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SUMMARY

A systematic unified summary and review is given
of the basic statistical theory of the multiple scat-
tering of fast charged particles in the small-angle
range. The approximation considered is that of the
Snyder-Scott—Moliére theory, and only slight atten-
tion is given to the less accurate Gaussian approxi-
mation. The single-scattering formulas of Moliére
are derived, along with the modifications of them
given by Nigam, Sundaresan, and Wu. Moliére’s
multiple-scattering calculation is presented by an
improvement of Bethe’s method, and the work of
Nigam et al. is given by the same method with newly
computed tables. Snyder’s calculations are outlined,
and previously unpublished work on spatial-angle
scattering is reported with tables. Calculations by
Keil, Zeitler, and Zinn for very thin films are given,
as well as a detailed discussion following Lenz on
scattering at very small angles. The work of Miihl-
schlegel and Koppe on the multiple scattering of
polarized electrons is included, with the important
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232 WILLIAM
correction that no depolarization appears in the
approximation to which they worked. The distribu-
tions of lateral deflections and other characteristics
are considered, but the details of applications to
emulsions, cloud and bubble chambers, ete. are not
entered into, nor are the electron-penetration and
path-length problems handled. Asymptotic formulas
for relatively large angles are treated, as are various
types of mean values.

I INTRODUCTION

ULTIPLE scattering occurs whenever traveling
particles or waves undergo successions of simi-
lar processes that change the direction of motion and
the successive scatterings are statistically inde-
pendent or almost independent. Successive scatter-
ings thus are considered, for a multiple-scattering
process, to be incoherent in the quantum-mechanical
sense; the occurrence of interference and diffraction
in the scattering by a crystalline medium is treated
as a correction, rather than as a principal effect.

Systems undergoing multiple scattering may be
classified in two ways: The scatterers may be
nucleons in a single nucleus, individual nuclei or
atoms, successive crystallites, dust particles or other
aggregates of matter; and the particles scattered
may be neutral (neutrons or photons), charged (with
or without strong interactions with nuclei), or
primarily treatable as waves (electromagnetic radia-
tion of relatively low frequency).

Multiple scattering within nuclear matter has
been treated by Watson (1957) and others. Lax
(1951) has reviewed the case of electromagnetic
waves. A great deal of work has been done with
isotropic and nearly-isotropic scattering, for instance
of neutrons and X rays. Grosjean (1951, 1952, 1954,
1956a, 1956b, 1957) has turned out many papers on
this subject; Richards (1955) has made a valuable
contribution, and the whole question of neutron
transport theory is treated in a book by Davison
and Sykes (1957).

For charged particles, the multiple scattering is
dominated by electrostatic (Coulomb) forces; little
work has been done on the inclusion of strong-inter-
action (nuclear-force) effects with Coulomb scatter-
ing. Deviations from the Coulomb field caused by
the screening and inelastic scattering effects of the
atomic electrons and by the finite size of nuclei have
been taken into account and will be discussed (the
last only briefly) in this review article.

Charged-particle multiple scattering can be divided
into three realms. Low-energy electron scattering is
important in solid-state physics, plasma physics, ete.
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Large-angle scattering at moderate energies involves
complex boundary conditions and path-length prob-
lems which are only partially soluble at the present
time; high-energy, small-angle multiple scattering
theory, on the other hand, is well advanced, and the
time seems ripe for the review attempted in this
article.

Large-angle scattering can be formulated rigor-
ously for the case in which angular and spatial
distributions after exactly n scatterings are sought
[Wigner (1954), Grosjean (1951)], but experimental
conditions for making observations of such scatter-
ings are difficult to arrange. A formulation for the
scattering distribution after a given path has been
traversed in an infinite medium without boundaries
has been obtained by Goudsmit and Saunderson
(1940a, b), but related observations are only possible
in track-visualization devices. The prediction of scat-
tering in thin foils or other geometrical arrangements
requires the knowledge of distributions at fixed points
in space; in addition, the presence of boundaries in-
volves albedo or absence-of-albedo problems as com-
pared with infinite media.

These difficulties disappear in the small-angle
approximation, and in addition, computations with
the latter are very much simplified. Since most of the
scattering by Coulomb fields on high-energy particles
is concentrated in the forward direction, the small-
angle calculation covers many useful applications
and makes a good first approximation for studies at
larger angles.

Multiple scattering first became relevant to parti-
cle physics in connection with Rutherford’s (1911)
discovery of the nucleus by means of alpha-particle
scattering experiments. If the Thomson picture of the
atom were correct, only small angular deflections
could occur at each scattering, and any large angles
observed must necessarily be caused by multiple
scattering, under conditions for which a normal or
Gaussian distribution was to be expected [Thomson
(1910)]. The observations were in extreme contra-
diction to such a distribution, and were explained
quantitatively on the assumption of the now well-
known Rutherford single-scattering law and the
neglect of any multiple-scattering effects.

Wentzel (1922) recognized that multiple scattering
must have played a role in some of the later experi-
ments of the Rutherford group, especially on beta
particles, and gave formulas for plural scattering,
involving up to seven scattering events. Wentzel
also gave a criterion for the conditions under which
single scattering can be assumed to hold. Bothe
(1921, a, b, ¢) in a general discussion of the circum-
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stances under which a Gaussian distribution law
will hold for errors or fluctuations, showed that such
distributions do not hold when the elementary events
being combined have probability distributions with
long “tails.” Each of the last named authors made
use of folding-integrals for successive events; Bothe
applied Fourier and Hankel transforms, and Wentzel
wrote down a summation formula (for 0,1,2,. . .scat-
terings) without evaluating it or using transforms.

Williams (1939, 1940) devised a moderately suc-
cessful theory of multiple scattering based on a
method of fitting together a Gaussian curve for the
central part of the distribution and a single-scattering
tail. Goudsmit and Saunderson (1940, a, b) exploited
the addition theorem for spherical harmonics, and
evaluated the sum over the orders of scattering for
arbitrarily large angles, using Legendre polynomial
expansions. This solution, exact except for the diffi-
culties noted above, is essentially the same as the
later developments of Moliére (1948) and Snyder
and Scott (1949) in the small angle approximation;
Moliére briefly indicated the relation of his theory
to that of Goudsmit and Saunderson; Lewis (1950)
and Bethe (1953) discussed this relation in some
detail.

The Snyder development proceeded from a solution
of the Boltzmann transport equation, but it is equiva-
lent to the Wentzel-Moliére summation method.
Scott (1952) gave an explicit statement of the relation
between the two small-angle developments and
evaluated numerous mean-value quantities for the
combined theory.

Many applications of this theory have been made
to emulsion, cloud- and bubble-chamber, and foil-
scattering experiments, but we shall not list them
here. Some further improvements in calculational
methods [e.g., Butler (1950)] have been developed
without modifying the basic theory. Basic changes
that have occurred are those of Fano (1954) on the
inclusion of inelastic scattering of the atomic elec-
trons; of Cooper and Rainwater (1955), and later
Ter-Mikayelian (1959), on the inclusion of finite
nuclear size effects; of Nigam, Sundaresan, and Wu
(1959) on the use of the improved single-scattering
cross-section; of Dalitz (1951), and of Miihlschlegel
and Koppe (1958), on the multiple scattering of
polarized particles. An extension of the theory to in-
clude lateral deflections and other scattered-track
“characteristics” was made by Scott and Snyder
(1950) and much more elegantly by Moliére (1955).

It is the purpose of this review article to give a
connected account of the Moliére theory and the
various modifications above-mentioned.
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Numerous brief reviews or summaries of small-
angle multiple scattering have been published—
several with formulas, graphs and tables—but none
have attempted to unify and clarify the basic
theory. Among these we mention Bohr (1948),
Goldschmidt-Clermont, King, Muirhead and Ritson
(1948), Maier-Leibnitz (1950), Paul and Frank
(1950), Camerini, Lock, and Perkins (1951), Beiser
(1952), Voyvodic and Pickup (1952), Rossi (1952),
Saletan (1952), Lawson (1952), Bethe and Ashkin
(1953), Goldschmidt-Clermont (1953), Mayer (1953),
Gottstein (1953), Voyvodic (1954), and Birkhoff
(1958).

II. BASIC STATISTICAL THEORY

A. Distribution Functions

The basic statistical theory for small-angle multiple
scattering involves the calculation of either the
spatial-angle distribution function F(6,8,t) or the
projected-angle functions' F,(¢,t) and f(o,t) = F,
(p,t) + F, (—9,t), when the single-scattering function
W(8,t) is known. We use 0 and g to indicate the polar
angle and azimuth of the track of a scattered parti-
cle, measured with respect to the initial direction,
and ¢ is the angle of the track when projected on
a given plane containing the original direction of the
particle’s motion. The distributions are taken to be
functions of the thickness ¢ of scattering material,
measured along the initial direction; they are con-
sidered to be averaged over the space coordinates
normal to ¢. Distributions in angle as functions of
these coordinates, and distributions of tracks with
respect to these coordinates, will be considered later.

The small-angle approximation consists in: (a)
replacing sin @ by 6, and cos 8 by 1; (b) replacing the
relations for the two projected angles ¢ = ¢. and
¢, (Fig. 1),

tan ¢, = tan 6 cos B8

tan ¢, = tan @ sin 8 (2.1)
by
¢ = ¢, = 0cosfB
¢, = 0sin B ; (2.2)

and (c) replacing the upper limit 7= for 6 and the
limits = = for ¢ by the values « and & «, respec-
tively. This last substitution involves the assumption
that all the functions of 6 and ¢, over which integrals
are taken, fall off sufficiently rapidly for large argu-

1 The function f is the distribution of the absolute values of
the projected angle.
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ments. We shall see later (Sec. IX) that this substi-
tution must in certain cases be modified to avoid
error. The relation (2.2) above can be summarized
by describing the deflection (6,3) as a vector 6 which
is the projection in a plane normal to the original
beam direction of a line segment of unit length lying
in the direction (4,3). The element of solid angle sin 8
dbdB becomes 6d0d.

Scattered
direction

Fic. 1. Illustrating the
spatial angle 6 and the
projected angles ¢, and
Py-

tane sing= 6sing

direction

tane cosg=eCcoSE

The functions F, F,, and f are normalized accord-
ing to

® 27
f 0do | dpF(8,8,8) = 1 (2.3a)
0 0

[ asro =1 (2:30)

/‘;wdqsf(qs:t) = /o'u?dd)Fp(qS)t) + _/(; d¢FP(_¢;t) =1.
(2.3¢)

In most cases of interest, # will be independent of
the azimuth 8, F, will be even in ¢, and we have

21r/ 6dOF (0,t) = 1 (2.3d)
0

f d¢f(¢yt) = 2/ d¢Fp(¢)t) =1. (236)
0 0
The relation between F, F,, and f is that

Fy(¢e,t)dde = dgs. f ABFTE + 8", tan76,/6.,1]

(2.42)

or, when cylindrical symmetry holds,

J68) = 2R ) = 2 | 6@ + 6. @ab)

We have used here the “rectangular-coordinate’ ele-
ment of area de¢.d¢, in place of its “polar-coordinate’”
equal 6d6dg, in accordance with 2.2.

We shall use the quantity 2x0d6W (8,t)dt to repre-
sent the probability of one scattering occurring in di
at ¢ through an angle between 6 and 6 + df. If the
scattering is in a medium that consists, in the neigh-
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borhood of the thickness ¢, of N (¢) independent scat-
tering atoms per unit volume, each with a differential
scattering cross-section 2ma(6,t)0d9, we have

W (6,t)dt = N (t)o(6,8)dt . (2.5)

The single-scattering law will have an azimuthal
dependence—a(0,t) will become o (8,8,t)—if either the
scattered particles or the scattering centers are
polarized. Unlike the successive angular deflections
of unpolarized particles, the successive scatterings
when polarization is present are not incoherent in
the quantum-mechanical sense, and density matrix
techniques must be used in place of the ordinary
classical probability theory that is applicable in the
absence of polarization. These techniques are intro-
duced in Sec. V below.

B. Transforms

The use of Fourier and Hankel transforms are
essential for the development of our theory. We de-
fine the Fourier transform F,(¢f) of the projected
distribution by

Fo(gt) = / dge’ ™ F, (¢,0) (2.6)
with its inverse
| Y
R = o [ ae hen. @

For the distribution of absolute values

760 = [ a6 cos 58 500) = Re Bt 28)

with its inverse

f(,t) = —72; f:dE cos £ f(£,t) . (2.9)

When F,(¢,t) = F,( —¢,t), then F,(&) is real and is
itself equal to F(&,).

For the spatial-angle distributions, we introduce a
double Fourier transform in terms of the two pro-
jected angles ¢, and ¢,:

FLE+£)" tan " £,/8] = f_wd@ f.ﬂ‘i’”

X exp (k. + &0 FL(@: + 61)'%; tan™ /]
(2.10a)

where we have indicated that in the space of the
transform variables £ and & we can also use either
“Cartesian” or “polar” coordinates:

E=E+E) a=tanT g/,

& =Efcosa,

(2.11)

£ =Etsina. (2.12)
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Note that placing £ = 0 in (2.10a) yields the trans-
form of the function that has been integrated over

u.
The inverse of (2.10a) is obviously

F(¢ + ¢1)'; tan™ ¢,/6.] = ——(21)2 /_ A& f_ &

X exp (—itde — i) FL(E + 8)'7, tan™ £,/ .
(2.13a)
These formulas can be written in terms of ‘“polar”

coordinates in both the original and transform spaces
as follows:

Fleart) = | a0 [ "ds exp lito cos 3 — )P (08,
(2.10b)

F0,8,6) = (—2%)—2 /0 et f " e

X exp [—i80 cos (8 — ) 1F (&,at) .
(2.13b)

If F(6,8,t) is expanded in a Fourier series in 3,

FO8Y = X RO,  (214)

and use is made of a modification of Bessel’s integral
[see Jahnke-Emde (1943), p. 149] for the Bessel
function J.(2):

—n 27
1 inf+iz cos
Jn(z) = ZT/; dBe A+ 8

“—n 2T

7 n(B— 12 CO! - ¢
= ——/ dRe™ Btz cos (B (2.15)

2w Jo

we can then write

©

F(E)ayt) = 27

n=—o0

e f 6d0.J,.(£0)F..(6,0)
4]

=21 >, i"FP(gh)e™, (2.16)

so that we have the transform expanded as a Fourier
series each of whose coefficients is 2w times the
Hankel transform of order n [signified by the tilde
followed by (n)] of the nth coefficient in the original
development.

In particular, if F is independent of 3, the trans-
form is 27 times a Hankel transform of order zero:

P&t = FLE + £ = 2r [ 0ano@)r 0
(2.17a)

= f_wd@c '/;wd(ﬁﬂ eXp (iézd’z + ?’Ey¢”)F[(¢Z + ¢§)1/2,t]
(2.17b)
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with the inverse
Fo,0) = %T f el @) F (5D . (2.170)

If (2.17b) is applied to the case @ = 0, or & = 0 and
£ = & we see by use of (2.4), (2.6), and (2.8) that

Fgh = Pt =JED - (2.18)

Thus, only a single transform is required in the
case of cylindrical symmetry to determine both
spatial-angle and projected distributions.

The most important property of Fourier and
Hankel transforms for our purposes is their appli-
cation to folding integrals. If two successive, inde-
pendent, projected scatterings occur through angles
¢1 and ¢z, and the probabilities of ¢; to ¢ + d¢y and
¢ to ¢s - do. occurring are respectively Fi,(¢1)dén
and Fs,(¢:)d¢s, the probability of getting an over-all
deflection ¢ = ¢ + ¢. between the prescribed values
¢ and ¢ + dé is, by the ordinary rules of probability,

Fo@)p = d | doiFu(@Fa@ — $)  (2.19)

whose transform may be calculated as follows:
Fo(®) = f dge’™ / AiFip($0) (6 — 1)

= [_ dd’z/_ d¢1ei2(¢l+¢2)F1p(¢‘1)F'~’p(¢2)

= Fu(&)Fa(¥) . (2:20)

The transform of a folding integral is the product of
the transforms of the individual functions. The
theorem is readily extended to (n — 1)-fold integrals
of n distribution functions over all values of their
arguments that add to a predetermined sum.

If two spatial scatterings follow each other, we
can use “Cartesian” coordinates, Eq. (2.2), for each,
and find a double folding integral, which reduces to
products of Hankel transforms. Let 6 be the resultant
of 0, and 0,:

§cosB = ¢ = @iz + P2z = 01 cos i + 02 coS Bz,
fsinB = ¢, = @iy + @2y, = 6 8in By + 02 sin Be,
(2.21)
or in vector form
6=0 1+ 0,. (2.22)

Then we have

68 = [ do | s FL@ + 607, a0/ 0]

X Faof[(¢: — é.)* + (60 — ou) %

X tan”[(¢y — éu)/(¢: — d)]},  (2.23)
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and

F(E}“) = _/;wdq&z _/-wd(t’y exp ['Lgx‘i’z + Zsyd)v]F(eyB)

= /_ :d¢'21 /_ :d¢2y _/A :d¢1x /— :d¢1y

X exp [7,21 (d’lx + ¢2r) + igv(d’ly + ¢2y)]
X Fil (¢ + ¢0)'" tan™ (én/¢1:)]
X Fal (6% + ¢5,)'"%, tan ™ (¢a,/d2x)]

= fo “ods fo 2ralﬁe"f“’ﬁ’(e,ﬁ)

o 27 0 27
- / 028 / dB.e’* " f 0,d6, f dpe* "
0 0 0 0

X Fl (51,61)F2 (627182)
= Fil (£)a>ﬁz(£)a) )

so the transform of the distribution of the vector
sum 6 = 0, + 6, is the product of the transforms of
the distributions of the separate vectors 6; and 0.
This relation can be iterated, so that if 6 = 6,
+ 0; + -+ 4+ 0n, the transform F(,e) is given by

F(ta) = Fi(t,a)Fa(k0)- - -Fu(ke) . (2.25)

It will be noted from the normalization rules (2.3)
and the definitions of the transforms (2.6), (2.8),
(2.10b), and (2.17a), that '

F,(0,) = J(0,) = F(0,t) = F(O,at) = 1.

(2.24)

(2.26)

C. The Wentzel Summation Method

Assume a beam of like particles to pass through a
layer of thickness ¢ of homogeneous matter, with a
given single-scattering function W(6). (We suppress
temporarily the variation with ¢.) Since (6,8) are
measured from the original direction, we have the
initial distribution

F(6,8,0) = 8.(0) ,
where §,(0) is a spatial Dirac function:

8.(0) = 8.[(02 + &)l = 6(4.)8(s,) , (2.28)

f:"d" fo 080 69015,

(2.27)

= f :dqs, f :d¢yg<¢x,¢y)6(¢x>6(¢y> ,

and

o / 6dgs.(0) = 1. (2.29b)
(4]
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We shall find the probability distribution for the
beam after it has passed through a thickness ¢ by
summing over the distributions resulting from exactly
0, 1,2 3, scatterings. The expression

27rdt/ 0dOW () = wodl (2.30)
V]
gives the probability that one scattering through any
angle whatsoever will occur in dt. The probability of
no scattering is then 1 — wedf, and it is well known
that for a finite thickness Af, the probability of no
scattering is

Po(At) = ™", (2.31)

The probability that n scatterings occur, of de-
ﬁeCtiOﬂS 0, in Bldﬂld&, 0, in szezdﬁz, c .0, in Gndﬁndﬂn,
at the positions & to & + dt1, t2 to te + dtz- - -, t. t0 ta
-+ dt,, is the product

W(01)01d91d81dt1147 (02)02d02d62dt2 v W(Bn)gndgnd,sndtn .
(2.32)

The probability that no other scatterings occur is
given by 2.31, with A¢ equal to the total space be-
tween the dt’s, namely ¢t — dé; — dta — - -+ — df,.. In
the limits taken in the » integrals over thickness, At
becomes ¢. Thus, the probability that exactly n scat-
terings occur, as specified, is (2.32) multiplied by
et To find the probability that scatterings through
these specified angles occur anywhere in ¢, we inte-
grate over the 's. If wekeep 0 < t; < -+ <1, <,
we shall count each scattering once, but if we let
each ¢; range from 0 to ¢, we shall count all the permu-
tations, and merely need divide the result by n!

Thus we have t*/n! times the product of n W’s, for
which 6 = 6; 4 6, + - - - + 0,.. The distribution of 6
for this case is, by (2.25), the nth power of the trans-
form of W. Let us write

w® = 2r [ xHEW 00,

so the transform of the distribution in 6 produced by
exactly n scatterings is

Fugt) = e w@®f"/al . (2.34a)

The distribution for no scatterings at all is ¢°¢ times
the transform of §,(6), namely unity, so (2.34a) holds
forn = 0.

Using our temporary assumption of the con-
stancy of wo in £, we can write F.(£t) as the product
of the probability of the occurrence of exactly n
scatterings (Poisson distribution) and the transform
of the normalized distribution in @ after n scatterings
have occurred (nth power of w(£)/wo):

(2.33)
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Fu(gt) = [ (wol)"/nl][w(£)/wo]" . (2.34b)

The complete distribution in 0 is the sum over all
n, so we have

Ft) = 2017"(2,15) =P (2.35)
Since wo = w(0), we see that F obeys the rule (2.26).

If the original beam lies at an angle 6, to some
chosen direction, the same distribution results if 0 is
measured with respect to 8,. If a beam scattered
through a thickness ¢ enters a second layer of thick-
ness t’’, we can use the folding-integral rule to find the
resulting distribution, since we can write 6 = 0’
+ 0”7. We simply take the product of two exponen-
tials:

Fgy + ¢ = exp {[w(F) — 0o (¢ + ¢")} . (2.36)

If, now, we have a series of layers of thicknesses
At', At - - - and W(x,?) is a function of ¢, so that it is
a different approximately-constant-in-¢{ function in
each layer, we can write the transform with an
integral in the exponent, which we shall call Q(&,?)
— Qo

F(gt) = exp [2(51) — ],
9(5:0 = /;"-’(E;t')dt, = 27"/0 XdX/Odt,JO(EX)W<X7t,):
(2.37b)

Q(t) = 2(0,0) = f wo ()l = fo w0 (0,8)dt

(2.37a)

= 271-/0 xdx_/;dt Wx,t') . (2.37¢)
When W (x,t) is independent of ¢, we write
260 = (Ot = 20t | xdhEOW () (2:380)

Q(t) = Q(0,f) = wet = 2xt /wade(x) , (2.38b)

so that (2.37a) is the general expression for the
transform for small-angle multiple scattering in a
thickness ¢ of scattering material. In accordance with
the usual properties of a cross section, and the rela-
tion (2.5), Qo is seen to represent the mean number of
scatterings occurring in thickness ¢.

Exactly the same result can be obtained if we
calculate the projected scattering in a given plane.
We find a projected single-scattering distribution
w(¢,t)dedt by use of (2.4a), and exploit (2.20) just
as we did (2.24). Equation (2.18) shows that the
result is exactly the same transform, and that the
same function Q(&,f) will be involved.
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The property represented by (2.36) for homogene-
ous materials can be generalized for any successive
thicknesses # and ¢ in any materials. We simply
write

Qb + 1) = f U w( )t = f ()l

Aty
—|—[ w(&,t)dt (2.39a)
&
or, since we have not explicitly indicated that Q
depends on the material traversed, we can write

Q&L + &) = QEh) + QG L),  (2.39b)

where the terms on the right-hand side are under-
stood to refer to successive thicknesses 4 and f,.

The inclusion of the term for » = 0 in the sum
(2.35) leads to a mathematical error, for this term
is a constant independent of £ whereas every valid
Hankel or Fourier transform has the property (neces-
sary for convergence of the inversion integrals) that
it goes to zero as £ — .

The expression (2.37) does not obey this property,
for w(¢) — 0 as §— » and F — ¢% A proper treat-
ment would be to separate out the term for n = 0
and not calculate its transform. Then we would have,
using the inverse transform relation,

F@,t) = e ™%,(0)
+ / mEdEJo(EB)[e”"”" — ¢ ™). (2.40)

However, since §,(f) may be “represented” by

[saenco,

Eq. (2.40) becomes the same as (2.37). Except in Sec.
X, we shall assume that Qo ranges from 20 to 10° or
more, and, hence, the n = 0 term makes no apprecia-
ble contribution for either way of writing F(6,t). To
neglect this term in evaluation without encountering
convergence difficulties, it is necessary to carry out
the £ integral by an approximate method that does
not involve values of £ larger than a value at which
the first term just becomes of the order of the second.
Let us assume that angles below some minimum
value 0., are not of interest (because of the difficulty
of measuring scattering angles near zero). The
Bessel function will oscillate rapidly for values of &
larger than say 10/0.m, and the contribution of the
integral beyond this value of ¢ will be negligible for
this reason.

A further consequence of the limit beyond which
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values of F and Q(&,t) are not needed is that in the
expression

00 — 0= 2r [ at [ xixlo(e0) — W Got)
(2.41)

the values of W for x below a certain limit are ir-
relevant. For small £x, Jo(¥x) — 1 is approximately
equal to —£2x%/4. If x < 1/5Emax Where £ =~ 10/6,mia,
i.e., if x < Omin/50, the value of 2£2x2 is less than 1/100
and the contribution of W to exp [2 — Q] for such
values of x is negligible.

Now, the dependence of W on x for small x is
determined largely by the structure of the outer
parts of the scattering atom, and in condensed ma-
terials, by the overlapping parts of the wave functions
of adjacent atoms. We see then that, unless extremely
small deviations are to be measured, the details of
the screening influence of outer atomic electrons and
of molecular and crystalline combination, do not
influence the multiple-scattering distribution. The
screening itself cannot be overlooked, but as we shall
see in Sec. VII, only a single parameter characterizing
the screening will be relevant.

D. The Transport Equation Method
The form of the Boltzmann transport equation
appropriate to the determination of F(6,t) is

IF @)
6_t = ——wo(t)F(B,t)

L 2T
=+ _/0 G'dﬁ’fo dB'W (x,t)F (6',¢)

where the first term on the right represents the scat-
tering out of an angular range around 6 per unit path
length, and the second term represents the scattering
into the given range from another range 6’ to 8’ + d6’
at an azimuthal angle 8’ (which may be measured
from the same plane as is the deflection 6, or directly
from the plane of 6 itself). The single-scattering angle
x is that which when combined with ¢’ yields 6:

(2.42a)

0'+x=0 or x" =06 +0¢"—200cosp’ . (2.43)

An alternate form for (2.42a) is

e / xx f AW HIF @) — FOL],
(2.42b)

where 8’ is the azimuth of x, and we have replaced
6'de’dp’ by xdxdp'’; the Jacobian a(¢',8)/d(x,8") is
x/0" as can easily be found from Eq. (2.21), written
for ¢',8',x, and B".
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In either form, the transport equation is immedi-
ately reducible to an ordinary differential equation
by multiplying both sides by 6d8d8 Jo(£6) and inte-
grating. We obtain

AF (£1)/0t = [w(Et) — wo@]F (£1) ,

whose solution, subject to F(£0) = 1, is clearly
(2.37) with the definition (2.38).

Again, the same solution can be obtained by writ-
ing a transport equation for the projected scattering
distribution, using the projected single-scattering
law in place of W.

(2.44)

E. The Fokker-Planck Equation and
the Gaussian Approximation

Although it is outside the scope of this article to
deal with the Gaussian approximation to multiple
scattering, we shall show here how it may be derived
from the transport equation by the method of Fokker
(1914) and Planck (1917). Let us assume that
W(x,t) is sufficiently sharply peaked at x = 0 that
it possesses a finite mean square (x®).» and that the
only values of F(0',t) — F(6,t) that contribute ap-
preciably to the integral in Eq. (2.42b) are those for
which a Taylor expansion in ¢ — 6 taken to the
second order is sufficiently accurate.

Furthermore, we can write the relation between
¢’ and 0 using 8’/ and approximate it for small x:

0" = x* + 6° + 2x0 cos B, (2.45a)
0’ ~ 0+ x cos B + (o’ sin® B)/20 + - .

Then (2.42b) becomes

oF w 2 ) . Xz sin? B,,)
T fo xolx/0 as’ W(x,t)l:<xcosﬁ +T

(2.45b)

QE 1.2 2 o a_zg .. ]
Xae-l-zchSb’ (902+
., [a%’(e,z) 1 aF(B,t)]
1L 96 6 90

X 21r/; X'dxW (x,t) + - -

[Butler (1950) has included the next higher term].
By use of (2.5) we see that the mean square angle
of scattering after a thickness d¢ of material is

(2.46)

W =20 [ YaxWen) @)
so that the equation for F reads
oF FF 1 oF
ik O ar [552— +5 5@‘] . (2.48)
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It is easily shown that if the “Cartesian” angles
¢. and ¢, are used, the bracket in (2.48) becomes
9°F/3¢% + 0°F/d¢2.

The solution of (2.48), normalized according to
(2.3d) and satisfying (2.27), is

F0,0) = [x(x)] 7 exp [=07/(F)],  (2.49)
where we have denoted by (x?). the integrated mean
square

<X2>t = /dt'<x2>dt’ = /dt"zﬂ'/ X2dXW(x,t’).
0 0 0
(2.50)

The results for projected scattering follow im-
mediately when we write 62 = ¢2 + ¢2, for then F
becomes a product,

F(6,) = f(¢:0)f (1) (2.51)

with

F(8ad) =[x exp [—62/(C)] . (2.52)

We see that (2.50) is equal to the mean square
multiple-scattering spatial angle (62)., and by (2.51),
twice the mean square projected angle 2(¢2)., in ac-
cordance with the standard theorem about the mean
of the sum of squares of a set of independent events.

We shall see later that the Gaussian approximation
is not very accurate for fast charged particles. How-
ever, it can make a good first approximation if the
divisor of 6? in the exponent is suitably chosen. For
the cross-sections considered in small-angle approxi-
mation in Sec. VI, (x?). does not exist; other methods
of finding a suitable “Gaussian width”’ are mentioned
in sec. VIII.

There arve a number of useful applications of
multiple scattering with regards to boundary prob-
lems [@verds (1960)], joint distributions [Scott
(1949)], path-length calculations [Yang (1951)],
emulsion applications [Moliére (1955)], ete. which
have only been done in Gaussian approximation and
are beyond the scope of this article.

III. LATERAL DEFLECTIONS AND OTHER
CHARACTERISTICS

A. Basic Theorems

The distribution of spatial angles 6 could be
described as a type of joint distribution of ¢. and
¢y, where independent contributions to each of these
are made at each scattering event. It is also possible
to find the joint distribution of ¢. = ¢ and z, where
z represents the lateral deflection in the « direction,
or could be taken as any other observable character-
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istic of the track that is additive with respect to the
contributions made by each scattering event. Other
characteristics besides the lateral deflection include
the angle made by a chord drawn to the track,
(essentially proportional to z), the sum or difference
of chord angle and tangent angle ¢., one of the co-
ordinates of a line fitted to the track by a least-
squares-deviation method, etc.

Let us suppose that the probability distribution
of deflections ¢ and z in a single-scattering event is
w(¢p,z,t)dpdxdt, with the projected-angle distribution
being given by the integral over z:

wed = [(awern. 6D

The transform of w(¢,z,t) will be written

BESL) = / e / dze™ T w(g,zt)  (3.2)

with, as a consequence,

B (£,0,t) = f e w(d) = w(&t) . (3.3)

The folding theorem can be used here as before. If

g(p,a,t) = /_ d¢1/_dx191(¢1;501,t/)

X gz(¢ — ¢, — xlzt”) )
then .

g(s;f:t) = gl (E;g‘rt,>52(£;g‘)t”) . (34b)

Now we can follow the summation method of Sec.

II-C by combining the successive events (¢1,21),

(¢p2,22) « - * (pn,x.) in place of the vectors 6;, 6, - -0,.

Let us call the resulting joint distribution g(¢,z,t) as
above. Then we have?

(3.4a)

g((ﬁ;x:t) = exp {Q(Elg'rt) - Q(O7O:t)} ’ (35&)
where
Q(E;g‘;t) = _/O‘dt,w<£}§‘;t,)7 (35b)
and
2(0,0,1) = f Aew(0,0) = 0 (3.5¢)

by (3.3) and (2.38).

This formalism can easily be extended to more
variables, for instance to the combination of ¢.,
¢y, ¢, and y. A fourfold Fourier transform will be
needed in this case.

2 We use the symbol @ for the exponent of any transform,
although in its different uses it refers to different actual fune-
tions. The context will always make clear which function is
intended.
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So far we have said nothing about the relation, if
any, between ¢ and z in each scattering event. There
is no need that they be independent. In fact, if =
represents the contribution to the net lateral de-
flection in the x—¢ plane, produced by a given scat-
tering event, and ¢ represents the contribution to
the over-all angular deflection, ¢ and x are strictly
linked. If a deflection ¢; occurs at a distance ¢ — i;
from the end of the track being considered, the lateral
deflection resulting at the end of the track will be
xz: = (t — t:;)¢; (Fig. 2). In the small-angle approxi-
mation, the total deflection will be a sum of all such
individual deflections. Thus « is additive as required,

L

areston
. F1e. 2. A scattered track showing the contribution of a
single scattering at depth ¢; to the lateral deflection at depth ¢.

i “h

and the direct relation between z; and ¢: can be
introduced into w(¢,z,t") by writing

w(pxt') = w(et)olr — (¢ —t)e], (3.6)
where the ¢ is the ordinary Dirac function, and ¢

refers to the end of the track. With this relation,
which obviously satisfies (3.1), (3.2) becomes

w(eet) = | doexp ligs + ic(t — Do)
= wlt+ (=), (3.7)
and we have
Q(‘E:f:t) = /(;dt'w[f + g‘(t - tlyt,] . (38)

The chord angle ¢ of a projected track is equal to
z/t. We can find the transform of the joint distribu-
tion of ¢ and ¢ by replacing the argument of the
delta, function in 3.6 by ¢ — (¢ — ¢')¢/t. Thus the
joint distribution of ¢ and ¥ may be found from a
transform with the exponent

Qnt) = [ el + 1 — )], B9)

where 7 is the transform variable corresponding to .
We have noted above in Eq. (2.39) that we can
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add the @’s if we wish to find the distribution after
two or more successive thicknesses &1, ¢+ --. If we
observe characteristics X;@, X,,®- . . of the tracksat
t, t2--- we can find the corresponding transform
exponent in the same way as before if we know the
probability of a contribution X, to the jth character-
istic produced at the ¢th scattering. Insofar as the
characteristics are the direct result of transport re-
sulting from angular deflections, we will have a
delta-function multiplying w(é,t) of the form

—a? ()¢, (3.10)

where the o (¢;) are called “coupling constants’ and
in general will depend on some of the &, t.---t at
which observations are to be made, in addition to
the ¢; at which a scattering is considered to occur.

The result will be, if we let (¢ be the transform
variable corresponding to X,

5[X§'j)

Q(E,g‘(l),g‘@),. . .’t) — fdi'w[é + g.(l)a(l)(t/)

+:200 W)+ (3.11)

A more symmetrical form can be written, if we define
a coupling constant for ¢ itself as being unity, count-
ing ¢ as one of the X and omitting the special
term with £ in (3.11).

Linear combinations of the X may sometimes be
of interest. The joint distribution of any number of
such combinations can be found from the following
general theorem relating to Fourier transforms. Sup-
pose we have given a distribution F(X® X®...
X®) and its transform F(¢®, ¢@, ...¢®) We wish
to find the joint distribution of the m linear combi-
nations

Vi= 2 a:X"k=12--m. (3.12)
J=1

This distribution may be written, by use of delta
functions, as

G(YI’Y2’. .. Ym) — / dX(l) / dX(2), .. / dx(n)

X F(X(l),X(2),' . 'X(n))a(yl _ Eale(f))
X 8(Ys — 2apX”) - 6(V, — 2a;,X7) . (3.13)

If we multiply this equation by

dY;---dY., exp [z > nkYk:I
k=1

and integrate, and simultaneously replace F by the
n~fold integral of its transform, we will have a 2n-fold
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integral over all the X and ¢. The jth pair of
integrals reads

51_/ dX(i)/ &t exp I:—z'g‘(j)X(j) 4+ ZX(f)ajkm:l
T Y- — k=1
X F@®,-- ) (3.14)

which operation, by the two Eqgs. (2.6) and (2.7),
amounts to replacing the variable () by the fixed

value 3 asm in the function F. Thus we find the
k=1

general result

G(mme - nm) = F(Sawm,Zazm, - - - Zaum) . (3.15)

The theorem about the distribution of the sum of
independent variables is a special case of (3.15) in
which F is a product of functions of the separate
@, m =1, and a;; = 1 for each 7.

If we add to the above the remark made already
below Eq. (2.12) that when the distribution function
is integrated over one or more of its variables, the
corresponding transform variables are set equal to
zero, we have a set of rules adequate to determine the
transforms for the distributions of a number of
quantities of interest.

B. One or Two Segments of Track

Figures 3 and 4 show some quantities of interest,
respectively for one and for two segments of track,
and Table I gives the expressions for Q of some of
these quantities.

initial
direction

Fia. 3. A scattered track showing the tangent angle ¢, the
chord angles y and ¢/, and the lateral deflection z, for a depth ¢.

The last entry of Table I is of particular interest.
It can be derived from the previous line by setting
m=n=0,9=n=71 t ="t/ +t) and ¢’
=t — 1"t/ (s + t2); finally ¢’ is relabeled ¢'. It is
evident that the distribution of the angle between
two chords drawn to two successive projected track
segments depends, in the case that the elementary
scattering law does not vary explicitly with ¢, only
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on the total length # + £ and not on # and ¢,
separately. Thus the distribution is unchanged if
t, = 0, or in other words a = ¥».

This theorem was given by Scott and Snyder
(1950) and applied to the calculation of scattering-
produced curvatures by means of a calculation of the
distribution of . A number of further examples of
coupling coefficients and resulting distributions are
given by Solntseff (1957) and Moliére (1955). The
above-mentioned paper by Snyder and Scott derives

Fra. 4. A scattered track showing chord angles and the
deflection « between two chords, for two segments of track.

the transform for the joint distribution function
g(¢,x,t) from a transport equation, namely

I (gat) | dgat) _ 70 :
wbl) | o 002D _ [" gy — )

(3.16)

X [g(‘blix:t) - g(d’)x;t)] ’

which was solved, with a result equivalent to that
given in Table I, by the use of Fourier transforms
in ¢ and z and a Laplace transform in ¢.

For spatial-angle scattering, lateral deflections and
other characteristics can be included in a similar
way. We illustrate with the lateral deflections z and
y, whose coupling coefficients are a. = ({ — t:)¢-
and a, = (¢ — &:)¢,, but the extension to other, and
more, characteristics is straightforward.

Each individual scattering generates deflections
¢. and ¢, that are independent of each other, in the
sense that we can write W(0,t) = W[(¢2 + ¢2)V2,]
as a function W.(¢s,¢,,t) of ¢z,¢,, and ¢. Thus the ¢’th
scattering event contributes a factor W.(e:,dyits)
0xi — ¢ui(t — t:)18[ys — ¢ys(t — t:)] to the product in-
volved in the summation method. The transform Q
will be of the form

Q(Ez,éy,_g‘x;;‘y;t) = /;dt,Wc[E:c + fx(t - t,),

Ev + g-ll(t - t,)ytl] ) (317)
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TasLe I. Expressions for the exponent Q in the transforms of the distributions of
several variables and combinations of variables. The symbols are explained in
Figures 3 and 4.

Independent Transform
Variables Variables Q
11
¢ £ / dt'e (E)t,)
0
. ¢ [ avaiee - 0,01
0
¢ ¢
12 ] /dt'w[n(l ———),t’]
0 ¢
t
" 6 [avets + ¢ — 0,01
0
t 4 t’
¢)‘l/ ‘E:"’ /dt'w[:f + 71(1 - 7);2,
)
t ! 1yt
vy ' / dt’w[n<1 - t—) + M,t’}
0 t t
4 Ifl mlt/
¢1,¢2;‘I/{7\0’£’ "71/'71,)772/'7é /; dtlw[nl(l - Z) + i‘)t’il
ty 12 1411
+ / dt”w|:‘r)2(l - t_) + p_ZLytl + i":|
) 123 t2
Pl
— .
a =Y+ ¢ n . dt'w G+ b

[when w = w(£)]

where W, (£,&,t)) is the “Cartesian” form of the
transform of the single scattering law W o(¢s,dy,t)-

In the event of cylindrical symmetry, which we
are assuming at present, W, = w[(£2 + £)V24] is a
function only of £ = (£ + £)V2 Thus Q becomes

Q& b0,8e,80st) = /;dt'w{ ([& + .0t — 1))

+[& + 6 — OF)) .

If we ask only for the distribution in z and y, we
integrate over ¢, and ¢, i.e., set & = & = 0. Then
the result simplifies to

(3.18)

Qcutnt) = QLGE + 0)]
= [ara@ +arma-n0, G

so that the spatial lateral deflection has the same
transform as the projected one (see Table I). The
combined distribution as given by (3.18) does not
have a simple relation to the projected distribution,
owing to the correlation between 6 and the vector
displacement r, whose components are z and .

Berger (1952) has treated lateral deflections by a
moment method based on the theory of Goudsmit
and Saunderson (1940, a, b).

C. Several Segments of Track

Following Moliére (1955), we shall now consider
several different measurable quantities or character-
istics associated with the observation of the track of
a scattered particle at several successive points,
which may or may not be equally spaced. As before,
we shall consider only the projection of the scattering
in a plane. The quantities we shall consider are:

1. The slopes of tangents measured at several
points along the track or the angles between them
(Moliére’s case Ia);

2. The lateral displacements at several points
along the track, measured from some arbitrary
straight line that is roughly parallel to the track,
or equivalently the angles between the chords drawn
between the points where the displacements are
measured (Moliére’s case 11a);

3. The slopes of a set of least-squares-fitted
straight lines, fitted to the track at several locations.
The lines may be contiguous, or they may be shorter
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than the distances between their centers (Moliére’s
case Ib for contiguous lines);

4. The lateral displacements of the centers of the
least-squares-fitted lines referred to above (Moliére’s
cases I1Ib and Ilc); and

5. The use of linear combinations of these primary
quantities, such as second and higher differences, or
combinations of chord and tangent angles.

The inclusion of grain and measuring ‘“noise,” for
emulsion tracks, will not be taken up here. However,
the folding theorem would allow the calculation of
the distribution of the sum of deflections caused by
scattering and by noise by multiplying together the
Moliére type of Fourier transform for the scattering
(Sec. VII) and a Gaussian type of transform for the
noise.

Suppose that tangents to the particle track are
constructed at points whose coordinates on a straight
line approximately parallel to the track are &, t,
to+ - -t,. The lengths of the track segments we shall
call 8 = t; —_ to, S = tz —_— t1,‘ c 8y = tn —_ tn_1. Let us
then take as measured quantities the angles between
successive tangents—i.e., let X = ¢; be the angle
between the tangent at ¢ = ¢; and that at ¢ = ;..
This angle is just the projected multiple scattering
angle ¢; for the segment of track or “cell” s;. The
individual scattering angles that occur in s; con-
tribute to ¢;, but scattering angles in other cells do
not. Thus, we have

For angles =0 ; 0<t<tja
betweep @) =1 5 ta<t<t
suceessive

tangents =0 ; &<t (3:20)

In order to handle the cases involving the lateral
displacement of a track, it is convenient to suppose
that the lateral position of any particular track is
given by a function

z =) . (3.21a)

This function can be written in terms of the actual
single-scattering angles ¢: by the method illustrated
in Fig. 2. If the initial direction and lateral position
of the track are, respectively, ¢o and xo, we have

x(t) = %o + ¢o(t - to) + tg (t - t1,>¢1, ) (321b)

For angles «;
between
successive chords

ad (t)

= Vj-1

=0 t
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where the summation is over all the scattering events
that have occurred for that particular track between
its beginning and the point ¢; ¢; is the coordinate of
the 7th single scattering.

It is then a straightforward matter to derive
coupling constants for the lateral displacements
Zo, Z1,- * *Z, measured at the points 0, & -+, on a
track. Since the initial displacement o and direction
¢o are arbitrarily determined by the conditions of
observation, the simplest meaningful characteristics
derived from the z; are the angles «; between succes-
sive chords. In the small-angle approximation we
have

Litn — X Tj — Zj

o = —_ =

Tith — Xj L5 — &j-1
tivi — & & — tia ’

Sj+1 S;

(3.22a)

If the cell lengths are of equal length s, we have

(@jm — 22 4+ x5-1)/s
= A2:vj_1/s y

a;

(3.22b)

where AZx;_, signifies the second difference of the
lateral displacements.

Writing (3.21b) successively for ¢ equal to t;., &5,
and £;,_;, we can substitute into (3.22a) and pick out
the coefficient of ¢; to get expressions for the coupling
constant. It is convenient to drop the subscript z,
writing ¢; = ¢, and to introduce the auxiliary variable
v; = v;(t), defined only in the region ¢; < ¢ < ¢;.1 by

t—t  t—1

bin — 4

V,'(t) = t; <t tinm ) (323&)

Sj+1
which represents a linear function of ¢ having the
properties

Vj(tj) =0 i Vj(tj+1) =1. (323b>
If all the cells are of equal length s, »;() has the same
shape in every cell. It can be written in this case in
the simple form

Then we find

7—1 <t< tj
¢

t
l—V;' tj< <ta'+1
<

and ¢ > tj+1 (324)

tj—l
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This coupling constant can also be obtained from
inspection of Table 1.

The coupling constants for the second differences
(in the case of equal cell lengths) are obtained by
merely multiplying a?(f) in (3.24) by s.

The third and fourth differences of the lateral

For second differences,

(7)

2
A Tj1 = Q2A

(®)

Tjy — 225 + T

For third differences,
Aax,-_l =

3x]+1 + 32}', @

asa

®

For fourth differences,

4
A Tja1 =

)

Tjrs — 4242 + 6254 asa(t)

— 4x; + i

Suppose now that a track is observed by the
locations of photographic emulsion grains, or droplets
in a cloud-chamber photograph. In order to make
measurements of track direction, it is necessary to
fit segments of straight lines to portions of the track.
Although this process may generally be performed
visually, it is convenient to assume that the fit is
made by the method of least squares, for in this case
an analytical procedure is possible. In fact, we shall
assume that we fit lines directly to the continuous
(but zigzag) function z(f), Eq. (3.21).> We shall
divide the track up as before into cells, and construct
the straight lines at the centers of the cells, using
cell lengths §; for the lines that may or may not be
equal to the full lengths s;. Let us describe the jth
line by its lateral displacement £; and slope B, at its
midpoint #;. Then the sum of the squares of the dis-
placements of this line from the curve x = z(f) be-
comes the integral

485 /2
a = [ b= ) - s7a,

s,

(3.28)

3 This assumes the presence of sufficiently many emulsion
grains or cloud-chamber droplets. Alternatively we may say
merely that the grain noise and reading error are not included
at this stage of our calculation.
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displacements are sometimes useful in efforts to
eliminate distortion and spurious scattering errors.
Their coupling factors are easily found by differenc-
ing Eq. (3.24) [Solntseff (1957)]. Including the second-
difference result for completeness, we have

= ;. G—1Ds<tLs

=s(l —») js<t \(.7+1>8

= 0 otherwise . (3.25)
= —s¥jq G- l)s < Js

= —1)s js< (] + s

=1 —wu)s G+ 1)8 <t<(7+2)s

= 0 otherwise . (3.26)
= ;48 J—-1Ds<t< s

= (1—3y)s Js<t \(]+ 1)s

= Bru—2)s [+ 1)s<t< (G4 2)s

=1 —w2)s (+2)s<t< G+ 3)s

=0 otherwise . (3.27)

and the conditions on £; and 3,- that make A; a
minimum are found by setting 94,/d#; and 9A,/98;
equal to zero. We obtain

A A
1+5;/2

z(t)dt ,

&X;8; =
A
?J-—sj/2

(3.292)

and

1 +s /2
5 B8] =f? - (t —tHz@®dt  (3.29b)

Note that
2+5;/2
/ y (t—8)dt=0.

?j——.sj 2

Using (3.21b) in (3.29), we have

&8 = @o8; + do(l; — bo) + Z ¢i/ @

interval

— &;)dt
(3.30a)

$od; + Z¢/

interval

1458 1
17 B8 = 17

@t — &)@ —t)dt',

(3.30b)

where the interval over which the integrals are
calculated is
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interval = f; — &2 to & 4+ & if & <& — &
=t to b+ i if &= 8 <ti<bi+ %
=0 if t: > fj + §j/2 . (3300)

We can read directly from (3.30a) the coupling factor for the quantity £, — xo — ¢o(f; — t). We
shall, as before, drop the subscript 7, setting ¢; = ¢.

FOI‘ .’f,’ — Lo — ¢0(£j —_ tg)

) ;o t<hi— 38
al @) \ = %, G —=t4+8p)" 5 G —8&p<t<i+&n
7
=0 s L &Ge<t j=1,23-n—1. (3.31)

If all the §; are allowed to go to zero, the second range disappears and we get the result expressed by
Eq. (3.6).

The coupling factor for 8; — ¢o can be obtained from (3.30b).

For slope of fitted line, B — o

=1 ;o L<ii— 8
() 1 2 . 3 3 5 g . ) .
dg’@) |\ =3%— & &G =1 +§§“ @G—=0 5 4G—=8p<t<l+ 8
J 7
=0 L+ 8p<t j=12,--n—1. (3.32)

The result for §; = 0 is the expected one for the angle between tangents at £ and ¢;.
Now we can find the coupling factors for the simplest measurable quantities. The angles between
successive lines, ¢; = B; — B;_1 have coupling factors derived by calculating ¢ — @5 from (3.32):

ford; = B; — Bi=1, 8 < s;,
=0 gt <ba — S

II
Wl

2 4 3 . “ . . .
+a (=0 — g (G — 1) b= Gap <t<ba+ Sar
Sj-1 28,4

ag (1) { =1 i bt S <t<E— e
2 . 3 P s P .
=t - G-tV +o- -0 ;b= 8 <t<h+ S
Sj 28,'
=0 . tAj -I" §j/2 < t. (333)

Eq. (3.20) results from (3.33) when §; — 0.
When the §; are equal to the full cell lengths we have

i+ 80 = tia = 1; — 812, (3.34)

and we can write a simpler formula for the coupling constants (if all the s; = s, we have Moliére’s case
IIa).

for ¢; = Bi - 3:‘-1
§j = §;

=0 s t < tj—-2 = qu — Sj-1/2

3

z

s (t]‘—l - t)z ; tj,z <t < tj_l = t;;z -+ Sj-1
i -1

ag (1)

2
L+ o (b — 1)’ —
§ =8 7-1

Il

2 3 .
== (tim — 0 — F (1 — t)° Do <t <t =1+ s
J J

=0 it j=2--mn—1. (3.35)
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For the slopes of lines joining the midpoints of successive least-squares-fitted lines, we have from
(3.31):

A

Ty — j:j_l

fory = A o
=1 Dot < b — $5
= {(5:' —t) — 2;._1 (Ga—t+ 3 3‘:‘—1)2}/(5:' —fia) 5 b = Siap <t<ba+ San
49 (t) 1= fjtj—ﬁf,-t_l sobia e <t < — &
I A \2
= (tégj—(zf —_!— fjj)) s b= S <t<tiH4 &k
=0 s Lt &a<t , 7=23-n—1.(3.36)

The angles &; of actual interest are the differences of the slopes just calculated. We define &; by

a £j+1 - i‘i -'2:' _ fa‘—l
=

SR A . T (3.372)
and we have for the coupling factor:

for &;
§j < 8§

=0 5 < ti1 3 Sj-1

A 1 A A
{tj g (b — L+ %Sf—l)z}
=1 — J'{;_z\ : s t;—l—" %§3—1<t<ti—l+%§l'l
J 7=

14
l;
dij)(t) :{fy+1—t~é%(zl_t+%§3)2} (f-t-'—lé)z
. — - ’ fi"%§1<t<ti+%§j

b — 1 28(6 — fia)

i‘ — i iy a Iy
Zﬁ*j ;L3S <t<iGn— %8n

7 7

bin — t+ 3 80)° . . . .
= -(‘JW it — 38 < E<tbim+ 3 8n

7 7 7

=0 y fj+l+%§j+1<t ]=2,3,n—2

(3.37b)

The result of setting the §; = 0 in this expression is Eq. (3.24b). If all the s; are equal, and the §; are all
taken as the same fraction of the s;, so that

szs }j=1,2,---n ; O<r<1,
§; =rs; =7rs

we have the somewhat simpler result (Moliére’s case 1Ic);
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for &;

§; =rs; =18

1 . 1 2
| T
t—1
=1+— ;
4
da (1) . 2
§; =rs :1—%7‘——1—<t7‘_t) ;
r S
i —t

1 72 2
=l —t+ L+ 30

=0

)

The result is still

fOI‘&j
.§j=6‘j=8
=0
1 .
| = ool —t— 34
ad (t)
4. — 1 .
LR EE T R
1 s 12
=§6‘.§[tf*t+§8}
=0

IV. ASYMPTOTIC EXPANSIONS

Although a detailed study of asymptotic expan-
sions will be given later after explicit expressions for
Q(%,t) have been introduced, some general properties
of these expansions can usefully be introduced at
this point. We use the method of Snyder and Scott
(1949), applied primarily to the spatial case.

The method consists in rewriting the integral for
F(6)

FO) = 5= [ saeroen) exp o) — 0, @)

in such a way that the path of integration can
legitimately be bent away from the real axis into the
upper half of the complex plane; we then approxi-
mate its entire value by the integral of a portion
along the imaginary axis. We first observe that the
Hankel function of zero order, Hy®(z) can be written
in terms of two real functions J,(2) and Ny(z), and
also in terms of the Bessel function of the second

4 We suppress the variable ¢ in this section.

simpler when r = 1 (Moliére’s case IIb):
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t<t— A+ 3%r)s
h—Q+3ns<t<t—(1—3%rs
G- A —=-1rs<t<t; —irs
fi—irs<t<t+ irs

b+ irs<t<&+QQ—13r)s

G+ (1 —3rs<t<ti+ 1+ 3rs

L+ +3ins<t , j=23-n—2. (3.38)
; t<t—3s

s h—3s<t<ifi—1%s

s h—3s<t<bi+3s

s bt is<t<bi+3s

; L+ 3s<t. (3.39)

kind of purely imaginary argument, Ko(—z), as
follows:

HP @) = Jo(e) + iNo(e) = 5 Ko(—ie) . (42)

The function No(2) is the Neumann function [see
Jahnke-Emde (1943), Jahnke-Emde-Ldsch (1960),
and Watson (1952); the latter author uses the sym-
bol Y, in place of No].

Now, when 7 is large, Ko(7) behaves like e=". Thus,
if we set z = 47 on part of an integration path, the
combination Jo(2) 4+ ¢No(2) behaves like e, al-
though neither of them separately decreases.

We write, therefore, before changing the integra-
tion path,

F6) = %r Re /o mzdgHé” (£0) exp [Q(E) — Qo]

= — Lot (~it0) exp [2(6) — 2],
(4.3)
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Now let us deform the path of integration from
C in Fig. 5 to C’, where 7 is to be chosen later.
Along the vertical portion of the path, we have

%Re i /0 " Ko (0) exp [(ir) — Q] . (4.4)

We shall shortly see that Q(¢) — Qo behaves for
small £ as —£ or as + 7% Hence, the exponential
factor will increase with 7. However, if 6 is large
enough, the ¢ behavior of K, will produce a rapid
decrease before the increase of the other factor is

important. The value 7 is to be chosen so as to give-

T c

Fia. 5. The ¢
plane; ¢ = ¢ + 4.

an approximate minimum of the product of the two
factors. The integral on the horizontal part of C’
will decrease because of the (presumed) convergence
of the exponential factor and will contribute in its
entirety only a small amount to the result.

If now the exponential factor is approximated by
the first few terms of its expansion in powers of 7,
which should be adequate under the assumption
made about the size of 6, the integral of each separate
term will be very nearly the same asif 7; were infinite.
We can then use the integral formula [Erdelyi et al.
T. 1. T. (1954) 10.2(1); and Watson (1952), p. 388]:

0 v—1
/ dTKo(Te)T” = 2,,+1 Pz (V + 1) .
0 0 2
Since we shall find that terms involving In 7 ap-
pear in the expansion, we need the formula obtained
from (4.5) by differentiating with respect to »:
2 1
o r <V er )

RRE)

where ¢(x) is the logarithmic derivative of the
gamma function, defined by ¢(z) = IV(z + 1)/T'(z
+ 1).

In accordance with what has been said, we need an
expansion of Q(¢) — Q, for relatively small values of
£, which will in turn be partly but not entirely deter-
mined by W(x) for large values of x.

Let us assume then that we have an asymptotic

(4.5)

/ drKo(70)7" In r =
0
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expansion of W(x) that is valid above some angle
x:. We write

bs

b
ortW(x) = 2 2 Do L B s,
X X X X

4.7)

where we have chosen the lowest inverse power for
which the integral for Q,, (2.38b), will converge,® and
carried it to x~° for purposes of illustration.

We can then write, using (2.38a) and (2.38b),

0E) — 2 = 20t | xBW (L) — 1
= 2t [ 3 GO o(8x) — 1

” b3 4 b5
+/xdx[Jo(£x) — 1] [—34——1)—;—}-7-{—@%---].
X X X x X

(4.8)

Let us now assume that the necessary values of &
are small enough that we can use only three terms
in the expansion Jo(fx) = 1 — x2£%/4 + x*¢4/64 - - -.
This will be true if |£x:] is of the order 1 or less for
the largest £'s required—e.g., if x:71 is of the order 1
or less. This in turn requires that 67, be enough
greater than 1 for the ¢~" behavior of K, to have re-
duced the integrand for F(8) to quite a small number
—=e.g., 87, of the order of 4 to 6 or more. The asymp-
totic expression will begin to be valid for 8 roughly
4 to 6 times larger than x;.

The integral 2wt f’,f‘x3de(x) can be interpreted
as the mean-square angle of scattering produced in
a thickness ¢ by the cutoff distribution

W=Wkx ;
W =0 ;

X < X1
(4.9)

since for any distribution whatsoever that has a
mean square, the mean-square, multiple-scattering
angle is just the mean-square, single-scattering angle
multiplied by the mean number of scatterings.
Hence, we shall write

X>X1;

X1
2wt f X'dXW (x) = (0"

and similarly

(4.10)
X1
20t [ XaxWeo = @, @)
0
where the subscript refers to the cutoff chosen. (The

5 We shall see in Sec. IX that the inverse second power
appears using the Dalitz cross-section, and a modification of
the small-angle approximation is necessary.
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last integral will turn out to disappear when we only
calculate to terms in 6-°.)

The final result should be independent of this
cutoff; this can be seen by calculating (%), for a
larger cutoff x.:

2 _ X1 3 X2 3
(62 = 2mt | X dxW(x) + 2at | xdxW(x)
X1

= <02>1 4+ bs(z — x1) + baIn (xo/x1)

(X _1> _ (L _ L)
b5 (Xz X1 bs 2X§ 2Xf ! (4.12)

from which we see that

(6")2 — baxa — bsIn x2 + bs/x2 + be/2x
= (6" — baxa — bsIn 3 + bs/xa + be/2x3
= ——64(111 Xa T %) (413)

is a constant independent of the cutoff, as long as
the cutoff is in the region in which (4.7) is valid. The
last line of (4.13) defines the screening constant x.,
for use in later calculation.

Now we can use the results of Appendix I, and
write out an expression for Q(£) — Qo:

Q(E) — Qo = —bst — [<02>1 — baxi — bs In ('yx1/26)
+ bs/xa — be/2x3](£7/4) + 3 b + [(0): — 3 baxd
— 3bod — b — b In (vxa/26”%)] (£/64)

+ 1bIn g — (be/64)E Ink. (4.14)

The coefficient of £ simplifies by use of (4.13); the
coefficient of £ also simplifies if the corresponding
calculation is made for (6*);, but since this coefficient
disappears in what follows, we shall simply call it
As. We have

Q) — Qo = —bst + 1 b’ In (yxat/2¢'%)

+ 3 b8 + A — (be/64)E In £ (4..5)

It is tempting to seek an expression for F(6) which
would be a folding integral of a Gaussian multiple-
scattering distribution and a single-scattering distri-
bution corresponding to the ‘“tail” given by (4.7).
This could be achieved if exp [Q(§) — Qo] were written
as a product of a factor like exp [—1£%(6*)] and a
factor like [1 + 2xtW wi1(£)], hopefully resulting from
an expansion of the part of Q(§) — Qo for x > x; (the
unity here will produce a pure Gaussian that is
negligible in the asymptotic regions). The trouble
with this procedure is that the terms to be expanded
are of the same order as the term left in the exponent,
and the choice of the multiple-scattering ‘““width’ is
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considerably dependent on xi, so the procedure is
quite arbitrary; the expansion will be of doubtful
validity just for those values of £ that are supposed
to establish the main part of the Gaussian.

If we proceed to use (4.14) with £ = 77 in (4.4),
and use the integrals (4.5) and (4.6), we obtain after
some reduction

b b
20F(6) ~ 3 + gt + [b5 T %babun;—t% — %91)31)4
—~32—b§]l5+ [bﬂ+4bilni 4 — 8b§b4} L.
0 Xa [/}

(4.16)

We note that to order 6-* the asymptotic formula
is identical with the single-scattering tail expected
for the given thickness, and that if b; and b, were each
zero, the formula would agree with the 6-° and 6-°
terms in W. Furthermore, if b, is the dominant term,
multiplying the W by a correction factor (e.g., for
spin effects) will multiply F(6) by nearly the same
factor, as speculated by Bethe (1953) and approxi-
mately verified by Spencer and Blanchard (1954).

A similar procedure can be used for the projected
scattering. We write cos £ = Re (e%?) and proceed
similarly.

We can also find directly a relation between the
asymptotic formulas for F(6) and f(¢). Using (2.4b),
we find that if

F(6) ~ A./0", (4.17a)

then

f(¢) ~2+"T (—’%—1) A./T(n/2)8" ", (4.17b)

and by differentiating under the integral sign, treat-
ing » as a continuous variable, if

F@®) ~B.In0/6", (4.18a)

then
f@) ~ 20 (1)
><B,,{1n¢ 1y (";3>

1y (g — 1)}/p <%> ¢ . (4.18b)

For later use, we shall need the result of another
differentiation with respect to n. If

F(§) ~C.1n*9/¢" (4.19a)



V. MULTIPLE SCATTERING OF
POLARIZED PARTICLES

A. Density-Matrix Treatment of Spin

As we stated in Sec. II-A, polarization must be
treated quantum-mechanically even while angular
deflection probabilities are combined in a classical
way. Specifically, o(6,8) = |u(8,8)|* represents the
absolute square of the scattering amplitude in which
the different components of spin, if any are averaged
over.

When we consider spin (and the only important
cases are for spin %) we have to consider two spin
states along with «(6,8). Since in nearly all cases the
beam of particles under consideration will not be in
a pure spin state—i.e., the beam will be at least
partially unpolarized—we must consider mixtures
of states. The appropriate technique for dealing
with mixtures is that of the density matrix [Fano
(1957), Tolhoek (1956)] which we shall now intro-
duce.

The spin of a traveling particle is detected by re-
solving the beam in which the particle is contained
into two opposite spin directions or channels, and
determining into which channel the particle is de-
flected. A pure state, resolved in this way, could be
represented by the two-column matrix

¢y
cy
where ¢ is a function of position or linear momentum
of the particle. We use here the Pauli spin formalism;
if for relativistic particles we define the spin direction
to be the one that would be observed if the particles
were brought to rest by a purely longitudinal de-
celerating electric field, we can treat the spin by the
Pauli formalism applied to the two “large’” compo-
nents of the Dirac spinor —; and ¥ in the usual nota-
tion when electrons are under consideration [Tolhoek
(1956), Fradkin and Good (1961)].

If, for instance, the detector is set to count particles
with positive spins, ¢**cty*y will be the probability

+
c

¢

¥, (5.1)
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(per unit solid angle, etc.) of getting a count at
6,8), and cF*cy*¢y = (1 — ct*c*)y*y will be the
probability of a particle passing and not registering
a count.

It is more convenient and general to use an arbi-
trary pair of spin directions as basis for representa-
tion instead of those for which the detector is set.
In this case, the &= states for the detector would be
linear combinations

Vi = ain + azye
‘ v+ ar

+

a1
+

QA2

+
ax

I

¥ = v (52a)

1 0 l
0 1

with orthogonality and normalization given by

=+, + =+, +

a, *a1 + az*az =1 y
ES F B F

a *ay + az*az =0 y

(5.2b)
together with

/ Yrpdr = 1. (5.3)

Since ¢1 and ¢ are also normalized and orthogonal,
we have the further conditions

s+ - - +g + - -
o ¥ar +atfar =1, a*a; + ax*az =1,

ai*ay + ai*a; = aiaz* + araz* = 0. (5.4)

Il

Now, if we have an arbitrary state given by

Ys = cr + cpr = gl ¥ (5-53')’
with
cfer + cfea =1, (5.5b)
we can expand it in terms of the ¥.. :
s = A+¢+ + Aﬂb— ) (5-6)‘
where 4. is given by
/ Pipsdr = || al* a* ||| * / Vryds
= ar¥¢, + as*c. . (5.7)

The probability of getting a count in the detector
is A+*A . which we can write in summation notation
as

P(+) = aicta*c; . (5.8)

If we have a mixture M of states, by which we mean
an incoherent superposition, the probability of a
count is just the ordinary classical weighted sum of
terms like (5.8). Let us describe the mixture in terms
of two orthogonal states ¢ ©= ¢®w; + ¢V and
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V@ = @ + y@yy,. The probabilities of the two
states will be denoted by p® and p®.
Then the probability Px(+) can be written

Pu(+) = Dup®aic*a*cP . (5.9)

This sum can be written as the trace of the product of
two matrices, defined by

arar* ol ay* .
Pdet = a;a:—* a—;-a;r* ; (pdet)ij = Q; a,-* (5.10)
and
Zk p(k)C§k)C§k)* Zk p<k)C§k)C§k)*
oM = E’c p(k)cék)cik)* Zk p(k)cz(,k)cék)* ;
(ae)is = 2p p®ePef* (5.11)
Then we have
Py(4) = Tr (paetpsr) = Tr (parpaes) . (5.12)
Note also that
TI' (pdef.) = TI' (pM) =1. (513)

The matrix py is called the statistical matrix of
the mixture M. A pure state S would have a statisti-
cal matrix ps without the sum over p®; in fact,
paes 18 the statistical matrix of the pure state ¢.. The
formula (5.12) allows us to obtain all information
obtainable from the given mixture of states by use
of all possible detector states (orientations) ¢.. It is
a special case of the general formula for the mean
value of an operator @, as given for instance by Fano
[1957, Eq. (3.5)]. The operator represented by pat has
the value 1 when the spin is plus and 0 when it is
minus, so P(+) is its mean value.

For any state S, as given by (5.5), we can find the
expectation values of the Pauli spin matrices® o, oy,
o, in the representation based on y¥; and ¢.. We find
using P,, P,, and P, to represent these values,

P, = {0.) = cic¥ + cac¥ (5.14a)
P, = (o,) = i(cicf — cocf) (5.14b)
P, = (0.) = cicff — co0F (5.14¢)

with the further relation added for completeness

1 = cic¥ + cacf . (5.14d)
Note that the length of the vector P is unity:
P.+ P+ P; = (ack+ccd)’ =1. (5.15)

Using these results and the Pauli matrices, it is easy

6 We use z,y,z for three spatial coordinates, and only when
we deal with the small-angle approximation will we specify
that 2z coincides with the thickness ¢.
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to write the matrix of the state S in vector-matrix
form

ps =3 (I +P-3), (5.16)

where | is the unit matrix, and ¢ is the vector whose
three components are the Pauli matrices.

For relativistic particles when four-component
Dirac matrices are required, the mean values of the
components of ¢ are no longer given by the ¢’s of
(5.13), which belong to the two ‘“large’”’ components
only. Tolhoek (1956) has shown that the matrix
whose components give the direction of the magnetic
moment, which is the observable quantity, and which
do yield the formulas in (5.13), may be written
[Miihlschlegel and Koppe (1958)], taking the di-
rection of the linear momentum as the z-axis

E

® =gl + o [ —a.l.], (5.17)
where 1, is the unit vector in the direction of 2, and
E and mc? are the total energy and rest energy of the
particle, respectively. When the particle is at rest,
E = mc? and the longitudinal and transverse com-
ponents of é are weighted equally.

For a mixture, we take a summation over each
P,, P,, and P, and can write (we continue to use the
Pauli ¢)

pu =3[ +P-d];
P = 3. p®P® = p®P® 1 p®P® . (5.18)

Note that knowledge of P as given by (5.14) is
enough to determine Py, since the four equations can
be solved for the four matrix elements; the ¢; them-
selves can be determined to within a common phase
factor. Similarly knowledge of P as given by (5.18)
is sufficient to determine pyr.

If now we choose a representation (orientation of
axes) in which the two states of the mixture are just
Y1 and ¥, we have ¢®; = 1, ¢, = 0, ¢®; = 0, and
¢®, = 1, and

) 0
pr=lg @ (5.19)

P,=P,=0
P, =p® —p® (56.20)

Since p® + p®@ = 1, we see that for a pure state
P is a unit vector, whereas for a mixture, |P| is less
than unity. In the case that p® > p® we could
describe the original mixture as a combination of
two mixtures: one actually the pure state ¢y with
the probability p®® — p®@, and the other a completely
unpolarized mixture with equal probabilities p® of
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either y® or ¢y®. Thus p® — p@® = |P| = P is the
degree of polarization of the mixture. The vector P
itself characterizes the polarization state completely,
just as does the density matrix px, for any mixture.
However, the density matrix will be of more direct
use.

The detector matrix can also be written in the form
(5.18), by introducing P* whose components are
formed from the ai’s instead of the ¢/’s:

paet = 3 [I +P"-q]. (5.21)

For detection of the opposite sign, we have merely to
write

(paet)- = 3 [ + P -¢], (5.22)

where P~ = —P*, [That P~ = —P* follows by use
of (5.4)].

We can then compute the trace of psipsr by use of
the rules of spin matrix calculus: ¢2 = o) =02
=1; 0.0, = 10, = —oy0,, etc; Tr (o) = Tr (o)
= Tr (¢.) = 0; Tr (I) = 2. The following corollary
is useful, where P and P’ are any two vectors:

P-g)(P'-6) = (P-P)l 4+ 76-(P x P’). (5.23)
We readily obtain the result
Tr (pdetPM) = % (1 + P+'P) . (5.24)

Now if we have an unpolarized detector that detects
both signs of spin, the resulting counting rate will be
the sum of the traces (5.24) for P+ and P, namely
unity.

B. The Transport Equation

Now consider a scattering event. Scattering theory
describes the relation between initial and final states,
before and after scattering. In the ordinary case
without polarization, the amplitude «(6,8) multiplies
the final outgoing wave and may be considered a
multiplying operator that converts an initial plane
wave at angle (0,0) into a final wave, plane within an
infinitesimal solid angle, at angle (6,8).

The appropriate way to describe the state of a
beam of particles will be by means of a product of the
density matrix for the spins and a probability func-
tion for the angular distribution. We write the
product as

where the vector II is given by
= F@sP. (5.26)

The elementary scattering probability must be
derived from an operator acting on an initial two-
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component wave function. If the initial wave is a
plane wave in the 8§ = 0 direction, we can write the
resulting wave after scattering in terms of a matrix

cl

ch

All
A21

A12
Az

where ¢’ = u(0,8) as above mentioned. The new
density matrix can then be found from the old as
follows. We have from (5.27),

C1
Co

kabl = Aikcklﬁ ’
ciet MY = Ancdficty*y

= A4 ikaC;kA 1141//*\0 (528)

in matrix form. The symbol AT denotes the Hermitian
conjugate of the matrix A. In terms of the cross
section ¢ = uw*u, we have

c(0,8)0" = ApA', (5.29)

where the components of A are functions of 8 and 8.
Although we have not indicated it explicitly, w itself
must depend on the vector P.

If a particle before a scattering event has the
distribution matrix F1(6,8)p(P), then the distribution
after a single scattering (in thickness ¢, to use the
definitions of Sec. II) will be

F>(0,8)0" = Nt /o o'de’ /0 dg'A(8",8")p(P)
< AT(OH,ﬂ”)Fl(BI,ﬁ'), (530)

where as before the vector relation 6 = o' 4 6"
holds. The matrix p’ is a function of P, and, by
writing it in the standard form (I 4+ P’-4), it is
possible to determine the new polarization vector
P’ in terms of P. We can obtain an equation for Fe
by itself by taking the trace of both sides of (5.30),

P08 = N[ 07 a [ a8 Te 467,870 (P)

x A'0",8"F.0,8") . (5.31)

Waldmann (1958) has given a derivation of the
Boltzmann equation for scattering on fixed centers
by polarized particles. In the special case for which
the forward scattering does not alter the polarization
(isotropic scattering centers), and the small-angle
approximation is valid, the equation reads [Miihl-
schlegel and Koppe (1958)]":

7 Waldmann’s Eq. (91.12) is modified by the use of his Eq.
(89.186), the “optical” or “‘shadow’’ theorem, on the assumption
that A4(0, 0) is a multiple of the unit matrix.
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|

N (0 [
S 7 (0,8)1 + 11(0,8) - 6] =5foede /o ds

X {A@0",8")[F @8 + 10,8614 0",8")
— A(0",8")A' (0" ,8")[F (6,8)] 4+ 11(8,8)- 6]} .
(5.32)

L
2

=5}

This equation is the generalization of (2.42) to the
case of spin- particles.

C. General Solution for Small Angles

We must now specify the matrix A. Any 2 X 2
matrix can be written as a linear sum of | and the
three Pauli matrices. The matrix is a scalar, and to
preserve rotational invariance (in the general, large-
angle case), A must clearly be a linear combination
of a multiple of | and a secalar product of ¢ with a
vector. The only relevant vector direction associated
with a deflection from an original direction along
unit vector 1, to one along 1., is the orbital-angular-
momentum direction along 1, x 1., = 1 sin 6, where
6 is the angular deflection. Thus we expect to find
[Miihlschlegel and Koppe (1958)] that 4 is of the form

A0,8) = f(O) + 2g(6) sin 01,-6
= (@)l + 2g(8) sin 6] — r, sin B + o, cos 3] .
(5.33)

In fact, application of Dirac theory for a central
force gives just such a form [Mott and Massey
(1949) Sec. 4; Tolhoek (1956)]. We use here the
definition of the functions f and g given by Miihlschle-
gel and Koppe (1958); those of Mott and Massey,
and Tolhoek, are equivalent to our f and —g sin 6,
respectively.

A lengthy, but straightforward matrix calculation
leads to the following properties of A :

AA" = J@O)1 + D) sin01o-6  (5.34)

A6A" = D(6) sin 61,1 — E(6) sin 61, x ¢
+ [J(8) — sin® 6G(6)]6 + sin® 6G(8) (Lo-6)1o
(5.35)

where

J(6) = F*(0)f(6) + sin” 0g* ()9 () ,
D(6) = i[1*(0)g(6) — f(6)g*(0)],
E@®) = —[1*(0)9(6) + 7 (6)g*(6)] ,

G(0) = 2g*(6)g(9) . (5.36)
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With these results, (5.29) becomes
2008+ P-¢) =3 {[JO) + sin6D(®#)1,-P]l
+ [J(0)P — sin® 6G(0)P + sin 6D (6)1,
+ sin® 0(15-P)G(0) 1o + sin 6E (8) (1, x P)]-¢
(5.37)
from which we see that

a(6,8) = J(0) + sin6D(6)1,-P  (5.38a)

and
[J(8) + sin 6D (8) (1,-P)]P’ = [J(8) — sin® 6G()]P
+ [sin 6D (8) + sin’ 6(1,-P)G ()11,

+ [sin 0E(9)] (1o x P) . (5.38b)

It will be observed that if P = 0 (originally un-
polarized beam)

P’ = sin6D(6)1,/J(9) , (5.39)

and the resulting beam is polarized along the orbital-
angular-momentum direction. This is Mott polari-
zation [Mott and Massey (1949), Sec. 4.1]; sin
6D(6)/J(6) is the usual asymmetry factor S(6)
[Sherman (1956)]. Further, when § = 0, P’ = P. If
P is not parallel to 1o, the term 1, x P shows that
P’ cannot have the same direction as P. The polari-
zation effects, being due to spin-orbit coupling, are a.
relativistic phenomenon. For nonrelativistic particles,
g(0) =0 =D = FE = (@ A is a multiple of the unit
matrix, and p’ = p. Other consequences of (5.37) are
given by Miihlschlegel and Koppe (1958).

To apply these results to the transport equation,
we replace 8 by 6 and evaluate 1, as follows. Let the
direction of the beam before scattering at angles
(#',8") be given by 1,/ and that after at angles (6,8)
be given by 1.. In the small angle approximation,
with 1, the original beam direction and ', 6/, and 6
vectors normal to 1,, we have, to sufficient accuracy?,

1zr=1‘+0',}
lz =1¢+0,

91y =1, x1,=1,% (6 —@) =1, x 0’
=01, x 157 . (5.41)
Now if we multiply (5.34) by 3[F(6,8)] + 11(6,8) - 6]
and (5.37) by F(#',8'), replace 6 and sin 6 in each of
these equations by 6”7, and use (5.41), we can write

the transport Eq. (5.32) in a form suitable for
analysis. After writing the two integrals in terms of

(5.40)

8 Note interchange of z and 2’ in 1,.
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| and 8, we can equate the coefficients of each matrix,
and obtain the set of equations:

BOD _ [ “yar [ agis07)r@e) - Fap)

at
0”D(0”)[1: x 1,7-10(6")], (5.42)

an(eﬁ) Nf o'de’ dg {(J(@")[1(,8) — 1(6,8)]

+ 0"D(")F ('8 )[L x 1] + 0"E(9")
X [(10 x 1p7) x T(0',8)] — 07°G(0")1(¢,8")
+ 07°G(0")[(1, x 1) -XL(0",8)] (1 x 157} .
(5.43)

In deriving (5.42), and (5.43), terms arise from
the scattering-out expression (5.34) that involve a
function of # times the integral over 6’ and g’ of a
function of " multiplied by a vector expression in
14... Since 6’ does not enter the integrand, we change
0’'de’dg’ to 0"'de’’dB’" and find that for each component
of 1.+, the B”" integral is over cos (8’ — Bo), where G,
is some constant, yielding a zero result for each such
term.

Now let us take the double Fourier transform of
Eqgs. (5.42) and (5.43), in the “polar coordinate”
form (2.10b). We multiply both sides by 6d6ds exp
(7€-0) and integrate. In the combined fourfold
integral, we can change variables from (4,3,6',8") to
©",8",0',6"), except in the terms with F(6,8) and
I1(6,8) where we change to (6,3,6",8”"). In the former
case, we can write exp (1£-0) = exp (¢€-0" 4 2£-0")
= exp [280’ cos (8’ — o) + 1£0" cos (B — )], where
a is the azimuth of the vector &.

With the new choice of variables, the angle of 14/
no longer enters into 6’. We can then use the theorems
(A.19) and (A.20) of Appendix IT. When 1., appears
once in a term, the transform will have 1, in its
place, where 1, is a unit vector in the x — y plane at
azimuth «. When 14, appears twice, the transform
will have 1, twice, and another term with 14,/ re-
placed twice by the normal 1, x 1., or what is
equivalent, 1, x 1,/ replaced twice by 1,. We find

oF (E,a)

= [7(6) — JO)IF (g,e) + id(£) (1. x 1a)
11 (0) (5.44)
ME) _ 3(6) — JOM(Ee) + i) (L0 % 1)

X F(ga) + @(®)[(1: x 1.) x (§a)]
— GO () + [§¢) — 22(O][1: x 1. Ti(,a)]
X (lt x la) + 25(5)[111'11(8;“)]1&’ (545>

where the various transforms are
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7@ = 20 [ 0087 @10 550 = o,
d) = 2zN fo wode-eD(e)Jl(go) ,
8(§) = 2aN / “0ds-0E (6)(89) ,
§§) = 27N fo °°ede~02G(9)Jo(se),

h() = LaN fo wedo-azG(o)[Jo(go) + J.(89)] . (5.46)

Note that we have used —<¢ in place of 7 as used in
Miihlschlegel and Koppe (1958).

Following the same authors, we can separate this
set of four coupled equations into two independent
pairs, if we choose components of IT along 1,,1; x 1,
and 1,, respectively. Set

ﬁl = la'ﬁ ,ﬁz =1, % la'ﬁ ;ﬁs = lt'ﬁ, (547)
and we have
oF /ot = (7 — 3)F + 4dil,
o, /0t = idF + (7 — % — 2h)11,, (5.48)

oMM, /3t = (5 — jo — § + 2R)MI, + dells
Mls/0t = —delly + (J— Jo — §H)Is.  (5.49)
The initial conditions for these equations are
determined by (2.27); F(6,8,0) = 8s(8) and I1(8,8,0)
= §5(f) Po where Py is the initial value of the polari-
zation vector. Hence, we have

F(E,OZ,O) = 1: ﬁ(f,a,O) = PU . (550)

The axes chosen for Il; and Il, rotate with the
angle «, so we must write the initial conditions in
terms of the components of Py with respect to fixed
axes. We have then:

11 (£,0,0) = Il = Po.cos @ + Py, sina,
M2 (¢,0,0) = M20 = —Po. sin a + Po, cos
I (£,0,0) = IIso = Po. . (5.51)

Standard methods readily yield the solutions of the
two sets of differential equations. We have

Peap = | T IO oy g - 2y
+ cosh t(7* — ”2)”2] exp {[7(§) — Jo — h(®)],
(5.52)
IL(¢a,t) = [%——-%5@—5‘” sinh ¢(A* — d*)"

+ TIz0 cosh t(A* — d° "2] exp i{j(¢) — jo — k()]

(5.53)
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sinh t(5? + &*)'*

ﬁl (Eyayt) = [lé (E E}I‘;"[Zzo_i_—'_élg 5/52) Hw

+ Iy cosh t(A®* + 62)1/2]

X exp t[j(§) — jo — §(&) + A(®)],
(5.54)

(,Le(E)HlO + h(E)H:ﬂ)) h t(k + )1/2

(h + .,2)172
+ T30 cosh t(A° + & )”{I
X exp H7(§) — jo — §(&) + A(®)] .

s (%,0,t) = l:

(5.55)
F(0,81) = Ql‘/ £dg exp t[7(§) — jo — ﬁ(g)}{[ A
X % sinh £2(£).J, (£0)

LG50 = 5 f &g { exp 7€) — jo — (®)] [

B
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The o dependence of these functions is given by
use of (5.51). Before inverting the transforms, we
must express I in components with respect to the
fixed axes z, y, and 2, namely by the combinations

I, = I, cos @ — Mz sin «,
If, = I, sin o + I, cos a
ﬁz = ﬁs . (556)

Making these linear combinations of (5.53), (5.54),
and (5.55), using (5.51), multiplying the resulting
equations, along with (5.52), by e-*ftdtda/4n?, and
integrating over a by means of Appendix II, we find

sinh % (¢) + cosh & (S):I Jo(£0) + [— Po. sin B + Py, cos 3]

(5.57)

(E) sinh % (¢) 4+ cosh t/.z(é):l

X [PorJo(£0) + (Pos cos 28 + Po, sin 28)Jx(80)] + % exp i[j(§) — Jo — § (&) + £(%)]
X I:h(E) sinh 7(¢) -+ cosh tu(é):l [PosJo(£8) — (Poz cos 28 + Po, sin 28)J2(£6)]

®

+ exp () — Jo — 56 + A(®)] (é))
X ~§8 sinh &% (¢)J1(£9) sin ﬁ} ,

1080 = 2= [ e {3ew 170 - 5 — @1 | -

4¢3

sinh 5 (£) Po. cos BJ1 (80) — exp {[i(€) — jo — h(E)]

(5.58)

h(e) sinh % (¢) + cosh & (5)]

X [Po,Jo(£8) + (Pos sin 28 — Po, cos 28)J2(£0)] + % exp t[7(5) — jo — § (&) + h(£)]
X [h(g) sinh #7(¢) + cosh tu(é):l [PoyJo(88) — (Po. sin 28 — P, cos 28)Jz(£6)]

®)
+ exp {[7(§) — Jo — §(&) + A (®)] (é)) sinh 15 (£) Po. sin 8.1 (£0) + exp #[7(€) — Jo — h(£)]
X ég sinh % (¢) cos BJ1(£0) (5.59)
060 = o | tdtexp 076 — 5 — 56) + K@) {—-f;% sinh £5(8) (Po. 03 8 + Po, sin 6)J: (29)

+ [—f((g sinh 7 (¢) + cosh tﬁ(g):l Po,Jo(se)} . (5.60)
In these equations, we use the abbreviations these results requires a knowledge of the scattering

- 2 n1/2 matrix A, which will be taken up later (Sec. XIV).

B = [7°) — d°(®)] (5.61a)

56 = [B°(8) + &))", (5.61b)

These results agree with those of Miihlschlegel and
Koppe (1958) if the angle 8 is set equal to zero, and
a mistake in the exponent in the last part of their
formula for IT, is corrected. Further evaluation of

VI. THE SINGLE-SCATTERING LAW

A. Rutherford Law

The scattering of fast charged particles by atoms
is determined by a modified form of the basic Ruther-
ford law. This law yields, for the scattering of a non-
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relativistic particle of charge ze by a bare nucleus
of charge Ze into the angular range x to x + dx, the
cross section

(2276 /mv”)? .
7[2 sin (/20 2 sin xdx ,

where § mu? is the kinetic energy of the particle, and
the nucleus is assumed to have infinite mass.

When there are N(f) scattering centers per unit
volume, relativistic as well as nonrelativistic particles
are considered, and only small angles are involved,
we can write the single-scattering probability W (x,t)
as [Mott and Massey (1949)] ‘

ore(X)27 sin xdy = (6.1)

W(xt) = N(tor(x) = 4N ()a"/KX",

where the so-called Born parameter is given by

(6.2)

o = 2Z/1378 = 2Z¢'/hw , 6.3)

and

1k = % = h/p

is the reduced incident wavelength of the scattered
particle; k is the reduced wavenumber.

This law requires modification because of several
effects:

1. The effects of the screening of the nuclear
Coulomb field by the atomic electrons. This leads to
the most important modification, which is carried
out by one or another degree of Born approximation.

2. Spin and relativity effects when Born approxi-
mations higher than the first are considered.

3. The contribution to the total scattering of
scattering by the atomic electrons.

4. Effects of the finite size and the structure of the
scattering nuclei.

5. Recoil effects when the scattered particle has a
mass comparable to that of the scatterer.

6. Effects of crystalline structure in condensed
material (and for light elements, modification of the
screening resulting from close packing).

7. Effects of mixtures, included by replacing NZ2
in (6.2) by > :N:Z2? summed over the different atomic
species, and by a corresponding replacement in the
screening-correction calculation.

Considerable attention will be given in this section
to the first two effects, with brief remarks at the
end on the others.

(6.4)

B. The First Born Approximation
with Exponential Screening

The simplest way in which the screening of the
atomic electrons may be taken into account is by
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use of a pure exponential factor, yielding the so-
called Wentzel (1927) or Yukawa potential

Vr) = =+ (Ze/r)e ™™, (6.5)

where 7, is a screening radius which is usually taken
to be the Thomas—Fermi (7-F) radius,

ro = 0.885a0Z "% = 0.468 X 10™°Z*cm  (6.6)
with ao the Bohr radius (m, is the electron mass)
ao = W’/me’ = 5292 X 10" cm (6.7)

and u is a factor of order unity used by Nigam,
Sundaresan, and Wu (1959). With this potential, and
the standard first Born approximation method, one
finds

_ AN (1)a? ~ VO
W(x,t) = K2 sin® (x/2) + /K]~ EGC + x2)7,
(6.8)

where the Born screening angle x, is given by

e B _uh pke
Xu MXo kro Pro o

Using 6.6 and 6.7, we find for x,

(6.92)

_ M
Xo 7o

1.13

137
0.472 Z'*(m.c/p) degrees , (6.9b)

which becomes less than 2° even for the largest
values of Z when p~m., corresponding to an
energy of 210 keV for electrons and 255(m,/m) keV
for heavier particles of mass m. We shall assume that
Xo 1s always less than 4° or 1/15 radian. The function
(6.8), with u = 1, was used by Snyder and Scott
(1949).

The result can be written as a product of the basic
Rutherford formula with a screening factor ¢(x):

W(x,t) = [4N (t)e’/K"x"1q(x) (6.10)

7" (m.c/p) radians

with

900 = X'/ + x)” - (6.11)
The screening factor goes to zero as x — 0 (small
angles of scattering occur classically for passage of
the scattering particle far from the nucleus where the
screening is most effective) and goes to 1 for large
angles where the screening effect is negligible (in
Sec. IX this upper limit will be seen to differ some-
what from 1 for large «).
It is to be seen in See. VII that we can use (6.10)
without needing (6.11), obtaining a good approxima-
tion to the multiple-scattering distribution with
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knowledge only of the general behavior of ¢ as charac-
terized in the previous paragraph, and a single
parameter calculated from its actual form. It will
be seen later, however, that the small-angle ap-
proximation used in (6.10) must be applied with
caution for more complicated types of screening
factor than (6.11).

C. Improved Screening Potentials

Moliére in his detailed study of single scattering
(1947) proposed a useful fit to the Thomas—Fermi
function for heavy atoms. If we write the potential as

V(r) = £ (2Zé"/r)wu(r/ro) (6.12)

and set r/7, = 1/, we can write Moliére’s fit to wx as

o (') = 0.10¢™ + 0.55¢™* + 0.35¢ %", (6.13a)

According to Moliére, this expression fits the more
exact T-F function within 0.002 for 0 <7 < 6.
Rozental (1935), gives a similar but different sum
of three exponentials valid in the region 1 < ' < 10,
namely

wr(r) = 0.164 %% 4 0.581 ¢
4 0.255 ¢ "%, (6.13b)

The exponential falloff of these expressions is more
realistic than the well-known 7-3 asymptotic be-
havior of the T-F function, this latter behavior being
one of the chief defects of the T-F method. Further-
more, Moliére actually calculates the result of using
the usual T-F function involving fractional powers
of 7 for a certain range of scattering angles, and
shows that only a small discrepancy is made by the
use of (6.13).

Nigam, Sundaresan, and Wu (1959) use the form
(6.5) and adjust u to the value 1.80 to fit experi-
mental data for gold, and also to fit calculations using
the approximate analytic wave functions of Fock and
Petrashen (1935) for beryllium (see Sec. IX-D
below).

Fleischman (1960) fits the Hartree—Fock calcu-
lations of Hartree and Hartree (1935a, b) for berylli-
um with the formula, adjusted to include exchange
effects,

_ 4Z62 —2 457 /a, 2 —2.00r/a,
Vr) = - {e + 1.43(r/ao)e

+ 0.0010(r/ao)'e”" "} .
D. The Dalitz Formula

Nigam, Sundaresan, and Wu (1959) use the cross
section for electron scattering calculated by Dalitz
(1951) in which a relativistic procedure that is correct

(6.14)

257

and complete to the second power of « (second Born
approximation) is used. (In particular, certain mis-
takes in evaluating integrals in earlier calculations
were corrected by Dalitz.) The method uses the
rules of Feynman and Dyson for the S matrix for a
static potential of the form (6.5). The result for the
screening factor is [Nigam, Sundaresan, and Wu
(1959), Eq. (48)].

. 4 sin® x/2 ]2{ 22
100 = [xi A | L - g 2)

o) +
2r 2 sn2 Xi
+ of’x + 4sin” (x/2)] ([m - 1]

X X tan™ x,X — Ftan™ (2/xu)
1 -1 | sin (x/2) o
+ 2 sin (x/2) tan [ Xu ]>} (6.15)

with the abbreviation

X = sin (x/2) {xh + 40 + sin® (x/2)]} 7% (6.16)

The small-angle approximation can be used for
most of the terms in this expression, but care is
needed in handling the terms with sin (x/2) and
sin?(x/2) in the numerator (see Sec. IX). It can be
seen that for small « and x, and fairly small 8 (6.15)
reduces to (6.11). Dalitz’ result has been corroborated
by Mitter and Urban (1953), Lewis (1956), Kacser
(1959), and Mitra (1961). [But see the different
result obtained by Biswas (1952)]. Our final con-
siderations will be based on this formula, but its
limitation in using only a single exponential will
have to be discussed.

E. Moliére’s Method for Single Scattering

Moliére attempted to calculate a scattering for-
mula valid for large o (i.e., not restricted to first
Born approximation) and for large angles x, (up to
90°). Although the validity of his results is open to
some question, they are important enough to be
summarized here.

Moliére writes the nonrelativistic first Born ap-
proximation result in the form

2

TBorm(x) = I’ (6.17)

/ pdpdo <2kp sin 22(“) ®(p)
o
with Jo the usual Bessel function and &(p) given by

2 (7 _V(r)rdr
w, (7‘2_—_— p‘2‘>1‘72

®(p)

L [ viE + e @1s)
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If (6.5) is used for V(r), ®(p) becomes 2aKo(up/70),
where K, is a Bessel function, and (6.17) yields (6.8).
(Moliére takes u = 1.)

Moliére then calculates a cross section for arbitrary
a and small x, by a combination of WKB-type ray
optics for the passage of the particle through the
atom, and wave optics for the spreading of the
particle’s wave function between the vicinity of the
scattering atom and the point of observation. The
ray-optics calculation proceeds by finding the phase
shift of the particle along a (nearly) straight tra-
jectory through the atom. This shift is given by

3G) = | (h[@ + )" = Bz, (6.19)
where k.(r) is the relativistic wavenumber for the
particle at a distance r from the nucleus:

hek,(r) = {[E — V)] — (6.20)

The quantity p is seen to be the impact parameter
of the trajectory or “ray.” As before, k is the initial
or asymptotic value of the wavenumber.

If . is expanded as a series of powers of V (r)/hkBc,
the first-degree term yields the same expression for
®(p) as Eq. (6.18). It is readily seen that this ex-
pansion of k.(r) is essentially in powers of axo, as-
suming that the values of r important in the integral
in (6.19) are of the order of ro. Since 2K,(1) = 0.84, it
is seen that ®(p) when expanded to the first order
in ayo, is itself of order x.

This phase shift is used to establish the wave-
function at a plane just beyond the influence of the
atomic field. A Green’s function calculation is then
used to find the wavefunction at a distant region of
observation.

The final result is

mzc4}1/2 .

000 = K| [ pdoTotem0 ™ = 1, (6:21)
0

where the Bessel function arises out of the assump-
tion of small scattering angles and the fact of observa-
tion at a point far from the scatterer in comparison
to atomic radii. The first Born approximation for
small angles is obtained by expanding ®(p) to first
order in axo, and expanding the exponential in (6.21)
to first order in a.

Let us digress at this point to show that the small-
angle theory requires for its validity the general
condition

axe K 1. (6.22)

In the first place, when o << 1, the first Born approxi-
mation is valid; by (6.11) we see that the region of
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values of x for which screening effects are noticeable
is that for x < xo. There will be little scattering for
angles appreciably greater than, say, 10x.. Hence,

‘we must have xo << 1 if the small-angle approxima-

tion is to be valid over the entire effective range of
scattering, and (6.22) must hold. (Fig. 6 shows that
the effects of screening extend out to x ~ 10xo for

FIRSTN. -~
BORN )~
AFPROY/

0.5

q(x)
7 A
/MOLIERE
/ / FORMULA
/
7,
7
/ -
° = ”

<
logo(X/X)

F1c. 6. The screening factor g(x) as a function of logio(x/x0).
Solid lines represent the calculations of Moliére as described
in the text. The two circles represent Moliére’s two numerical
checks.

small @, and to x ~ 100x, for large «.) For general
a, we can write

axo = V(ro)/pﬁc )

and this ratio of energies will give approximately the
angle of scattering on a classical picture for particles
just at the inside of the region of screening. By a
similar argument to that given in the previous
paragraph, we again find (6.22), which applies
therefore to all cases of interest.

Using (6.3), (6.6), and (6.9), we can write axo as

axo = [(0.885mzZ%*x%/m.)? + (%2 Zxo/hc)* ]

so that the condition axe < e implies that the square
bracket and a fortior: the first term is less than €. We
find an upper limit of xo itself, dependent on the
choice of e:

xo < [em./meZ**) (6.23a)

which constitutes an additional restriction to that
given just below Eq. (6.9). Using the nonrelativistic
expression for kinetic energy, we find that this upper
limit on xo corresponds to a lower limit on the kinetic
energy of the scattered particle:

22 eV ~1002Z""* eV for e ~ 1/5. (6.23b)

g > 20:2"
- €

In order to get a still more accurate result, Moliére
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proceeds from the exact [Faxen—Holtsmark (1927)]
phase-shift analysis. According to this method
2

(6.24)

o(x) = ﬁ g @1+ 1) (¢ — 1)P(cos x)

where P; (cos z) is a Legendre function, and the
phase-shift §; is given exactly by the integral equation
[Nigam et al. (1959), Morse and Feshbach (1953), p.
1072]

0 1/2
2m (" (7'—’”") Junss(br)V (OR(r)

e Jo "\ 2
(6.25)

where R,(r) is usually taken as satisfying the non-
relativistic wave equation

sin §;, = —

2
(6.26)
and behaves asymptotically like
R.(r) «sin (ko — In/2 + &:)/kr  (6.27)

The first Born approximation is obtained for
(6.24) and (6.25) by replacing e*®: — 1 by 218;, and
replacing (6.25) by

01 = _177,?—
i.e., by using for R; under the integral sign the ap-
propriate solution for V' = 0. Higher approximations
would involve terms with §; under the integral sign,
so that the final value for §; would be a series in
powers of a. In accordance with the behavior of the
expansion of ®(p), we would expect this series to be
actually in powers of axo =~ au/kro.

That this is so may be made plausible by the
following argument. The first Born approximation
leads in the limit of no screening to the exact Ruther-
ford cross section. Higher Born approximations will
thus vanish in this limit, and the corrections they
produce with screening will depend largely on the
values of the integral in (6.25) for r in the screening
region. If we describe the carrying out of the next
approximation as roughly a matter of replacing one
factor Ji1/2(kr) in (6.28) by Jiu/z(kr + 8:) =~ Ji41/0
(kr) 4+ 8:J"111,2(kr), the correction term will be of
order 6,/kr, compared to (6.25), multiplied by «
= zZe*>m/h?k which gives the order of magnitude of
that integral, so we have, very roughly,

rdrd v, (kr)V (),  (6.28)
0o

61 (corr) =~ 61/(1 - ay k?"o) .o

It is not hard to see from the Dalitz formula that
for nonrelativistic particles (0.1 < 8 << 1) the cor-
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rection terms introduced by the correct application
of the second Born approximations are all of the
order axo, both for small and large x, which consti-
tutes an indirect verification of the above conjecture.
However, the Dalitz formula shows that this con-
jecture cannot be correct for the relativistic region,
where only for x < xo are the corrections negligible,
being of order « for large x.

Moliére calculates the phase shift by an approxi-
mate, WKB-type, method that allows for a ready
expansion in powers of axo,. He replaces k?
—2mV(r)/h? in (6.26) by the relativistic value
kZ(r) given by (6.20) and rewrites the now relativistic
Schrodinger equation for R; in the form

&1 d _ (+3)°, ] ap o
[dr2 + P 2+ k() | FPRi(r) = 0.
(6.29)

Assuming the asymptotic form of B;(r) to have a
phase factor ¢, he finds by WKB methods

) = =5+ [Lariee) - a+ pyrr”
(6.30)
(r'” is the value of 7’ for which the integrand vanishes).
The unscattered wave, with k.(r) replaced by £k,
yields a Bessel function of order [+ % (actually
H/; for the outgoing wave) whose phase shift can
be written [cf. Jahnke-Emde (1943), p. 140; and
Jahnke-Emde-Losch (1960), p. 148 (4.26)].

00 = =T [ — a e

+1/2) /&
(6.31)
The phase shift 6, is then given by
& = lim [v:(r) — ¥i" ("], (6.32)

and if k2 is expanded as above in powers of V (r)/kkBe,
we find

_ l_ir__)

using (6.18). Moliére conjectured that this calcula-
tion should yield a quite accurate value of §;, and
Fleischmann (1960) considered that the smallness of
the correction for x < xo as indicated in the Dalitz
formula is an indication of the correctness of this
conjecture.

The next step in the calculation is to replace the
sum in (6.24) by an integral. Moliére uses the rather
accurate asymptotic formula for P, (cos x):

Pi(cos x) = (x/sin x)'"*Jo[( + $)x],

(6.33)

(6.34)
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which is not only very good for large I, but even for
! = 0 involves only a 79, error at x = w/2.

Then the Euler sum formula is used, according to
which

500+ 0 = [T+ 0+ 639)

The result obtained is (setting x = kp)

f pdpJo(kxp)[e™” — 117
0

(6.36)

Moliére makes one further correction to this
formula, with a view toward improving its behavior
at large angles. He observes that for x large compared
to the screening range, but small in the absolute
sense, and for small «, the small-angle Rutherford
result should ensue, so that the angular behavior
of (6.36) is o(x) ~ x~* For angles wherein x/sin x is
appreciably different from 1, i.e., when k is small, the
integral will behave as x™, and the overall result will
be proportional to

o(x) = k*(x/sin x)

4
3 1o .
(x sinx) ~x <1 + X —|— 360 ) . (6.37)
The exact Rutherford result can be written as
proportional to

(2 sin x/2)* ~ <1+ +— +> (6.38)

720 X
which agrees within 0.5%, up to 60° with (6.37).
Hence, in order to obtain a result that agrees as it
should with the Rutherford result to 90° and beyond,
Moliére replaces (x/sin x) with x*/(2 sin x/2)* and
writes

q(x) = (Zﬁz)

[ ododstio)le®® ~ 11 (6.39)

where as defined in (6.10),
a (X)/ o Ruth(X) .

The problems of evaluating multiple-scattering
results at angles for which this correction is im-
portant are complex and difficult (involving es-
pecially the ‘“detour factor”) and are beyond the
scope of this article. Hence, we shall not try to
distinguish (6.21), (6.36), and (6.39).

q(x) is the ratio

F. Moliére’s Scattering Formula

To evaluate (6.39) with (6.12) and (6.13a), we
need to calculate ®(p), using Eq. (6.18) which as
indicated below (6.20), is good to terms of order axo.
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We have, in fact,

_ _2zZe2 “ drw(r/ro)
®(p) = F W (7_2 — 2)1/2
. d?‘w(?” R
_:F2 / (7" y)1/2’y—7|0‘
(6.40)

Using (6.13) and the integral [13.2(17)] of Erdelyi
et al. (T. I. T., 1954), [see also Watson (1952), p
170] we have

®(p) = F2a[0.10K,(6y) + 0.55K,(1.2y)

+ 0.35K,(0.3y)] (6.41)

where K, is the usual Bessel function of the third
kind :

Ko(z) =

For small z, we have

Ko@) =~ —In (v2/2) + 121 — In (v2/2)] +- - -,

L miHP (iz2) . (6.42a)

(6.42b)

and for large 2,
Ko() = (7/22)"%¢ (1 — 1/82+---), (6.42¢)
where In v (often denoted by v) is Euler’s constant
Iny = 0.5772 ;v = 1.7811. (6.43)

The derivatives of Ko(z) are given by

Ki(z) = —Ki(z) = s 7H{" (iz) ,  (6.44a)
o' (2) = Ko(z) + Ki(2)/2 . (6.44b)

The functions Koand K; (or H{® and H{®) are tabu-
lated in Jahnke-Emde (1943), Jahnke—Emde—Losch
(1960), and Watson (1952).

For sufficiently small @, exp [¢®(p)] can be replaced
by 1+ 2®(p) in (6.39). Using entry [8.13(2)] of
Erdelyi et al. (T. I. T. 1954), we find, using (6.9)
with u = 1, that the limiting value of ¢(x) as « — O1is

900 = <x_)f>>4 [<x/x3'21+ 36T

0.35
S 0.09} '
When x/xo is large—that is, considerably larger
than 6, we can write (6.45) as
[0.10(1 — 36xa/x" +--)
4+ 0.55(1 — 1.44xa/x> +---)
+0.35(1 — 0.09x0/x" +--)T
= [l — 44243 /x° + - TP~1 — 8.85x/x" .
(6.46)

0.55
(x/x0)" + 1.44

(6.45)
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[The number 8.85 would be replaced by 7.32 if the
expression (6.13b) were used].

For large values of o, we cannot expand the
exponential in (6.39). In fact, this exponential func-
tion oscillates rapidly as p varies with « large. The
Bessel function also oscillates, and, in fact, the term
with —1 contributes nothing for x — 0 since it yields
a (two-dimensional) delta function. Strictly, its
effect appears for x near zero, for which large values
of p are important, & — O[cf. Eq. (6.42¢)], and exp
[2®(p)] — 1. Hence, we shall assume the x is not too
near zero.’

The product of two oscillating functions will only
make a substantial contribution to the integral if the
oscillations are approximately in phase. Since one
“half-cycle” of the Bessel function occurs for a
change Ap in p given by kxAp =~ m, we must have
[A®(p)| >~ | Ap®'(p)| ~ 7 or

kx >~ |@'(o)] - (6.47)

Since |®| behaves for small p as — 2aln p, &'(p)
= d®/dp varies inversely with p and (6.47) gives the
value of p at which the oscillations are most in
phase. For values of p that make Jo oscillate, we
expect that we can use the asymptotic expression
for J 0

Jo(kxp) = (whxp/2)™" cos (kxp — w/4) . (6.48)

In fact, from (6.47) we see that kxp =~ |pd®/dp|
~ 2 and if a>> 1, we are in the region where the
asymptotic expression. is valid.’* Thus, we write

[ oot te® — 112 @e [ 5

X {exp (i[®(p) + kxp — 7/4])

+ exp (i[2(p) — kxo + 7/4])} (6.49)
The phase agreement involves a particular maximum
in the integrand, where the phase of one of the two
terms is stationary. If & is positive, (and d®/dp
negative), it will be the first term, and the second
term will not contribute appreciably to the integral.
In saddle-point calculus fashion, we expand the
contributing phase about its extreme value.

Specifically, we determine p, by the equation

kx = |9’ (o0)] (6.50)

9If we assume a = 10 and take ®(p) = 2ako(p/r0), then
inspection of (6.42¢) will show that oscillations are unim-
portant for p/ro > 3, or kxp > 3x/xo. This range of p will be
important in the integration if 3x/xo is considerably less than
1. Hence we shall assume x > x0/3.

10 Even for & = 1, it is not too bad. The first two roots of Jo
oceur at 2.405 and 5.520, with a minimum at 3.83 of value
—0.4028. The asymptotic expression gives roots at 2.36 and
5.52, with a minimum at 3.79 of value —0.406.
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and write for the exponent in the contributing term

i[®(po) =& kxpo F 7/4 + % (0 — po)’®” (po)] .

The p2? we replace by ps”/2, which will make little
error if p is large enough.

When a complex function such as the exponential
we are considering has an extreme value, it will
show saddle-point behavior in the neighborhood.
The method of steepest descents for calculating an
integral through such a point involves distorting the
integration path so that the point is a maximum for
the new path. In this case, we let p — po = == 12z
where the sign corresponds to that of ® and ®”. The
integral to be evaluated is then

/_:dx exp {—12°|®"(po)|} = {27/]|®" (po)] e

where further approximation enters in assuming that
this expression can be integrated between the indi-
cated limits.

We finally arrive at the result for large «

q(xX) = pok’x’ /4’| 3" (p0)] . (6.51)

This expression may be evaluated by choosing a
set of values of yo = po/ro which with (6.50) and
(6.44a) lead to a set of values of kxro = x/xo and
with (6.51) and (6.44b) to the corresponding values
of ¢(x).

For large values of x/xo, as we have indicated be-
fore, only small values of p are important in the
integral. Let us then consider the expansion of
(6.41) for small y = p/r,. Using (6.42b), we find

®(p) = Fa[0.516 — 21Iny — 0.81y°
— 221" Iny +---]. (6.52)
Using the prescription just given for large «, with
small yo, we can take, using (6.52) and (6.50),
X/ axo == 2/Yo
and, keeping only terms in In y and 1/y2,

q(x) =1 + y5(9.86 + 8.85 In yo)
=1 — 3540/ (/] [ 1n () — na - Lz,

(6.53)

For general « and large x/xo, we again throw away
the —1 in the bracket of (6.39) and expand that part
of exp {1®(p)} that does not involve 0.516 — 2 1n y.

11 Saddle-point, caleulations showing the relative effect of
ignoring more drastic variations than this one are reported by
Scott and Uhlenbeck (1942).
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Moliére carries this only to first order in . Using the
integration variable x = kpx = yx/x0, we obtain

]- ® 1-2¢a
q(x) =1z fox dxJo ()
?:Cl$2 XXo 2
—_— 81 2211 ->:H .
X[l (x/x0) <08 + .

(6.54)

This integral is not convergent for real «, but if we
temporarily allow the condition —1 < Re (1 — 2ia)
< 0, we can use formulas [8.5(7)] and [8.6(25)] of
Erdelyi et al. (T. I. T. 1954) together with the
identity

It — i)’ T = i)T (A + 4a)

| TGa) | TI'(—ia)T(a)
= (—ia) (Ge) = o
and find
| 4e(l — i) { [l "
qx) =1+ 8% 0.81 4+ 2.21 | 1 ¢ (ia)
+ 3¢ (—ia) + i —}ia — 5%& - lnéi;]}

(6.55)

The negative imaginary part of « can now be allowed
to go to zero, by analytic continuation.

Moliére has fitted a simple formula to the sum of
¢ functions in (6.55):

3¥(la) + 3¢ (—ia) = Re ¢ (ia)

2
~1ln (a+f‘§—+ 0.13). (6.56)
Using this expression in (6.55), and expanding with
neglect of higher orders in o2 and (x/xo0)~2, we obtain

8.85
b0 =~1 - (x/x0)*

7.1 X 10“*<x/x0>‘*}
(e + 3" 4+0.13)1° (6.57)

where 7.1 X 10 signifies 2%+, This expression
reduces to (6.53) for large «, and to (6.45) for « = 0.

Nigam, Sundaresan, and Wu (1959) have criticized
this development on two grounds. They suggest,
incorrectly, that failure to expand z2* in powers of
a leads to inconsistencies to order of 2. As we have
seen above, this factor is kept in this form to provide
convergence, and a different method of including it
would still not change the expansion to this order.!?

X|:1+a21n

12 Fleischmann (1960) points out that the errors made by
Moliére in this step of the approximation at the most amount
only to a few percent.
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On the other hand, they are right in saying that the
first Born approximation has been used for ®(p),
omitting terms of higher order in « than the first,
and that therefore the term in o2 in (6.57), and the
absence of a term in @, cannot be correct.

Moliére has calculated ¢ for all x for « = 0 by
(6.45) and for & = 9.6 by (6.50) and (6.51), and for
large x/x0 by (6.57). From these results, he devised
an interpolation scheme, based on a linear relation
between (x/x0)? and o2 for fixed q. The results were
tested by direct numerical integration of (6.39) with
a = 0.6 and (x/x0)? = 1 and 10, and the error in x
for a given ¢ is estimated to be less than 109},.

The results are given in Table II, for the co-
efficients in the relation

(X/x0)" = A, + B, . (6.58)
TasLE II. Coefficients for Eq. (6.58)

q A, B, q A, B,
0.05 0.102  0.059 0.5 2.75 10.85
0.1 0.209 0.214 0.6 4.68 22.8
0.2 0.525  0.891 0.7 8.71 50.8
0.3 0977 231 0.8 19.5 128.8
0.4 1.675 520 0.9 61.7 421

Figure 6, from Moliére, shows the various results
indicated above.

It will be seen in the next section that the only
property of the single-scattering law that is needed
for Moliére’s method of calculating multiple scat-
tering is the Moliére screening angle x, defined by

—~1 — lim { f x’”dxq-(;‘—) —In xm} (6.592)

Xm—® 0

x ) [
—% — lim [q(x) In <~—>:l
X Xo 0

(X m)

—f dgIn (X~> — lnxm}

0 Xo

1
-5+ Inx + /dqln (i) )
0 Xo

where we have used the fact that ¢(0) = 0 and

Inx, =

(6.59b)

Iim g(xn») = 1.
X —>®

This screening angle was used in Eqgs. (4.13), (4.15),
and (4.16).

Equation (6.59a) can be evaluated directly for
a = 0, using (6.45). The result is
In xo = In xo + 0.0793 ;

Xe = 1.0825x0 = (1.174)*x,, fora = 0. (6.60a)
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If we use (6.58) for o = 0, and perform a numerical
integration, assuming the area between the curve of
In A(g) and the ¢ = 1.0 axis above the value of In
A for ¢ = 0.9 to be equal to that between the curve
and the ¢ = 0 axis below the value for ¢ = 0.1, we
find

In x. = In xo + 0.0679 ;
xa = 1.0700x0 = (1.145)*x,, fora =0. (6.60b)

For large «a, substitution of (6.50) and (6.51) in
(6.59a) yields (the use of x = 0 as a lower limit in
place of xo/3 as suggested earlier will make a very
small error)

xm 1 * ,
/ dxm—lnxm=p/pdp¢2(p)
0 X (04 pm

—In|® (pn)| + Ink,
where p,, is the value of p corresponding to x.. As
Xn— ®, |®'(p)| = 2a/p = 2a/yro by (6.52), so that
we get [using (6.41) and (6.44a)]

In x. = —% 4+ In 2ax, — lim {i/ ydy[1.2K, (6y)
ym—0 ym

+ 1.32K,(1.2y) + 0.21K,(0.3y)]* + In ym} )

The Bessel-function integrals can be done in closed
form [Watson (1952), p. 134],” yielding a result that
differs from the o« = 0 result by exactly In ay

In xo = In xo 4+ 0.0793 + In @y ;
Xa = 1.93ax0 = x0(3.72a°)"%.  (6.61a)

If in Eq. 6.58, we neglect A (q), which is justifiable
for o > 2, we can again perform a single numerical
integration and obtain

In xo = In axo + 0.6729 ;
Xe = 1.96ax0 = x0(3.84¢")"*.  (6.61b)

Assuming a linear relation between x2 and o2,
Moliére writes the following interpolating formula
based on the above information

o = x0(1.13 4+ 3.764°) . (6.62)

In view of the two-figure accuracy in the initial
Fermi—Thomas function (6.13), the uncertain charac-
ter of that function, and Moliére’s incorrect method
of including the o2 terms, the numerical discrepancies
among (6.60), (6.61), and (6.62) are completely
negligible. Furthermore, as we shall see in the next

B The reader may verify from (6.44) that (b2 — a2)
JzdzK (az)K1(bz) = z[aKo(az)K1(bz) — bK1(az)K(bz)], and by
a limiting process may find the result for a = b.
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section, the multiple-scattering distribution is in-
sensitive to the exact value of x,. (See, for example,
the relatively small effects of changing x. by the
factor 1.80/1.12 in the calculations in Table IX.)

Moliére has also proposed a simple functional
form for ¢(x), namely a form similar to (6.11)

gx) = x/ ¢+ x), (6.63)
which satisfies (6.59a). However, Fleischmann (1960)

has suggested that a better fit, especially for large
a, can be made with

40 = x/(x +x); xn=xe€"” (6.64)

(cf. Fig. 6). This latter form will be useful for one
method of estimating higher-order corrections to the
Moliére theory of the next section.

We have indicated in reference to the Dalitz
formula that for nonrelativistic scattering, and also
for small « in general, the first Born approximation
result (6.11) appears to be a good approximation. To
compensate the use of only a single exponential in
V(r), Nigam, Sundaresan, and Wu (1959) propose
to introduce the coefficient u in (6.5) and (6.9), which
leads to a result not greatly different from that
obtained by use of Moliére’s formula (6.63) with a
different determination of x, than that given by
(6.62). In fact, x, is in all cases very close to x, as
long as axe K 1 [see Eq. (9.19) below]. Nigam et al.
quote the result of a numerical integration, based on
work of Goudsmit and Saunderson (1940a,b) and
Mott and Massey (1949, pp. 188-90, 196-8), which
yields

Xe ™= Xp>=1.12x0; p =112, (6.65a)
or, to compare with (6.60),
In xo >~ 1n x + 0.113 . (6.65b)

The justification of Moliére’s conjecture that his
calculation method is essentially correct is upheld
[Fleischmann (1960)] by the smallness of the cor-
rection terms in Dalitz’ formula, but invalidated by
the use of only the first Born term in the exponent.
Further discussion of the relative merits of the two
results will have to be postponed to Sec. IX.

G. Special Calculations for Beryllium

Because of discrepancies between theory and
experiment for beryllium [Hanson, Lanzl, Lyman,
and Scott (1951)] special calculations for this case
have been made by Nigam, Sundaresan, and Wu
(1959) and Fleischmann (1960). The former authors
use the analytic functions of Fock and Petrashen
(1935) which allows a new first Born approximation
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with its value of xo to be evaluated. The resulting
value of u was 2.18, larger than, but not in serious
disagreement with, these authors’ empirical value
1.80 (cf. Sec. IX-D).

Fleischmann, on the other hand, uses the Hartree—
Fock formula given in (6.14) with the small-a de-
velopment that let up to (6.45). The calculation in-
volves similar but much lengthier operations with

u{=224nV)
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Fig. 7. Incoherent scattering function S(v), for H, Li, C, O,
and Pb [Grodstein (1957), Fig. 6].

Bessel functions, which lead to an algebraic function
for ¢(x) of considerable complexity. The resulting
value of xq i8 x« = (1.13 &= 0.01)xo which compares
favorably with the values in (6.60b) and (6.65a).
Fleischmann then estimates the effect of the modifi-
cation of the screening by virtue of the close approach
of beryllium nuclei in the crystalline state as modify-
ing the value of x.~ x, to 1.6x0, which also agrees
reasonably with the empirical value of 1.8xo.

H. Corrections for Scattering by Atomic Electrons

The scattering of fast particles, electrons or others,
by the electrons of the scattering material has been
treated by Fano (1954). For sufficiently large angles,
the scattering by each electron is given by the
Rutherford formula with Z = 1. Since there are Z
electrons per atom and each scatters independently
of the others in the energy range we are considering,
the effect will be that a term of order Z is to be
added to that of order Z2 as given by 6.1—i.e., we
should replace Z2 by Z(Z + 1).

However, this does not hold down to the smallest
angles, for the cross section goes to a constant value
at zero angle instead of increasing indefinitely. The
effect is given by Fano in terms of multiplying the
Rutherford cross section by 1/Z times the incoherent
scattering function S(v:2) where v, is a convenient
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parameter related to the angle of scattering, and S
itself is defined as (1/Z) times a sum over all electron
states of the generalized atomic form factor. Grod-
stein (1957) has given a survey of available calcula-
tions of S(v1,2); the results are given in Figs. 7 and 8.
Just as for Moliere’s ¢(x), S approaches zero for
small x and unity for large x.

For electron—electron scattering, we use the varia-
ble v given by

n = (31/256)" 27" q|a0/h ~ 0.3332 " *pxao/h
= 0.333Z"xa0/x0 = 0.376Z " "u(x/x0) ,  (6.66)

where q is the momentum transferred to the scatter-
ing electron; for small angles, |q| is equal to px, to a
good approximation. (Strictly, |q|2 = (¢/Bc)? + p>x2,
where ¢ is the energy loss and B¢ the speed of the
scattered particle. The discrepancy is only important
in the region where screening effects reduce the
scattering anyway.) Most of the variation of S occurs
for values of »; between 0.1 and 1.0, so that S becomes
important for angles smaller than approximately
3 Z1/3Xu-

The effect of electron—electron scattering is thus
included in the total by replacing q(x) as given above
by

ga(x) = q0x) + Z78(w) . (6.67)
u{=24nV)
*° -? —‘i I-T -zl A > T'le 4]
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F1a. 8. Incoherent scattering function S(v) for Ne and A
[Grodstein (1957), Fig. 7].
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It will be noted that g.(x) > 1+ 21 = (Z + 1)/Z
as x — ®.

For heavy incident particles, a simple correction
to g(x) is not possible, because the incoherent scat-
tering no longer resembles Rutherford scattering.
The recoiling electron may take a substantial amount
of energy E., which varies from a minimum value,
essentially zero (low-energy recoils contribute negli-
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gibly to multiple scattering), to a maximum value
given by

2m B CE 2mpc’ _ 2m.p’
mc +2mcE- 1—65 m

E, i = (6.68)
where E is the total energy (including rest-energy), p
is the momentum and Bc the velocity, of the incident
particle, and the approximation assumes that E/mc?
<K m/m,. The electron recoil energy and the angle of
scattering are related to good approximation by

2_2mGEe[ ___ k. ] '
X = pz 1 E. o Sa) (6.69)

where the argument v, of the incoherent scattering
function is given by

v = 0.333272"(ao/1) (2m.E.)'" .

(6.70)

For this type of scattering, there is an upper limit
for x?, which can be estimated from (6.69) by assum-
ing that S(v) is constant. Then the bracket is 1 for
the maximum value of x2, and we have

Yomax 2 MEy max S(02)/2p" = (m,/m)*. (6.71)

Unless p/me £ 1/137 and the incident kinetic
energy is therefore less than mc?/2(137)2, we have
XmasZ > X3. [See Eq. (6.9b).]

The scattering cross section is most conveniently
written in terms of the variable E. [which is a double-
valued function of x according to (6.69)]. Fano gives
the formula corresponding to (6.10) as

2 2 2

(6.72)

A method of including this cross section in multi-
ple-scattering theory will be given after Moliére’s
calculation is presented in Sec. VII.

I. Other Corrections

t. Nuclear size effects. These become important for
scattering angles of the order of A./ry, and larger,
where 7y is an appropriate nuclear radius. Since 7o
is at least 10% times ry, the angles at which nuclear
effects are important are very much larger than those
where screening is effective. Nuclear size effects can
be described by multiplying the already-modified
Rutherford cross section by a nuclear form factor
Fx(x), which goes to 1 for angles considerably less
than xo/rx, and to some small value for large x. If we
can assume that for very large angles at high energy,
the incident particle passes through the nucleus and
is scattered independently by Z point protons, the
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limit of Fx(x) will be just 1/Z, by analogy with the
electron—electron scattering. If the finite extension of
each proton is taken into account then Fx(x) may
hover around 1/Z for intermediate values, but will
go to zero in the limit. A survey of available calcu-
lations of this effect is given in Sec. XV.

1. Correction for massive scattered particles. If the
mass of the scattered particle is comparable to the
mass of the scattering nucleus, recoil of the latter
must be considered [Bethe and Ashkin (1953)]. The
effect is negligible for very small angles, and may be
treated along with Fy(x) for larger angles (see Sec.
XV).

112 Crystal-structure effects. The effects of crystal
structure will become important when the crystalline
or microcrystalline character of the scattering ma-
terial is such that there is an appreciable probability
of two or more coherent scatterings with one crystal.
If this is so, a crystalline form factor similar to those
used in electron-diffraction theory must be included.
In fact, if we assume the material to be composed of
numerous very small randomly oriented identical
crystals, each containing N atoms, the usual X-ray
and electron-diffraction structure factor becomes, in
small-angle approximation,

sin (x74;/Ro)

i,zf Xrif/ Ao ’
This is the type of factor used in X-ray powder
pattern photographs. No adequate application to the
case of fast charged particles has yet been made.'
However, if the individual crystals of the scattering
material are sufficiently microscopic and random, its
neglect is probably quite well justified. Reference to
two experiments in which small crystal-structure
effects may have been observed is given in Sec. XI
[Lenz (1954)].

w. The effects of miztures and energy loss. These
effects are readily included by suitable averages
over the different atomic species that may by present,
and suitable integrals along the path involving the
variable momentum of the particle. They are taken
up in the next section.

Seil) = 1+ 7 (6.73)

VIL. THE MOLIERE CALCULATION

A. The Transform

We proceed to calculate the transform exp [Q(§,t)
— Qo] as given in Eq. (2.37), using the form (6.10)

14 See, however, the discussion by Hoerni, (1956 a,b). Several
references are given there to other work on electron diffraction.
Shinohara (1949) has made some calculations of this effect by
the Williams method.
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for W(x,t), but assuming that ¢(x) is given by
Moliére’s result as given in the last section, modified
if necessary because of the incorrectness of his ex-
pansion in powers of «. The correction (6.67) is
assumed to be made if the scattering of electrons is
under consideration.

If a mixture of scatterers is present, (6.10) must be
summed over the different atomic species. In general,
we have for the ¢ integral in (2.37b) to use

i 4
f AW (xt') = —¢
0 X

« [a ZNWEO0ut)
) ()

since the density, the value of « (in its dependence
on B), the value of ¢ (in its dependence on « and B)
and the value of & (directly dependent on the energy),
may vary both with the atomic species (denoted by
the subscript 7) and the distance t' along the path.
Each ¢:(x,t") will be essentially unity for x greater
than some xo; (except for electron scattering, when
it is (Z 4+ 1)/Z). For x greater than the greatest of
these, say xon, we have

(7.1)

f AW (et) =
det, 2o N: ()i (t)

k (t ) y X > Xom
(7.2a)
which we write in simple form as
2mxdXW ()t = (2x/X")dx ; X > xom, (7.2b)
where the average W is given by
t
Moo = [ Wetar 7.3)
0

and the characteristic angle x. is defined by
! N ()2 (t)
i — t, Zl K3 T
X 47 / d @)
/ ” Z e 7z

= 4re's (7.4a)

For electron scattering, we 1ntroduce the factor
(Z; + 1)/Z; and obtain

& = dnds dfvz SN Z:(Z: +1) . (7.4b)

For a homogeneous scatterer with no energy loss,
we have
Xs = 4we'?’Z°Ni/p™’ radians’ (heavy particles)
= 4re'?’Z(Z + 1)Nt/p™’ radians® (electrons) .
(7.4¢)
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Let us write N = Nop/A, where N, is the Avogadro
number, p is the density of the scatterer in g/cm3, and
A is the atomic weight, and put pv in MeV, ¢ in cm,
and x. in degrees. Then we have

Xe = 22.7(ptZ%/A)(2/pv) deg (heavy particles)
= 22.7(ptZ(Z + 1)/A)1/2(z/pv) deg (electrons) ,
(7.4d)
written with one factor involving the scatterer and
one, the scatteree.

It will be seen, according to (7.2b), that the
probability of getting one scattering in length ¢ of
angle x. or greater is just unity,

27rt/ xdxW(x) = 2xi/ d% =1, (7.5)

xe xe X
provided that x. is sufficiently larger than x... We
shall see presently that Moliére’s method only works

for x. greater than about 5 times xom.
Using (7.5b) and (6.9b), we have (setting u = 1)

xe _ 22.0(otZ°/A)%  94.02(ptZ°/A)"
X0 0472Z7m.cB AN :

The smallest values of this ratio at a given ¢ oceur
for small Z, 2 = 1, and 8 = 1. For carbon, pt for
Xo/Xo = 5 1s 0.078 g/cm?, and for gold, the value is
0.041 g/cm?.

Having defined x%, we can define a mean screening
function g(x) by writing, for all values of x

_ Smx [*_at_
X o @)
X Ex N () g:(x,t') . (7.7)

Using (2.37) and (7.7), we can now write a general
formula for Q(§) — Qo:

(7.6)

2axdxtW (x) =

2@ — 20 =2¢ [ B a0on@o — 1. (7.9

We now give a calculation of @ — Q, following
Bethe (1953) with minor modifications. We shall
omit the bar over ¢ in (7.7), with the understanding
that the mean is taken whenever relevant.

We first estimate the value of Q,, by assuming that
g is 1 for x > xo and O for x < xo, a procedure that
will certainly give us the correct order of magnitude.

We find from (2.37)
© © 2
Q = 2x3/ 20)dx 2x3/ X
0 X xo X Xo

so that Qo is at least 25 if, as stated above, x. > 5xo.

Since Q(£) — 0 as £ — », we see that exp [2 — Q)
will go to a very small value, and will only be ap-
preciably different from zero when |Q(¢) — Q| < Qo.
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Let us use this fact to estimate the range of £ which
will contribute appreciably to the calculation of the
inverse transform integral for F(6,t) or f(¢,t). Using
the same rough approximation to ¢(x), we have

20® — 00 =2¢ [ % o0 — 1

Xo

= 2% /; ) %’é [Jo(w) —1].  (7.10a)

If £xo = 1, the two terms in the integrand give
the values

[ 70wy 2 = 0213 and [ %4 = 0500,
1 u 1 U

so for £ = x5, the approximate value of |2 — Q| is
about 579, of Q, itself. For larger £, the ratio will be
even higher, because of the oscillations of the Bessel
function. For smaller £ we can use the expansion of
Eq. (A.12) in the Appendix, yielding

0279—5—2‘—+---].

128
(7.10b)

This expression will be of the order of —2if £&x, = 1,
and will get much more negative if £ is much greater
than 1/x., so we have for the range of £,

<EL /XK 1/x0

Q) — Q~2xit [% In &x0 —

(7.11)

This limitation on the range of £ that needs to be
considered allows us to divide the range of integration
over x in the correct expression (2.41) into two parts
that allow of two different good approximations. We
choose the dividing point to be xa, with

xo K xXa K Xe - (7.12)
(Only for the smallest values of x./xo will the double-
inequality signs be hard to justify.)

Then for x > xi, we replace ¢(x) by 1, and for
x < xa, we replace Jo(¢x) by the first two terms in
its expansion, since £x < fx¢ < £x. S 1. We then
have

0@ —2~2¢ [ % 96011 )

+ 2 / % o - 1. 713)

If we use again the development (A.12), we have
Xa d
0@ — 2o~ —3 ¢ [ g0

1o (m 2 - 1)

If we further assume that x, is large enough to give

(7.14)
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close 'to the limiting value indicated in the definition
of the screening angle x., Eq. (6.58a), we can write

Q(E) — Qo = §xE (m%,,_g - %)

(72X2£2>
_ 1 2.2 a
- 4 ch ,ln 46 bl

which is Moliére’s expression for the exponent Q
— Qo of the Fourier-Hankel transform of the multi-
ple-scattering distribution.

Equation (7.15) is also obtained if (6.63) is used
for ¢(x) in (7.13), for then the infinite integral yields
exactly (£/2x.)Ki((x«) — (1/2x42), where K, is the
modified Bessel function. Expansion up to terms in
£ yields (7.15).

The next approximation to @ — Qo can be calculated or

estimated for the various expressions for ¢(x) given in Sec.
VL.F. The correction terms to (7.13) may be written

(2 — Q)eore = /0 Xdixx— [gtx) — 1] —

(7.15)

In Xa — lim

Xm ™

x [/:mix— 60 =11 =1In X"‘J ng Xxg(x)
)1(—d2§§ + 2’“/ L T8 = Ulgk) — 1] +--
(7.16)

where the next terms in the expansion of J, and of (A.12)
have been used. If the asymptotic expression for ¢ when x
is large is written

Bl lnX lenx

Q(X)’\’1+ e el + it (TIT)

then (7.16) after some rearrangement can be written
2.4 Xd
(@ — Q) corr = 77 XoE /0 xdxlg(x) — 1] — Asxa

- Ble(In Xa — 1) — AxInxe — 2 3B In® Xa} + %Xfofx

2 EA
+ 2XuBl£3(27 — $In4f) — X322£ (ln ’Y?E — %)

+chzs (1 : sm+8) 4.

The expression in { } is independent of xs for xs large
enough; in this approximation x; may be taken as infinite.
In deriving (7.18), using (7.17) in the last term of (7.16), the
integrals given in (A.17) and (A.18) are needed, along with
other results from Appendix I.

If we use Moliére’s formula (6.62), we set A, = B, = B,
= 0 and 4, = —2x32, and find

(@ = Q)eorr = 5 Xoxe [ln X—j—v - %] (7.19)

For Fleischmann’s formula (6.63), we have 4, = —x;
= —xa6?, A2 = x2, B, = B, = 0, whereupon

( XEY 1)}

(7.20)

(7.18)

2 1/2

(ﬂ - ﬂﬂ)corr = —§ x.e Xaf - 32 X aE
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which agrees with Fleischmann’s results except for the
omission of a factor e/2 in the fourth-power term of his Eq.
11 (his previous equations do not show this error). These
two results (7.19) and (7.20) can also be obtained by exact
integration of (7.13) and expansion of the resulting Bessel
functions.

If we use the result for @« = 0, (6.45), we have 4, = B,
= B, = 0, 4: = —8.847x3, and the brace in (7.18) becomes,
in the limit of large xa, x§[1.613 In xo + 1.859]. The result is
then

(@ — Qo)eors = 35 XL [1 6131n xo — 11.41 + 8.851In “’E:l
(7.21)

Moliére’s calculation for large «, involving (6.50) and
(6.51), leads to integrals with products of four K; functions,
whose evaluation has not been attempted. A result may be
obtained, however, using the interpolation formula (6.58).
For this purpose, we set x. equal to the value given by
(6.58) when ¢ = 0.9, and use the asymptotic formula (6.57).
Wehave 4, = B, = 0, 4; = —8.85x5{1 — o In (a* + } o2
+ 0.13) — 4.480% — 402 In 2x,} and B, = —35.4a%x5. Then
we perform an integration by parts

Xa ) 08
., 2 '/; X dq

[Hsaxtao0 — 11 = % 160 1

The value of

0.9
/ x'dg
0
may be obtained from Table II, and is approximately
x3(6.36 + 39.0a2). Letting xs = xo.s = x0(61.7 + 421a2)V2,
we have

(@ — Q)eors = 75 Xox0E" {—3.18 — 19.5¢" + 8.85[1 — &

X In (o + 3 o” 4 0.13) — 4.484° — 4c” In 2xo]

X [ln% - 2:| +17.74° I:lnz Xoo — 1N Xo.0

—In® —E‘YW — {]} .

‘With the exception of the first term of (7.20), all the
above calculations give results which are small if x2x3t%/32
is small. If x2£2 is of the order of 1, and x2/x% > 25, this
number is of the order of 1/800 or less. The first term of
(7.20) can lead to more substantial corrections, as indicated
by Fleischmann. Its justification lies in the graphical fit of
(6.63) to the Moliére result for large «. However, the pres-
ence of a term A4,/x in the expression for ¢ — 1 is hard to
justify for large x, so this estimate of the correction term is
open to some doubt.

(7.22)

In the event that mixtures and energy loss are
under consideration, the quantity x. in (7.15) must
be found by using x2, as given by (7.4) and x27 as
given by (7.7). Explicitly, we find for electron scat-
tering, using (7.4a) and (6.67),
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t d ! 2
0) — G~ ~2nf’ | s TN

x{ [ a0 + 592 -

+ 13 Inv&/2e

so that we may define the screening angle x, by

— 27

In x4 }
(1+41/Z:)

—Xe(Inxe + 3) = 4 luilwfkd(tt,,> DNt (@)
X {/0 dx [Qz( ) + S(vl):l - (1+4+1/Z)In X,,.}

(7.23)

with x? given by (7.4a).
Let us define an electron-scattering screening angle

X by
xm
[/ X S) — In xm]

—Inx“ = 14 lim
Xm

=3+ lmI:/ CM»S’(vl) —Inv, +In (%)]
P X

(7.24)

and designate the screening angles for the 7th species
by Xa: and x:>. Then we have

dt’
N0a) 2 Niat

X [In xa: + (1/Z:)In x&7 .

In the event of no energy loss and a homogeneous
mixture, we have

2
Xe In Xa =

(7.25)

dre* 77t
xXo = 7;: Z N:Z(Z: 4+ 1) (electron scattering)
(7.26)
and
Iy = 2ot NZiIN s + (1/2:) In %]

2. N:Z:(Z: + 1)
= EiNiZi(Zi + 1) In xai + (Z: + 1)_1

X In (¢ /xai)]/ 2oi NiZi(Z: + 1) . (7.27)

For the scattering of heavy particles, the contri-
bution of the atomic electrons must be taken into
account by using Eq. (6.72). We do not correct
X% in this case, but use the value given by (7.4a).

In using (7.13) to find @ — Q,, we note that the
second integral will involve no contribution for
sufficiently large x.,, owing to the upper limit of in-
elastic scattering, related to E, m.x. In addition to the
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expression g(x)dx/x we must add the product of

S(v2>p2 (1 — E€62
47Zm,E, B, nax

from (6.72) and x% as given by (6.69); the integral
goes only t0 E, mx. Thus we add to the integral for
—In x4 — % the quantity D./2Z; (Fano’s notation):

D 1 E“““dE'a[ _ B ][ 3 Eeﬁz}
2Z1§ N 2Z1, 0 Ee S(vz) Ee max. 1 Ee max.

_ 1 Ee max [S(Uz) _ S<U2)62

n 2Z1 (1] dE° Ee Ee max
1 Bg }

- Ee max+ Ef max )

In the second term we can put S(vz) = 1 since most
of the integral comes from the upper range of E,
where this is approximately correct. For the first
term, we can use v as a variable in accordance with
(6.69):

E, max dEG . /”Zm %
/(; .E’g S(Uz) =2 . Ve S(Uz) .

In accordance with (7.24), if v.., is sufficiently large,
we can write this expression as

)as.

(7.28)

—1—2Inx® — 21n (0.3761/ 2" *xov2n)
= —1—2Inx® — 21n p2M.E. max)
~ —1—-2Inx —2In (m/2m.). (7.29)
We have then, for D,

D; =2In 2m.,/m) —2In x> —2 — 18°. (7.30)

We finally have, for In x., the expression

i ’
o ln xa = 47 _/ ]—C%S Zz’Nc‘aZi {ln Xei + (1/Z:)

(el)

X [m ";XT +1+1% 62]} ,  (7.31a)
which becomes for the case of homogeneous material
and no energy loss

In xo = 2 NiZi{In xa: + (1/2)
X [Inmx{”/2m, + 1 + 1 6°1}/ D N.Z: .
(7.31Db)

It is seen in Figs. 7 and 8 that S(v) gets close to 1
when » is about 1. The condition that ., is large

enough becomes
- (mo/m)*pac/hZ* > 3 (7.32)

which is always satisfied for relativistic heavy parti-
cles, and implies, for nonrelativistic particles, merely
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that the kinetic energy be in excess of 120 eV. Ac-
cording to Fano (1954), the integral over the in-
coherent scattering function, given in (7.24), is
approximately

lim

v,,—0

/"’_df S(Ul) + % — Inv, ~29, (733)
0 1

where the constant ranges from 1.8 for hydrogen to
3.1 for lead, with some discrepancies among the
results of using different atomic models.

The theory of inelastic scattering, according to
Fano, depends for its validity on the Bethe collision
theory which assumes the incident particle to be
much faster than the electrons. This condition is
reasonably well satisfied for low-Z materials where
the corrections are important.

We conclude that with proper definitions of x2 and
X«, the Moliére form (7.15) for @ — Q, may be used
in all cases up to the degree of approximation indi-
cated. We shall see in Sec. IX that although x. is
defined differently in the calculation using the Dalitz
expression, the same methods of averaging for x2 and
X« may be used in that calculation.

B. The Moliére Expansion

The multiple-scattering distribution is obtained
from the inverse Hankel or Fourier transform of
exp [Q(§) — Q). We shall use (7.15) for values of &
up to 1/x., and assume that there is no contribution
to the integrals beyond this value. Equation (7.15)
gives a large positive exponent for very large &,
making the integrals diverge if taken to infinity. We
shall see that after the Moliére expansion is made,
the separate integrals of each term may be taken
convergently from 1/x. to o« without appreciable
contribution.

The function £ In (v?x.2£%/4¢) has a minimum
when the logarithm is equal to —1, or when &
~ 1.12/x., considerably larger than 1/x,. It can be
written as the sum of two terms, one a negative
multiple of £ and the other with a minimum within
the interesting range of £, by writing

’YzX2£2 - ’szz B 252
b (V66) <o n 0 4 P2E
(7.34)

where B may be arbitrarily chosen. The minimum
of the second term occurs when £ = 4/eBx? which is
within the range if eB is greater than 4. Since
x2/x%>> 1, the logarithm in the first term will be
considerably more negative than —1, so that the
second term will always be smaller in magnitude than
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Fre. 9. Graph of Mo-
liére’s B against Qo. The
crosses represent Moliére’s
figures, the circled points
represent further calcula-
tions of the solution of Eq.
(7.39), and the straight line
is a plot of Eq. (7.40).

B-1153+2.583L0G,,9,

[o] ! 2 3 4 5 6 7 8 9 10
L0G o9,

the first (when x2& = 1, the second term is still
smaller than the first).

Moliére’s choice of B is governed by the desire to
have B appear only as an inverse coefficient of the
second term. This is accomplished first by choosing
a new integration variable

n = &x.B"” (7.35)

in terms of which @ — Q, becomes [writing Q(») in
place of Q(¢)]

2 2 2

Q = Elny):g—i———ln—

and second by choosing B so that the first term be-
comes —n?/4:

Q) —

(7.36)

1 1 VX
B né;(—zc-é = —1 (7.37a)
or
—InB= ex” i (7.37b)

The ratio x2/x2 is a measure of Qq, the mean number
of scatterings that occur in thickness ¢. Actually, Qo
is not well-defined, because the uncertainties in the
screening function for small x affect Qo considerably,
but have almost no influence on @ — Qo. For most of
the calculations in Sec. VI-F, it is either not possible
or not practical to evaluate Qo, but for the Moliére
formula (6 62), it is. Using (7.8), we find exactly the
ratio x2/x%. Moliére calls this ratio @, but we shall
continue to use Qo for it:

Qo = ch/Xi ) (7-38)

which is taken as a definition of Q, in place of (7.8).
In (7.38), the values of x. and x. are to be taken from
(7.4) and (7.25) or (7.31), or their equivalents.

We find, then, for B the transcendental equation

=InB 4 In (Qe/y’) = In B — 0.1544 + In Q,
(7.39)
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of which the larger of the two roots for B > 1 is to
be taken. An approximate interpolating formula
[Scott (1952)] which is good to 0.59%, for Q, from 10?
to 105, and good to 3%, out to @, = 10, is (see Fig. 9)

B = 1.153 + 2.583 logio Qo . (7.40)
Equation (7.36) becomes with this choice of B

2

Q) — Q = ——«+ L 1n—— (7.41)

where the interesting range of » is from 0 to BY2.

Moliére’s expansion method is to consider the
second term in (7.37) small enough that its exponen-
tial may be expanded to second-order terms:

exp [2(n) — Qo] o ¢
[1 +-—1n~4—+ 1 <:Bln~—) +] (7.42)

The inverse transforms are those of (2.9) and (2.17¢).
In each case, we can use the variable # in a con-
venient way if we introduce the reduced angular
variables ¢ and ¢ given by!?

& = 0/x.B"", (7.432)

o = ¢/x.B'"?, (7.43b)

together with the normalized “reduced” distribution
functions

2 F o (3,8)3dS = 2 F (0,)6d0 ,

Frea(oyt)de = f(#,t)d¢ .
Then we have for the spatial distribution

(7.44a)
(7.44Db)

B1/2

2Fa(@) = [ wdndo(on) exp [—i/4 + G/4B)
X In (n°/4)]

N[ ndnJo(Bn)e ™" I:l + L lnli-

o\
+1(4Bln >+ :I

Fra(d0) = —1;

(7.45)

or

x[ze"’ + = Fl)(ﬂ)—l— L p®) 4. ]
(7.46)

15 These reduced variables bear a simple relation to the
angular variables © = pvd and ® = pv¢p sometimes used in
cases of no energy loss. From (7.4) we see that

0/ = &/ = (4r ¢2NIB(Z)ay)'/?
where (Z2),, must be replaced by (Z(Z 4+ 1)}.s when the scat-
tering of electrons is under consideration.
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with

2 \n

FO@) = / ndnJo(dn) exp (—7'/4) (114—111 2 )

(7.47)
For the projected distribution, we have
pl/2
frealost) = - dn cos (¢n)
0
X exp [—7'/4 + (1°/4B) In (n'/4)]
~2 [ 2
~ 2 [y cos (o) exp (1)
[ ")2 772
X 1 + ZI—B_ ln —4‘
< 1,2 7]2 2
1 - - ISR
REAVY R 4) + J (7.48)
or
2 2 1 .o
Jealp)t) = —mexp (—¢ )+ ()
1
+ 5 %@+, (7.49)
where
n 2 [
196) = 25 [ cos (on) exp (—1/1)
( 712 772 n
X —4— In —Z> . (7.50)

Properties of these functions will be discussed in
Sec. IX and Appendix III, in connection with the
related functions that arise from the use of the Dalitz
approximation.

Moliére’s expansion may be characterized as a
particular method of separating the distribution into
a Gaussian part and a series of functions having long
“tails.” However, it must be noted that the functions
FO_ {0 F® and f@ provide substantial contribu-
tions for small angles, especially when B is not too
large.

To illustrate the relative arbitrariness of the above-
mentioned separation, let us show what happens if
we replace the right side of (7.35a) by a constant —a?.
Eq. (7.39) can then be written

o’B, = In @’B, — 0.1544 + In (Q/d’) , (7.51)

where B, is the new value of B. In (7.36) we set %’
= an, and find that

71/2 ?7'2 2
1B lnz —Ina |. (7.52)

The second term in brackets leads to an expansion

7"
Q—Qo= —Z‘—"
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with new terms in the integrals (7.45) and (7.48). To
terms in B;?, we have

1 ~3? [a* 1 [ 1)
27ra2 {28 + a2Ba F (1’/(1)

+ 21na?® (% — 1) e"”/“’:l +}

(7.53)

Fra(®) =

2 —9? /g2 1 1
fuale) = = {;1756 Tt [f“(so/a)

2 . & e
-I—Flna Z e’ +---7.

(7.54)

If a? is taken to be small, Qo/a? and a?B, will be
large and the relative contribution of the ‘non-
Gaussian” terms may be reduced. However, the
presence of —In @?, and its square in the next term,
makes the errors hard to estimate. The convenience
of choosing ¢ = 1 is clearly evident.

The over-all error in Moliére’s method arises from
terms of order 1/B2 in the expansion (7.42) and from
the neglected terms involved in [Q — Qplen. The
latter are [except for the form in (7.20)] of the order
of xix2t In (xaf7v/2) = 7* In (xafv/e)/B*Q by use of
(7.35) and (7.37) which in turn gives a correction of
the order of 1/BQy ~ ¢ 2. When B = 4.5, the two
corrections are of the same order, and for larger B,
the 1/B® terms predominate. [For Eq. (7.20), the
corresponding correction is of the order B-3/2Q, /2
~ ¢®/2/B which is equal to 1/B?® for B = 1.43].
Moliére (1948) considered his method to be good
for B > 4.5 and Q, > 20.

[

C. Application to Lateral Deflections
and Other Characteristics

Let us now consider how by Moliére’s method we
may calculate the distribution of any single one of
the various characteristics of a scattered track whose
coupling factors are given in Sec. ITI-C, or of a single
linear combination of characteristics. We use (3.11),
setting equal to zero £ and all the {’s except the
particular ¢ belonging to the quantity X whose
distribution we seek. The value of @ — Qq is then to
be found by substituting a?(¢'){¢? for £ in the calcu-
lation of part A of this section for either electron
or heavy particle scattering, with the factor a(t')
placed under the integral sign.

Considerable simplification can be made if energy
loss and inhomogeneity of material do not need to
be considered. Let us introduce the two coupling
factor integrals
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o9 — sl-/odt/[am 7,

a

(7.55a)

e = slf dt'[a” () In [a” (¢)]*, (7.55b)
a Y0

where s, is a path length that may be chosen as equal
to the range of ¢ for which o is different from zero,
or may be chosen as equal to a cell length s when
equal cells are under consideration. Then if x., x., and
Qo are defined in the normal way for the path length
s«, we have, using a superscript to indicate that a
particular type of characteristic is involved,

X% = xiC, (7.56a)
Cilnx&? = CiIn xa + Cs, (7.56b)
X = x26% (7.56¢)

QP = QuChe % (7.56d)

In the case of linear combinations of measured
quantities, the integrals C; and C: contain in place of
a?(t"), the same linear combination of the corre-
sponding a’s.

It will be noted that if s, is changed to some other
length s;, C: becomes Ci(si/s.) and Q@ is likewise
multiplied by the factor s,/s.,. Furthermore, if the
coupling factor refers to a length instead of an angle,
so that it contains as a factor, a unit of length, say I,
it is easy to show that x{® and x{* each contain the
factor I, but that Q¥ does not. For instance, a$i(f)
= a,"(t)s; C1 and C: for the second difference con-
tain s, but Q§” is the same for both the second differ-
ence and the chord angle.

We can then write for the exponent of the multiple-
scattering transform

Q9 — 0 = LEx In (VEXS/4e) (7.57a)

(@2 /_ (a)?
=Xe /[Xa -

The Moliére analysis can be applied and the
distribution obtained in the usual way. The general
rule for calculating the distribution of any such
quantity X@ can be stated as follows. Find Qo for
the track length under consideration, and modify
its logarithm by adding the correction

o (7.57b)

1Oglo Q(()a> - 10g10 Q= A logw Qo
= logw (CY? = €57)/2.303C . (7.58)
Then find B from the modified logarithm; the final

distribution function will be (normalized for positive
values only)

WILLIAM T.SCOTT

£ (XP)ax P = ax® 2
(OB 7

+ _;? f(l)[X(i)/(xiol(i)B)llz]

n l% FOXP/ (32 1(:')3)1/2] 4. }
2

(7.59)

Table III gives results, due to Moli¢re (1955), for
several quantities, including some linear combina-

tions.

The problem of a satisfactory calculation in the
Moliére approximation of the joint distribution of
two or more variables has not been solved.

TasLe III. Correction coeflicients for calculating distributions
of several track characteristics by Eqgs. (7.58) and (7.59).2

Quantity . Alogio Qo
¢ 1 0

@+ ¥)/ V2 7/6 ~0.030
v 1/3 —0.188
W — &)/V2 1/6 —0.188
é; 26/35 —0.050
@ 2/3 +0.113
& 11/20 —0.192
b5 + bint 2 40.301
b — bint 2 +0.301
& + din 61/35 —0.325
b; — P 43/35 —0.280
a; _l‘ Ojt1 5/3 —0337
& — ey 1 —0.290
&; + @ 23/15 —0.360
&; — Bjn 2/3 —0.370
A, (2/3)s? 0.113
Adx; s? 0.290
Aty (8/3)s? 0.264

. “All values are calculated with equal cell lengths s, and with
§ =5 =sa

VIII. THE SNYDER CALCULATION

Snyder’s method, as used by Snyder and Scott
(1949), consisted of a direct numerical integration of
the inverse transform for the projected scattering,
using the form (6.8), which is mathematically equiva-
lent to the use of (6.63). The results may be taken
as applying to the latter, so we shall use the corre-
sponding notation here. (The Snyder—Scott work
was done before Moliére’s (1948) results had become
available). With the definition (7.36) for Q,, which
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is a measure of the thickness or mean number of
scatterings, we have

1@t) = 2 [ at cos gt exp (@b ex) — 1)
8.1)

[see paragraph following Eq. (7.15)].
Let us introduce a new integration variable s and
a new reduced-angle variable ¢,, by

-8 = £Xa (8.2a)

00 = ¢/Xa = ¢(QB)". (8.2b)

Then we have, using the Snyder—Scott notation
W for the projected distribution normalized from
— o0 to o,

W (06S20) = -11r— fo ds cos sg, exp Q[sKi(s) — 1] .
(8.3)

This integral was evaluated by finding sKi(s) — 1
to as many as ten significant figures, from the first
three terms of its series expansion [Watson (1952),
p. 80), and by using ten-figure cosine tables. Numeri-
cal integration with Weddle’s rule was then used
for Q, = 100, 1500, 3000, and 9000, with a final
accuracy of three significant figures. Results for other
values of Q, were obtained by folding integration,
using (2.20) and (2.39). We have, in fact,

W (06,Q0 + ) = _/_ do W (0, 20) W (s — ¢4, Q%) -
(8.4)
In this way, tables of W for 29 values of Qo from
100 to 84 000 were constructed.’® Each of these

tabulated functions satisfies the normalization rule
to within 19, and the values agree with the Moliére

~.
0.200 N
L1590 100
NN
\
84000 \
00! I
0.100
‘?\
\\
DL
N ~
IR
%5 i 2 3 4 B 6 ] 9

90%‘93
F1a. 10. Linear graph of Qo/2W against 5/ 2¢, for Qo = 100,
1500 and 84 000.

16 Copies of the complete set of tables and also the Snyder
functions of Sec. VIII may be obtained from the American
DocCumentation Institute, 1728 N Street, NW, Washington,
D.C.
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result within 29, everywhere, and in most cases
within 19,.

As we have seen in the last section, the distribution
depends primarily on ¢ = ¢,(QB)V? and only
secondarily on B. An even sharper division of de-
pendence can be made if we use ¢BY? = 9,002 as the

00
LK 1000

10 N
840007 [\\\,

) \N

3 \\\
© o] 2 4 € [¢]
90%903

F1c. 11. Semilogarithmic graph of Qol/2W against Q25Y/2¢s
for Qo = 100, 1000, 9000, and 84 000.

angle variable. Let us use the first approximation to
sKi(s) — 1, which is just the Moliére term (s?/4) In
(y2s%*/4e), and rewrite (8.3) as follows

%W (00 0) = % /0 d(s2') cos [(s%') (0.26"")]

X exp [2 8’ (In 8’2 + In v*/420¢)] ,
(8.5)

showing that if we use Qo/2W and ¢.Q0/2 as variables,
the dependence on Qo is quite minor. Figs. 10-12
show graphs of these two quantities for several values
of Q. Fig. 13 gives a set of graphs for the probability
®(5,Q0) of getting a deflection greater than ¢, = 8Q02:

®(6,2) = /; doiW (¢4,82) (8.6)

as a function of Q, for various values of 8.
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Z:100!

\
|

10

20

30

90§¢s
Fre. 12. Semilogarithmic graph of QoY2W against QgY/2¢,
for Qo = 100 and 84 000, showing their agreement for large
values of Qgl/2¢s;.

These functions may be represented with moderate
accuracy by a sum of two Gaussians down to a point
at which W is 0.007 of its maximum value, and by a
“tail” equal to a sum of ¢, and ¢,5 terms for larger
angles. The coefficients can be written as simple

03(8, QO)

T.SCOTT

functions of Qo and logi0Q, so that interpolation is
straightforward. We have

W (00,Q0) =~ A1e™*" + Aze™*" ;

W > 0.007W(0,2), (8.7a)
where
Ay = 5% (—951 + 865 logio 2) ™2,
A = 97%(6.3 4 10.0 logio 20) %,
o = Q' (10.96 + 4.381 logi )7,
a: = Q' (0.216 + 2.326 logio )", (8.7b)
W (on20) ~ 2%% ( | 4 1168 12%10 (1090)> ;
W < 0.007W(0,2) . (8.7¢)

These approximations are good to 49, out to
angles for which W = 0.02 W (0,Q,), when 2000 < Q,
< 42 000, and to 89, for such angles when 100 < Q,
<2000 and 42 000 < Q, < 84 000. The greatest
errors are not more than 109, for any Q,; this amount
of error occurs over small regions near the “junction”
of the two approximations and also near the angles
where W = 0.001 W (0,Q2). Fig. 14 shows the Snyder
function and the approximations (8.7a) and (8.7¢)
for 2, = 3000.

F1a. 13. A set of graphs for the prob-
ability ®(5,2) of getting a deflection
greater than ¢, = §Q0!/2, as a function of
Qo, for twenty values of s.

100,000
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H. S. Snyder (private communication) has also
made calculations of the spatial-angle distributions,
but only mean-value results (see Sec. XIII) have
been published (Goldberg, Snyder, and Scott, 1955).
Three methods were utilized, a direct calculation for

w0t

Wis Qo) \
102

\
Approx L\

2

o 400 800 1200

Ps

F1c. 14. The Snyder function W(e,,Q) and the approxima-
tions (8.7a) and (8.7b), as functions of ¢, for Qo = 3000.

Qo = 3000 and an expansion about this value, use of

asymptotic formulas, and a numerical inversion

method working from the projected distribution.
The spatial distribution given in terms of 3,

& = 0/xa = 3(QB)"?, (8.8)

may be obtained from (8.3) by replacing cos se, by
1sJo(sd,). Letting Qo represent the value 3000, we
write the distribution P(a,Q) for arbitrary Qo in
terms of the variable «, given by

@ = 94(00/)""" = 9(QoB)? = (8/Xa) (Qoo/)""” .
(8.9)

We also change the integration variable from s to
o = $(Q/Qo)Y2. From (8.5), we readily find

P(a,,) = 51;_/; adodo(oa)

X exp {1 02900[1n (7202/46) — In (Q0/Q0)]}
(8.10a)
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subject to the normalization

21r/ ada,P (o) = 1. (8.10b)
0

We now expand the function exp [—32 ¢%Qo In
(©20/Q00)] and obtain a series for @:

P (a0 0) = Po(asf00) + In (Q0/Q00) P (0ts,000)
+ In* (Q0/S00) Pz (e, Q00)

+ In® (Q0/Q00) Ps (s 00) (8.11)
where
_ 1 Qoo \" w2n+1
27 P, (s, Q00) = T\ "1 o dodo(oas,)
: ]
X exp [10'Qu In (v'0"/4e)] . (8.12)

The integrals for P,, n = 0, 1, 2, 3, were evaluated
numerically; the results are given in Table IV and
Fig. 15. Table V gives values of P(a,,Q2) for seven
values of Q, (Fig. 16). These values were checked by
use of asymptotic formulas for large a, (see Sec. XII),
by the inversion method (below) and finally by com-
parison with Moliére’s tables. Agreement with the
latter at zero angle is within 0.49, except for @, = 100

3407

2407

o

(3]

=

0 \
Rx100 )&Z
Fxiooo

—lxlds )

200 400 600

as

Fia. 15. The coefficients P.(as,200) in the expansion of the
spatial-angle distribution P(«,,Q0) in powers of In (Q/Q00), as
functions of as.

where the error is 29, and at Q, = 1 024 000 where
it is 0.69}. Graphical comparison shows no significant
discrepancy between curves of the two results for
other angles.
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The numerical inversion method made use of Eq.
(2.4b), which in terms of ¢, and ¢, becomes, using
W (3,,Q0) to represent the spatial distribution func-
tion in &,:

3 Wie) = f Wal( + ¢ 2 Qdy . (8.13)

TaBLE IV. The Coefficients P,(asQ00) for n = 0,1,2,3 and
for several values of ;. The numbers have been multiplied

by 109.
n
o 0 1 2 3
0 11030.6 . 1292.10 161.804 21.2211

50 10007.6 1042.96 114.064 +12.8780
100 7507.05 511.593 +25.4318 —.667869
150 4710.42 +54.0298  —26.5639 —4.87599
200 2534.98  —136.537 —25.7744 —1.79162
250 1207.564  —140.441 —8.91581 +.605793
300 536.252  —85.3825 +1.09597 786536
350 233.159  —40.9519 2.61506 +.252099
400 106.972  —17.4607 1.69430 —.158029
450 52.7199  —7.24451 795825 —.034399
500 29.0674  —2.89543 .306759 —.022216
550 17.8319  —1.31679 118015 —.009293
600 11.4541 —0.649853 046753 —.003899
700 5.42409 —0.197978 .009752 —.000514

Values of W(p,,Q) were available, and also values of
W, for &, > d.4 within the range of validity of the
asymptotic formulas. Values of W, were sought at a
series of equally spaced angles d4, da, * *Fen,* * - UP
to d.4. Starting with larger angles, the calculation
proceeds stepwise. If W,(3m,Q) = W, is known,
we find Wo,(3m-1,0) by writing
/("m+1*—l’sn—17)‘/’

3 W (0w, ) = dy

X W[ @z + %), 20]

+f

(Psn+13-Fsp—12)1 /2

X Wl (Funrs +¢9)20] . (8.14)

WILLIAM T.8COTT

The second integral requires values of W, for ¢,
equal to and larger than &....; the first for values
between &1 and dFmi. The first integral is then
approximated by using central-difference interpola-
tion formulas with the values W,.,, W,, and W,
yielding an equation that can be solved for W,-,. The
results agreed quite satisfactorily with the P, inte-
grals discussed above.

/f 102,400

N
N

z 00~

\ 3000

2

o] 200 400 600

F1a. 16. The spatial-angle distribution P(as,Q) as a function
of as, for @ = 100, 3000, and 102, 400.

TasLE V. The spatial-angle distribution P(e,,Q0) for seven values of Qo. Values have been multiplied by 10°.

Qo
as 100 400 1600 3000 6400 25 600 102 400
0 18109.3 14452.9 11916.7 11030.6 10134.3 8791.33 7539.99

50 15649.7 12679.9 10711.7 10007 .6 9277.33 8168.99 7181.33
100 9513.67 8634.67 7837.99 7507 .05 7134.33 6533 .67 6047 .67
150 4394 .67 4671.67 4732.67 4710.42 4686 .99 4520.67 4403 .33
200 1702.37 2140.79 . 2438.53 2534.98 2624 .47 2727.13 2775.33
250 650.633 893.333 1115.87 1207 .54 1308.57 1461.67 1565.67
300 289.559 375.099 482.333 536.252 601.533 716.599 816.733
350 157.939 187.209 232.949 233.159 265.57 330.499 399.267
400 60.9699 77.3767 96.6267 106.972 121.233 153.749 196.683
450 35.9467 41.0867 48.4867 52.7199 58.6933 72.2633 89.7433
500 21.9249 24.3267 27.3919 29.0674 31.4733 36.9299 441167
550 14.3529 15.5733 17.0467 17.8319 18.9033 21.2989 24.3599
600 9.62633 10.3233 11.0633 11.4541 11.9733 13.1009 14.5067
700 4.84333 5.05999 5.29999 5.42409 5.57999 5.89867 6.26699
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IX. THE NIGAM-SUNDARESAN-WU CALCULATION

A. Evaluation of the Transform

We shall develop in this section the results of
Nigam, Sundaresan, and Wu (1959) for spin 1/2
particles, using a method similar to that of Sec. VII.
We wish to evaluate (7.8) in the form

2(0) — 00 = 26 | RABA00, 1)) — 1y, o)

when q(x) is given by (6.15), and we have put back
sin x and sin (x/2) respectively in place of x and
x/2 (cf. 6.1), and put = for the upper limit, in order
to proceed with suitable caution in applying the
small-angle approximation. (Nigam et al. also use the
Legendre polynomial sum for which the Hankel
transform is an approximation and replace it by the
transform at a later stage. The results of the two
different methods of approach are the same within
the accuracy of either.) We consider first the case of
homogeneous material, no energy loss, and no con-
tributions from scattering by electrons.

As indicated in Sec. VI, we take x, ~ xo < 0.033
so that we may immediately approximate the X of
(6.16) by % sin (x/2)[x,* + sin? (x/2)]""/? which is
always less than 1/2; and set X tan”'x,X = x.X2
The largest corrections to the Moliére result come for
large x in the sin? (x/2) terms, and are seen to involve
amounts of the order maf in the curly bracket. The
estimate of Qo made in Sec. VII will not be seriously
affected by these corrections, nor will the estimate
made there of the important range of &£ We can
therefore repeat the method of Sec. VII by dividing
the integration at a value x; given by Eq. (7.12).

We shall assume that x. itself is a small angle, so
that sin x. ~ x.. Before separating the integral into
two parts, however, we can simplify ¢(x). For in-
creasing x, the combination

10 + 4sin® (x/2)]1[x, + sin® (x/2)]7

becomes closely equal to 1 well before we need to
distinguish between x/2 and sin (x/2). We can
therefore replace it for all x by

ratio = (x% + X))/ (@x% + x°) . 9.2)
This ratio appears twice, the second time with a
factor Bxi/4 in comparison to the first, so we can
neglect this second term. We can write tan™ (2/x,)
= 7/2 — tan™ (x,/2) =~ % (= — x,) and the product
of this expression with x2 is also negligible. Further-
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more, for the term —aB[x2 + 4 sin? (x/2)]x.X? we
can write —af%x, sin? (x/2){1 + % x.2x2 + sin?
(x/2)]7*} and can neglect second termsin the bracket;
the ratio (9.3) differs from 1 only when sin? (x/2) is
very small. This term will then cancel with the prod-
uct of 2a sin? (x/2) and the 3 x, from tan™ (2/x,).

The only terms for which the small-angle ap-
proximation cannot be used directly are those of the
remaining ones that contain sin? (x/2) or sin (x/2)
tan™! [sin (x/2)/x.]. The resulting expression for
q(x), valid for all x, is

a(x) = X'+ x) [ — B°A + an) sin® (x/2)
+ 2ax, (G + X))/ (4% + X0)
+ §aB’(x + 4 sin® (x/2)]esc(x/2)

X tan™ (sin (x/2)/x.) - 9.3)

Figures 17-20 show the separate terms of the bracket
in (9.3), the first Born approximation formula
o + x3)~? and the resulting q(x), as well as
Moliére’s ¢(x), Eq. (6.63), for a relatively extreme
case in which the correction terms are large, namely
for xo = 0.0167, u = 1.80, x. = 0.030, « = 6, and
B = 0.20. The difference between the Moliére calcu-
lations and those of Nigam et al. is strikingly evident.

However, for smaller xo and x, the differences tend
to disappear. The inverse-tangent term may be
approximately written as x, times a function of
x/x, which will shift both to the left and down in the
graphs as x, is reduced. It still will in a rough way
cancel the sin? (x/2) term. The main change as x, is
reduced will be to reduce the magnitude of the re-
maining fractional term and shift the knee of its
graph to the left.

Let us now consider the integral for @ — Q. The
first term in (6.15) will give in small-angle approxima-
tion just the Moliére result (7.15) with x, replaced by
X and we do not need to treat it separately. We can
also carry out exactly the integral with the fractional
term. For the other terms, we replace sines by angles
for x < x4, and Jo(gx) — 1 by —% &x3; for x > xa
we need special treatment. Particularly, the last
term must be approximated in two different ways
for the two parts of the integral. For small x, we
write

o (s + 45’ (/2] sin (¢/2)
2 sin (x/2) X

o~ af (u & x) tan™ (—X—> , (9.4a)
X 2Xu

and for x > x., we write
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SN

af’[xs + 4 sin® (x/2)]

log 10(x/x0)

sin (x/2)

2 sin (x/2)

tan™ l:
Xu

~ 208" sin (x/2) [% —

= 7af’ sin (x/2) — 204;82)(,, .

sin

:I where

(Q/zj

(9.4b)

With these considerations in mind, let us write @
— Qo as a sum of six integrals:

L) =/ﬁx[_=f@;u

F1a. 17. Graph illustrating the terms
in Eq. (9.3), against logio(x/x0). The
curves marked 1, 2 and 3 represent in
order the three last terms in [ in
(9.3), and the curve marked ‘“‘sum’ rep-
resents the entire bracket. The ‘“Born’’
curve is for the factor x4(x2 + x,2)~2, and
“g(x)NSW”’ denotes the entire expres-
sion (9.3). Values of parameters chosen:
xo = 0.0167, » = 1.80, x, = 0.030, @ =
6.0, 8 = 0.20.

Ga+ )" (9:6)

I2(E> - 2“)(# /‘w XdX[JO(SX) - 1] (97)

o OG+ X)W + x5

6 Xd 5
x dx
Q) - =2x 2 LG, (9.5) L) = % £68°(1 + ar) / e, (9.8)
n=1 0 (Xu + x)
15 e
SUM .=
l/ \
7
/
/' qNSW
wopf
/”
,’BORN F1a. 18. Same as Fig. 17, plotted a-
/ gainst x on a linear scale.
05
1 2
/
0
o 0.5 LO 1.5 2.0
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/ qx)NSW

Fia. 19. Graph of ¢(x) by the NSW
formula (9.3) (from Fig. 17) along with qi0, Molldre
the Moliére formula (6.63) and Moliére’s Formula
numerical results (Table II), plotted a-
gainst logio(x/x0). Same values of param-
eters as in Fig. 17.

qix), Molidre
Table

/
| z
logyo (X/X o)
L) = =B (1 + am) Io(e) = i s.in xdx  [o(Ex) — 1]
% / " sin xdx sin® (x/2)[Jo(Ex) — 1] fxd [2sin (x/2)]
Xa [2 Sill (X/2)}4 ! X [01,82’"' Sin (X/2) _ 2&,32)(”) ) (911)

tan (x/2) 9.9) Let us consider these integrals in order. By (7.15)

with x, replaced by x,, we have

—36°A + am)

Xa

d

L = ot [

X'dx i ( X )
2t g,/ 010 L) = 1 £1n (v'x2¢/40) ©.12)

qQEQNSW -

qtx), Moliére |
N . Formula /
Fia. 20. Same as Fig. 19, but against /

x on & linear scale.
qd, Moliére
0.5 Table
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For I., we write

I(¢) = —/ xdx[Jo(Ex) — 1]

-t
Xu + %X dxu+ X
= (2a/3XF)[K0(£X#) - KO(QEXO) —In 2]
by use of Erdelyi et al. (T. I. T. 1954), formula
[8.5(20)], and two steps of elementary integration.
Using the series for the Bessel functions [Watson

(1952), p. 80; Erdelyi et al. H.T.F. (1953), (7.2), Eqgs.
(12) and (37)], we find

L(E) = 2a[} Exu In (vxué/e) + 15 Ex.1n2] . (9.13)

For I, it will be observed that the integrand can
be written as x plus terms in x2 and x%, so, neglecting
the latter, we have

L) = (67/32)(1 + am)E'x: .

For I, let us separate the terms in brackets. We
have for the second,

(9.14)

T

/de/tan (x/2) = 21Insin (x/2)

= —2lnsin (x/2)
~ —21n (xa/2) + x3/12 +- -

For the first, we note that tan (x/2) becomes infinite
at x = =, so that the upper portion contributes little.
In addition, Jo(¢x) will oscillate considerably for £x
between £x; which is less than (xs/x.) < 1, and ¢r
which will be large compared to 1 except for a very
small portion near zero of the range of £. We there-
fore shall set tan (x/2) = x/2 in the first part, and
use (A.7), obtaining finally

Xd

LI(¢) = —%62(1 + am)[—In (véxe/2)
+ixa+1— 161+ an)n (x/2)
— xi/24 41 =161 + ar)[ln ¢
-3 +-]; B> (9.15a)

This formula cannot hold as § — 0, for if £ is small
enough, we can write
X'dx

(1 +oam) / fan (x/2)

14(5) ~ m

=161 + ar) / w’du cot u
xd/2

1E6°(1 + am)[0.658 — kX2 +- -1 ;
rL1,

It

(9.15b)
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where 0.658 is the numerical value of [?u*du cot u.
Since the range of £ extends up to 1/x., and since for
the small-angle approximation to be valid, we must
have x. very much less than =, the range for which
(9.15b) must be used is a small fraction of that for
which (9.15a) is required.

The next integral, I5(£), may be written

I5(¢)

I

2.2 |: fxd 1 X
—1 d 1 A
1 of¢ | Oxtan 2
Xd d
2 / X -1 X :l
— tan =
vy X4 X 2Xu

0
2
-1 _X X

__%a62£2 I:Xd tan lgxi,‘ — xuIn (1 + 4—%>

X

Ii

“dxt o
r tan™ 2x+ }
2Xd

e T M s

where for the last term, we first assumed that tan—z

.is equal to m/2 when x > x4/2x, and then that tan—

(xu/x4), resulting from integration from x./2x, to «,
is equal to x./xs. The remaining integral has the
value 0.448; neglecting the last term and the 1 under
the logarithm, and writing tan (x¢/2x.) = /2
— 2x,/x4, We have
I:(§) = —% oB°E[3 mxa — 2xu — 2xu 10 (xe/2x4)

— 0.896x,] . (9.16)

Finally, for I4(¢), we use a similar method to that
for 1,(¢) writing

dx[Jo(éx) — 1]
tan (x/2) sin (x/2)

Is(¢) = 055 /

- 20‘:827(#/ % [Jo(x) — 1]

/ de;zz(Ex)

o "dx cos (x/2)
Xd

1 02
sobm) s’ (x/2)

— 20462)(,‘/ %[JO(EX) —1].

By means of (A.2), (A.10), and (A.12), we find [setting
sin (x/2) = (x/2)]

A(s)——m&[gl %+---—1+%—--}
+ 1 af'r(l — 2/x)
— $ o™, In (vxat/2e) +-
=afr(t —Ltt+ 3%+ )

— 3 af’,E In (vxaE/2e) +--- ;5 Er>>1

(9.17a)
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this formula is also wrong for very small £&. By a
calculation similar to that for (9.15b), we find

Is(§) = af'r(—0.29928 + % &% +--+)
— 3o xut’ In (vxat/2¢) +--- 5 <1,
(9.17b)

where 0.2992 is the value of f’é/ 2u*du cot u csc u.

If the six integrals in Eqgs. (9.12), (9.13), (9.14),
(9.15a), (9.16), and (9.17a) are added and the terms
rearranged slightly, we find for the exponent of the
transform

Q — Q=1 &% In (v'6"/4€) + 3 £X[In x,
+ 2ax, In 2%, + 208, (1.448 — In x,)]
+ £xxu(1 — %) In (v£/€) + % x6°(1 + ar)
X In vt + xiaf’r(3 — £) . (9.18)

Following Nigam, Sundaresan, and Wu, we define
the screening angle x. by setting the square bracket
equal to In x, (our previous definition needs modifi-
cation to the large-angle case before it can be applied
here)Y:

In xe = In x, + 2ax, In 2%,
+ 208°%,(1.448 — In x,,) .

It is the difference between the values of In x.
given by (9.19a) and (6.62) that provides the main
contrast between the present calculation and that of
Moliére and may be taken as a numerical measure
of the contrast between the respective ¢’s in Figs.
17-20.

It should be noticed that, since (9.19a) involves
ax, In place of « itself, and since ayx, is small in
accordance with (6.22), x. and x, cannot differ great-
ly. In fact an expansion in powers of ax, may be
taken to first order, yielding the good approximation

(9.192)

xXa = x2{1 + 4ax,[(1 = 6°) In x, + 0.2310
+ 1.4488°]} .

The principle difference between x, and xo is thus
determined by the value of u in x, = uxo.

Table VI shows a comparison of screening angles
calculated from (6.62) and (9.19b), using for the
latter, the values u = 1.12 and 1.80 as given in the
article of Nigam et al. (see part D of this section) as
well as u = 1.

17 Nigam et al. assert in their Eq. (56) that In (2/xa) — % is
given by [oldyq(y)/y (where y = sin x/2), a quantity called

hlla £ by Goudsmit and Saunderson (1940a). Actually, as defined
above,

In (2/xa) — % = Joldya(y)/y + % B (ar — 1) + termsin x,2 .

(9.19b)
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Let us next define a correction constant ¢ by

¢ =2axu(l — 6. (9.20)

This constant is small compared to one, particularly
for relativistic particles and low-atomic-number ma-
terials.

TaBLE VI. Screening angles for Moliére (1948) and for Nigam
et al. (1959), for multiple scattering of electrons on beryllium
and gold (from Nigam et al., corrected).

Beryllium, Z = 4;2z = 1; o = 0.0292

B Xo Xa/x3 — 1.13, Molidre  x4/xi — 1, Nigam et al.
u=1 p=1 p = 112 u = 1.80

0.6 0.0174 0.00890 —0.00625 —0.00671 —0.00894

0.7 0.0134 0.00655 —0.00282 —0.00302 —0.00388

0.8 0.00982 0.00501 —0.00073 —0.00075 —0.00076

0.9 0.00634 0.00396 4-0.00036 +0.00043 +4-0.00081

0.99 0.00187 0.00327 0.00034 0.00038 0.00061

0.999 0.00059 0.00321 0.00011 0.00013 0.00021

Gold, Z = 79;z = 1; o8 = 0.576

B Xo xa/xs — 1.13, Moliére x3/x;i — 1, Nigam et al.
w=1 r=1 = 112 u = 1.80
0.6 0.0470 3.48 —0.218 —0.229 —0.269
0.7 0.0360 2.56 —0.895 —0.0927 —0.0970
0.8 0.0265 1.96 —0.0113 —0.0092 +0.0082
0.9 0.0171 1.55 +0.0276 +0.0319 0.0584
0.99 0.0051 1.27 0.0180 0.0202 0.0327
0.999 0.0016 1.25 0.0061 0.0068 0.0109

Using the definitions (9.19) and (9.20), we find

2.2\ 14§ 4 ¢
Q—Q = %szfln[<%> <7 X

+ 3 xB°(1 + ar) InvE + xafr (3 — £) .
(9.21)

Again following Nigam et al. in essence, we define
By by the relation

By Y e\ 1
B=1[<‘“§> 2 =1, 922
N n y 4 X2 ( )

which obeys an equation similar to that for the
Moliére B, namely,

By 10 [By/(L+ 9]+ In (/")

1+
+In [(1 4 OO (/) 40]
(9.23a)

In order to use the results in Eqgs. (7.39) and (7.40),
let us set

(1 + £)xi(e/a)8/e®
QON = XZ/(IH’) )

(9.242)
so that

<1iN;> =In (fff) + In (Qove/v) . (9.23b)




282

When ¢ may be set equal to zero, as is frequently the
case, Qox becomes Qo and By becomes B.

For small but not negligible {, we can use ex-
pansions taken to the first power:

By~ B{1 + ¢[0.614 + In x2/(B — 1)]}  (9.23¢)

Qow =~ Q{1 + ¢[0.614 + In x2]} , (9.24b)
where B and Q, are computed with { = 0, i.e., by
Eqgs. (7.38) and (7.39).

We finally have for the transform exponent as a
function of 7

Q) — Q = —n'/4 + (1 + ) (n’/4By) In (n'/4)
+ 1 x:6°(1 + o) In (47°/xBv)
+ 1 x8°(1 + ar) In (n°/4) + § xiaB’r
— x.af’mn/By’ (9.252)
with
1= Ex.BY’. (9.25b)

This expression agrees with Eq. (62) of Nigam et al.
with the exception of a term % x2[B — (1 4+ ¢) In
(n?/4)], which they obtain from setting I 4+ % equal
to the variable we call £ and then putting I(l + 1)
= (I 4+ %)? — 1. The —1/4 leads to the extra term;
in their final calculations its effect is neglected;
furthermore, the errors made by them in using the
asymptotic formula ¢(I) ~1In (I + %) down tol = 0
are of the same order. Still another error of this
order is involved in the difference between (9.15a)
and (9.15b), which we shall consider below.

In Eq. (9.25), there are two variable terms in
addition to the Moliére-like terms. The coefficient of
n, X.af2rBY? = x.2Z87/137BY* will generally be less
than 1/4 for singly or doubly charged incident parti-
cles, since By will be greater than 4.5 and we may
assume that the “Gaussian width” x.B#? of the
distribution is less than 1/4 of a radian to allow use
of the small-angle approximation. The coefficient ¢ of

In (4%/4),
c=32x8°(1 + ar) = 1 X2(6° + 2ZBn/137)  (9.26)

will be less than 0.02. These limits will be different
for z > 2, but the development to be given below
may be readily modified for any case in which ¢ be-
comes appreciably larger than 0.02.

B. Calculation of the Distribution Functions

We now expand exp [Q — Q + % 9?] in a power
series. The terms in « represent contributions of the
second Born approximation, so it is not legitimate to
carry the expansion to powers of a beyond the first,

WILLIAM T.8COTT

since the third Born approximation would introduce
terms in o2 in (9.25a). That is to say, x.c82rB5/2 must
also on this account be small compared to 1. Terms
involving ta contain o?; when « is small, the small-
angle restriction on x.(i.e., x2 £ 1/9B) will make
terms in «(x.o8?r) generally negligible. One such
term, however, has been included for the sake of
completeness.

Terms thus neglected can readily be included and
evaluated by the methods given below, in the event
that it is desired to calculate the errors due to their
neglect (which may be comparable to errors due to
the neglect of the next higher Born terms).

We find then, for the spatial distribution

27 F rea (Fwyt) = K/ WdﬂJo(l?N'n)e—"’/A l:l + 4+ (1 —|—- &)

X (ﬂ—lnﬁ——) _ 2o <l> + lni
4 By R

P (] o0 (2

_ 2xef’r(l + ) (71 T ) x-afm (L + ¢)*
?v/z ) n 4 ?V/z
. 2") ZLXCaBW(i n2>j|

and the coefficient K is

K = exp {} x[af’r + B°(1 + ar) In 2v/x.BY*1} .
(9.27b)

The maximum value of the exponent in (9.27b) is
seen to be about 1/32 + 0.11 = 0.14.
The reduced angle ¢ is now given by

v = 0/x.BY?. (9.28)

Nigam et al. do not have the terms with ¢ in
(9.27a), nor do they give the next-to-last one. For
small By, the omission of terms involving the third
and higher powers of B# In (?/4) will make a larger
error than the omission of the terms containing ,
but we have not included the former because compu-
tations relating to them are not available. The in-
verse transforms of each of these terms can be found
from the two integrals {Erdelyi (1954) T.I.T.
[8.6(14)] and [1.4(14)]}

)

2@ Fi (051 — #) = | i)™ G4
(9.292)

D@L Fi 05k — &) = [ dn cos (ro)e™ /4.
(9.29b)
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The function F; is Kummer’s confluent hyper-
geometric function. Differentiating these expressions
with respect to a once or twice will give the trans-
forms of terms with In (92/4) and In® (9?/4). Let us
define a set of functions D,(a; b; 2) by the relations

D.(a,bz) = (3"/0a")T(a):Fi(a;b;z) . (9.29¢)

The spatial-angle distribution may now be written
20 F roa (D)) = 2K{Do(1,1, — 9%) + Di(1,1, — 9%)

- 2T D@1, — o) + DG, — 03]
+ 5D 21, — ) + a1, — 93]

x.afw(l + ¢)

1+
B OB,

2 2
X Da(3,1, — 0%) — X—“’@—I’%ﬁ—{)—
X Dy (3,1, — zﬁv)}, (9.30)

and correspondingly, the distribution in projected
angle is

T fowt) = K{DuCbd, = ) + DiCh, — )

2x.af”
— PG [Do(Ld, — oh) + Di(1,3, — o)

1 2 2
+ 850 0,6, - ) + DG — )

_ 2xca627r(1 + 0

:?\,/2 D1(2;%7 - ‘pZN)
1 2
+ %—%%)— D, %:%; - gDzN)
of’r (1 + ¢)°
L N IE 9.31)

The terms in (9.32) and (9.33) are given in order of
increasing inverse powers of By, but the actual rela-
tive orders of magnitude will depend on the values
of By, x.af%T, ¢, and «.

The results of the Moliére calculations are in-
cluded in the above, if we set 9y = &, o8 = ¢, By
=B and « = ¢ =0, (all of which equalities are
justifiable for nonrelativistic scattering, as indicated
in Sec. VI) and ignore the terms with x.a8%r. In fact,
we have the relations [ef. Eqgs. (7.47) and (7.50)]
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Do(1,1, — %) = ¢, (9.32a)
Do(3,3, — &) = o, (9.32b)

2D, (2,1, — ¢°) = FP (@), (9.32¢)
@/mDi(33, — &) =7V (e), (9.32d)
D:(3,1, — &) = F®(p), (9.32¢)
1/mD: (3,3, — &) = 7% (). (9.32f)

Details concerning the D, functions are found in
Appendix IIT; Figs. 21-26 and Tables VII and VIII
give some numerical values.!”

Table IIT of Nigam et al. contains a column for
their function f®’ = 4y.a827rBY2D,(3, 1, — ¥2), calcu-
lated for u = 1.80, Z =79, B =6.98, 8 = 1. The
results agree with ours for ¢ = 0, 1.0, 2.0, 3.0 and
4.0, but disagree considerably for the intermediate
values. It is not possible from their article to detect.

Lo

075 \

0.5

Du(1,1,-3%)

|
n‘,@/z.xk’)

-25

o 10 2.0 3.0 4.0 45

S
Fra. 21. The functions Do(1,1, — ¢2) and Do(3,1, — 92):
against .

the source of their mistake.!®* The mistake was con-
tinued by Fleischmann (1960), who evidently de-
rived his function g = 4 Do(3, 1, — 9?) from their

18 M. K. Sundaresan has indicated (private communication)

that he and his coauthors have also detected the existence of”
mistakes in their numerical values.
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1.0 6
D,(52.1,-9%) 5\
05 4
2,
Da( 72,1,~)
Lp,(2,1,-8%) 3
\ 02(3,1,- &)
0.0 /& 2
-
2 | — |
1D (% 1,5 Dy(2,1,-89
| /

/sl

-05 o

\, D,(1,1,-9%)

\

-2

~1.0l

o I 2 3 4 45
o 10 20y 30 40 45 %
Fia. 22. The functions Di(1,1, — 92), Dy(3,1, — 92), Fia. 23. The functions D2(2,1, — 92), Ds(3,1, — 92), and
Dy(2,1, — 92) and Dy(3,1, — 92) against 9. Do(%,1, — 92) against &.

TasLE VII. Selected values of the D, functions for spatial-angle scattering.l” The notation E-02 means that a factor
1072 is to be appended, ete.

3 D,(1,1,—9%)  D,(3/2,1,—9*) D,(1,1,—*) D,(3/2,1,—9%) D,(2,1,—8?)  D,(5/2,1,—8%) D,(2,1,—9%) D,(3,1,—9%) D,(7/2,1,—5%)
0. 1.0000 0.8862 —0.5772 0.0323 0.4228 0.9347 0.8237 2.4929 5.1423
0.1 0.9901 0.8730 —0.5814 4+0.0231 0.4045 0.8985 0.7990 2.3827 4.8926
0.2 0.9608 0.8344 —0.5934 —0.0036 0.3519 0.7944 0.7283 2.0694 4.1857
0.3 0.9139 0.7731 —0.6117 —0.0447 0.2712 0.6358 0.6208 1.6014 3.1399
0.4 0.8521 0.6935 —0.6339 —0.0955 0.1718 0.4425 0.4899 1.0488 1.9229
0.5 0.7788 0.6011 —0.6571 —0.1505 +0.0648 0.2373 0.3514 +0.4896 +0.7191
0.6 0.6977 0.5017 —0.6784 —0.2041 —0.0388 +0.0427 0.2205 —0.0044 —0.3074
0.7 0.6126 0.4010 —0.6950 ~0.2509 —0.1292 —0.1224 0.1098 —0.3794 —1.0407
0.8 0.5273 0.3044 —0.7045 —0.2870 ~0.1990 —0.2448 +0.0278 —0.6068 —1.4295
0.9 0.4449 0.2159 —0.7055 —0.3097 —0.2443 —0.3186 —0.0220 —0.6852 —1.4873
1.0 0.3679 0.1386 —0.6972 —0.3180 —0.2642 —0.3446 —0.0411 ~0.6359 —1.2799
1.1 0.2982 0.7422E-01 —0.6796 —0.3126 —0.2609 —0.3295 —0.0344 —0.4959 —0.9043
1.2 0.2369 +0.2322E-01 —0.6537 —0.2951 —0.2385 —0.2834 —0.0094 —0.3086 —0.4648
1.3 0.1845 —0.1488E-01 —0.6207 —0.2682 —0.2026 —0.2183 +0.0253 —0.1151 —0.0524
1.4 0.1409 —0.4134E-01 —0.5824 —0.2349 —0.1591 —0.1458 0.0619 +0.0525 +0.2602
1.5 0.1054 —0.5789E-01 —0.5407 —0.1983 —0.1134 —0.7559E-01  0.0941 0.1740 0.4685
1.6 0.7730E-01 —0.6648E-01 —0.4972 —0.1612 —0.6978E-01 —0.1481E-01  0.1176 0.2422 0.5440
1.7 0.5558E-01 —0.6905E-01 —0.4536 —0.1256 —0.3149E-01 +0.3251E-01  0.1304 0.2603 0.5164
1.8 0.3916E-01 —0.6739E-01 —0.4113 —0.9335E-01 —0.3050E-03  0.6504E-01  0.1325 0.2387 0.4188
1.9 0.2705E-01 —0.6301E-01 —0.3713 —0.6531E-01 -0.2313E-01  0.8355E-01  0.1253 0.1911 0.2868
2.0 0.1832E-01 —0.5712E-01 —0.3342 —0.4193E-01  0.3911E-01  0.9027E-01  0.1111 0.1316 +0.1513
2.2 0.7907E-02 —0.4414E-01 —0.2700 —0.8731E-02  0.5271E-01  0.7996E-01  0.7182E-01 +0.1964E-01 —0.0526
2.4 0.3151E-02 —0.3261E-01 —0.2193 +0.9518E-02  0.5039E-01  0.5609E-0L  0.3245E-01 —0.4672E-01 —0.1291
2.6 0.1159E-02 —0.2380E-01 —0.1804 0.1769E-01  0.4131E-0L  0.3313E-01 +0.2828E-02 —0.6480E-01 —0.1141
2.8 0.3937E-03 —0.1756E-01 —0.1507 0.2009E-01  0.3124E-01  0.1678E-01 —0.1496E-01 —0.5460E-01 —0.6668E-01
3.0 0.1234E-03 —0.1326E-01 —0.1278 0.1965E-01  0.2275E-01  0.7167E-02 —0.2320E-01 —0.3569E-01 —0.2519E-01
3.2 0.3571E-04 —0.1028E-01 —0.1100 0.1807E-01  0.1644E-01  0.2310E-02 —0.2536E-01 —0.1923E-01 —0.1440E-02
3.4 0.9540E-05 —0.8177E-02 —0.9583E-01  0.1620E-01  0.1201E-01 +0.1828E-03 —0.2434E-01 —0.8470E-02 -0.7684E-02
3.6 0.2353E-05 —0.6644E-02 —0.8436E-01  0.1439E-01  0.8953E-02 —0.6006E-03 —0.220LE-01 —0.2643E-02  0.8902E-02
3.8 0.5355E-06 —0.5493E-02 —0.7401E-01  0.1276E-01  0.6828E-02 —0.8041E-03 —0.1935E-01 +0.4572E-0¢  0.7215E-02
4.0 0.1125E-06 —0.4606E-02 —0.6702E-01  0.1134E-01  0.5319E-02 —0.7884E-03 —0.1681E-01  0.1074E-02  0.5111E-02
5.0 0.1389E-10 —0.2207E-02 —0.4175E-01  0.6642E-02  0.1915E-02 —0.3759E-03 —0.8364E-02  0.8326E-03  0.7141E-03
6.0 0.2320E-15 —0.1237E-02 —0.2860E-01  0.4230E-02  0.8700E-03 —0.1766E-03 —0.4548E-02  0.3495E-03  0.1440E-03
7.0 0.5243E-21 —0.7647E-03 —0.2084E-01  0.2870E-02  0.4540E-03 —0.9103E-04 —0.2686E-02  0.1583E-03  0.3840E-04
8.0 —0.5063E-03 —0.1588E-01  0.2044E-02  0.2606E-03 —0.5076E-04 —0.1692E-02  0.7833E-04  0.1197E-04
9.0 —0.3528E-03 —0.1250E-01  0.1511E-02  0.1604E-03 —0.3017E-04 —0.1122E-02  0.4176E-04  0.4131E-05
10.0 —0.2558E-03 —0.1010E-01  0.1151E-02  0.1042E-03 —0.1888FE-04 —0.7748E-03  0.2368E-04  0.1511E-05
11.0 —~0.1914E-03 —0.8334E-02  0.8992E-03  0.7065E-04 —0.1232E-04 —0.55335-03  0.1413E-04  0.5604E-06
2.0 —0.1470E-03 —0.6993E-02 - 0.7166E-03  0.4061E-04 —0.8336E-05 —0.4064E-03  0.8801E-05  0.1963E-06
13.0 —0.1153E-03 —0.5953E-02  0.5812E-03  0.3586E-04 —0.5810E-05 —0.3056E-03  0.5684E-05  0.543E-07
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TasLE VIII. Selected values of the D, functions for projected-angle scattering.l” Notation same as in Table VII.
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table. The values given by Nigam et al. for their f®
= Di(2, 1, — 9% which were obtained from Bethe
(1953) agree exactly with ours; their table of f©
=2 Do(1, 1, — 8% = 2 exp (—v?) contains 3 mis-
takes.

023, Y2,97)

0, ( %2 V2,-0%)
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]
) 3

D2(3%2, V2,92

e
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[o] 3 2 3 4 c 4.5

¢

Fie. 26. The functions D2(%,3, — ¢2), Da($,3, — #?) and
Dy(3,%, — ¢?) against ¢.

Let us consider the errors made by neglect of the behavior
of Q(¢) — @ at small £ given by (9.15b) and (9.17b). We
note first that normalization of the distribution functions
requires by (2.26) the vanishing of @ — Q, for ¢ = 0. Equa-
tions (9.15a) and (9.17a) do not provide this feature, but
(9.15b) and (9.17b) do. Thus, we expect that (9.30) and
(9.31) will fail to be normalized; the fact that K # 1 is an
indication of this.

If we denote the approximate exponent used in (9.27a) by
(@ — Q0)approx., We can write the difference between (9.27a)
or (9.30) and the correct result as

AQRrFra) = _/; ndnJ «(dxm)

X [exp (@ — Q) — exp (@ — Qo)approx] -
The difference between the integrands is only appreciable
for £ < 1/7 or n < m = x.BY?/7, and if the “width” x.B¥?
of the distribution is as stated above less than 1/4 radian,
we have g < 1/12. We assume that for 5 > 7, the cor-
rection vanishes. It is easily seen that for 0 < 5 < i, the
terms beyond the first in the exponent are small enough that
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only a first-order expansion is needed. Thus we find

™ . 13167 ?
AQrF ) = /0 ndnd o (Syn)e”” A {Ll: X:;B: - ln—’i—

4" 0.2997°
- f | o | O

]

9.33)

‘We may set ¢+ equal to 1, and for dy of the order of 1
or less, also Jo(dn). It is easy to see from (9.33) without
detailed evaluation that the correction is very small com-
pared to the value 2K of expression (9.30) for ¢x = 0.

For large ¢, we can use the method of Sec. IV to calcu-
late an asymptotic expression for (9.33), assuming that ; is
large enough that the shift of path is justifiable. Using (4.5)
and (4.6), we find

2 xafT
O BVWY'
which will just cancel the leading terms in the asymptotic
expansions of Di(1,1, — ¢%) and Do(3,1, — #%) in (9.30)
(assuming we can take K = 1 for these terms).

For the projected-angle distribution, we can also show
that the correction for small ¢y is negligible, and that
asymptotically we have

A@2rF ) = (9.34)

T e xcaﬁzﬂ'
A (2 fm) " ov  Biey’
which again cancels the leading terms in D: (3,3, — &) and
Do(1,5, — o) in (9.31).

However, even for ¢y or ¢y up to 13 (the range of our
tables), the corrections as estimated directly from (9.34)
and (9.35) will remain smaller than the value of the leading
terms in the D, functions, so no correction of them is
actually called for. If the normalization is to be considered,
however, such a correction will be necessary, for the func-
tions D:(1,1, — ¢?) and Di(3,%, — ¢%) as they stand are not
normalizable. It is not difficult to show by direct integration
of the term in In #*y2/x2By that the corrected functions

Dieor (1,1, — %) = Di(1,1, — %) + [1 — Jo(9x12)1/8"
(9.36a)

(9.35)

and

Dicorr (%y%) - ‘:92) =D (%:%1 - 502)
+ [w/2 — / du sin u/u:l /e, (9.36b)
N2

where 7. is x.B¥?/v or any value of that order of magnitude,
will represent properly normalized and adjusted functions
for the respective terms in (9.30) and (9.31).

C. Inclusion of Atomic—Electron Scattering,
Mixtures and Energy Loss

The different behavior of ¢(x) for large x in the
Dalitz formula as compared to that of Moliére makes
the inclusion of the effects of inelastic scattering and
mixtures somewhat more complicated than the corre-
sponding method of Sec. VII.

The correction is basically to be made on Eq.
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(9.21), by adding the effects of atomic electrons and
of scatterings at different thicknesses and by different
atomic species. Thus we expect to use integrals and
sums like those in (7.4b) for x% and in (7.25) and
(7.27) for x., assuming that { is negligible or at least
constant.

Following the procedure used in Sec. VII, we can
write, for the scattering of fast electrons,

Q) — Q= %52 /otdt' Z‘_ {Xﬁ;(t') In [(%ﬁ)ur

;2 1, , 22§el)2t,
X <4 ) Xai(tl)] + ZXci(t ) 1n1—£—)“(ze——(——)}

o
+ %/;dt’ Zf xf@'{Bz(t')[l + a;(t')‘lr] In v&

+ a: ()8 ) (3 — )} . (9.37)
The small quantity ¢, if it is not entirely negligible,
can generally be taken as constant, although its
variation can be included in (9.37). If it is negligible,
then it becomes legitimate to use (7.4b) or (7.26) for
x2 and 7.27 for In x,, but of course, (9.19) must be
used for each xa:.

Similarly, the corrections for scattering of heavy
particles can be made by use of (7.31a) when { is
negligible, and by adding % £ times the terms in
(7.31a) with subtraction of In y£x,:/2¢V? in the { },
to (9.21).

D. Application to the Experiments
of Hanson et al.

As an example of the theory presented in this
article, we give its application to the results of Han-
son, Lanzl, Lyman, and Scott (1951), which were
also treated by Nigam, Sundaresan, and Wu (1959).
It was the discrepancy with the results on beryllium
whose clearing up was taken by Nigam et al. as
experimental validation of their calculations.

Table IX gives results for measurements by Han-
son et al. of spatial-angle electron scattering on two
different foil thicknesses for both beryllium and gold.
The “1/e width” 6,,,, or angle at which the measured
distribution falls to 1/e of its value at 8 = 0, is used
as a measure of scattering.

Hanson et al. also calculate an equivalent 1/e
width 6 from the value of the normalized distribu-
tion, on the assumption that the curve is Gaussian.
We shall show in Sec. XIII (Table XII) that, for the
Moliére theory, 6, is expected to be larger than 6/..
We can deduce from that section the following
results:

0., = x.(1.007B — 1.33)"2
8o = x.(1.012B — 0.64)"* .
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The expected differences between these values are
given in the table for the Moliére calculations and
show greater differences than found experimentally,
probably because the unmeasured ‘‘tail’” of the
distribution affects 6, but not 6:/.. The irregular
experimental differences between the two angles
may, in fact, be a measure of the (unstated) experi-
mental errors. No correction was made for the finite
angular divergence of the incident beam; such a cor-
rection would reduce the values given by 1 or 29,
which is less than the other errors.

If we first consider the two thicker foils, we see the
results quoted by Nigam et al. (our numbers are just
slightly different than theirs), namely (1) that the
Moliére results for 8,/. fit the Au data and are too
large, beyond experimental error, for Be; (2) the use
of the Thomas—Fermi value 4 = 1.12 [see (6.65a)] in
the new theory gives results too large for both sub-
stances; and (3) the use of u = 1.80 reduces results
for both elements to a good fit. However, these
results do not hold for the thinner foils. Although the
accuracy is presumably greater for the thicker foils,
the data does not appear conclusive. However, we
are not attempting in this article to survey the experi-
mental results and only wish to point out the need
for more comparisons between theory and experi-
ment.

One important fact must be noted about the
calculations in Table IX. The correction terms to the
Moliére expansions are negligible for Be; the only
modification introduced by Nigam et al. is in the use
of x, in place of Moliére’s x,. However, the correction
terms are important for Au, and account for the large
value of 4.05° for 6,7, when p = 1.12. Thus for the
choice p = 1.80 two corrections for Au cancel each
other, and the one important correction for Be
allows a fit to be made for this case (considering only
the thicker foils for each element).

E. Use of More General Screening Functions

Nigam et al. assert that the effect of using a po-
tential of a different form than (6.5) can be included,
to the accuracy of their calculations, by merely
choosing u properly in (6.5). However, different
functional forms than (6.5) can surely make a con-
siderable difference.

An illustration of the difference that can be made
at the smallest angles, where, of course, the screening
effect is the largest, is given below in Sec. XI, where
a comparison is made between the single-exponential
form (6.5) and the sum of three exponentials used by
Moliére (1947) and by Rozental (1935).

Mitra (1961) following Vachaspati (1954) and
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TasLe IX. Multiple scattering of electrons on beryllium and gold [Hanson ef al. (1951)].

Be, Z = 4, A = 9.02,

Au, Z =79, A = 197,

o = 0.0263 a = 0.576
Experiment:
ot, g/cm? 0.257 0.4913 0.01866 0.03728
Eyin, MeV 15.47 15.24 15.69 15.67
Xe, degree 1.074° 506° 1.087° 1.539°
x0, Tadian 4.20 X 10~ 4.25 X 104 1.117 X 1073 1.119 X 103
01/e 3.06° 4.25° 2.58° 3.76°
6o 3.01° 4.33° 2.55° 3.78°
Moliére Theory:
Xa2/x0% 1.133 2.385
Qo 1760 3390 122 242
wu=1<B 9.59 10.30 6.53 7.33
01/e 3.10° 4.53° 2.49° 3.78°
6o 3.23° 4.70° 2.65° 4.01°
Nigam et al. Theory:
Xca32m 0.00172 0.00241 0.0343 0.0486
K-1 0.82 X 107 1.45 X 103 2.5 X 1073 4.6 X 10~
¢ 0.96 X 10¢ 1.88 X 10™* 2.52 X10* 5.08 X 10
¢ <5 X 1078 <3 X 1076
(xe?/xu2) — 1 0.83 X 10~ 4.8 X 1073
—112 | % 1392 3060 229 457
=L B 9.30 10.19 7.26 8.05
01/ 3.04° 4.50° 2.68° 4.05°
(xe2/xu2) — 1 1.3 X 104 7.8 X 1073
- 180 | % 616 1184 74.8 177
“ : B 8.39 9.14 5.94 6.96
01/e 2.87° 4.21° 2.37° 3.71°

Lewis (1956) has given the results of a calculation of
Dalitz’ type for a screening potential which is the
sum of three exponentials. This author, however,
only evaluated the scattering cross section at 90° for
four special cases, and did not present the results in
a form easily amenable to multiple scattering calcu-
lations. Use of these results with the methods of this
section will be necessary if the assertion of Nigam
et al. just referred to is to be corroborated or modified.

Other corrections which have not yet been in-
cluded are those arising from higher terms in the
expansion of Q(¢) — Qo as given in Sec. VII and those
arising from inverse powers of B beyond the second
in the Moliére development.

X. MULTIPLE AND PLURAL SCATTERING
IN VERY THIN LAYERS

The Moliére expansion is not valid for small B,
i.e., for small Q,. Keil, Zeitler, and Zinn (1960) have
made an alternate, numerical calculation for 0.2
< Qo < 20, which we report in this section. We note
first that in accordance with (9.21) and the knowl-
edge that values of £x. up to about one are needed,
the last two terms of (9.21) (without £2) are negligible
when x? is very small. Thus, the Moliére expression
which is derivable from (6.63), modified to read

a(x) = X' + (@/e) 0RO (10.1)

may be used, along with the use of (1 + {)x? in place
of x% With this assumption, further terms in the
expansion of @ — Q, may be found, for we will have
as in (8.1),

Q — Qo = Q[ExakKi(Exa) — 1] (10.2a)

where we have
Q= 1+ Ox/xe (10.2b)
X2 = (4/e)F/HOE O (10.2¢)

As shown in Sec. IX, x, on the theory of Nigam et al.
is nearly equal to uxo, and less dependent on o than
as indicated by the Moliére calculation in Sec. VI-F.
Leisegang (1952) found experimentally for thin-foil
scattering that x. should be taken close to xe.

For integral values of Qf = m, say, we can write
the spatial-angle distribution function in a managea-
ble form as follows. We use the Snyder variables s
and &, from Eqs. (8.2a) and (8.8), writing

F(m9.)0.d9, = 9.d9, f sdsF (s)"Jo(d:s) . (10.3)
o
We follow Keil et al. by using the normalization

[ Ponsy9a9. -1, (104)
0

and the transform F(s) for @, = 1 is given by

F(s) = exp [sKi(s) — 1]. (10.5)
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The device used by Keil et al., who follow Leise-
gang but use a modern computing machine, is to
approximate F(s) to within 0.002 for all s by the
formula

F(s) ~e™ (1 + bie™" 4 bee™™)  (10.6a)
with the coefficients

b, = 2.10667 ¢a = 0.935

by = —0.388388 c: = 5.000. (10.6b)

This approximation gives the correct values F(0) = 1
and F() = ¢
The m’th power of (10.6) is then written out:

e—m(ble—-cla + 1 + b2e—c,a)m
— e—-m E ( 7]:;7/ ) b’;e—kcls(l + bze—cax)m-—k

k=0
m m—k
— e—-m E Z (m > <m —_ k) bl;b;e—kc,a—lcis, (107)
k=0 [=0 k l
and use is made of the Bessel function integral

{Erdelyi, T.L.T. (1954), [8.2(20)] and Watson (1952),
p. 386, (6)}

A _ a
/; sdse “Jo(ds) = m, a>0 (10.8)

=680, a=0
Thus, we have
m m—k
F(m;‘lys) = e—m Z ( 7;? ) <m ; k) bfbé(()ll + Czk)
1=0

k=0
X [(ed + ek)* + 937, (10.9)

The term with & = [ = 0 gives the contribution of
the unscattered particles, e8,(d.).

Machine computations were made of the non-
singular part of the distribution G(m,?3,), given by

G(m,3.) = F(m,3,) — e "6,(%) (10.10)
for integral values of m from 1 to 18, and for m = 20.
The error in these calculations due to the error
remaining in the approximation (10.6) may be esti-
mated by writing ‘
A[F (s)]™ = mF (s)" " A[F (s)]

and

AF (m,8,) = m AwsdsA[ﬁ(s)]ﬁ(s)m_lJo(z?ss)

< 0.002mF (m — 1,8,) . (10.11)

The greatest error, of the order of 49, occurs for
= 20 and ¢, = 0. Exact numerical integration for
& = 0 shows that for m = 20 the computations using

289

(10.6) are high by 3.29%,, whereas the Moliére ex-
pansion gives results that are 4.39, too low. For &,
> 5 and m = 20, the two methods give very closely
the same results. Since the errors in Moliére’s method
decreases as Q) increases, and those of Keil et al.
increase, we see that Qf = m = 20 is indeed a good
division point between the two methods.

For very small Qf, less than 1, Keil et al. use the
direct sum corresponding to (2.34) up to n = 2. For
n = 0 we have, of course, the delta function, and for
n = 1 the single-scattering law; for n = 2, the fold-
ing-integral can be calculated directly, so we have

F(@,0,) = ¢ ™ [6.(8,) + QUF(0.) + 3 QF:(3.)]
(10.12)
with

Fi(®) = 2/(1 + &)°. (10.13)

Fa(®) = mﬁ—&;,)—z{az(a“ 28 —8) + (1 + Y
X (41}2—|—z§14)1/2.
(@' 4 40° 4 2) + (2 + 0°) (40" + 0“)‘/2}
@ +4°+2) — @+ @S + )"
(10.14a)
Fa(0) = 2. (10.14b)

Using (10.12), the distribution was calculated for
Q4 = 0.2, 0.4 and 0.6.

To estimate the error, we note that the coefficients
of the F, in (10.12) are just the Poisson distribution
coefficients which sum to unity, and furthermore, if
¥, > 0, F.(3,) < F.(0) < F2(0) = 2/3, so the error
caused by stopping after F is

X In

> Lol m ) <311 — ™ (1 + o + 1 f0]
n=3 . B
which is 1.69, for Q) = 0.6, 0.539, for Q¢ = 0.4 and
0.139, for Qf = 0.2.

Keil et al. also report values of the integral of
F(m,3,), namely

G(m,9,) = fo IdIG (m,d) . (10.15)

The value of G for ¢, = 0 is not unity because the
unscattered beam is not included. For m between 1
and 4, this fact may be used to estimate m — the
difference in intensity with and without the foil will
give a measure of G(m,0). A more precise determi-
nation may be made if the distribution of the incident

beam is known, but we shall not pursue the matter
here [see Keil et al. (1960)].
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TasLE X. Values of G(m,d) from Keil et al. (1960). The notation E-2 signifies that a factor 1072 is to be appended, etc.

m
Fs 0.2 0.4 1 2 4 10 20
0.0 0.338 0.572 0.8808 0.8137 0.4114 0.8188E-1 0.2911E-1
0.1 0.336 0.569 0.8658 0.8020 0.4076 0.8179E-1 0.2911E-1
0.2 0.313 0.531 0.8233 0.7685 0.3969 0.8152E-1 0.2909E-1
0.4 0.253 0.431 0.6833 0.6573 0.3601 0.8049E-1 0.2901E-1
0.6 0.186 0.319 0.5229 0.5270 0.3147 0.7892E-1 0.2888E-1
0.8 0.129 0.224 0.3834 0.4096 0.2703 0.7692E-1 0.2871E-1
1.0 0.883E-1 0.155 0.2770 0.3158 0.2311 0.7459E-1 0.2849E-1
1.25 0.550E-1 0.995E-1 0.1853 0.2293 0.1900 0.7130E-1 0.2814E-1
1.5 0.348E-1 0.655E-1 0.1262 0.1688 0.1566 0.6771E-1 0.2773E-1
2.0 0.152E-1 0.288E-1 0.6276E-1 0.9574E-1 0.1073 0.6008E-1 0.2673E-1
2.5 0.741E-2 0.147E-1 0.3402E-1 0.5720E-1 0.7449E-1 0.5234E-1 0.2551E-1
3.0 0.396E-2 0.800E-2 0.1975E-1 0.3567E-1 0.5229E-1 0.4495E-1 0.2412E-1
4.0 0.139E-2 0.285E-2 0.7733E-2 0.1531E-1 0.2667E-1 0.3215E-1 0.2104E-1
6.0 0.291E-3 0.605E-3 0.1737E-2 0.3745E-2 0.7894E-2 0.1536E-1 0.1473E-1
8.0 0.948E-4 0.195E-3 0.5359E-3 0.1187E-2 0.2723E-2 0.7132E-2 0.9506E-2
10 0.381E-4 0.780E-4 0.2040E-3 0.4531E-3 0.1072E-2 0.3349E-2 0.5824E-2
15 0.3273E-4 0.7099E-4 0.1656E-3 0.5964E-3 0.1559E-2
20 0.8744E-5 0.1851E-4 0.4146E-4 0.1434E-3 0.4289E-3
Finally, these authors give the results of averaging that quoted above for Q¢ < 1, for Qo = 1 and 2; the

G(m,9) over m:

Glmo.) = - fo Gm' 9)dm' . (10.16)

Tables X and XTI give some of the results of Keil,
Zeitler and Zinn.

Leisegang (1952) gave preliminary results for
1 < m < 10 using the same method as Keil et al.; in
addition he discussed the statistical effect of ir-
regularities in the thickness of thin films and de-
scribes experiments in which a good fit to the theory
is obtained for the case « = 1.3 when x, is neverthe-
less set equal to xo.

Kompaneets (1955) made a calculation similar to

results by his rather rough method are in good agree-
ment with those of Keil et al.

XI. SCATTERING AT ANGLES NEAR ZERO

A. Inelastic and Elastic Cross Sections
for Single Scattering

Lenz (1954) has discussed the scattering of
medium-energy electrons at very small angles (104
to 10! radian), with the inclusion of inelastic as well
as elastic scattering. By medium energy is meant a
range around 100 keV such that relativistic effects
are not important but g is still large enough that «
is small and the first Born approximation is useful.

TasLE XI. Values of the integrated distribution é(m,ﬂs), from Keil et al. (1960).Notation
as in Table X.

m
s 1 2 4 10 20
0.0 0.6321 0.8647 0.9817 1.000 0.9999
0.1 0.6728 0.8606 0.9796 0.9995 0.9998
0.2 0.6151 0.8488 0.9736 0.9983 0.9993
0.4 0.5701 0.8062 0.9509 0.9935 0.9976
0.6 0.5104 0.7475 0.9192 0.9855 0.9947
0.8 0.4478 0.6825 0.8766 0.9746 0.9907
1.0 0.3892 0.6179 0.8317 0.9609 0.9855
1.25 0.3256 0.5424 0.7729 0.9404 0.9779
1.5 0.2731 0.4749 0.7137 0.9166 0.9680
2.0 0.1956 0.3642 0.6007 0.8608 0.9441
2.5 0.1437 0.2812 0.5003 0.7977 0.9148
3.0 0.1080 0.2191 0.4146 0.7311 0.8806
4.0 0.6483E-1 0.1374 0.2840 0.5980 0.8018
6.0 0.2786E-1 0.6098E-1 0.1379 0.3752 0.6524
8.0 0.1424E-1 0.3118E-1 0.7236E-1 0.2277 0.4593
10 0.8252E-2 0.1788E-1 0.4134E-1 0.1390 0.3248
15 0.3031E-2 0.6378E-2 0.1411E-1 0.4686E-1 0.1302
20 0.1538E-2 0.3172E-2 0.6758E-2 0.2062E-1 0.5643E-1
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The results are of use in electron microscopy and of
interest for the light they shed on the screening
calculations discussed earlier in this article.

The first step in Lenz’s method is to calculate the
cross-section at zero angle, without depending spe-
cifically on the Thomas-Fermi theory or Moliére’s
(1947) or Rozental’s (1935) approximations to the
latter [Eqgs. (6.13a) and (6.13b)]. We assume that
the electron density is some known function p(r) of
the radial distance r from the nucleus, normalized so
that

4r [wrzdrp(r) =2 (11.1)

Then the potential energy of a scattered electron
when it is at radius'r will be
2 r ©
V() = gc; 4—7;6* / ’dr'p(r') — 4me’ / r'dr'p(r’)
0 T

(11.2)

which corresponds to taking the function w(r/ro) of
(6.12) in accordance with the equation

Zw' (/7o) = 4mrrop(r) . (11.3)

If we use (11.2) in the standard Born formula for
elastic scattering

ga(x) = ;5% /rzdr sin ydyde

X exp [2:¢k sin (x/2)r cos Y]V (r) ’ (11.4)

we find after some reduction the Mott (1930) result

for the elastic scattering differential cross section
4(Z — 1)’ 4(Z 1)
ga(x) = ZQh s i) (11.5)

where f, is the scattering factor as used in x-ray
analysis:

o sin [2kr sin (x/2)]
fo= 4”/0 () S sin (0/2)

or in small-angle approximation,

s = 41rf rdrp()smer.

On the assumption that p(r) falls off sufficiently
rapidly with distance the integrand of (11.6b) can
be expanded in powers of kx and the integral evalu-
ated termwise. This will be valid, for example, for the
potential of (6.5), corresponding to

p(r) = (Zu’/4mrir)e ™™

(11.6a)

(11.6b)

(11.7)
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or for the potentials given by (6.13). We find

fo=Z—1% (kx)2-47r/0 Pdro(r) + O(kx) + -+ -

(11.8)
Denoting the mean-square-radius integral by 0,

0 = 47r/ rdre(r) = Z{(" ), (11.9)
0

we see by (11.5) that the value of ¢,;(0) is determined

by ©:

ca(0) = 6°/9a; . (11.10)

Let us consider values of © calculated by various
methods. If we use the Thomas-Fermi expression
(6.12), we find readily using (11.3)

0 = 6Zr§fo cdiw(§) . (11.11)

The integral may be evaluated numerically from
knowledge of the Thomas—Fermi function w(¢). This
function falls off so slowly with increasing ¢ that the
integral must be performed with care. Lenz reports
that an error of 139, is made by stopping the inte-
gration at ¢ = 100. (This fact alone, which brings
the calculation well into the range of neighboring
atoms, shows that the T-F function is unrealistic
for small-angle scattering.) Several other calculations
of the same function give quite different results. The
various results are [using (6.6)]

28.1712 = 22.02 %2
34.57r% = 27.02" 4}

(Bethe 1930)

(Bullard and
Massey 1930)

(Sommerfeld 1932)
(Koppe 1947)
(Lenz 1954)

(11.12)
with the last number evidently the most accurate.
The Moliére approximation (6.13a) gives readily
Oua = 6Zr l:— + I a4

[ef. Eq. (6.45)]
0.35
ras T W]

= 25.6Zr% = 20.12"%2  (11.13a)

a result which is most sensitive to the value of the
smallest exponent in (6.13a). Rozental’s exponential
fit (6.13b) yields

0.164 0.581 0.255
62 4 ]

1356 T 0.047 T 0.246°
— 292712 = 22.97%2 .

Or.p. =

52.57r2 = 41.12" %2
51.2772 = 40.12"°¢2
54.327r% = 42.57" %2

0.10 , 0.55

Oror = 6er,[

(11.14)
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Lenz (1954) points out that for substances without
paramagnetism or appreciable interaction between
neighboring atoms—i.e., for noble gases—a value of
6 which we denote by 6, can be related to the dia-
magnetic suscepibility.

In fact, the elementary classical theory of diamag-
netism yields, for the suscepibility in Gaussian units,

— (N /6m.c) (D e (11.15a)
where N is the number of atoms per unit volume and
(O-r? 1s exactly the quantity ©,. From this result,
we get in terms of atomic weight A and density d

0, = —1.267 X 10°(Axmae/d)as . (11.15b)
For carbon, Z = 6, we find (graphite form, values in
Hodgman, 1957)
0, = 28472 = 22.22"%a%; —170° C
= 16.6Zr = 13.02"%%; 20°C.

For beryllium, argon, and neon we obtain

(11.16)

Be: O, = 50212 =392 ; Z =4,20°C,
Ar: O, = 1.11272 = 872" °a2 s Z = 18,
Ne: O, = 5022 = 3.92"%2; 7Z =10. (11.17)

Gombas (1956) has given a useful summary of
material on diamagnetic susceptibilities.

The most reliable results are those calculated from
the Hartree or Hartree-Fock atomic distributions.
For carbon, using the 3p ground state (Torrance,
1934) one obtains

On = 1,621 = 9.107'7%%; Z=16. (11.18)

The formula deduced by Fleischmann (1960) for
beryllium, Eq. (6.14), above, yields

Or = 16.162r2 = 12.662"%% ; Z =4. (11.19)

The single-scattering formula resulting from the
Wentzel potential (6.5), namely, (6.11) together
with (6.9a), gives

Ow = 6Zr/i’ = (4.70/u>) 2% .  (11.20)

The same result is of course, obtained for small «
from the Dalitz formula (6.15). The use of u = 1.80
by Nigam, Sundaresan, and Wu (1959) yields a value
1.45 ZV/3q2, considerably below the already low values
given by the diamagnetic susceptibility, and the
same consequence ensues if Moliére’s x, is used in
(6.63) along with (6.62), except for the smallest
values of a. Even worse results (1.05 Z'3a2) come
from the value u = 2.12, quoted by Nigam et al. as a

182 Tenz (1954) has a mistakenly low value for carbon
because of omission of the factor A.
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result of using the analytic functions of Fock and
Petrashen (1935).

It will be noticed that the chief difference between
these results of Nigam et al. and those given in
(11.13) and (11.14) arises from the terms with the
smallest exponents, which represent the detail of
screening omitted by Nigam et al., and most relevant
to the zero-angle intensity.

Although the Hartree calculations are probably the
most accurate, and the unmodified Thomas—Fermi,
the least, the results in condensed materials cannot
be taken with much certainty because of the effects
of neighboring atoms and also of crystal structure.

Lenz suggests using the Wentzel-potential form
but letting the radius ro/u be an arbitrary value R to
be determined by experiment. Thus, we set

0 = 6ZR"; R =r/u (11.21)
and using (6.8)
4°K
Tel = (k2x2 + R—z)z (11-22)
47" for nonrelativistic electr
= 37T 5 . 353
ZEE LR ¢ electrons

(11.22a)

42" 7'm’

= 0= O LR in general. (11.22b)

This result can be seen by (11.5) to correspond to
setting

Z _ Z
(kxR)' + 1~ (k'X"0/6Z) + 1"

From (11.22), we can calculate the total elastic cross
section

Jo = (11.23)

8w 7’ xdx _ AnZ’R?
o B + R ak’
Inelastic scattering may be included in the cross
section by introducing the inelastic scattering func-
tion S in the Morse [(1932); Mott and Massey

(1949)] formula for the combined cross section

(11.24)

Uel,tot =

a(x) = 4[(Z JP 481, (11.25)

o (lc

For inelastic scattering, Lenz refers to work of
Koppe (1947) which corrected earlier work of Heisen-
berg (1931) and Bewilogua (1931). The latter authors
used a T-F model and obtained the inelastic scatter-
ing factor S, for small kx, as proportional to kx,
whereas Koppe (as corrected himself by Lenz),
showed that

S =210k as kx—0. (11.26)
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Since for the smallest angles the usual inelastic
scattering results (Sec. VI-H) do not give the correct
limit (11.23), Lenz proposes to use the classical-
physics formula of Raman (1928) and Compton
(1930) which does satisfy (11.23):

S=7Z-—f/Z. (11.27)

A more exact result would be to replace the second
term by a sum over each electron > .f3 but the
additional correction would not be large and Lenz
has not made it. Using (11.23), we have

1
~ [5C0/6Z + 1)]2}. (11.28)

As indicated just below Eq. (6.66), k*? which
measures the square of the momentum transfer,
should be replaced, strictly, by k*x® + (e/hw)?, where
e is the energy loss on scattering. The chief result of
such a modification will be to change the lower limit
for (11.27) from kx = 0 t0 kxmn = &/hv where e is
of the order of the mean ionization energy I of the
atomic species in question [Koppe (1947) takes
& = I/2]. The lower limit enters logarithmically into
the total inelastic scattering cross section, but effects
multiple scattering only for angles less than 10—*
radian.

In fact, we have xmw =~ 1/2pv = I/AE, where E
is the energy, assumed nonrelativistic, of the scat-
tered particle. Taking I = 12.5Z eV as a reasonable
approximation for estimation purposes, we see that
only for high-Z materials and energies almost too
low for the first Born approximation to be valid, will
we have xmi as large as 5 X 1072, The factor k?x*>0/6Z
= k*R? in (11.22) or (11.23) which gets small com-
pared to one when screening is important, is for xmin,
if we use (11.20) and (6.9) and I = 12.52 ¢V

s-zfs

xR = xan/xe = 2.9 X 10°Z*/m.¢E , (11.29)

where m.c? and E are in electron volts. This number
is also less than 1073, and generally much less.

The total inelastic cross section can be calculated
from the term in S in (11.25). We obtain, using the
smallness of k?xminfl?,

o _4r0 | 6Z¢" _ BnZR'| o o
O inel, tot — 3a§k2 ]C2X?nine - a(Z)kZ Xmin )

(11.30)

which can readily be generalized for relativistic
scattering. Lenz points out that a modification of f
and correspondingly of S which gives the same cor-
rect behavior for small kx, and fits the case of hydro-
gen more exactly, namely to use the fourth instead
of the second power of the bracket in (11.28) and to
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replace 6 by 12, changes (11.30) by a factor 2 under
the logarithm and changes the total elastic cross
section by a factor 7/6. Thus, our results are not
very sensitive to the exact choice of S.

The ratio of inelastic to elastic scattering at any
angle x is readily found to be from (11.23) and
(11.26)

S _ _Z+]
Z =1 "2z - 1)

_ 1 ( __2_>
- Z 1 +k2X2R2 )
(11.31)

so that for small angles, within the screening region,
the inelastic scattering may become quite a good
deal larger than the elastic, while for larger angles it
rapidly goes to 1/Z of the elastic value as discussed
in section VI-F (see Fig. 27)

07

RN

d(N/Ng)
an

0°

unelastisch

Fia. 27. The dif-
ferential cross-section
(here denoted by 0
d(N/No)/dQ) for the
elastic and inelastic
scattering of 50 keV
electrons on 1076 0°

g/cm? of carbon. The
Hartree distribution

\{:‘esam/slmwng
\\,

was used for the

atomic electrons. The L 3

dashed line repre- prvr \
sents the sum of \
elastic and inelastic \

cross-sections [Taken
from Lenz (1954)].

'f \

0 10 1073

-z -1
70 2 70

—_—

The ratio of the total cross section is, from (11.24)
and (11.30),

O inel, tot 2

= —% In E*XmunR®, (11.32)

Oel, tot

which varies primarily with Z and only in a slow
fashion with energy. Figure 28, taken from Lenz
(1954) shows this ratio for 50 keV electrons as a
function of Z, using R = aoZ~Y* and taking values
of I from the literature.

Biberman, Vtorov, Kovner, Sushkin, and Yavor-
skil (1949) have performed an experiment with a
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chromium foil in an electron microscope, under condi-
tions for which @, = 0.38 and the angular range
studied was from 3 X 102 to 2 X 10-2. Figure 29

shows the results of their experiment for 60 keV
electrons, the elastic scattering distribution using
n of the total inelastic

10 \
scattering cross-sec-
nf tion to the elastic for
50 keV electrons,
plotted logarithmi-
1
(11.30) with wvalues
of the ionization po-
\, | the literature [Taken

cally as a function
tential I taken from
from Lenz (1954)].

Fia. 28. The ratio

of Z, wusing Eq.

o1
—e Z 100

(11.22), the total including the term with S, and the
calculations of Bullard and Massey (1930). The
Hartree distribution for Cr** [Mooney (1939)] was
integrated to give © = 20.0a% = 6.95ZY%a3. The
experiments clearly show the influence of inelastic
scattering. The discrepancy showing in Fig. 29 be-
tween theory and experiment may be due to interfer-
ence effects, which for body-centered Cr of lattice
constant 2.88 A with 60 keV electrons should show a
peak at 0.024 radians, broadened if the crystallites
are quite small. The discrepancy may, of course, be
due to the oversimplification of the theory. [Lenz
also suggests that an experiment of Leisegang (1952),
which shows a discrepancy with his theory, indicates
an interference effect, this time on gold of 150 A
thickness, with 68 keV electrons].

B. Multiple Scattering

In view of the discussion above, we need to calcu-
late Q(¢) — Qo for the cross section

b = g{ ZR*
g\X) = (lﬁ (k2X2R2+ 1)2
arl - wedrm )
R R 2 S Vs
B 4_@{ (Z + 1)R*
T oa (EXR*+ 1)

L 2R }
2 k2x2 (kZXZRZ + 1 )2 )
(11.33a)

or, using x, = 1/kR, we have
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2axdxW (x,t) = 2x’xdx

1 2 Xu ]
. 11.33b
X[(x2+xﬁ)2+z+1 X O+ x) r ( )
where xZ is the value given in (7.4¢) for electrons.
Thus we seek

Q) — Q= 2xf/0 xdx[Jo(§x) — 1]

1 2 Xa ]
7 3 5, 3 =z |. (11.34
X[(x+x§)+Z+1x(x+xn) ( )
The first term, as in Eq. (8.1), gives (x%/x2)[Exu

X Ki(tx,) — 1]; the second can be evaluated in
terms of the integral

/; ada[Jo(sz) — 1] [;:17 7 3}_ 1 j— 1)2]
= [—5sKi(s) + 1 — Ko(s) — In sy/2] = L(s) ,

(11.35)
so that
4 /w xdx[Jo(6x) — 1] _ 4(xe/xa)
Z+ 1% X+ x)’ Z+1
X [—3 &K (Exw) + 5 — Ko(dxw) — In (Exuv/2)]
_ 4
= 7+ D L)

Using s = £x, and 6, = 6/x, as in Sec. VIII, we have

f:0,) = /wsdsJo(Hss)

X exp {Q[sKi(s) — 1+ 4(Z + 1)7'L(s)]} .
(11.36)

4
Fia. 29. Compari- o

son of experiments -
of Biberman et al.
(1949) with theory IS |
(see text). Curve 1, «~f&
clastic differential 107
cross-section; Curve
2, sum of elastic and
inelastic  cross-sec-
tions [Lenz (1954); L
Curve 3, earlier cal- 3
culations of Bullard b N
and Massey (1930)
using the T-F model.
Open circles, experi-
ment. The symbol ax
signifies our ao [Tak-
en from Lenz (1954)]. 0

0 107

In this formula, we have used

2 2,2
. Xe o 212p2 Xck o
Qo = = ng R = 6Z

Xa
_ 4rZ"* (e 4 1)Notd (0.885)°
- Almi”

(11.37a)
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which differs from Lenz’s parameter p by the factor

Z+1)/Z:
Q= prem(Z + 1)/Z. (11.37b)

Lenz has evaluated (11.36) numerically. The loga-
rithmic term in L(s) prevents rapid convergence of
the integral, so he has calculated numerically the
value of

/:sdsJo(O,s)[exp {Q[sKi(s) — 1 4+ 4(Z + 1) 'L(s)]}

—exp {Q[—(Z-1DEZ+1)" —4Z+1)"
X In sy/2]}],

and then has established the value of the second term
analytically by showing that

hm/ dse—asJo(0,8)81—49"/(ZH)

a—0 Y0

. 3 290 >(_@.)—2+4no/(z+x)/ < 290 )
—2r(1 Z+1/\2 \Z 1

{using properties of the hypergeometric function; cf.
Erdelyi (1954) T.I.T., [8.6(7)] and H. T. F.
[2.1.3(14)]}.

Figures 30-32 give Lenz’s results for f,(6,) for
carbon (Z = 6), chromium (Z = 24) and gold (Z
= 79). The results for gold, for p = 16 or Q, = 16.2,
agree as closely as the figure can be read with the
calculation of Keil ef al. (Sec. X); for this value of Z
the inelastic scattering is negligible.

\*

-
§7 ™~
%Q

Z=5(C)

Fia. 30. Multiple
scattering distribu-
tion f(&#) for carbon
bEs (Z = 6) calculated by
Lenz for thicknesses
corresponding to six
values of his parame-
ter p (see text). The
02 angle ¢o is x/R
\ [Taken from Lenz

% (1954)].
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To show the deviation from a Gaussian distri-
bution, Lenz gives the curves we have reproduced in
Fig. 33 showing his distribution and a Gaussian one
of the same maximum and same area for p = 16 and
Z = 6.
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Finally, Lenz takes up the case of an incident beam
of finite width, either Gaussian or square, and dis-
cusses the use of measurements of ¢(0) and the width
of the initial beam to obtain values for p and R,
but we shall not discuss these results here.

-

Z=24(Cr)

TN
NN
Q\

BF(S)

Fra. 31. Multiple
scattering distribu-
tion f(&#) for chro-

mium (Z = 24) cal- 4,7
culated by Lenz for
thickness correspon-
ding to six values of
his parameter p(see
text). The angle 9o is

x/R. [Taken from 07 7=
Lenz (1954)].
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XII. ASYMPTOTIC FORMULAS

Using the methods of Sec. IV on the calculations
of Secs. VII, VIII, and IX, we can arrive at asymp-
totic formulas by a method independent of the
Moliére expansion. The relation between the formu-
las found by this method and by the Moliére method
will shed some added light on the nature of the latter
expansion.

The Moliére formula for @ — Qo and the various
corrections derived in sec. VII, the Snyder formula
using sKi(s) — 1 of sec. VIII, and the Nigam,
Sundaresan, and Wu formula (9.21) can, with the
exception of the ¢ and In £ terms of the last-named,*®
all be written in the general form:

Q — Q = Qleis” In Cis + 28" In Cos + c4s* In® Ojs
+ ¢s8 In Cas 4+ -] (12.1)

where we use the variable s of Sec. VIIL. The term
with ¢, comes in only with the correction formula
(7.22); that with cs arises if we carry the expansion
of sKi(s) — 1 far enough. In fact, we have for the
Moliére expansion, by (7.15) as well as for the
Snyder expression in (8.1), and also for Eq. (9.21)
by choosing s properly,

=131 C =~/2", (12.2)

19 The asymptotic behavior resulting from the & and In £
terms was discussed in Sec. IX-B above.
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8 = §Xa,

Moliére, Eq. (7.15) and Snyder, Eq. (8.1) ;
s = EXL/(H() (4/6)“2(”‘“),

Nigam et al, Eq. (9.21) ;

Q = Xi/Xi;

Moliére and Snyder, Eq. (7.38) ;

Q= (14 f)xzc(6/4)r/(1+§)x;2/(!m,

Nigam et al, Eq. (9.23)

. (12.3)

0
T Z+79(40)
—
D
X AN
® N ‘ .
F1a. 32. Multiple
scattering distribu-
\ tion f(«#) for gold (Z
. = 79) calculated by
4 Lenz for thickness
corresponding to six
valuesof hisparame-
ter p (see text). The
angle d¢ is x/R.
i [Taken from Lenz
- (1954)].
2
¥
8
- %
1072 07 7 8 0
g T

For the Snyder expression, we find from the
expansion of K; {Watson (1952), p. 80; Erdelyi,
H.TF. (1953) [7.2(12) and (37)]}

. _ 5/a 4
¢ = 1/165Co = v/2 5/37 @=0 } Snyder. (12.4)
c3 = 1/384 ;Cs = v/2¢
Let us now set s = ¢7, expand exp (2 — Qo) up to
powers of 7% collect the real parts after multiplying
by ¢ asin (4.4), and integrate. In addition to formulas

(4.5) and (4.6), we need the following generaliza-
tions:

fo drKo(#0)7” In Cr = [m C + aij f drK o (10)7"
() [ (5] o
= g+ T < 2 In ) + ¢ D) , (12.5)

f @Ko (r6)7" In Cr In C'r = [m C + i}
0 v

X | nc + i:' f drK o (10)7"
L 177 0

>t v+ 1\ [, 2c (V~1>}
=y (=54) 1[1“7“ N
20"

: +w<”51)}+w2<”;1)}.

(12.6)

X | In
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The final result is, in terms of 6, = 6¢/s,

4¢;  6dc, | 2304c;  128ch
[ 0; 6
64c:

6

ea

2nF,(0,) = Qo{

X [In (2C4/6,) + mn} + 0 { -

4608c;c,
08

X [ 1n (40,0/6) + 9 ()] + 20504

X [In (2C1/6,) + ¥ (2)] +

X (“1‘ + [In (2C3/6.) + ¢(3)7°
+ 2[In (2C3/6,) 4+ ¥(3)][In (2C1/8.) + ¢¥(3)]

3 3 2
+ %¢’(3))} + H25ka {-— T+ I 200

+ 9@+ 3 ¢'<3>J} +oo

It is evident that whenever terms in ;% are im-
portant, (and the neglect of 671 is still justifiable)
and when Q > 20, the terms with Qo 6;° can be
neglected compared to those with Q3 6;°. Similarly,
terms in Qo 6;® and QF 6;® may reasonably be omitted
from (12.7). It is interesting to note that if (12.3) and
(12.4) are used, the first three terms are just the
first three terms in the expansion of 2Qe(6% + 1),
which is the single-scattering law in terms of 6,.
Neglect of terms beyond 20, 6;* amounts to neglect
of the influence of screening in the asymptotic region
for that part of the entire asymptotic expansion that
represents single scattering.

It is, in fact, easily seen that if we restrict the
asymptotic expansion to terms of the form 6;2(Q06;%)"
only the coefficients ¢; and C; of (12.1) will enter.

(12.7)

403

Fra. 33. Curves

showing Lenz's cal- T N z :,Z.
culation for the mul- 25, \Y P
tiple scattering for % NS

carbon (g ‘1\=/I 6) fwitl;lh a2 \\\

p =16 ehrfach- ) ;
streuve,rteilung’ ’)and \\,b‘aus.mﬁel/uny

a Gaussian distribu-

tion of the same max-

imum and same area am
(““Gaussverteilung’’).

The difference be-

tween the two curves

is greater for larger

Z. [Taken from Lenz 7
(1954)].

AY
Mehrfachstreaverteilung
N

This is a justification for using only the first term of
(12.1) in the Moliére expansion and neglecting the
various correction terms in Kgs. (7.19) to (7.22).
However, for small values of Q, the additional terms
may become important.
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If we use (12.2) for ¢, and Ci, we can write to the
approximation given above

290 1 6&20

2wF,(0,) = [lng, — 1]

S gg7e), (128)
where we have used y(n) = —In v+ 1+ 34+ ---
4+ 1/n and ¢¥'(n) = #2/6 — 1 — 1/22 — ... — 1/n*

By use of (4.17)-(4.19), we have for the projected
distribution®

£.(6) = 69“

45520

—19/12)

[(In 26, — 39/20)° + 7°/12 — 5369/3600] .
(12.9)

In similar fashion, we can find asymptotic formu-
las for the functions P.(a,,Q0) used in Sec. VIII.
We obtain

2Py (s Q00) = 29"" 169"“ (In e — 1) + 1449""
% [(In e — 4)° — 49/72] +- (12.10a)
2
20 ) =~ — 1 )
_ 230490 (1 19/19]7 — 205/288) —-- -

(12.10b)

3 4

2Py (clon) = 2oy 115200
X (e — 19/12) 4+, (12.10¢)
21 P (e 00) = 192Q00/ay + (12.10d)

Now let us find the corresponding results by use
of the Moliére expansion. By (7.46), (9.32¢), (9.32¢),
(A.30) and (A.32), we have, neglecting the e=?* term,

R~ 2/8"
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2TF,ed(a,t):%{517+ 24 s+ }
2{ S V@) — o]
i[¢(3)—1110]+-~-}+--- (12.11)

Using (8.8) and remembering that F.a(9)ddd
= F,(0,)0.d0,, we have, after collecting terms:

21F(0,) = 2wl 0o (3,8) /2B

- 2530 16“" [W(2) —Inb, + & In QB — 1 B]
_ 14:89" (7) WE) —Ing, — 3 InQB] +- -
(12.12)

If we use (7.39) for B, we obtain agreement with
(12.8) for the first two terms. It is clear that only
by use of F®(#) in Moliére’s expansion, could we
obtain agreement between the 6;® terms. Exactly the
same relationship can be shown for the projected
scattering.

It will be noted particularly that contributions
from both F®(#) and F® () appear in the 6;° term.
In fact, the former term contributes the 3 B term
which is nearly canceled by % In @,B. Thus, for large
angles, we see that we need the first term of I'® as
soon as we need the second term of FW—i.e., as
soon as the single-scattering result represented by
the first term of F© becomes inadequate.

The formulas of Appendix III can be used of
course, to furnish the asymptotic behavior of the
correction terms introduced in Sec. IX.

Bethe (1953) has given an extensive discussion of
asymptotic formulas for the Moliére calculation,
using among other methods, one that is essentially
that of our Sec. IV. He suggests that an asymptotic
formula of good convergence can be obtained for
R-1, the reciprocal of the ratio of actual scattering to
Rutherford scattering. Using (12.11), we have

2
?'{“S s+ 6(111'Y19

4

20 The formula for W(es), which is § fs(¢s), is given in Snyder
and Scott (1949) with numerical errors. The (correct) square
bracket can be written

[(In s + 0.6159)2 — 3.7456 (In ¢, + 0.6159) + 2.8384] .

3+

~—0—2—[1+~§(lnw9 2)] 2[ L+ 2

Dot (In 90 — 11/6) +-

4
-5 (nvd — %)] +

(12.13a)
(Bethe does not include the term —8(In v — §)/Bd*
and replaces In v — 3/2 by its approximate value

ln 0.4). If we write this result in terms of 6, we
have
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R =1 —8‘3" (In6, — 1) +2Q°B (B+ 16 — 41n4,).
(12.13b)
On the other hand, if we use (12.8), we find
R'=1-— 8% (no, — 1)
@ 2 -
+ 7 (=8In" 6, + 641In6, — 15) +--- (12.14a)
4 2
~1 —?[1 —}——B—(ln'yﬂ - %):‘
2 41
17[ 1+———~—(lnvﬂ D+ g
48
+ g (nvd =3 —p‘(lnvﬂ— %)2:|+

(12.14b)

It is clear from the comments above that (12.14) is
in general more accurate than (12.13).

Bethe has given an interesting formula for R
itself, namely

R = 1 8iFP ) (12.152)

where

-1/2
= 0{1 + —123—[111 v9 —3 +1In (1 — 3/02)]} .
(12.15b)

The angle 4 is a new variable in place of 3, so chosen
that the contribution of F® (&) is negligible. Its use
corresponds to a certain choice of the variable a
used in Eq. (7.51).

Butler (1950) has another method of calculating
asymptotic expansious (see the brief description in
Section XV). This method gives essentially the
Snyder result (12.9), but with a choice of a certain
arbitrary constant in a way that Butler considers
unsatisfactory.

The other methods of calculation discussed in Sec.
XYV also have a bearing on asymptotic results. In
particular, the calculation of Spencer and Blanchard
(1954) shows how to take into account deviations at
intermediate angles from the small angle approxima-
tion, and puts a limit on the extent to which the
type of analysis used in this section should be pushed.

XIII. MEAN-VALUE CALCULATIONS

For many experimental purposes, some type of
mean value that characterizes a scattering distri-
bution is determined, rather than a histogram or
other plot of the distribution itself. In this section,
we calculate several types of mean value for small-
angle multiple scattering. We shall focus attention
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on mean values for the Moliére theory, and then
specify how they may be determined when, for
instance, the corrections of Nigam et al. (1959) must
be taken into account.

By “mean values,” we refer to any of the following:
the »th moment or mean value of the »th power of
6 or ¢; cutoff and “shaveoff’” moments for truncated
distributions; the mean value of cos &¢ or Jo(£:6),
where & is a fixed number; the 1/2 or 1/e¢ widths;
the height of, or curvature at, the maximum; or the
median value of 6 or ¢. We shall also include two
measures of the “tail”’ of the distribution, namely
the angles at which the function or its area out to =
has fallen to 19.

A. Moment Calculations

It is not hard to show from (2.4b) that (6").. and
(") are related by the formula

V+1)
F( 2
2 (5 +1)

for those values of v for which both moments exist.
Thus, it is only necessary to calculate one set for
the desirable values of », namely 1/2 and 1. Second
moments do not exist in our approximation since
the long Rutherford scattering tail leads to a diver-
gent integral. (In other words, the actually finite
second moment is quite sensitive to details of the
single-scattering function at large angles.) Further-
more, fluctuations in experimental estimates of the
mean square are large compared to those for the
first moment [for projected scattering, we refer, of
course, to the “absolute-value” or “arithmetic’’ first
moment found from f(¢,f) rather than the vanishing
first moment for F,(¢,t)]. The 1/2-power moment is
included because of the possibility of reducing
fluctuations even more by its use.

For the spatial distribution, we can also calculate
the moment for v = —1, which is useful in the “flat-
chamber” distribution. By “fat-chamber” distribu-
tion we mean the distribution in one projected angle
¢- when the other, ¢,, is equal to zero within narrow
limits, ¢, = 0 &= A¢,. This function can be derived
from F(6) by setting 6 = ¢, = ¢ and renormalizing.
We have, in fact, for the flat-chamber distribution
function fr.(¢),

See(9) = 27 (0)/(0 v

() = (8 (13.1)

(13.2)
so that

/:f:c(¢)d¢ =1. (13.3)
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(Note that ('), generally exists, but that (¢ ).,
generally does not.) We also find

($Vavste = (0 Do/ (0 New -

Because of their widespread use in nuclear emulsion
studies, we shall emphasize projected moments. Us-
ing (9.31) and (9.28), and choosing the reduced angle
¢ as variable [(13.1) holds, of course, when reduced
angles are used on both sides], we see that evaluation
of

(13.4)

() = /0 dee'fra(pt) ; —1 <v <2 (13.5)

involves the calculation of the general integral

—n3/4 (7]2/4:)11*1 /2.

[t
M,(v,a) = o de py

0

If we restrict » to the range —1 < » < 0, we may
interchange the order of operations and write

e ()7

X _/ deg” cos ¢n .
0

Formulu [1.3(1)] of Erdelyi (T.I.T., 1954) gives

M(va)— -

(13.6)

T
T'(—v») cos v
e ()
v/2)

/ dee” cos en = 57T
0

(13.7)

v+l (

We have then

rla-g-3)r ()

o= (5 {1 - e (- %)
(- 2) 2l (1-%)
b (1-2)]+ )

The value of (¢"), is given by the same bracket with
T'(»/2 4+ 1) in front.?* It will be noted in either case
that the zeroth moments yield the normalization
condition as expected—in fact, when » — 0, only
Mo(v,3) of (13.8) gives a finite, nonvanishing value.

The results for various values of » can then be
written for both distributions:

(13.9)

() = (@D = 1, (13.10)
2 0.9818  0.1170

;}m<0>av = 7rl/2<zp>av = {1 + B = B + .. }
(13.11)

@ _ (e { 02714 00774 }

0.0064 ~ 0.6014 ~ ' T T
(13.12)*

(5 = 12255 { 00569, 0. 1383 }
(13.13)
¢ = o { 00182 03693 } (13.14)

The additional quantities needed in case the correc-
tions of Nigam et al. are made, can easily be obtained
from (13.8).

In Sec. VIII, it was noted that if ¢,.Q02 = oBY2
= ¢/x. is used as a variable, the distribution will be

(13.8)

o = T (=/2) :
1 _ v v+ 1 s 3
Matoa) = - (o5 )Tf,zg&/??f le-5-%) ,
) - r(a*%‘%> I‘("—%)[tﬁ <a~——;—_%> Ly (a_%_%ﬂ.

The restrictions on » above-mentioned may now be
relaxed, by the theory of analytic continuation, so
(13.8) is valid for —1 < » < 2.

For the Moliére functions, according to (9.32d)
and (9.32f), we need M,(»,3) and M:(»,5) and find,
in fact

T (—/2)

21 The integrals corresponding to (13.6) for the spatial-angle
case may be found from [§ddJo(nd )1
—_ 2v+111(1y + 1)/nv+2 T _;l_y
{Erdelyi, T.I.T. 1954, [8. 5(7)]}

22 Moliére (1948) seems to have a numerical error in his
formula for this result.
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almost independent of Q. Thus we can expect that
B2 times the arithmetic mean value, or B times its
square, will vary in a slow way with Q. In fact,
using (13.11)

(0)2B = % {B + 1.9636 + ngg +.. } (13.15)

which, by use of (7.40), becomes

(0)eB = 1.026 + 0.819 logio 2 .  (13.16)

Consequently, it is useful to plot B times the (2/»)th
power of any mean value, against logis Qo; the results
give nearly straight lines over the useful range of Q,
whereas the relation between (o)., B> or any other
similar product and log:o Qo is decidely nonlinear. The
linearity shown in (13.16) and in the straight lines
plotted in Figs. 34 and 35 [Scott (1952); Goldberg,
Snyder and Scott (1955)], which were drawn from the
computed Snyder tables, may be understood as
arising from the slow variation of B with Q, and the
relatively small 1/B term in (13.15). It may also be
partially understood in terms of the difficult-to-calcu-
late mean square. The mean square angle of scatter-
ing actually does exist, of course, and in accordance
with the well-known theorem that the mean square
for a set of independent events is proportional to the

102 10° 104 10°
Qo
Fra. 34. Calculated values and least-square-relative-error
fitted lines, for quantities related to six mean values for pro-
jected (“tangent-angle’’) scattering, as given in Table XIII
[Scott (1952)].

sum of the mean squares for each event, (¢*),. should
be proportional to ¢, that is to x2, s0 (¢>a/x2 = (¢*)urB
should be constant. Thus, it is not surprising that the
other moments vary in only a slow fashion with Q.
In fact, if the distribution were Gaussian, none of the
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moments would have any variation. The smallness of
the coefficient 0.819 in (13.16) and the corresponding
coeflicients for the other moments as given in Table
XTI is thus a measure of the closeness of the actual
distribution to a Gaussian.

{ { |
102 10> 10* i0°
Qo

F1g. 35. Calculated values and least-square-relative-error
fitted lines, for quantities related to six mean values for spatial-
angle scattering, as given in Table XIII [Goldberg, Snyder, and
Scott (1955)].

B. Measures of the Distribution ¢‘Tail”

Using the Snyder tables for projected scattering,
it can be shown that the angle ¢;% at which the
distribution function is 19 of the value at ¢ = 0 is

TasLe XII. Coeflicients in least-squares formulas of form

a + b logio Qo for several mean-value quantities [Scott (1952);

Goldberg, Snyder, and Scott (1955)]. The symbols 7" and S
correspond to those in Figs. 34 and 35.

a b

Tw = {p)a’B 1.044 0.809
Trico = (Plav a0’ B 0.418 0.818
(@) %y coB3*,P 0.998 1.221

Ti/2 = @1/2°B 0.035 1.831
Ti/e = @1/2B 0.253 2.636
Thed = @med> 0.222 0.596
'o = <po2B O . 806 2 N 656
S = ($ay?B 2.601 2.002
S172 = §1/22B —0.146 1.799
S1/e = 91/2B -0.170 2.601
Smed = 19med23 0.675 - 1.801
So = 0023 0529 2614

aCalculated for cutoff ratio k£, = 4.0 (See Table XIII)
bNot included in Fig. 34.
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given to 2%, accuracy for Qo from 600 to 84 000 by
either of the rules

1% = 6.14B7/%q5% (13.17a)

e% B = 30.5 + 104 logo Q. (13.17b)

A formula which gives the angle ¢; % wi for which
the area under the tail is 0.01, and is good to a per-
cent or so for Qo from 100 to 100 000, is

01% wn B = 7.25 + 0.79 logio Qo ,

f flp)de = 0.01 .

1% tail

(13.18)

Note that this formula uses the angle times BY? in-
stead of the square of this quantity.

C. Cutoff and Shaveoff Moments

Cutoff moments are defined by truncating the
projected distribution at some angle ¢:, and re-
normalizing. We write

O = [ w1050/ [ w50, (1519

where the upper limit ¢, is chosen to be some multiple
of {(@)av o0, SAY 3.5 or 4.0 times the latter.

So-called “shaveoff’”’ moments are constructed from
the distribution found by counting all angles greater
than ¢ as equal to it. Renormalization is not needed.
We have

é1 ©
(" Vav 5.0, = \ ¢'dof(e) + &1 f¢ dof(e) . (13.20)

Since both the cutoff and shaveoff distributions
possess mean squares, calculations of dispersion are
meaningful. Calculations were carried out by numeri-
cal integration of the Moliére functions for smaller
values of ¢ and analytic use of the asymptotic ex-
pressions for large ¢. They were made for ¢, from
1.6 to 3.0 and B = 6,9,12, and 15, and the results
found as functions of ki = ¢1/{¢)w. Straight-line plots
against logi Qo were easily found, good to 1/29, or
better; the coefficients of visually-fitted lines are
given in Table XIII along with some values of the
dispersion. It will be noticed that the shaveoff
moments have the expected larger values of disper-
sion. Calculations involving the corrections of Nigam
et al. have not been carried out.

D. Transform Mean Values

The mean value of cos ¢ for the projected distri-
bution and of Jo(£60) for the spatial-angle one, where
&, is an arbitrarily-chosen constant, is readily calcula-
ble, for it is just the transform itself evaluated for
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¢ = £. By (2.8), (2.17), (2.18), and (2.37), we have

(cos Eid)uy = /0 dof($,t) cos &ip = (&)
= F(&) = or / w@dﬁF(G,t)Jo(&H)

= (Jo(&10))w = exp [Q(&) — Q] . (13.21)

Such mean values take more computation from
experimental data than simple averages, and the

TasLE XIII. Coefficients in visually-fitted formulas of form

a + b logie Qo for cutoff and shaveoff mean values in projected

scattering, for several values of the ratio ki1 = ¢1/{0)av o

or ¢1/{p)av so, and values of the relative dispersion [{(¢®)av o

- <§0>2a\{ co]/(ﬁ_”>2av o and [(W2>av so <‘P>2av so]/<¢>2av 50+ 18-

crepancies with Table XII are produced by use of different
fitting methods.

(@)?ay co (@Hav co Dispersion
ks a b a b B=6 B=15
3.1 0.191 0.765 0.375 1.147 0.55 0.52
3.5 0.363 0.781 0.609 1.214
4.0 0.456 0.808 0.883 1.250 0.64 0.59
4.5 0.551 0.811 1.083 1.264
5.0 0.602 0.816 1.293 1.264 0.71 0.62
<¢>2uv so <‘P2>av s0 DispeI‘SiOH
k1 a b a b B=6 B=15
3.0 0.593 0.813 1.170 1.231 0.64 0.57
3.5 0.673 0.813 1.402 1.257
4.0 0.743 0.813 1.607 1.262 0.75 0.64
4.5 0.803 0.813 1.797 1.262 0.79 0.66

choice of & to get the optimal dispersion depends on
the resulting determination of xo, so that iteration
is necessary. However, this type of mean depends
largely on the values of f(¢) and F(6) for small angles
and hence should be less subject to fluctuation arising
from the rarer large-angle events. In fact, the second
moment (mean of cosine-squared, ete.) can readily
be found and the dispersion calculated. Lipkin,
Rosendorff and Yekutieli (1955) and Rosendorff and
Eisenberg (1958) have utilized this method of ob-
taining information from multiply scattered tracks,
and have shown how to choose £ so as to give almost
the smallest possible dispersion. However, they indi-
cate that the precision so obtained is only a small
amount, greater than that obtained by use of the
simpler arithmetic mean value.

E. Other Measures

The approximately Gaussian behavior of the
Moliére distributions can be used helpfully in evalu-
ating the remaining types of mean-value measures.
The 1/2 and 1/e widths can be accurately determined
by interpolating log fra(e) against ¢* and log Frea(d)
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against 92. The median values can be found by using
unnormalized Gaussians which agree with the 1/2 or
1/e widths and with the zero-angle values, or by using
a combination of direct integration and interpolation.
The height of the maximum or zero-angle-value
quantity can be taken directly from the Snyder
tables. It also can be calculated by using the general
mean-value formula (13.9). We have, in fact,

fred(()) — _2_[ dne~nz/4

1 ( 2 2 \2
() ],

(13.22)
so that the calculation of (¢")., can be used if we re-

move the factor m/2T'(—») cos % »7 and then set
v = —1. We find

- Frlie (3)
raely (3) +v ()]
_ 2{ 00182_ 0369‘% } (13.23)

and by using the same calculation (since Jo(0) = 1)
with » = —2,

l:l —+ - IDT—]-

fred (0)

27Fea(0) =

_ {1_’_04228_*_1.21;1260_}_“_}'

{1+ JONRACEICIN }

(13.24)

A normalized Gaussian with the same F...(0) would
have a 1/e width given by

Jo = [wFa(0)]" . (13.25)
For the projected distribution, the relation is

= 2/7r frea(0) . (13.26)

We express the curvature at the maximum in
terms of the Gaussian width of a function with the
same relative curvature. If we set

fra(9) = cexp [—¢"/pan] (13.27)

and assume a strict equality in the neighborhood of
¢ = 0, we find

(Pgurv = —zfred(o)/f ed(O) (1328)
and for spatial-angle scattering
0:urv = "'2Fred (O>/]Jred(0) (13.29)
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The values of f/.(0) and F[/3(0) can be found
by the same technique as just used for f...(0) and
Frq(0); this time we use » = —3 and —4. We find

~ ) = {14 S0 (2)
+—[¢2 (—) +v <‘§‘>:I+}
8B°
4 1.0547 =~ 2.9012
2;175{1+ 5 + B +}
(13.30)
2F”0—4{1 2@ S @3
_Wred()’_ +B‘/I()+—B—2—[¢()
+ ¢'(3)] +}
~4{1+18§56+55848+ }
(13.31)
We finally obtain from (13.23), (13.28), and
(13.30),
2 1.0365  1.4195
Peurv = 1 - B Bz (1332)
and from (13.24), (13.29), and (13.31),
e _ . 14226  0.9321
0curv - 1 B B2 . (1333)

Extension of the results for height-of-maximum
and curvature-at-maximum to cover the new func-
tions introduced by Nigam et al. is straightforward.
To find corrections to the Moliére values of the 1/2
and 1/e widths and the median, tables of the deriva-
tives and integrals of all the functions have been
prepared.®

F. Formulas

The behavior of squares of mean values as func-
tions of logio Qo referred to in part A of this section
also holds for the miscellaneous group of mean values.
Table XII gives the coefficients for a set of quanti-
ties labeled 7' (for “tangent,” as opposed to “chord’”)
and S (for ‘“‘spatial’’). Figures 34 and 35 show the
straight lines and calculated points to which they
were fitted. The table also includes coefficients for the
cutoff mean and cutoff mean square for projected
scattering with &k = 4.0.

The logarithmic increase of all mean values, along
with the absence of a mean square, is a sign of the

2 Available with the tables of D, functions from the Ameri-
can Documentation Institute (cf. footnote 17).



SMALL-ANGLE MULTIPLE SCATTERING

deviation of the distributions from Gaussian shape,
as indicated above. It is interesting to compare ratios
of the various mean values to each other with the
corresponding ratios in the Gaussian case. If a
Gaussian distribution for positive ¢ only is written in
the form (13.25), with ¢ = 2/¢w~ IIY%, then the
various mean values are given by

Po = P1fe =
e1/2 = 0.832500u ,
Omed = 0.4769¢curv ,
(@) = 0.564200urv ,
(Pav.ieo = 0.5614¢r  for ks = 4.0,
(Dav,s0 = 0.564000ry  fork; = 4.0. (13.34)
Table XIV shows the agreement among the co-

Peurv

TaBLE XIV. Coefficients for formulas of form a + b logio Qo
for gerv2B, calculated by use of (13.34) from the various 7s.

Source a b

T1/e 0.253 2.636
To 0.806 2.656
T1/2 0.051 2.642
Tmed 0. 976 2.621
T 3.280 2.542
Tmeo 1.326 2.595

efficients of logi Qo in expressions for ¢..2B calcu-
lated from the various 7”s and S’s. It is evident that
except for mean values, which involve the tail end
of the distribution more than do the other quantities,
the effective Gaussian widths agree within 19, for
large Qo, even though they steadily increase. For
small Q,, however, they do not agree well at all. So
we see that Gaussian approximations to the multiple
scattering distributions will be more accurate the
larger is Q.

In passing, we should note that the mean-square
angle calculated in the usual form of Gaussian ap-
proximation may be simply related to the mean-value
formulas we have given. From Rossi (1952), p. 67 we
find

(9B = 41n (18327'7%) (13.35)

where the factor 183 depends on the particular
method selected of making a cutoff related to finite
nuclear size. From Birkhoff (1958), p. 116 we have

()B = 2In (1.13x./x0) ~In Q, (13.36)

where the cutoff has been arbitrarily taken at x..
The various mean values can be evaluated for any
of the track characteristics discussed in Secs. ITI-C
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and VII-c by using the variable X®/(x2Ci»B)V? in
place of ¢. Since the value of B is not greatly different
for the different quantities, the mean values for each
X® will be essentially proportional to C,)V2, The
correlation between adjacent ¢’s, o’s, and &'s be-
comes evident when we note that (using angular
brackets to refer to any mean value)

N . . . . 61 52 4
(b + b1)” 1 2)" 1 (i — i) 35 23—5 3£
(o + 1) : 2a)® {a; — ) 3 :i g’—
o A N A N 46 33 20
(aj + 0£j+1>2 Z2<(¥j>2 : <(Xj - a;+1>2 o §6 :% :3—0 .
(13.37)

If these quantities were uncorrelated, the three
successive squares would be equal; indeed, the ¢’s
are uncorrelated and their Ci’s have this property.

More exact relations between various mean values
are derivable from the formulas of Table XII re-
lating the 7”s to Q. For instance, for the arithmetic
mean, we have, correcting Qo by (7.58),

T = (XV), /%09 = 1.044

+ 0809 (Ioglo Qo + A loglo 90) . (1338)

The ratios of the arithmetic means for the second,
third and fourth differences are important for the
use of these differences in the study of tracks in
nuclear emulsions. We have from Table III for the
squares of the ratios of the mean third and fourth
differences to the mean second difference

(A /A7) = 3 1.279 + 0.809 logio 2o

2 1.135 4 0.809 logio Qo

1.258 + 0.809 logio Qo
1.135 + 0.809 logio Qo

The multipliers of the factors 3/2 and 4 in these two
expressions are close to unity, but slightly larger, by
amounts depending on Q. For Q, = 107, for instance,
the two fractions are 1.052 and 1.045, respectively,
whereas for Qo = 105, the values are 1.028 and 1.024.
These numbers may be taken as indications of the
extent to which the Gaussian approximation does not
apply to the correlated events.

(13.39)

(A*/A%) = 4

(13.40)

XIV. CALCULATIONS OF POLARIZATION EFFECTS

According to Miihlschlegel and Koppe (1958), the
application of the first Born approximation to the
calculation of the functions f(8) and g¢g(f) in the
matrix A(0,8) of Eq. (5.33) yields the result, valid
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for small angles, that |[f(6)|® is just the screened
Rutherford cross section (6.10) [using (7.7)]:

[F0)" = (xi/=N)q(6)/6" (14.1)
and that ¢g(6) is given by
g(0) = =31 — (1 = 8)If(0). (14.2)

As stated in Sec. V, ¢g(6) vanishes as 8 — 0 (non—
relativistic limit). The function f(6) itself is just the
first Born amplitude, given for instance by Eq.
(11.4). The results of Dalitz (1951) on the second
Born approximation can be used to obtain better
formulas for f and g, but this has not been done.

Since according to (14.2), f*g is real, D(6) as given
in (5.36) vanishes—Mott polarization disappears at
small angles. We have then from (5.36)

J©O) = |76) + 6lg@)
= {14261 — (1 — 891} o&/xN)q(6)/6"

(14.3a)
D@®) =0, (14.3b)
E@®) = [1 — (1 — 8)"163/xN)q(0)/6",  (14.3¢)

GO) =31 — (1 — ) F(E/aN)q(0)/6" . (14.3d)

We can now find the five transforms given in
(5.46). After multiplying by ¢, we have

178 = @) + 35, (14.4a)

d(E) =0, (14.4b)

to(g) = —[1 — (1 — §°)""lde/de, (14.4c)

G = —3[1 — (1 — g)Pd’e/de + £de/dg]
(14.4d)

(e = —3[1 — (1 — ) Pede/ds,  (14.4e)

where we have used certain properties of Bessel
functions:

Ji@) = 1@ ;
¢ (@) + 7T (@) + Jo(x) =0,
Jo@) + J.(@) = 227 (z) = =227 i) .

It might seem that in small-angle approximation
the 6?|g(6)|? term in (14.3a) could be omitted, and it
is true that this can be done in the lowest nonvanish-
ing approximation for polarization effects. However,
as shown by Miihlschlegel and Koppe, failure to in-
clude this term leads in the next lowest approxima-
tion to an apparent increase in the degree of polari-
zation on scattering, which is nonphysical and wrong.
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In fact it can be shown by straightforward algebra
that the four functions in (5.36) obey the identity

(J — sin” 6G)" + sin® 9(D* + E*) = J°. (14.5)
From (5.38b) we find, after lengthy calculation
1P = (1o°P + sin 6D/J)/(1 + 1,-P sin D/J)
(14.6)
and with (14.3),

(1 —PP) = (1 —sin”6D°/J*)(1 — P-P)

X (14 1,-Psin6D/J)7*. (14.7)
When D = 0, we have
1P’ = 1,,P , P?=P*. (14.8)

so that the degree of polarization P’ is the same as P,
and its component in the direction 1, is unaltered; P
rotates around 1, during a scattering. The identities
(14.5), (14.6) and (14.7) would not be correct if the
sin 0 or § were omitted from (14.3a).

The angle 6, between P’ and P may be found in the
case D = 0, by calculating P-P’ = P’P cos 6, from
(5.38b). We find

sin (6,/2) = (G/2J)sin6sin«, (14.92)

where « is the angle between P and 1,:

1P = Pcosa. (14.10)

Using (14.1) and (14.2) we find in small-angle Born
approximation

0, =[1— (1 —p8)"sina  (14.9b)

for the rotation of the polarization vector in a single
scattering.

The term 3t § (¢) in (14.4a) leads to the awkward
consequence that 7 is infinite [if we use the Moliére
formula (7.15) for Q(¢) in (14.4d)]. This difficulty,
however, only affects the asymptotic results for large
angles. It arises because polarization effects are
proportionately more affected by the few scatterings
at large angles than is the angular distribution itself.
The failure of Q”/(0) to be finite is as we have seen
equivalent to the absence of a finite mean square for
F(0), and represents an inadequacy of the small-angle
approximation. Miihlschlegel and Koppe assume that
errors arising from this source will only affect results
for large 6, and that an expansion of the integrand
that gives correct results when the integrand is large
is justified even if it is incorrect for £ very near zero.

We write then

LG = Jo) = Q) — Q@+ F8() . (14.11)
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To calculate the polarization after scattering for
an initially longitudinally-polarized beam of elec-
trons, we substitute (14.4) into (5.57)—(5.60) for the
case P,, = P,, = 0, and P,, = P,. The distributions
F and II, then become independent of the angle g.
We also take 8 equal to zero, so I, = 0—the y-axis
becomes the axis of deflection (otherwise we will have
IL, proportional to cos 3 and II, to sin 8 with the same
coefficient.)

In the formulas for F, I, and II,, we make the
Moliére change of variable [ef. (7.35) and (7.43)]
which gives in place of (14.4c¢), (14.4d), and (14.4e)
and (14.9) (using primes for derivatives with respect
to n)

te(n) = —[1 — (1 — ) Ix.B""2 (n) = =2 (n),
(14.12a)
Gn) = —5[1 — (L — ) "TxBI2" () + 772 (n)]
= —3s[Q"(n) + 7Y ()], (14.12b)

th(n) = —+[1 — (1 — B)I%EBn 72 (n)
= —(s/4n)Q (n) (14.12¢)
7)) — ol = Q) — W+ FG(0), (14.12d)

where we have used s for the small parameter that
measures the polarization effects:

s=[1—-(1-8)"TxB. (14.13)
The ratio s/x2 B ranges from 0.02 at 8 = 5 to 0.3
at 8 = .9and 1.0 at 8 = 1.0; x? B is, of course, small

in the small-angle approximation.
We also have, from (5.61),

tm(n) = th(n) = —(s/4n)Q (1), (14.14a)
t5(n) = |e()|[1 + A’ (n)/2&"(1)]
~ [+ &%/32 -], (14.14b)

We then find, expanding the hyperbolic functions,

27 F rea(d,1) = ]; ndn exp [Q(n) — Qo+ 3G (0)]Jo(In),
(14.15a)

0

27er red(ﬂyo;t) = L ‘fldﬂ exp [Q<77) — Q — % tg(ﬂ)

+ th(n)]-[te(n) + & €5 (n)é(n)
4+ 1), (14.15b)

2711, a(3yt) = /; ndnexp [Q — Qo — 2 tj(n) + th(n)]
X [L = th(n) + 3 & (n)
+ 3R (n) + = '8 (n)

— 388 (n)h(n)1Jo(9n) . (14.15¢)
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The method of Miihlschlegel and Koppe is to
expand these expressions in powers of s [according
to (14.10)] and then to reduce the integrals by partial
integration. However, these authors proceeded first
without the term 3t g in (14.4a) and (14.11) and then
showed that the results to order s*> were patently in-
correct.

Unfortunately, when they introduced the term
1t § to make a correction, they did it in a way that
involved a mathematical error. They did not expand
this term in the formula (14.15a) for F, but chose to
express I, and II, in relation to F. This method of
incomplete expansion is not wrong in itself, but as
mentioned below, it involved an integration by parts
for which inaccuracies in the expression for 3¢ § played
a major role rather than being suppressed as in the
rest of their calculation.

A consistent treatment that avoids this difficulty
involves treating the 3t § term right along with
t(h — §)’ which is, of course, of the same order of
magnitude.

When this is done, and (14.12) is used, we find

27F ea(Byt) = _/; ndne® %[l — 1 5(Q" + Q'/n)

+ 95 £ @ + @'/n)1 () , (14.16a)
2711, roa(9,0,t) = Po / ndne® %[ —s" — &
0

X 39 4+ 1)1, (9),
(14.16b)

2111, rea(9,8) = P f ndne® % {1 + L 5(20° + Q"
0

+ Q'/n) + 2 13 Q@7 + Q/n)°
+ Q" 4 9%/ + 320"} o (9n) .
(14.16¢)

These formulas can be reduced by several steps of
partial integration, if we assume that Q' and @'’y ap-
proach 0 as n — 0, and that ¢%% — 0 as p — . This
last is not strictly correct, as discussed in Sec. II, but
the contribution of the term containing e-% that
must be added to give a transform that vanishes
properly at infinity is negligible for any thickness of
material in which multiple-scattering polarization
effects are observable. The vanishing at 7 = 0 of @’
and Q"7 holds for Moliére’s form for @, and also for
the form of Nigam et al. if (9.15b) and (9.17b) are
taken into account.

We find then
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2 a(I,8) = /0 ndne™ % Jo(n)[1 — L s(Q” + @'/n)

+ (s/32) (@7 + 2909 /n 4+ @*/n%)
+---, (14.17a)

2L, wa(8,0,) = Pos'’*® / ndne™ % Jo(9n) + Pos™”*

X f dne” [(30°Q — 75 Q")
0

X nJ:1(9n) — (3 912" + § 9Q')

X Jo(@n)] (14.17b)

2L wa(@t) = Po f ndne”™* Jo(9n) + § Pos
0

X f dne® % [2009' J, (9n)
0
— (@ + 22")Jo(9n)] + 55 Pos’
x [ e ey 4+ g o
0
+ 307 /4y + 309" + Q%) Jo(On)
+ (=% + 20""98)J1 (9n)] .

(14.17¢)

For evaluation, we use the Moliére form for Q and
properties of its derivatives:

o1
Q) = Y -+ Eln—éf

72" (n) — Q' () = 4/B,
22" () = 1/B. (14.18)
We also introduce the following abbreviations

p(9) = 20F a(®)|s=0 = / ndne® " Jo(9n) ,  (14.19)
b ®

r(9) = f & p(¢)dy = 0] dne® % J,(9n), (14.20)
0 0

o(9) = fo mdneﬂ"ﬂ“ﬂ’(n)ﬂ”(n)Jo(ﬂn). (14.21a)

This last function can be expressed as follows
¢ w
(@) =4a(0) — / de’ / dne® Q' nJ, (8'n)
0 0

d ©
=0(0) + f dy’ f ndne™ @[Q" J, (9n)
+ 99" Jo(91)]
and with (14.15), (14.16) and (14.17),
3
& T 2
o) = o(0) +719—/(,d0"r(19—,)+—£g2— 19

D
+ f 87 ()’ (14.21b)
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a(0) = fo wdqe“"““ﬂ'(n)sz”(n). (14.21¢)

The function p(#) was given in Sec. VII, Eq.
(7.46) and values may be taken from Table VII
[see Eq. (9.32)]. The integrals involved in (14.20) and
(14.21b) may be evaluated by use of suitable formulas
in Appendix IIT in terms of the D, functions of Sec.
IX. Finally, ¢(0) can be evaluated by expansion in
inverse powers of B and use of tables (see footnote 17)
for values of the D, functions for & = 0. We find

o(0) = 3 Do(1,1,0) + (1/B)[% D:(2,1,0) — D,(1,1,0)
— 2Do(1,1,0)] + (1/B*)[} D:(3,1,0)
— Dy(2,1,0) + % D;(1,1,0) — 2D,(2,1,0)
+2D:(1,1,0) + § D:(1,1,0)] +- - -
= 0.5000 — 1.2114/B + 0.2886/32 +..

(14.21d)

Table XV gives values of 7(¢). The function o(#) has
not been computed. The values given for 7 by
Miihlschlegel and Koppe appear to be grossly in
€error.

TaBue XV. Coeflicients for 7(8) = rO(®) + +M(9)/B +

+@(8)/B2.
E +O(9) +((3) +®(9)
0 0 0 0
0.2 0.0392 0.0555 0.0455
0.4 0.1479 0.0464 0.1373
0.6 0.3023 0.0581 0.1839
0.8 0.4727 +0.0218 0.1322
1.0 0.6321 —0.0651 +0.0126
1.2 0.7631 —0.1783 —0.0936
1.4 0.8591 —0.2825 —0.1235
1.6 0.9227 ~0.3501 —0.0733
1.8 0.9608 —0.3719 +0.0129
2.0 0.9817 —0.3550 0.0844
2.2 0.9921 —0.3148 0.1147
2.4 0.9968 —0.2666 0.1062
2.6 0.9988 —0.2205 0.0766
2.8 0.9996 —0.1815 0.0436
3.0 1.0000 —0.1504 0.0174
3.2 1.0000 —0.1264 +0.0007
3.4 1.0000 —0.1078 —0.0081
3.6 1.0000 —0.0933 —0.0117
3.8 1.0000 —0.0817 —0.0125
4.0 1.0000 —0.0723 —0.0120
5.0 1.0000 —0.0437 —0.0069
6.0 1.0000 —0.0294 —0.0039
7.0 1.0000 —0.0213 —0.0023
8.0 1.0000 —0.0161 —0.0015

The final evaluation of F and I then reads

20 F red(y8) = p(¥) — s [% + 17(9) — %:]
2| p(®) | :I )
+s [3232 +go@) |+ (14.22a)
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3
9Tl e (8,0,0) — P081/2l9p(19) + P083/2 l:_ﬂ P6(0)

zﬁl_@ﬂﬁ+iﬂ_@ﬂq+”.

12B¢ 12 12 4B
= Pos'*9 20 caa(9,0) + Pos’”?
3
Xﬂjﬁﬁ+&ﬁLpﬁ_ﬁﬂ]

6 12 12 12Bs
(14.22b)
9Tl (1) = Pop(d) — Pos [% o (®) + ”—4%)
1 1 2|1 029(19) 9(0)
+ir@) 2:| + Pos [8"(‘” T8 T 32p°
&1 () 12 9o (d) 7-_(@]
76 Te¥ Tt e Tt
= Po-27F ea(9,t) — 3 Post¥ 21 F rea(9,t)
@) 9 ﬁw>z@]
+ Pos [ 2 T2t e Tisl
(14.22¢)

These results agree with those of Miihlschlegel and
Koppe with the exception that their formula (51) for
II. includes an extra term — Pos?/4B. This term
arises from an integration by parts in which the
infinite value of &'/5 at n = 01is not properly canceled
by suitable power of 4 in functions multiplying it, as
mentioned earlier.

The degree of polarization P may be found from
(14.22) and is given by

P’=P.+ P, = (IL+13)/F =P, (14.23)
to order s?; the coefficients of both s and s? vanish as
expected from (14.8) (in contradistinction to Miihl-
schlegel and Koppe who find a depolarization).

The angle 6, through which P has turned may be
found by writing, to order s¥2,

D . 1/2 __li_ T(ﬁ)
P. = II./F = Pes 0{1 + sl: e T 130 (0)
I S () ]} o
1258 ~ 12Bp@)oed [ = Fosinbs,
(14.24)
so that
8, ~ s%9[1 — sa(d)] (14.252)

with a(d) the same as given by Miihlschlegel and
Koppe:

_ 1 |1=7() 7(3) L ox
a(®) = 12[ ) + Bﬂzp(ﬂ)]. (14.25b)
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The term —#2/6 in 14.24 disappears if the second
term in the expansion of sin (P./P,) is taken into
account.

The results given here may be used to calculate
the transverse component of polarization [Sundaresan
(1960)] and the self-depolarization of a beta source
[Miihischlegel (1959); Miihlschlegel and Koppe
(1958), Sec. VII). The numbers given by these
authors will need correction by use of Table XV.

An extension of the theory to large scattering
angles is given by Toptygin (1959).

XV. SURVEY OF OTHER CALCULATIONS

In this section, we give a brief survey of other
methods of deriving the distribution functions for
small-angle multiple scattering, including methods
used for including the effects due to finite nuclear
size. Detailed accounts of these methods are beyond
the scope of this article.

A simple method for calculating the scattering for
larger angles (asymptotic series) that is applicable
to various forms for the ‘“tail”’ of the single-scattering
distribution is given by Butler (1950). He divides
the integral in (2.42) into two parts at a transition
angle 6,, effectively considering W (x,t) to be made of
two separate functions. The first part, for angles less
than 6, is treated by the Gaussian approximation
method given in Sec. II-E, and the second part is
treated as a small perturbation in which the value of
F derived from the first part alone is to be inserted.
By a suitable choice of 6, the magnitude of the
perturbation is kept small. The results agree closely
with those of Moliére or those of Snyder, depending
on the choice of 6;.

Monte Carlo calculations can be used successfully
to generate an approximation to the Moli¢re distri-
bution if the single-scattering formula (6.63) is ap-
propriately sampled for a large number of simulated
particle trajectories [Humphrey (1962)]. This method
is useful if multiple scattering and other particle
events are to be treated simultaneously.

Another application of Monte Carlo methods is to
the lateral and angular spread of a beam of particles
over a wide range, sampling from the Moliére distri-
bution for short path lengths. Sidei, Higasimura, and
Kinosita (1957) have demonstrated the utility of this
method for study of the penetration of thick layers,
backscattering, etc. Extensive use of Monte Carlo
methods is reported by Berger (1962).

Spencer (1952, 1953) has given a general method
for evaluating inverse transforms of the type met in
multiple scattering theory, and Spencer and Blan-
chard (1954) applied it to a calculation of the Molicre
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result with the inclusion of relativistic effects at
angles up to 20° or so.

Spencer’s method is to fit the function exp [Q(¥)
— Q] with a combination of functions which have
known or easily calculable inverse transforms, and
which also embody all available information about
the behavior of the given function or of the final
distribution function. The functions used for the
fitting contain adjustable parameters, and suitable
procedures are developed for evaluating them so as to
fit e*-% adequately over the important range of £.

The types of functions considered by Spencer are
Gaussian, Gaussian plus a contribution using the

Bessel function K, (to fit the “tail’”’ of the distribution’

in 0), Gaussian times £K;, and a series of Bessel func-
tions K,.. The fitting procedure involved choosing a
set of n parameters to fit n pieces of information
about the function e%%, such as values of the func-
tion, values of some combination of derivatives, or
moments. .

The results given by Spencer and Blanchard
(1954) are consistent with the Moliére results as
modified by the conjecture of Bethe (1953)—namely,
that the multiple-scattering “tail” should be multi-
plied by the ratio of the correct single-scattering
cross-section to the Rutherford result—and show that
other modifications of the transform could be handled
in this way.

Cooper and Rainwater (1955) gave two methods
for evaluating multiple scattering on extended nuclei,
one of which is of interest as a general method for any
distribution. It follows the method of Butler in
dividing the single-scattering law at some angle 6,
into two parts, treating the small-angle part as pro-
ducing a Gaussian distribution (6, is chosen to be
equal to approximately x.BY? of Sec. VII). The large-
angle part, in agreement with our theory of trans-
forms in Sec. II, should be “folded” according to Eq.
(2.19) with the Gaussian after its inverse transform
is calculated.

To calculate the distribution arising from angles
larger than 6;, Rainwater and Cooper first calculate
for a fraction, say 1/8, of the final thickness of ma-
terial. In terms of transforms, if w;(£) is the exponent
of the transform of the large-angle part of W(x,?),
they calculate the inverse of exp [wi(£)/8]>~1
4+ w1 (£)/8 + w?(£)/128, using only two terms of this
expansion (a delta function plus 1/8 the single-
scattering distribution). A folding of this result on
itself yields the distribution corresponding to 1
+ @i (§)/4 + «i(g)/64; the first two terms being
easily calculated, the third ‘“‘error” term can be
found.
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Two more self-foldings yield the inverse of

[1+ @ (®)/8]° = 1 + e () + 5601(£)/128 +- - -
(15.1)
in place of the actually sought inverse of

exp [ (§)] = 1 + o (§) + 647 (£)/128 +- - -,
(15.2)

so that the error of w?/16 can be added in from the
previous calculation.

The final folding with the Gaussian part was
accomplished with a simplifying graphical device;
the reader is referred to the original paper for details.

The nuclear size effect may be calculated, as
implied in Sec. VI-I, by including a suitable nuclear
form factor Fx(x) so that (7.8) for the point-nucleus
case 1is replaced by

“d
Q) — Q = 2Xi/; —Xé G)Fv00Jo(Ex) — 1],
(15.3)
which we may write as

Q(E) - Q0 = (Q - Qo)point nucleus + (Q - Qo)corr,
(15.4a)
@ = %) = 222 | B 760000 — 1
X [Jo(kx) — 1] . (15.4b)

Since Fy differs from 1 only for angles approxi-
mately 102 times as large as those for which sereening
isimportant, we may set g(x) = 11in the last equation
(overlooking the modifications introduced by Nigam
et al. (1959), as shown in Figs. 19 and 20).

Cooper and Rainwater (1955) use the Moliére
change of variables, (7.35) and (7.43) and treat
(2 — Qo)eorr a8 a term in 1/B to be expanded along
with (?/4B) In (9?/4). They used a form factor for
projected scattering which was fitted numerically
to nuclear scattering data then available, and evalu-
ated the final integrals by Weddle’s rule. They also
used an alternative derivation which follows the
method of Sec. VII a step further, including Fy before
making the expansion in powers of 1/B.

In view of the developments since 1955 both in
knowledge of nuclear form factors and of u-meson
scattering, we shall not discuss the details of these
authors’ results.

Ter-Mikayelian (1959) has also made a calculation
of multiple scattering including nuclear size effects.
He chose for &y the function [1 -+ k*%6%~* with ry a
nuclear “radius.” This function was chosen for
analytical convenience although it can only be con-
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sidered as physically meaningful for electrons of
momentum of the order of 100 MeV/c (it corresponds
to an exponential distribution of nuclear charged
density which is known to be wrong). His calculation
then proceeded by complete evaluation of the ex-
ponent in terms of the Bessel functions Ko, and K; of
argument &/kry, similar to that discussed in Egs.
(11.34) and (11.35), and evaluated the final distribu-
tion numerically.

As a matter of fact, the results for many types of
nuclear form factors can be evaluated by expressing
the resulting (2 — Qo)err in terms of Moliére and
Gaussian transforms, in the manner of Spencer dis-
cussed above, so that the final distributions can be
expressed in terms of the D, functions of Sec. IX, but
we shall not go into details here [Scott (1955)].

Some mention should be made of the sharp cutoff
calculations of Olbert (1952). Olbert set Fx(f) equal
to zero for 6 > 1/kry and evaluated @ — Qo for this
case. Cutting off the ‘“tail” of the single-scattering
curve amounts to eliminating the In £ behavior in the
exponent, although this elimination occurs only for
very small £ in most cases. This means that the final
distribution is essentially Gaussian in behavior. The
results do not apply to the case of scattering by ex-
tended nuclei, but have some meaning if a cutoff in
single scattering is introduced observationally—e.g.,
by visually rejecting bubble chamber or emulsion
tracks that show single scatterings bigger than some
easily observable angle, such as 0.1 radian. The chief
difficulty with such calculations is that they cannot
be done in reduced angular units, such as x.BY2, x, or
1/kry, because the cutoff angle is fixed in units of
degrees or radians.

We have restricted our considerations in this re-
view to the multiple scattering of fast charged parti-
cles at small angles. Extension to larger angles re-
quires a shift from the use of Fourier-Bessel trans-
forms to Legendre polynomial expansions. Goudsmit
and Saunderson (1940 a,b) as mentioned in Sec. I
have given a theory valid for all angles, with however
the two serious restrictions that (a) the independent
variable ¢ is the actual path length traversed by the
particles, rather than their depth of penetration in a
given direction, and (b) the scattering medium must
be infinite in all directions. Lewis (1950) has general-
ized this theory and derived the results of Moliére in
the limit of small angles. Wang and Guth (1951) have
given a comprehensive survey of methods of tackling
the above-mentioned difficulties [see also Mertens
(1953, 1954)]. A specific calculation of Butler’s type
for an angle of 60° was made by Teichmann (1951).
Some progress in handling the boundary problem for
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a thin layer has been made by Breitenberger (1959);
Moliére (1958, 1959) has improved the treatment of
the transport equation. The path-length problem has
been handled by Yang (1951) in Gaussian approxima-
tion [see also Scott (1949b)]. Much work on the
general problem of electron straggling and penetra-
tion has been carried out by Spencer and coworkers
[Spencer (1955); Spencer and Coyne (to be pub-
lished)], but they have not dealt specifically with
multiple scattering in thin foils at large angles.

It is a pleasure to acknowledge aid from a grant
from the National Science Foundation to the Ameri-
can Institute of Physics for assistance in the prepara-
tion of this review.

APPENDIX I

We give here formulas for the expansion of certain
indefinite Bessel-function integrals used in Sec. IV,
valid for small values of the argument. Using the
relations

dJo(x)/dx = —J.(x) ; dlzJ(x)]/dx = zJo(x),

(A1)

we can readily verify the following:

/-wdtJo(t)/t2 = Jo(@)/x — /wdtJl(t)/i, (A2)

/mdszo(t)/t3 = Jo(x)/22" — Ji(x)/4x

—/ diJo(t)/4¢, (A3)
/ dto(t)/t" = Jo(x) /32" — Ji(x)/92°
- / diJo(8)/9¢ (A4)
/ dtJo () /t° = Jo(x) /4" — Ji(x)/162°
- / dtJo(t)/16¢ . (A5)
Using a form of Bessel’s integral for Jo(f),
9 /2
Jo(t) = ~—/ cos (t cos ¢)d¢ (A6)
™ Yo

we can write

o /2 0
f dtJo(t)/t = % d¢/ dt cos (t cos ¢)dt/t
z 0 x

9 /2 @ /2
= i_/ dqb/ du cos u/u = 2—/ de
™ Yo ™ Yo

z cos ¢
X [—1n (yz cos ¢) + (z cos ¢)°/4
— (xcos ) /96 +---1,
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using the expansion of the cosine integral for small
argument (Jahnke-Emde, 1943, p. 3). The number
vis 1.781---; In vy = 0.5772- - - is Euler’s constant.
The ¢ integrals are given in ordinary tables, and we
find

x‘i

956 0 (A7)

For the J; integral, we use the formula

/wdtJo(t)/t = —In (y2/2) + -aéi —

2 /2
Ji(t) = —/ do cos ¢ sin (fcos o)  (AS8)
m™ Yo
and find

/:dul W/ = % /:/zd(ﬁ cos ¢ / )

z cos ¢

du sin u
-

We can readily show that

=T _ Yy _ Y ...
T2 T 18 600 » (A9)
so that we finally get
) w2 @
/,di ;=T T ug T yg -(AL0)

Combining the results of (A.2-5), (A.7) and (A.10)
along with the expansions of Jo(x) and Ji(x), we find
the formulas we seek

® 3.4
/;ldx[Jo(xé) — 1]/ = =t + L xf — % .
(A11)
© / . E2 rYXIE X?E4
fxldx[Jo(xS) — 1/ = - (lnT - 1) -1
xE .
toeg o A2)
/wd o) =11 _ _ & | & xt
X1 x X4 4x: 9 64
s, (A1)
’ &%ﬁﬂ_€i_i<zﬁﬁi>
/ WX =T Ter\hTy T3
£x

The various properties of Bessel functions used
here are readily available [Jahnke-Emde (1943);
Watson (1952); Erdelyi H.T.F. (1954)].

Another set of integrals that are needed [for
calculating correction terms—see Eqs. (7.16) ff.] in-
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volve In z. By means of complex integration [using
the method of Watson (1952), Sec. 13.6] we can
establish the following

/ dtJo(t) 1—‘;‘—5 ~ 3’ (v/2) = §ln’z + o

X (Inw—3) — (2'/256) (Inzw — §)- -

and

(A15)

2 In¢ z 22
/zdtJl(t) ; _—2ln2—-—é—(lnx—1)+ 13

5
kY

~ 1920

We can then by a similar process to the one just
used arrive at the following desired results:

X (Inz — %) (Inz —%)---. (Al16)

“dx. _ __£
/;, £ [Jo(x() — 1]Inx = I (Inx: + 1)

s(5 1 ) ' _ £
¢ (27 g n4t) — g (o — 1) + 4505
XMnx —3)+---, (A17)

2

/ Do) — 11 x = —f—z (nx + 1)
x X X1

S0 (8) -n - (g) 43
+128 In’ 5 In" x1 — 3 1n ) + 3
£xi
4608

+ (Inxi — %) +--- (A18)

APPENDIX II

We wish to prove two useful Bessel-function
theorems.

If the azimuthal behavior of a function whose
transform is sought is proportional to the component
of a vector in an arbitrary direction, i.e., to cos (8
— B:1) where B is constant, then the transform is
proportional to 27¢J,(£60) times cos (a — Bi)—i.e., a
vector at angle 8 transforms to 27iJ:(£6) times a
vector at angle a.

We have to calculate

‘/; dﬂeisﬂ cos (B—a) cos (ﬁ _ ‘31)
2m
= /o dge’® ™ P cos (8 + a — B1)

= / dBe’™ ** Plcos B cos (a — Bi)
— sin Bsin (@ — B1)] -

The integral over sin 8 vanishes by symmetry. The
cos B integral is by (2.15) wiJ.(£0) + wi 1J-1(£6)
= 2m1J1(0), so we have
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27T
/ d’BeiEG cos (f—a) cos (B . '31)
= 271J,(¢0) cos (@ — B1) . (A19)

If now the integrand contains the products of two
components in any two directions, we have a more
complicated result, namely,

/ 48 = O eos (8 — ) cos (8 — B)

= 7w[Jo(£0) — J2(£0)] cos (@ — 1) cos (@ — B2)
+ 7[Jo(80) + J2(£6)] cos (o — 7/2 — B1)
X cos (o — w/2 — B2) . (A20)
The two components yield a term with the corre-
sponding components of a vector at angle «, and a
term for a vector at « — w/2 (or a 4+ 7/2). The steps
corresponding to those given for the first theorem in-
volve cos (8 + a — B1) cos (8 + « — B2) which is
readily transformed to
L (1 + cos 2B) cos (& — B1) cos (« — B2)
— 1sin28sin 2o — B — B2) + 1 (1 — cos 28)
X sin (¢ — B1) sin (@ — B2),
where again the sin 28 term yields zero, and with
(2.15) we get (A.16).
If B = B., we have the simpler result
27
/ de’™ =" 7 cos’ (8 — B1) = w[Jo(£0)
0
— J2(89) cos 2(B — B)] .
APPENDIX III

(A21)

We give in this Appendix some relevant properties
of the functions D.(a,8,2) defined in (9.29). The
ordinary series expansion for ;#; yields

= T(a + k) (=9

Do(a)ﬁ)—02) = P(ﬂ) ; k'l‘(ﬁ i ]C) ’ (;&22)
D (a8, —9") = T'(8) Zﬂ%ri(ﬁl“lf—k‘}l
XyYla—14+k), (A23)
Dy (,8,—%) = T'(8) Zo Ll hilot (ﬂ‘k‘)’ )
XWla—14+k +¢(«—1+Ek]. (A24)

The derivatives and integrals of these functions are
also useful. We have after a little manipulation

2
Db =) _ =B p (o4 1,841,-87) (A25)
Ex) 8
b 02
f &'dd' Da(a,1,—987) = 2~Dn(a,2,—~192) (A262)
0
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’4
/0 de'Du(,3,—¢"*) = ¢Du(a,3,—¢") . (A26b)
As indicated by (9.30), (9.31), (A.23), and (A.24)
we wish to consider the values of n =0, 1, 2; 8
= 4,1, 3/2, 2, and numerous values of « up to 7/2.
A second set of series is derivable from Kummer’s
transformation for F(e,8,2):

lF’l(a)ByZ> = 6=1F1 (6 - O[,B,—Z)

and with the use of properties of the gamma function,
explicit formulas for all the functions may be written,
each involving a factor ¢™%°.

Asymptotic formulas are derivable from the ex-
pression for F:(a,8,2) when z is large and negative
[Erdelyi, H.T.F. (1954), Vol. I, p. 278]:

_T@) sinw(a—B)

(A27)

Fy (ayﬁrz) =

() =0
Pla+ k)T(a =B+ 14 k) .
X k!(—z*)k‘fct + Rn+l ) (AZS)

where the remainder R, is of the order of the series
term with k¥ = n + 1 plus a term involving e¢* which
is negligibly small for the useful range of this formula.

The terms of this series all vanish when o — 8 is
an integer m, corresponding to the fact that Do(8
+ m,B,2) is expressible as e* times a polynomial, for
which there exists no asymptotic expansion. Non-
vanishing results are obtained when o — 8 = m + %
and also for all « and 8 after differentiating with re-
spect to a. Consequently, we have

1 m+1
DB+ m+ 1.8,—8") = e

F(ﬁ+m+ +k)1‘(m+ +70)

k=0

ko™ (A29)
Du(s + m,—ot) = THEE) >
(LB +m ,ﬁ,’“) (m + B! (430)
DuB 4 m+ 38, —0) = k2 3
(TEEm+ i+ m+g+h)
ol
X{gB+m+k—3H+y¢ym+k+ 1) —ns’y,
(A31)
Dy(8 + m,p,—v) = 2D TG >
x LEAmt Dot Bl s m—141)
+ g&(m + k) — In¢*}, (A32)
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(=D)""'Tr () i

D (B 4+ m + %;6;“02) = 2B 2m Tl
T

F(B+m+ + k)T(m + 3 + k)
/ '0215
X f{=n"+ @ +m—3+k +y0m+3+4k
—&+¢B+m—L+5k)
+¢'m+3+k)]. (A33)
A number of recursion formulas for D, may be
derived from (A.22) [see also Jahnke-Emde (1943),
p- 275 and Jahnke-Emde-Losch (1960), p. 276] and
differentiated to give results for D; and D.. Among
the more useful we give the following:
Dﬂ(a + 1)61Z) = aDO(a;BJZ) + (Z/ﬁ)
X Do(a + 176 + llz) ) (1\34)

(a + 2)Do(a,B8,2) + (2/8) (e — B)

k=0

Do(O( + l,ﬁ,Z)

X Do(a,8 + 1,2), (A35)
])0(a + 1;6;2) = (2a - ﬁ + z)Do(a,B,z)
- (0[ - ﬂ)(a - I)Do(a - 1,[‘3,2) ) (A3())
DO(“ + 1;6 + I;Z) = 6D0(a;l8;z) + (a - ﬂ)
X Do(e,8 4+ 1,2), (A37)

= Do(a,8,2) + aDi(a,B,2) + (2/8)
X Di(ae+ 18+ 1,2), (A38)
Di(a + 1,8 + 1,2) = Do(a,8 + 1,2) + (a — B)
X Dy(a,8 4+ 1,2) + BDi(a,8,2) , (A39)
De(a + 1,8,2) = 2Di(a,8,2) + aDs(a,B,2) + (2/8)

X De(e + 1,8 + 1,2) ,  (A40)

D+ 1,8 + 1,2) = 2Di(af + 1,2) + (o — )
X D2(“:B + 1)2) + ﬁDz(a,ﬁ,Z) . (‘XH)
These functions have been evaluated for the values
of o and B that are indicated in (9.30) and (9.31), as
well as for the values of the parameters that will give
the integrals and derivatives in accordance with
(A.25) and (A.26), using an IBM 7090 computer.?
The program was based on the series derived from
(A.27), and on the asymptotic expressions (A.29)—
(A.33). A sampling of the results is given in Tables
VII and VIII and graphs of the functions are shown
in Figs. 21-26.2® The results agree with those of
Bethe (1953) and Molieére (1948). It will be noted

D, (a + 17.8)2>

24 The author wishes to acknowledge the assistance of the
departments of physics and numerical analysis of the Brook-
haven National Laboratory, supported by the U.S. Atomic
Energy Commission, in carrying out these computations.

25 The complete tables are on file at the American Documen-
tation Institute (cf. footnote 17).
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that the integrals from 0 to « of the functions re-
quired in (9.30) and (9.31) may be obtained by using
(A.26) and the appropriate asymptotic formula from
(A.29) to (A.33). Equations (A.22)-(A.24) with
(A.25) show that all derivatives vanish at 4 = 0.
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