

S
SL&2
SL/,S,g
Sp

= (v». 'B
= (v). -'B'

/ 2B
= ymca'B—~ 2B
= (a)..~B
= L/2~B
= 8L/, 2B
= +mea'B
= 8028

1.044
0.418
0.998
0.035
0.253
0.222
0.806
2.601—0.146—0, 170
0.675
0.529

sCalculated for cuor cutoff ratio Icorcu ', = 4.0(see T ba le XIII)

0.809
0.818
1.221
1.831
2.636
0.596
2. 656
2.002
1.799
2.601
1.801
2.614
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given to 2% accuracy for Qc from 600 to 84 000 by ( = $, . By (2.8), (2.17), (2.18), and (2.37), we have
either of the rules

g4g
—1 /2g0. 035 (13.17a)

(cos ac,Q)„ = d4 f(e,&) cos &~4 = fR~)

&p, % 8 = 30.5 + 10.4 logic Qo (13.17b)

A formula which gives the angle y1% „i for which
the area under the tail is 0.01, and is good to a per-
cent or so for 00 from 100 to 100 000, is

p&% &„&B = 7.25 + 0.79 logro Qo,
I /2

= F(ti) = 2s 8dHF(8, t) Jc($,0)

= (Jo($ 0))., = exp [Q($,) —Qo] . (13.21)

Such mean values take more computation from
experimental data than simple averages, and the

f(p)dq = 0.01 . (13.18)

Note that this formula uses the angle times 8' ' in-
stead of the square of this quantity.

C. Cutoff and Shaveof'f Moments

Cutoff moments are defined by truncating the
projected distribution at some angle p&, and re-
normalizing. We write

4f(~), (»»)
where the upper limit @& is chosen to be some multiple
of (p).„... say 3.5 or 4.0 times the latter.

So-called "shaveoff" moments are constructed from
the distribution found by counting all angles greater
than p& as equal to it. Renormalization is not needed.
We have

(N) av co
e b

(W )sv co
e b

DispersionB=6 B=15
8.1
8.5
4.0
4.5
5.0

0.191 0.765
0.868 0.781
0.456 0.808
0.551 0.811
0.602 0.816

(P) av so
a b

0.875
0.609
0.888
1.088
1.298

1.147 0.55
1.214
1.250 0.64
1.264
1.264 0.71

0.52

0.59

(g )av so
c b

DispersionB=6 B=15
8.0 0.598 0.818 1.170 1.281 0.64
8.5 0.678 0.818 1.402 1.257
4.0 0.748 0.818 1.607 1.262 0.75
4.5 0.808 0.818 1.797 1.262 0.79

0.57

0, 64
0.66

TxsLx XIII. CoefFicients in visually-Gtted formulas of form
a + b log10 00 for cutoff and shaveofjI' mean values in projected
scattering, for several values of the ratio k~ = q~/(q)„, ,
or q»/(p) .„and values of the relative dispersion [(q2),...

(p) av col/(w) av co and [4' )av so (p) sv so]/(p) sv so.
crepancies with Table XII are produced by use of different

6tting methods.

av 8,0 ~

4i 00

0 "4f(4) + 4i

deaf(@)

(13 2o)

D. Transform Mean Values

The mean value of cos p&g for the projected distri-
bution and of Js(pie) for the spatial-angle one, where

p„ is an arbitrarily-chosen constant, is readily calcula-
ble, for it is just the transform itself evaluated for

Since both the cutoff and shaveoA' distributions
possess mean squares, calculations of dispersion are
meaningful. Calculations were carried out by numeri-
cal integration of the Moliere functions for smaller
values of g and analytic use of the asymptotic ex-
pressions for large g. They were made for p& from
1,6 to 3.0 and 8 = 6,9,12, and 15, and the results
found as functions of ki = p~/(Q), . Straight-line plots
against log c Qc were easily found, good to 1/2% or
better; the coeKcients of visually-fitted lines are
given in Table XIII along with some values of the
dispersion. It will be noticed that the shaveoff
moments have the expected larger values of disper-
sion. Calculations involving the corrections of Nigam
et at. have not been carried out.

choice of g& to get the optimal dispersion depends on
the resulting determination of X0, so that iteration
is necessary. However, this type of mean depends
largely on the values of f(g) and F(0) for small angles
and hence should be less subject to Auctuation arising
from the rarer large-angle events. In fact, the second
moment (mean of cosine-squared, etc.) can readily
be found and the dispersion calculated. Lipkin,
Rosendorff and Yekutieli (1955) and Rosendorff and
Eisenberg (1958) have utilized this method of ob-
taining information from multiply scattered tracks,
and have shown how to choose $& so as to give almost
the smallest possible dispersion. However, they indi-
cate that the precision so obtained is only a small
amount greater than that obtained by use of the
simpler arithmetic mean value.

E. Other Measures

The approximately Gaussian behavior of the
Moliere distributions can be used helpfully in evalu-
ating the remaining types of mean-value measures.
The 1/2 and 1/e widths can be accurately determined
by interpolating log f„,(q) against p' and log F...(8)
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against H. The median values can be found by using
unnormalized Gaussians which agree with the 1/2 or
1/e widths and with the zero-angle values, or by using
a combination of direct integration and interpolation.

The height of the maximum or zero-angle-value
quantity can be taken directly from the Snyder
tables. It also can be calculated by using the general
mean-value formula (18.9). We have, in fact,

The values of f„",d(0) and F,'!d(0) can be found
by the same technique as just used for f,.~(0) and
F,.„(0); this time we use v = —3 and —4. We find

f...(0) = — dye~' '

1 + —ln —+ —, —ln — +1

48 4 2 48 4

(18.22)

4 1.0547 2.9012
I/2 g p2

(13.80)

—2 F,'.', (0) = 4 1+ ~ W(2) + ~. 9'(8)

so that the calculation of (I/2")..can be used if we re-
mOVe the faetOr Ir/2F( —v) COS —,

' vtr and then Set

p = —1.We find

+ 0'(3)] +
1.8456 5.5848

g2

(13.81)
We finally obtain from (18.23), (18.28), and

(18.30),

2 0.0182 0.869812gg2 (13.23) 1.0365 1.419'
curv (18.82)

(13 24)

A normalized Gaussian with the same F„&(0) would

have a 1/e width given by

8&1 ——[IIF,.d(0)]
' '. (18.25)

For the projected distribution, the relation is

q, = 2/Ir' 'f,.~(0) . (13.26)

%e express the curvature at the Inaximum in
terms of the Gaussian width of a function with the
same relative curvature. If we set

f„q(p) = c exp [—p /q, „„„], (13.27)

and assume a strict equality in the neighborhood of

p =0, wefind

v-- = —2f-~(0)/f"d(0)

and for spatial-angle scattering

(18.28)

and by llsing the same calculation (since JII(0) = 1)
with

4 (1) 4'(2) + 0'(2)
g2

0.4228 1.2465=2 1

and from (18.24), (13.29), and (18.81),

1.4226 0.9321
curv g @2 ~ (18.88)

Extension of the results for height-of-maximum
and curvature-at-maximum to cover the new func-
tions introduced by Nigam et al. is straightforward.
To find corrections to the Moliere values of the 1/2
and 1/e widths and the median, tables of the deriva-
tives and integrals of all the functions have been
prepared. "

F. Formulas

The behavior of squares of mean values as func-
tions of log1p Qp referred to in part A of this section
also holds for the miscellaneous group of mean values.
Table XII gives the coefFicients for a set of quanti-
ties labeled F (for "tangent, "as opposed to "chord")
and 8 (for "spatial" ). Figures 84 and 35 show the
straight lines and calculated points to which they
were 6tted. The table also includes coefFicients for the
cutoff mean and cutoff mean square for projected
scattering with k& ——4.0.

The logarithmic increase of all mean values, along
with the absence of a mean square, is a sign of the

0,'„,.= —2F,.g(0)/F!!g(0) .
23 Available with the tables of D„ functions from the Ameri-

(18.29) CBI1 DOCI11110IltSt1011 1118tltlltC (Cf. fOOtllOtB 17).
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(&P)sv, so

(P)sv, so

Table XIV

= 0.5642'...,

= 0.5614',„,. for 1c& ——4.0,
= 0.5640qr, „,. for k, = 4.0 . (18.84)

shows the agreement among the co-

Txsr E XIV. CoeKcients for formulas of form a + 6 log1p Qp
for s, , sB, calculated by use of (18.34) from the various 7's

Source

Z 1/e
Zp
Z'1/~
Z xned

Z 10

Z m, eo

0.258
0.806
0,051
0.976
3.280
1.326

2.636
2.656
2.642
2.621
2.542
2.595

efBcients of log10 Qp in expressions for q '8 calcu-
lated from the various T's and 8's. It is evident that
except for mean values, which involve the tail end
of the distribution more than do the other quantities,
the effective Gaussian widths agree within 1% for
large Qp, even though they steadily increase. For
small Q0, however, they do not agree well at all. So
we see that Gaussian approximations to the multiple
scattering distributions will be more accurate the
larger is Qp.

In passing, we should note that the mean-square
angle calculated in the usual form of Gaussian ap-
proximation may be simply related to the mean-value
formulas we have given. From Rossi (1952), p. 67 we
find

(0 )..B = 4 ln (188Z ) (18.85)

where the factor 183 depends on the particular
method selected of making a cutoff related to finite
nuclear size. From Birkhoff (1958), p. 116 we have

(y').„B = 2 ln (1.18',/X0) —ln Qo, (18.86)

where the cutoff has been arbitrarily taken at x,.
The various mean values can be evaluated for any

of the track characteristics discussed in Secs. III-C

deviation of the distributions from Gaussian shape,
as indicated above. It is interesting to compare ratios
of the various mean values to each other with the
corresponding ratios in the Gaussian ease. If a
Gaussian distribution for positive y only is written in
the form (18.25), with e = 2/p. „,. IP~', then the
various mean values are given by

+0 —Pl/e Peurv p

PI/2 = 0.8325+eurv p

Pmed = 0 4769+eurv p

and VII-e by using the variable X"'/(y', C~"'B)'~' in
place of y. Since the value of B is not greatly different
for the different quantities, the mean values for each
X&" will be essentially proportional to Ci""~'. The
correlation between adjacent p's, n's, and n's be-
comes evident when we note that (using angular
brackets to refer to any mean value)

(n; + n,„):2(a,):(a; —n;„)2 2 2 5 4 3

46 88 20
(n, + n, +g): 2(n,):(n, —n, „)

(18.87)
If these quantities were uncorrelated, the three
successive squares would be equal; indeed, the g's
are uncorrelated and their C&'s have this property.

More exact relations between various mean values
are derivable from the formulas of Table XII re-
lating the T's to Q0. For instance, for the arithmetic
mean, we have, correcting Q0 by (7.58),

8 1.279 + 0.809 log10 Q0

2 1.185 + 0.809 log» Q0

1.258 + 0.809 log&0 Qo

1.185 + 0.809 log» Q,
' (18.40)

The multipliers of the factors 8/2 and 4 in these two
expressions are close to unity, but slightly larger, by
amounts depending on Qp. For Qp ——10', for instance,
the two fractions are 1.052 and 1.045, respectively,
whereas for Q0 ——10', the values are 1.028 and 1.024.
These numbers may be taken as indications of the
extent to which the Gaussian approximation does not
apply to the correlated events.

XIV. CALCULATIONS OF POLARIZATION EFFECTS

According to Miihlsehlegel and Koppe (1958), the
application of the first Born approximation to the
calculation of the functions f(8) and g(8) in the
matrix A(9,P) of Eq. (5.88) yields the result, valid

T = (X")'../y'. CI' ——1.044

+ 0.809(logio Q0+ 6 logi0 Q0) (18.88)

The ratios of the arithmetic means for the second,
third and fourth differences are important for the
use of these differences in the study of tracks in
nuclear emulsions. We have from Table III for the
squares of the ratios of the mean third and fourth
differences to the mean second difference
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for small angles, that If(0)I' is just the screened
Rutherford cross section (6.10) [using (7.7)]:

In fact it can be shown by straightforward algebra
that the four functions in (5.36) obey the identity

If(0) I' = ('/-») g(0)/0'

and that g(0) is given by

(14.1) (J —sin' 0G)' + sin' 8(D' + E') = J' . (14.5)

From (5.38b) we find, after lengthy ca,lculation

g(0) = —
p [1 —(1 —&')"]f(0) (14 2)

As stated in Sec. V, g(0) vanishes as P —+0 (non-
relativistic limit). The function f(0) itself is just the
first Born amplitude, given for instance by Eq.
(11.4). The results of Dalitz (1951) on the second
Born approximation can be used to obtain better
formulas for f and g, but this has not been done.

Since according to (14.2), f*g is real, D(0) as given
in (5.36) vanishes —Mott polarization disappears at
small angles. We have then from (5.36)

J(0) = If(0)l'+ 0'Ig(0)l'

= I 1 + —,
' 0'[1 —(1 —P')' '] } (y'./m») g (0)/0',

(14.3a)

(14.3b)D(0) = 0,
~(0) = [1 —(1 —~')"l(x'./ »)g(0)/0',

6(0) = —: I:1 —(1 —4"]'(x'./ »)g(0)/0' (14.3d)

(14.3c)

We can now find the Ave transforms given in

(5.46). After multiplying by t, we have

ty(r) = tl(&) + -', tg(~), (14.4a)

J,'(x) = —J,(x);
Jp'(x) + x 'Jp(x) + Jp(x) = 0,
J,(x) + J'. (x) = 2x ' J, (x) = 2x 'Jt(—x) .

It might seem that in small-angle approximation
the O'Ig(0) I' term in (14.3a) could be omitted, and it
is true that this can be done in the lowest nonvanish-
ing approximation for polarization effects. However,
as shown by MGhlschlegel and Eoppe, failure to in-
clude this term leads in the next lowest approxima-
tion to an apparent increase in the degree of polari-
zation on scattering, which is nonphysical and wrong.

tZ($) = 0, (14.4b)

te(&) = —[1 —(1 —P')' ']dQ/dg, (14.4c)

tg(&) = -![1 —(1 —~')"]'[d'0/«'+ ~ 'd11/d8,

(14.4d)

th($) = ——,
' [1 —(1 —P ) ] $ dQ/d$, (14.4e)

where we have used certain properties of Bessel
functions:

lp'P = (lp'P + sin 0D/J)/(1 + lp. P sin 0D/J)

(14.6)
and with (14.3),

(1 —P' P') = (1 —sin 0D'/J )(1 —P P)
X (1+ 1p P sin 0D/J)'. '

(14.7)
When D = 0, we have

1p P' = lp P, P" = P'. (14.8)

so that the degree of polarization I"is the same as P,
and its component in the direction lp is unaltered; P
rotates around lp during a scattering. The identities
(14.5), (14.6) and (14.7) would not be correct if the
sin 0 or 0 were omitted from (14.3a) .

The angle e„between P' and P may be found in the
case D = 0, by calculating P P' = I"P cos 0„ from
(5.38b). We fmd

sin (0„/2) = (g/2J) sin 0 sin n, (14.9a)

where n is the angle between P and Ip ..

Ip'P = Pcos&. (14.10)

Using (14.1) and (14.2) we find in small-angle Born
approximation

0„= [1 —(1 —P') "]0sin ~ (14.9b)

t(a(&) —f) = ~1(&) —~1 + -' tg(5) (1411)

for the rotation of the polarization vector in a single
scattering.

The term ', t g (P) in (14.4-a) leads to the awkward
consequence that jp is infinite [if we use the Moliere
formula, (7.15) for Q(p) in (14.4d)]. This difFiculty,
however, only affects the asymptotic results for large
angles, It arises because polarization effects are
proportionately more affected by the few scatterings
at large angles than is the angular distribution itself.
The failure of 0"(0) to be finite is as we have seen
equivalent to the absence of a 6nite mean square for
F(8), and represents an inadequacy of the small-angle
approximation. Miihlschlegel and Koppe assume that
errors arising from this source will only affect results
for large 0, and that an expansion of the integrand
that gives correct results when the integrand is large
is justified even if it is incorrect for t very near zero.

We write then
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To calculate the polarization after scattering for
an initially longitudinally-polarized beam of elec-
trons, we substitute (14.4) into (5.57)—(5.60) for the
case P, = P.„=0, and P„=P.. The distributions
F and II. then become independent of the angle P.
We also take P equal to zero, so II„= 0—the y-axis
becomes the axis of deflection (otherwise we will have
II.proportional to cos P and II„to sin P with the same
coefficient. )

In the formulas for F, II., and II„we make the
Moliere change of variable [cf. (7.85) and (7.48)]
which gives in place of (14.4c), (14.4d), and (14.4e)
and (14.9) (using primes for derivatives with respect
to g)

«(~) = -[1—(1 —0')'"]x.~"Q'(~) = -~"Q'(~),
(14.12a)

~g(~) = —l [I —(I —e')"]' '.~[Q"( ) + ~ 'Q'(~)]

= —-,'s[Q" (~) + ~ 'Q'(~)], (14.12b)

t~(~) = ——: I:1 —(1 —P')' ']Y~~ 'Q'(~)

(/8~4)Q—'(~) (14.12c)

. The method of Miihlschlegel and Eoppe is to
expand these expressions in powers of s [according
to (14.10)]and then to reduce the integrals by partial
integration. However, these authors proceeded first
without the term -', t g in (14.4a) and (14.11) and then
showed that the results to order s2 were patently in-
correct.

Unfortunately, when they introduced the term
2t g to—make a correction, they did it in a way that
involved a mathematical error. They did not expand
this term in the formula (14.15a) for F, but chose to
express II. and II. in relation to F. This method of
incomplete expansion is not wrong in itself, but as
mentioned below, it involved an integration by parts
for which inaccuracies in the expression for —,t g played
a major role rather than being suppressed as in the
rest of their calculation.

A consistent treatment that avoids this difhculty
involves treating the —,t g term right along with
t(h —g)' which is, of course, of the same order of
magnitude.

When this is done, and (14.12) is used, we find

&[y(~) —y.] = Q(~) —Q. + -', ty(~), (14.12d)

where we have used 8 for the small parameter that
measures the polarization effects:

s = [I —(1 —P')' ']Y~. (14»)

2~F...(at) = gdge" "'[1 ——,
' s(Q" + Q'/g)

+ —,', '(Q" + Q'/~)']J. (e~), (14.16 )

22rF,.a(8,t) = g&g exp [Q(g) —Qo+ 2 ~g(l)]Jo(+l)

(14.15a)

2~11...,(a,o,&) = gd2i exp [Q(g) —Qo —-,'tg(g)

+«()] P ()+-'~ ~ () ()
+" ]~.(~), (14.15b)

22rII. ..a(8, t) = pe exp [Q —Qo ——,
'

&g(q) + «(g)j
0

X [1 —ti(&) + ;P.-'(&)—
+ 2 ~'& (n) + —' ~'~'(V)

—
6 &'c'(n)&(n)] Jo(~n) . (14.15c)

The ratio 8/x2 8 ranges from 0.02 at P = 5 to 0.3
atP = .9 and 1.0 atP = 1.0;x,'8 is, of course, small
in the small-angle approximation.

We also have, from (5.61),

~p(~) = «(~) = -(/4~)Q'(~), (1414a)

&~(~) = l&(n) I[1+&'(n)/2c'(n)]

—[s + 8 /82vP + ] . (14.14b)

We then find, expanding the hyperbolic functions,

2 II. .. (8,0,t) = Po gee" "'[ s' 'Q' ——s' '
0

X (~g Q'Q" + 6 Q")]Ji (+g),

(14.16b)

22.11...~(8,t) = Po qdge" "' I1 + —,
' s (2Q" + Q"

+ Q'/~) g 2
—', a'[42 (Q" + Q'/~)'

+ Q" + Q"/q + 3Q"Q"]I J'0(8g) .
(14.16e)

These formulas can be reduced by several steps of
partial Ditegration, 1f we assume that 0 and Q g ap-
proachOasq ~O, and that@" "o—+0 as'~ ~.This
last is not strictly correct, as discussed in Sec. II, but
the contribution of the term containing e "' that
must be added to give a transform that vanishes
properly at infinity is negligible for any thickness of
material in which multiple-scattering polarization
effects are observable. The vanishing at q = 0 of 0'
and 0"g holds for Moliere's form for 0, and also for
the form of Nigam et a/. if (9.15b) and (9.17b) are
taken into account.

%e find then
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(14.21c)D-DoQi(~)Q (g)

806

a(0)

;„~ec yll, Eqfunction ~
k froln Table

w» given '
ljbe ta e"lna7

ol d (14[see q ~ '

l t dby'useof sul
(9 32)].The»tegra

t ble forlnulas(14 21b) nlay be e+
D functions of 8u~ppendjx III ln
t d by expansion 'be evalua e

17
IX Finally', 0 (0)

f tables (see footnoteinvverse powers of Q nQ use o ta
functions or 0 ~e fin

x " Q /'0)pe& I (~ )[1 (Q +27(.&"o(~ ~)

/2 2o/32) (Q" + 2Q Q /& ++ ('
(14.17.)+'' j 7

3/2D —Do J (y~) + Po&(op~) = P"

t/&~-a.x d
0

J (ol„) (q~ ggQ

x J (»)]
D —Do J (Qq) + 4 Po(y() = Po

fo, values ofof the D~

, (1,1,0)

+ —' ()(Q )

(1/B)P D, (2,1,0).o) = lD("' '. , 0

(14.17b) (

0 ] + (1/B') [-' Do(3 1—2Do(1 1 0

10, D (1 1 p) —2Di(2) o

8
D, (2, 1,0) + 2—,', ', ;„+., D, (1 .)]+

0.2SS6/B +' '= p.5000 —1 211 /
(14.2ld)

aluesof ~ '
.

b
The function ~(Table X~ gives

Yh values given forno colnput .
t be gross~+Qo e appearM"hlschl. egel an

error

x "-"'[2+gQ J&(+'v)
0

(Q'+nQ")J (~""+" '
00

IIX D —Do[(3 Q g+ oQQ

0
0.0392
0.1479
0.8023
0.4727

0.6321
0.7631
0.8591
0.9227
0.9608
0, 9817
0.9921
0.9968
0.9988
0.9996
1.0000
1.0000
1.0000
1.0000
1.0000

1 F 0000
1.0000
1.0000
1.0000
1.0000

0
0.0555
0.0464
0.0581

+0 ~ 0218
—0.0651—0.1788—0.2825—0.8501—0.3719
—0.8550—0.3148—0.2666—0.2205—0.1815
-0.1504—0.1264—0.1078—0.0933—0.0817
—0.0723—0.0437—0.0294—0.0218—0.0161

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
5.0
6.0
7.0
8.0

0
0.0455
0. 1373
0.1839
0 ' 1822

+0.0126—0.0936—0. 1285—0.0733
+0.0129

0 ' 0844
0. 1147
0. 1062
0.0766
0.0436

0.0174
+0.0007-0.0081—0.0117—0.0125
—0.0120—0.0069—0.0039—0.0023—0.0015

p(8) = 27r&,.a(+) ~,=o =

~D-D J, (a&), (14.20)v6) = 8p' (8')d6' = 6 dq(',(

(14.21a)" "'Q'( )Q"(n)J (~n)0(8) =- dye
a

is can be expressed as oolio wsThis last function can e e

" "'O'Q"q J (6'g)d~e~(+) = ~(0)—

D—Do[Qiii J (y )= o 0) + d6' gdge
0

0

3Q"A + Q")J'""+. 3Q"/4~

,((&{~)/~ +o

for Q and

~(&l{8)

or ev ', e use the Moliere form for

~(o){g)

For evaluation, we use t ~e o
f its derivatives:properties o i

2 o—ln—Q(~) = ——

(14.1S

Q"(q) —Q'(g) = g B,
Q'"(~) = 1/B.

e the following abbrevia
'

vlatlons%e also introduce the o o
'

vu,

" "'J (()(g), (14.19)0

+ eQ"J.(e~)]
and with (14.15),and wi . (14.16) and (14.17),

(~') (~)a. (8) = o.(0) + B

+ 8' (o(')d8' (14.2lb)

, p(~) ~, (~)2 F...(e,t) = p(e)—

p( ) + 1 (y)+' 32B' (14.22a)

'
n of F and II then readsThe final evaluation of an
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3

2~11. ..,(a,O, t) = P.8' 'ap(a) + P.s' '

5~.(a) 5 ap(a)
12 12 48

Pos' '8 2vrF, .&(@,t) + Pos

a'p(a) a.(a) ~ .(a)
12 12 1286

(14.22b)

2m. ll. ..g(11,t) = Poq(+) —Pos —,
' + p(&) + 48

~(+)

+ -', .(a) ——; + P.s —; ~(a) + ~'.(~) .(~)

~'(~), . ~'~(~) (~)
6 24 128

= P. 2~F...(e,t) ——,
' P.sa' 2~F...(a,t)

6 r(8) 8 8 p(8) 7 (8)
12 12 24 12 8

(14.22c)

2+ Pps

P' = P'. + P. = (II.'+ II'.)/F' = Po (14.23)

to order s'; the coefficients of both s and 8' vanish as
expected from {14.8) (in contradistinction to Miihl-
schlegel and Koppe who find a depolarization).

The angle 0„ through which P has turned may be
found by writing, to order 8' ',

2

P, = II,/F = P."~ 1+. —'- + -' '

so that

~(e)
12~(+) 128'(~)+'

= P0 Sln 8„,

(14.24)

8„s 6[1 —8a(6) j (14.25a)

w1tll Q(6) tile saQle as glveil by Mlllllschlegcl and
Koppe:

1 1 —r(8)'") =
12 (~)

+ (~)8, ( )
. (14.25b)

These results agree with those of MQhlschlegel and
Koppe with the exception that their formula {51)for
II. includes an extra term —Pos'/48. This term
arises from a,n integration by parts in which the
infinite value of 0'/1i at 1i = 0 is not properly canceled
by suitable power of q in functions multiplying it, as
mentioned earlier.

The degree of polarization P may be found from
(14.22) and is given by

The term —P/6 in 14.24 disappears if the second
term in the expansion of sin-' (P./P. ) is taken into
account.

The results given here may be used to calculate
the transverse component of polarization [Sundaresan

(1960)I and the self-depolarization of a beta source
[Muhlschlegel (1959); Miihlschlegel and Koppe
(1958), Sec. VII). The numbers given by these
authors will need correction by use of Table XV.

An extension of the theory to large scattering
angles is given by Toptygin (1959).

XV. SURVEY OF OTHER CALCULATIONS

In this section, we give a brief survey of other
methods of deriving the distribution functions for
small-angle multiple scattering, including methods
used for including the effects due to finite nuclear
size. Detailed accounts of these methods are beyond
the scope of this article.

A simple method for calculating the scattering for
larger angles (asymptotic series) that is applicable
to various forms for the "t,ail" of the single-scattering
distribution is given by Butler (1950). He divides
the integral in (2.42) into two parts at a transition
angle 8&, effectively considering W(x, t) to be made of
two separate functions. The first part, for angles less

than 01, is treated by the Gaussian approximation
method given in Sec. II-E, and the second part is
treated as a small perturbation in which the value of
F derived from the Grst part alone is to be inserted.

By a suitable choice of 01, the magnitude of the
perturbation is kept small. The results agree closely
with those of Moliere or those of Snyder, depending
on the choice of 01.

Monte Carlo calculations can be used successfully
to generate an approximation to the Moliere distri-
bution if the single-scattering formula (6.63) is ap-
propriately sampled for a large number of simulated
particle trajectories [Humphrey (1962)].This method
is useful if multiple scattering and other particle
events are to be treated simultaneously.

Another application of Monte Carlo methods is to
the lateral and angular spread of a beam of particles
over a wide range, sampling from the Moliere distri-
bution for short path lengths. Sidei, Higasimura, and
Kinosita (1957) have demonstrated the utility of this
method for study of the penetration of thick layers,
backscattering, etc. Extensive use of Monte Carlo
methods is reported by Berger (1962).

Spencer (1952, 1953) has given a general method
for evaluating inverse transforms of the type met in

multiple scattering theory, and Spencer and Blan-
chard (1954) applied it to a calculation of the Moliere
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result with the inclusion of relativistic effects at
angles up to 20' or so.

Spencer's method is to fit the function exp [Q($)
Qp] with a combination of functions which have

known or easily calculable inverse transforms, and
which also embody all available information about
the behavior of the given function or of the Gnal

distribution function. The functions used for the
Gtting contain adjustable parameters, and suitable
procedures are developed for evaluating them so as to
fit e" "' adequately over the important range of ].

The types of functions considered by Spencer are
Gaussian, Gaussian plus a contribution using the
Bessel function K, (to fit the "tail" of the distribution

'

in 0), Gaussian times )K„and a series of Bessel func-
tions K . The fitting procedure involved choosing a
set of n parameters to fit n pieces of information
about the function e"-"', such as values of the func-
tion, values of some combination of derivatives, or
moments.

The results given by Spencer and Blanchard
(1954) are consistent with the Moliere results as
modified by the conjecture of Bethe (1953)—namely,
that the multiple-scattering "tail" should be rnulti-

plied by the ratio of the correct single-scattering
cross-section to the Rutherford result —and show that
other modifications of the transform could be handled
ln this way.

Cooper and Rainwater (1955) gave two methods
for evaluating multiple scattering on extended nuclei,
one of which is of interest as a general method for any
distribution. It follows the method of Butler in

dividing the single-scattering law at some a,ngle 0&

into two parts, treating the small-angle part as pro-
ducing a Gaussian distribution (0, is chosen to be
equal to approximately y.8'~' of Sec. VII) . The large-

angle part, in agreement with our theory of trans-
forms in Sec. II, should be "folded" according to Eq.
(2.19) with the Gaussian after its inverse transform
is calculated.

To calculate the distribution arising from angles
larger than 8t, Rainwater and Cooper first calculate
for a fraction, say 1/8, of the final thickness of ma-
terial. In terms of transforms, if a»(&) is the exponent
of the transform of the large-angle part of W(x, t),
they calculate the inverse of exp [ptt ($)/8] 1

+ p»(g)/8 + tpt(f)/128, using only two terms of this
expansion (a delta function plus 1/8 the single-

scattering distribution). A. folding of this result on

itself yields the distribution corresponding to 1

+ p»($)/4+ cp,'($)/64; the first two terms being
easily calculated, the third "error" term can be
found.

Q($) —Qp = 2x, p g(x)~~(x) [J.(kx) —1],

which we may write as

Q($) alp (11 alp)pcint nucleus + (~ Qp) ccrr

(15.4a)

(n —Qp),.„=2x', —p- q(x)P~(x) —1]
Gg

X

Since F& differs from 1 only for angles approxi-
mately 10' times as large as those for which screening
is important, we may set q(x) = 1 in the last equation
(overlooking the modifications introduced by Nigam
et cl. (1959), as shown in Figs. 19 and 20).

Cooper and Rainwater (1955) use the Moliere
change of variables, (7.35) and (7.43) and treat,

(D —Qp),.„as a term in 1/8 to be expanded along
with (g'/48) ln (g'/4). They used a form factor for
projected scattering which was fitted numerically
to nuclear scattering data, then available, and evalu-
ated the final integrals by %eddie's rule. They also
used an alternative derivation which follows the
method of Sec. VII a step further, including p& before
making the expansion in powers of 1/8.

In view of the developments since 1955 both in

knowledge of nuclear form factors and of p-meson

scattering, we shall not discuss the deta, ils of these
authors' results.

Ter-Mikayelian (1959) has also made a calculation
of multiple scattering including nuclear size effects.
He chose for 7„ the function [1 + lp'r~9'] ' with r~ a
nuclear "radius. " This function was chosen for
analytical convenience although it can only be con-

Two more self-foldings yield the inverse of

[1 + p» ($)/8]' = 1 + ppt ($) + 56cpt ($)/128 +
(15.1)

in place of the actually sought inverse of

«p [~ (f)] = 1+ ~ (5) + 64~'(5)/128 + . .
)

(15.2)

so that the error of tp', /16 can be added in from the
previous calculation.

The final folding with the Gaussian part was
accomplished with a simplifying graphical device;
the reader is referred to the original paper for details.

The nuclear size eBect may be calculated, as
implied in Sec. VI-I, by including a suitable nuclear
form factor PN(x) so that (7.8) for the point-nucleus
case is replaced by
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dt, ' = 2x' —J, (x)/4xdtJ. (t)/t' = J.(x)/2x —,,

(A3)

3x' —J, (x)/9x'dt J.(t)/t' = J.(x)/3x' —, x

(A4)

4'' —J (')/16-dt Jo(t)/t' = Jo(x)/4x' —,. x

(A5)

JBessel's integral forUsing a form of Besse s
'

ir/2

Jo(t) = — cocos (t cos p)dg, (A6)

dp dt cos (t cos p)dt/ttJ.(t)/
~/2 ~ ~/2

dp du cos u/u =—
7l p x cosp

2
&& [—ln (yx cos p) + x cos P) /4

—(x cos p)'/96 +
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2 +dtJ, (t)/t = —ln (yx/

ral we use the formulaFor the J» integral, we use

(AV)256

~/2

dQ cos Q sin (t cos Q)J, (t) =—
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' '
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2
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( /2) ——.,'1 'x+ —'tJo(t)
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1X (lnx ——, A16)(lnx ——,) . .
1920

We can readily show that

lV Sln Q GQ Sln Q

vr/2

d cosQdt J, (t)/t = — d
du sin u

Qx cos@

dQ sin tc
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(lnx, + 1)". IJ.(x&) —ll»x = —,
6 3
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X (»xi ——'.) +
—, (ln x, y -', ). [J.( 5) —lf»

(A»)

~ . (A10)

resu s o . — A.7 and (A.10)
'

ns of J,(x) and $&(x), we n'th the expansions of p xalong wit
k~ ethe formulas we .e

3 4
x~5

00

—11/x = —5+ -'x 5 —
192dx[J. (xk) — x' =

XI
&x ~ x '= —»- ' —

&)dx[JO(x&) —11/x~ =
4

n
2

x~5+ 9216

(All)

xY~

128

(A12)

[Jo(xk) —1]
cfX—

4
x~g

4X» 9 6

xYi'

6912 (A13)

(„xxE &)
64 2 2

[J'(x&) —ll
QX

X» X

5x~
6 2
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dPe' "' ' cos (P —P&) dv'D. (n, k, c—") = v»-(n, 2, ~') . (A26b)

= 2~i J, ((e) cos (n —P&) . (A19)

If now the integrand contains the products of two
components in any two directions, we have a more
complicated result, namely,

As indicated by (9.30), (9.31), (A.23), and (A.24)
we wish to consider the values of n = 0, 1, 2; p
= -'„1,3/2, 2, and numerous values of n up to 7/2.

A second set of series is derivable from Kummer's
transformation for, Fi(n, p, z):

dpe' "' cos (p —p, ) cos (p —p2)
,F, (n,p,z) = e*,F, (p —n, p, —z) (A27)

= ~[JO(&8) —J~(&e)j cos (n —pi) cos (n —p, )

+ 7r[JO($8) + J2 (&e)] cos (n —~/2 —p, )

X cos (n —x'/2 —Pg) . (A20)

and with the use of properties of the gamma function,
explicit formulas for all the functions may be written,
each involving a factor e +'.

Asymptotic formulas are derivable from the ex-
pression for, F&(n,p, z) when z is large and negative
[Erdelyi, H.T.F. (1954), Vol. I, p. 278]:

The two components yield a term with the corre-
sponding components of a vector at angle o., and a
term for a vector at n —m/2 (or n + m/2). The steps
corresponding to those given for the erst theorem in-
volve cos (p + n —

p&) cos (p + n —p2) which is
readily transformed to

I'(P) sin m(n —P)
7r I'(n)

-', (1 + cos 2p) cos (n —p, ) cos (n —p, )

2 slI1 2p S1I1 (2n —
pg

—p2) + 2 (1 —cos 2p)

X sin (n —P&) sin (n —P2)

where again the sin 2p term yields zero, and with
(2.15) we get (A.16).

If p| ——p2, we have the simpler result

dPe' ' "' ' ' cos' (P —P&) = ~[JO(&8)

—J,($0) cos 2(p —p&)] .

APPENDIX III Do(p+ m+ 2,p, +) = —@2p+2-+i
(—1)™+Ir (p)

vr6 k=0
We give in this A.ppendix some relevant properties

of the functions D (n, p,z) defined in (9.29). The
ordinary selles expansloll for 1I 1 yields

I'(P + m + —', + k)r(m + —'+ k)
) (A29)

r(n+ k)r(n —P+1+ k)
k) (

)&+a n+1 )

where the remainder 8„+I is of the order of the series
term with k = n + 1 plus a term involving e' which
is negligibly small for the useful range of this formula.

The terms of this series all vanish when n —p is
an integer m, corresponding to the fact that D, (p
+ m, p,z) is expressible as e* times a polynomial, for
which there exists no asymptotic expansion. Non-
vanishing results are obtained when n —p = m + -',

and also for all n and p after differentiating with re-
(A21) spect to n. Consequently, we have

D, (-,p, -') = r(p) Z-'-', +'" "
k!r(p+ k)

X P(n —1+ k),

D.(,p, -~') = r(p) Z (.
,k!r(p + k)

X [y'(n —1+ Ic) + P'(n —1+ k) I
. (A24)

The derivatives and integrals of these functions are
also useful. %e have after a little manipulation

(;,-') = "D.(.+1,P+-1, 8) (A25)

2

0'd8'D. (n, 1, 0") = —D.(n—,2, 8')—
0

D (p+m, p, ~') = @.t+2 —Q( —1) "r(p)
k=0

r(p+ m+ k)(m+ k)!
)~2k )

(—I)™+lr(p) '
D, (p+ m+ -'„p, —8 ) =

k=0

I'(P + m + —', + k) I'(m, + —', + k)

(A30)

r (P + m + k) (m + k)!
I (

+ f(m+ k) —ln O'I, (A32)

X I P(P + m + k —-', ) + P(m + k + -,') —in O'I,

(A31)

D.(p+ m, p, +') = 2p—+2
2(—1) "r(p)

k 0
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Ds (P + m + —,',P, —t)' ) = — ss,s~„(—1) "r(p) "

x8 k=0

r(p+ m+ -', + I )r(m+ —,'+ I )
Ic9"

X I
—n. + [P(P + m —-,'+ 1c) + P(m + -', + k)

—ln ct J + il'(P + m —-', + 1c)

+ P'(m + —,
' + k) ] . (A33)

A number of recursion formulas for DO may be
derived from (A.22) [see also Jahnke —1~ mde (1943),
p. 275 and Jahnke —Emde —Losch (1960), p. 276] and
differentiated to give results for Dl and D2. Among
the more useful we give the following:

D.(n y 1,P,z) = nD. (a,P,z) + (z/P)

X D. ( + 1,P + 1,.),
D.( +1,P, ) = ( + )D.(,P;)+ (/P)( —P)

X D. (n,p+ l,z), (A35)

D, (n + 1,P,z) = (2n —P + z)Do(n, P,z)
—(n —P) (a —1)Do (a —1,P,z), (A36)

D.(n + 1,P + l,z) = PD. (a,P,z) + (n —P)

X D. (n,P + l,z), (A37)

D, (n + l,P,z) = D. (n,P,z) + nD, (n,P,z) + (z/P)

X Di (n + l,P + l,z), (A38)

Di(n + l,P + l,z) = Dc(a,P + l,z) + (n —P)

X D, (n, P y l,z) + PD, (n,P,z), (A:39)

D, ( + 1,P,z) = 2D, (a,P,z) y nD, (n,P,z) + (z/P)

X Ds(o. + 1,P + l,z), (A40)

D, (n + l,p + l,z) = 2D, (n,p + l,z) + (n —p)

X Ds(n, P + l,z) + PD, (n,P,z) . (A41)

24 The author wishes to acknowledge the assistance of the
departments of physics and numerical analysis of the Brook-
haven National Laboratory, supported by the U, S. Atomic
Energy Commission, in carrying out these computations.

~5 The complete tables are on file at the American Documen-
tation Institute (cf. footnote 17).

These functions have been evaluated for the values
of n and P that are indicated in (9.30) and (9.31), a.s
well as for the values of the parameters that will give
the integrals and derivatives in accordance with
(A.25) and (A.26), using an IBM 7090 computer. "
The program %as based on the series derived from
(A..27), and on the asymptotic expressions (A.29)—
(A.33). A sampling of the results is given in Tables
VII arid VIII and graphs of the functions are shown
in Figs. 21—26." The results agree with those of
Bethe (1953) and Moliere (1948). It will be noted

that the integrals from 0 to ~ of the functions re-
quired in (9.30) and (9.31) may be obtained by using
(A.26) and the appropriate asymptotic formula from
(A.29) to (A.33). Equations (A.22)—(A.24) with
(A.25) show that all derivatives vanish at 8 = 0.
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