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PREFACE

T is the intent of many review articles to provide
a scholarly presentation of a particular subject, or

to furnish a meaningful collection of data and refer-
ences. Such papers are often most constructive when
the topic has achieved a certain maturity, or at least
when the implications and objectives of the physics
have been electively established.

The purpose of the present paper, however, is
necessarily of a different kind. The first observations
of optical-harmonic generation have been recent, and
the implications of this and related phenomena for
solid-state and atomic physics are hardly established.
On the one hand, it is entirely possible that most of
the interesting experiments and conjectures have
already been developed, or, on the other, that the
general area of nonlinear optical phenomena has been
probed only superficially.

It is our intent in the present paper to provide a
review of most of the salient experimental accom-
plishments, some theoretical discussions with ele-
gance subordinate to clarity, and a bibliography that
is nominally complete to August 1962. The article

has been designed with the awareness that many
readers may be unfamiliar with the subject, so that
descriptive and schematic presentations of most
topics are included. It is hoped the paper will permit
the devotee to skip various sections without loss of
continuity or confusion with notation.

I. INTRODUCTION

The development of lasers (optical masers) has
made possible the production of monochromatic light
beams of exceedingly high intensity. For example, the
pulsed ruby laser ( 6940 A) can provide an optical
flux of many kW/cm' in unfocused beams and many
MW/cm' in the focal planes of simple optical sys-
tems. These intensities make the feasibility of ex-
ploiting the small but inevitable optical nonlinearities
of materials most appealing. In this introductory
section, we give a qualitative discussion of some
theoretical and experimental matters relevant to the
production of optical harmonics.

A suitable material for the production of optical
harmonics must be relatively transparent to the
fundamental optical frequency and the desired har-
monics. In addition, there are some important
crystal-symmetry considerations which affect the
choice of suitable materials, particularly in the pro-
duction of even harmonics. In order to develop these
ideas in a simple form it will be convenient to con-
sider a schematic expression for the dependence of
the optical polarization P as a function of applied
optical electric field E:

P = XE(1+ a,E+ a,E + ) . (I.l)
The coeKcient X is the normal linear optical

polarizability, of order unity, and the c; are the
nonlinear coefFicients. A discussion of the magnitudes
of the a; is deferred to later sections; sufFice it to say
here they are so small that only laser light sources
have sufIicient intensity to provide a readily detecta-
ble production of optical harmonics.

Whereas it is most important for later discussions
to recognize that the precise relationship between P
and E is of tensor form, it is suKcient for the present
section to deal with the scalar form of Eq. (I.l). In
particular, let us consider the second term Xa&E'
which gives rise to the second harmonic. If the ap-
plied optical electric field is E = Eo sin cot, then this
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quadratic term provides a contribution p to the
polarization in the crystal

p = XoyEO sill G)t = XQy(Ec/2}(l —cos 2Q)f} . (I.2}
Attention is called to the unit term within the
bracket. This corresponds to dc polarization within
the crystal which arises from the quadratic non-
linearity in much the same way as dc currents are
produced in the square-law detectors of radiofre-
quency practice. Attempts to observe this polariza-
tion are discussed in Sec. V.4, and theoretical discus-
sions are presented in Secs. IV.l and IV.3.

That part of the polarization with a cos 2~t de-
pendence is responsible for the radiation of second
harmonic from the crystal. One of the simplest experi-
mental arrangements for producing and detecting
this second-harmonic radiation is to focus the beam
of a ruby laser onto the surface of a suitable crystal
such as quartz. The light emerging from the crystal
will be found to contain a detectable amount of the
second-harmonic radiation at 3500 A as well as the
enormous amount of incident laser radiation at 7000
0
A. This radiation can be detected either with spectro-
graphic techniques or filtered photomultipliers. (De-
tails of this and other experimental arrangements will
be discussed in Sec. V.) As much a,s one part in 10'
of the laser power at 7000 A has been converted to
second harmonic in these relatively simple experi-
ments; the actual conversion efFiciency is dependent
upon the particular crystal, the role of the refractive
indices in the harmonic radiation process, and, of
course, the intensity of the fundamental radiation.

There does exist a most important symmetry con-
sideration which precludes sign@cant, even harmonic
production by those materials which are either
isotropic, such as glasses, or possess a center of in-
version such as calcite. (In these cases there are still
higher-order processes which yield a very weak
production of second harmonics, a,s discussed in Secs.
II.2 and V.6.) When isotropy or a center of inversion
is present, the polarization Inust reverse sign for a
reversal of the applied electric Geld, regardless of the
complexity of the tensor relationship between E and
P. In order to comply with this restriction, the terms
containing even powers of E in the admittedly
schematic representation of Eq. (I.l) must vanish.

A pictorial demonstration of the symmetry restric-
tion is also indicated in Fig. 1.In Fig. 1(a) is sketched
the polarization dependence of a material such as
calcite which possesses a center of inversion. The
curve is not intended to be literal. However, the one
feature that follows from the symmetry property is
that a power expansion of I' about E = 0 cannot

contain even terms. If we now consider crystals which
do not have a center of inversion, such as quartz,
then it is possible to have the sort of polarization
dependence shown in Fig. 1(b).The feature of interest
here, namely the possibility of having even terms in
the expansion of I' around E = 0, has been deliber-
ately exaggerated in the Ggure.

FIG. 1. Schematic il-
lustrations of the depend-
ence of polarization on the
applied optical-electric field.

(a) is appropriate to crys-
tals such as calcite which
have a center of inversion,
whereas (b) applies to crys-
tals such as quartz which
lack a center of inversion.
The non-linearities in both
figures are exaggerated,

P „
trI

/
„P

The lack of a center of inversion which permits
second-harmonic production is identically that condi-
tion which permits piezoelectricity. However, this is
not to say that the crystals most effective for har-
monic production are those with the largest piezo-
electric coeKcients. Piezoelectricity involves ionic
displacements whereas optical-harmonic generation
is of primarily electronic origin.

A crystal, whose point symmetry precludes even
harmonic production, can nevertheless be forced to
produce the effect upon the application of a strong
external dc electric Geld. This external bias field
"slides" the origin of Fig. 1(a) over into a region,
where an expansion of I' about the new origin
(dotted axes) now contains some even terms. (This
induced effect has been observed and is discussed in
Sec. V.6.) For the qualitative aspects of even-
harmonic generation one may usefully regard piezo-
electric crystals as containing a strong, but internal,
electric bias field. It is this field which in some sense
gives a preferred direction in the crystal and hence
allows both piezoelectricity and the generation of
even harmonics.

240 240 6l 6)
p; = X;,gE;EI, .

i Here and subsequently, the convention of summation over
repeated indices is adopted.

II. SYMMETRY RESTRICTIONS

II.1. Second-Harmonic Production

The generation of a polarization p'" cos 2~t in a
nonlinear medium by an optical electric field E"sin ~t
may be represented by a restatement of Eq. (I.2) in
tensor form
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Here and in what follows, the subscripts denote
Cartesian components, and the superscripts serve to
indicate the relevant frequencies. X'" is a (3 X 8 X 3)
third-rank tensor, which characterizes the process
and whose elements X';,"I, are restricted by the sym-
metry of the nonlinear medium.

Consider a particular physical situation described
by Eq. (II.l). The medium, applied electric 6elds,
and the polarization remain fixed in space and can
now be described in a new coordinate frame. The
new axes are related to the old by the transformation
a which can be written as a (3 X 3) matrix repre-
senting an arbitrary combination of rotation and
inversion. The vectors and tensors in the new frame
(primed symbols) are

/2' 207

pa = aa'pz

E'p" ——ap;E,",
~/201 ~2'X p~

——a~;apja~f, X;,f, .

(11.2a)

(II.2b)

(II.2c)

If a is now restricted to be a symmetry transforma-
tion A, then all the properties of the material are
identically described in both coordinate frames. In
particular, the elements of the tensor X'" are the same
in both coordinate frames so that

2' 2M
X„p, = A;As, A,eX;;e.

There are thirty-two classes of crystals, each speci-
Ged by a number of point symmetry transformations
A. For a particular class, each symmetry transfor-
mation yields an equation of the form Eq. (II.3)
which restricts the independence of the tensor ele-
ments X'"p~.

As an example of a symmetry restriction, let A be
the inversion transformation A; = —8;. Equation
(II.3) yields

6, such that X';„" —= X';,"I„j= k and X';" =—X,',
+ Xzg, j0 k. The relation between m and jlc is

xx

It is of parenthetic interest to note that symmetry
class 0 has six nonzero components of X'"' X'" =
—X'," X'.", = —X'",. X',." = —X',".. However the
extra symmetry which permits the contraction re-
quires that X'" is zero. This class is unique in that
second-harmonic generation, as well as piezoelec-
tricity, is precluded by symmetry although there is
no center of inversion.

In Table I the full and contracted forms X'"
(8 X 3 X 8) and. X'" (6 X 8) are quoted for two cases
of practical interest, potassium dihydrogen phosphate
(EDP) and quartz. The tensors may be constructed
for any crystal knowing the symmetry transforma-
tions A and applying Eq. (II.3), the process often

Tenn z f(a). x,',"e for (a) KDP (potassium dihydrogen phosphate)
symmetry Ve and (b) quartz symmetry De.

(a) y

(b) y

0 0 0
0 0 0
0 0 0
e —e 0
0 0 0
0 0 0

c 0 0
0 6 0
0 0 c

f 0 0
0 g —e
0 0

6 0 0
0 a 0
0 0 c

—g 0 0
0 —f —e
0 0 —h,

1 2 3 4 5 6

(b). The contracted form x;" for (a) EDP and (b) quartz.
The notation conforms with that used for the piezoelectric

tensor.

= —X "p~

=0.

0 0
0 0
0 0
d11 dl 1

0 0
0 0

d14 0
0 d]4
0 0

d14 0
0 —d14
0 0

0
0

0
2d] 1
0

Thus for any nonlinear material exhibiting in-
version symmetry, X'" is identically zero, and second-
harmonic generation by the process under discussion
is precluded. This leaves for consideration only the
twenty-one crystal classes which lack a center of
inversion.

The order of writing E", and Ee in Eq. (II.1) is not
physically significant. This suggests a convenient,
contracted form (well-known to pi'ezoelectricians) of
X';,"I„ in which the two symmetric suKxes j and k are
replaced by a single sufFix m, taking values 1 through

becoming tedious. Fortunately, the piezoelectric
effect is also described by a third-rank tensor which
is symmetric in two sufFixes and which is therefore
of the same form as X'".Consequently the nonvanish-
ing elements of X'" may be read directly from tabu-
lations of the piezoelectric coeKcients. However, it

~ See, for example, W. G. Cady, Piezoelectricity (McGraw-
Hill Book Company, Inc. , New York, 1946), 1st ed. , pp. 190—
192; W. L. Bond, Bell System Tech. J. 22, 1 (1943); J. L.
Prather, "Atomic Energy Levels in Crystals, " Nat. Bur. St.
(U. S.) Monograph 19, 1—84 (1961).
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TxsLE II. Some contributions to the nonlinear polarization.

Lack of inversion Symmetric Antisymmetric Date of
symmetry required sufFixes sufFixes observation

p"; = X;'",/J/, 'E/",

+ iX';"ki",E,"

+ Xi/'klan//~B~E/

20) X2(d EGPEQ

+ XijklmfjknBnE /Em

~4) 2Gl GD 6)
g'~ = 'gi~ktEI Ei

367 X3' E67ECOLi07

linear electro-optic effect

optical activity

Kerr effect and electric
double refraction

Faraday and Voigt effects

intensity-dependent refrac-
tive index

Cotton —Mouton effect

second harmonic

magnetic dipole absorption
and second-harmonic emis-
sion

electric-field-induced
second harmonic

magnetic-field-induced
second harmonic

quadratic polarization

third harmonic

NO

NO

NO

NO

NO

NO

NO

NO

(il), jk

(i)jkl,

(it), jk

1875
1924

1845
1902

Not yet
observed

1907

1961'

1962b'

1962b

Not yet
observed

1962bc

1962b

dc effect
Not yet
observed

b (T62). & Two e6ects observed but not distinguished from each other. See text.

should be stressed again that the magnitudes of the
piezoelectric and second-harmonic tensors are not
related.

II.2. Higher-Order Effects

Equation (II.1) is not a complete description of
possible nonlinear optical effects. Additional terms
of potential and real interest can be constructed and
are summarized in Table II. The rest of this section
is devoted to explanatory remarks about the con-
struction of the table and the symmetry of the non-
linear susceptibilities.

Terms have been constructed by including dc
electric and magnetic fields and optical fields re-
stricted for simplicity to a single frequency. The unit
propagation vector A;" is chosen in addition to the
electric Geld amplitude E", when a full description of
the optical field is required.

A guide to the relative importance of terms in the
absence of experimental data would be that the more
complicated the term, the smaller must be the ele-

ments of its characteristic tensor. Adding an extra
factor of an electric Geld reduces the resulting polari-
zation by E/E. /. , (see Sec. IV.1) which is
numerically 10 ' for 100 kV/cm (optical or dc)
electric fields. By a similar argument, including a
magnetic Geld reduces the polarization by a factor
of 10-' for a Geld of 10 ko.

The quadratic polarization q;, includes both mag-
netic-dipole and electric-quadrupole contributions.
Its order of magnitude is the corresponding dipole
polarization multiplied by an atomic length co. The
radiation by the quadratic polarization is out of
phase with the dipole radiation and the ratio of
radiated energy is reduced by a factor A", so that
(quadratic radiation)/(dipole radiation) (q'k')/pn

(c,k)' 10 ' evaluated for ruby laser radiation.
The factor & in the term p2 = i X'2,"/, k" E„"E",

arises from the small terms in the spatial expansion
of the electric field

E(r) = E(0) + r.vE
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where

E(r) = E(0)e' '
so that E(r) = E(0) + i(k r) Eo

The ratio of the second term in this expansion to
the first is of order A:ao. This process is similar to the
quadratic polarization term q';," in that the resulting
second-harmonic radiation has the same phase and
the same order of magnitude. One or both of these
effects have been observed (see Sec. V.6), but it was
not possible to distinguish between them experi-
mentally.

The terms in Table II have been constructed, so
that the nonlinear susceptibilities X and g are proper
tensors. (To make this possible, a single-magnetic
field appears accompanied by the permutation tensor
e,7,„which transforms the pseudovector to a proper
second-rank tensor. ) The first symmetry restriction
on the susceptibilities is that of Eq. (II.3) expressed
in a form suitable to the rank of the particular tensor

X p, p
——A;A p;A, gA p) X;,(,i. .. ,

where A represents in turn each of the symmetry
transformations for the nonlinear medium considered.
In this way the form of the tensor of each rank for
each crystal class may be determined. In particular,
by an extension of Eq. (II.4) it follows that for crys-
tals with a center of symmetry all tensors of odd rank
are zero. This is not true for tensors of even rank, so
that effects associated with such tensors can be pres-
ent in an isotropic medium.

Tensors are symmetric in pairs of sufIixes which
refer to physically indistinguishable fields as stated
in the last section for the case of the second-harmonic
tensor X'".This condition is, of course, relaxed, if the
frequencies of the two fields are allowed to become
different; for example, as second-harmonic produc-
tion becomes "sum-frequency production. " The ex-
tent of the deviation from this symmetry may be
estimated from a quantum mechanical treatment
(see, for example, Sec. IV).

Some pairs of sures are presented in Table II as
being symmetric but have been written in paren-
theses. These are sufFixes referring to p"; and Ef, , and
they are symmetric in the presence of slight absorp-
tion and dispersion to the same good approximation
as are the sures of the usual linear optical suscepti-
bility tensor X";;.

II.3. Kleinman'8 Conjecture

Eleinmsn has suggested (Kl 62a) that an addi-
tional symmetry condition for second-harmonic

generation may be operative in materials, which are
transparent to the fundamental and second-harmonic
frequencies. In the notation of Eq. (Il.l), the sug-
gestion is that X';,"~ = X,',"&. This condition reduces
the number of independent elements and, in some
cases such as quartz, actually requires null values for
particular elements. In this section we review an
essentially thermodynamic argument for the con-
jecture prior to the more quantitative discussion of
Sec. IV.2.

Let us consider those materials for which the
quantity P.dE is a perfect differential or, equiva-
lently, for which P dE represents the electric contri-
bution to the free energy. The perfect differential
condition implies directly that the curl of P in E
space is zero:

BP. BP„BP„BP, BP, BP.
( )BE„BE ' BE, BE„'BE. BE,

'

For the second-harmonic polarization tensor Eq.
(II.5) immediately yields the required result X';,&

= X,'5. Equation (II.5) could also be applied to the
other contributions to I' listed in Table II to obtain
very useful and restrictive conditions on the relevant
tensor elements.

We must now examine the validity of the surmise
that P dE is indeed a perfect differential. It is clearly
not true for those materials which exhibit absorption
at any of the relevant optical frequencies, since for
this case g P dE W 0. Fortunately, most of the
interesting materials in which second-ha, rmonic gener-
ation has been studied are extremely transparent to
the fundamental and harmonic frequencies. %hat
damages the surmise for these materials is the pres-
ence of dispersion which destroys the single-valued
character of the functional relationship between P
and E, so that a knowledge of the instantaneous value
of E is no longer sufFicient to determine the free
energy.

The dispersion in typical crystals used for har-
monic production with ruby laser radiation is only a
few percent. However, the quantum-mechanical dis-
cussion of Sec. IV.2 indicates that even a few percent
dispersion can seriously damage the validity of
Kleinman's conjecture.

The thermodynamic argument discussed in this
section is that customarily used for arguing the
symmetry of the lin.ear optical susceptibility tensor
X";;.For this special situation, however, dispersion is
not relevant, since the vectors related by X";; have
the same time dependence. Of course, absorption is
just as lethal to the symmetry of X";; as to the more
general tensors discussed above.
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III. THE PROPAGATION PROBLEM

p'" ~ sin (2k,x —2M&) . (III.I)

It is important to note that the second-harmonic
polarization is anchored to the spatial dependence of
the fundamental wave; that is, the space part of Il:q.

iI

I

il

ll
iI
ll
ll
ii
jl.
1 i'

since t

sin 2 at
Fr 6. 2. Second-

harmonic radiation
from an infinite plane
slab.

(III.l) goes as sin 2k&x rather than sin k~x, where k2

is the wave vector for second-harmonic radiation
within the crystal. The harmonic-electric field dE2"

at the exit surface of the crystal due to the harmonic

GI.I. Propagation of Second Harmonic in a
Dispersive Medium

We now wish to examine the important restriction
imposed on the radiation of harmonics by the optical
dispersion of the crystal. If the refractive indices for
the fundamental and second-harmonic radiation were
identical, then an appreciable conversion could be
achieved simply by using a thick-enough crystal.
The fact that these two indices are generally different
provides an important limitation on the production
of second-harmonic radiation from a given crystal
and geometry of illumination.

In order to exhibit the salient features of this
problem, let us consider the ideal case of a plane wave
of the fundamental radiation transmitted through an
inGnite sheet of piezoelectric material of thickness l.
(Fig. 2). The amplitude of the polarization at fre-
quency 2&v is denoted by gP, and we seek an expres-
sion for the intensity of the radiation at the exit sur-
face of the sheet. This model does not include aniso-
tropic effects, nor the effect of an attenuated funda-
mental wave, and the use of an inGnite sheet excludes
the need to consider edge eGects. This model, how-
ever, does correspond very closely to the situation
encountered in several experiments.

The electric field in the crystal at the fundamental
frequency is Eo sin (k&x —cut) and the polarization
p2" which goes as 2' will then be

&& sin (lki + lk2 —2(ut), (III.4)

and, therefore, the intensity I'" of the second-
harmonic radiation at the exit surface of the crystal
is given by

S1Q 2 l (2k' —k2)
CC

(2k, —k,)'
sin' [(l(o/c) (n, —n, )]

QC 2
(n, —n, )

(III.5)

This equation exhibits very explicitly the potentially
disastrous role played by dispersion. If nj = n2, then
the intensity at the exit face of the crystal increases
directly as the square of the thickness l. However, if
there is dispersion then the maximum possible in-
tensity is that which can be obtained with a crystal
of characteristic thickness l', or odd integral multiples
thereof:

l' = —,
' X/(n, —n, ), (III.6)

where X is the free-space wavelength at the funda-
mental frequency. This thickness is often referred to
as a "coherence length" and amounts to the order of
twenty wavelengths or so for typical crystals investi-
gated with ruby-laser radiation.

The periodic variation with respect to thickness of
the intensity of the second harmonic was 6rst verified
in the elegant experiment of Maker et al. (M62) with
crystalline quartz. They projected a parallel ruby-
laser beam through a thin plate of quartz and ob-
served the production of the second harmonic as a
function of the angle between the plate normal and
the laser beam. The results are given in Fig. 3, taken
from their paper, and the relevant experimental
parameters are listed in the caption. This experiment
not only demonstrates the dispersion effects of Eq.
(III.5) in a dramatic way but also provides the most
useful method known today of obtaining quantitative

polarization of a slab dh in the crystal is given by

dE " ~ dx sin [2k,x —2~(t —t')], (III.2)

where t' is the time it takes the harmonic radiation
to propagate through the crystal to the exit face and
is given by

t,
' = (l —x)/v'" = (l —x) (k,/2') . (III.3)

In this expression v'" = 2ar/k2 is the phase velocity
of the second-harmonic radiation in the crystal.

The total harmonic electric Geld at the exit surface
of the crystal is

l

dE'" ~ sin —', l (2k& —k2)
2k' —1~2
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second-harmonic polarization. This is because the

be ac
p ane wave radiation problem from a Oat 1 t

e accurately evaluated, whereas the situation with
other geometries is exceedingly dificult and requires
very precise information about the t' 1

o e aser beam.
u cop ica prope ties

5,f = 13.9p.
theory

„p =14ps

a 20-
18-

CP

m 16-
14-
12—
lo
8

fQ

w 6

2
w

0 I I I I , , »I, , i~1
40 30 20 10 0 10 20 30 40

ANG ULA R ROTATION IN DEGREES

generation vs inclination ofre. 3. Second-harmonic en
p o laser beam. Rotation axis-in. - ic quartz latelet to

a o earn, parallel to crystal z axis. Laser beam
focused and polarized parallel to the x axis. Fi
from terence (M62}.]

The general problem of second-harmonic radiation
rom crystals has been studied in some detail by

Bloembergen and Pershan (BP62) and by Eleinman

(El 62b) who ivew o give quantitative expressions for some

cases o practical interest. In particular the r
mos useful formulations for several embodiments of
the index-matching procedures to be discussed in the
next section.

III.2. Index-Matching Techniques

It has beenbeen shown in the previous section that
efFicient radiation o
that k2 ——2

o e second-harmonic requires

2 ——2t"I or n2 ——n&. This condition of matched
in ices is not satisfied for an isotropic crystal unless,

distributed with respect to ~ or 2+,' it is not surprising

that this approach has been neglected.

inde en
An ingenious method of index matchin has bing as een

in ependently developed by Giordmaine (662) and
aker et at. (M62). They exploited the fact that in

certain anisotropic crystals it is possible to choose a
direction of propagation such that the ordinary re-
ractive index at one frequency is equal to the ex-

traordinary refractive index for the other. Figure 4

from which one can evaluate the index matching

and Maker et al. (M62) demonstrated an increase of
several orders of magnitudi u e in secon — armonic
generation near the predicted angle 0 —50'

u.e simple index-matching condition n& = n& may
e readily generalized to the situation of 2 or more

"input" waves with propagation vectors ki ki,
not necessarily colinear or of the same magnitude. In
order to produce an efFicient radiation at some "out-
put" frequency M2 = co & ' %, 't '

Go
' ' ', lt is necessary

FIG. 4. Refrac-
tive index surfaces
for quartz and EDP.
The subscripts 1 and
2 refer to radiation at n,
the ruby-laser fre-
quency and the sec-
ond harmonic, re-
spectively. The su-
perscripts o and e re-
fer to the ordinary n,

'
and extraordinary
rays, respectively.
The figures are exag-
gerated for purposes
of illustration.

QUARTZ

n

no
I

e
Ap

&e

K. D. P

thatk2 = k& a This general condition has
been exploited in successful experiments on third-

armonic generation (T62) and optical mixing (S62)
which are described in Secs. V.3 and V.6.

Another approach to the index-matching problem

shows a schematic representat' fion o sections of four
refractive index surfaces for ea h f tac o wo uniaxial
crysta s, quartz (ignoring optical activity) and EDP.

f
The subscripts 1 and 2 on n refer t th bo e ru y-laser
undamental and second-har f— armonic requencies re-

ordinary ray (independent of angle 0) and the extraor-
inary ray (a function of angle 0). As the crystals

are uniaxial the complete surfaces are generated by
rotating the given sections around the z axis.

The salient feature of Fig. 4 is that for
neither the n' n

is a or quartz
e n, nor the n', surface intersects either the

n,' or n2 surface, whereas in KDP th e matc ing con-
i ion can be satisfied, because n', = n', (ge) for

propagation vectors making an angle 00 with the
z axis and whose projection on th le xy p ane makes any
angle with the x axis. n', (8) may be ex r d

'

erms o tlute extraordinary refractive index for
propagation at 2' in the xy plane n', P~) b the
equation

pane n2 —,m by the
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was recently demonstrated, ' in which very thin
plates of x-cut crystalline quartz were stacked with
their z axes alternating in direction by 180'. This
effectively reverses the direction of the second-
harmonic polarization in alternate plates which
permits the integral of Eq. (III.4) to achieve ap-
preciable values. In the experiment plates of quartz

0.025 cm thick were used and it was found that
approximately four times as much second-harmonic
radiation could be produced from two plates as one,
a sixteenfold increase from four stacked plates, and
so on. Although all the plates were of the same thick-
ness, they were not exactly an odd integral multiple
of the coherence length, so that the stack normal had
to be oriented about 24' to the laser beam, in order
to achieve the proper eft'ective thickness for each
plate. In the performance of this particular experi-
ment, the e%ciency of the method began to drop very
quickly as more plates were stacked due to reRection
losses at each interface. The method has a general
advantage over index matching with ordinary and
extraordinary rays in that the angular sensitivity is
not as dramatic. It has the disadvantage that a good
part of the material is "wasted, "since the slabs each
have a thickness of twenty or so coherence lengths
due to the practical requirements of fabrication.

Armstrong et at. (A62) have proposed an ingenious
scheme in which a periodic, relative phase shift be-
tween the fundamental radiation and the second-
harmonic polarization is to be introduced by internal
reAections in a quartz block. To our knowledge, the
experiment has not been performed.

IV. QUANTUM MECHANICS

In this section the second-harmonic polarization is
explored from the microscopic and, hence, quantum-
mechanical point of view. This leads to a formalism
from which, in principle, one could predict the
magnitude of the second-harmonic coefBcients which
occur in the classical description of the earlier sec-
tions. Unfortunately, this quantitative achievement
would require numerical knowledge of a plethora of
matrix elements. Nevertheless, the quantum-me-
chanical description is most constructive for the
insight it affords into the role each atom in a crystal
must play in the production, and it does provide
clues as to which crystals are most likely to be
effective.

There have been several formulations of the prob-
lem to date. (A62, 861, H62, P62). The most ex-

s P. A. Franken, A. E. Hill, C. W. Peters (to be published).
This method has also been independently proposed by Arm-
strong et aL (A62).

tensive treatment is that of Armstrong et al. (A62),
in which several light waves are simultaneously pres-
ent in the medium, and the quantum mechanics is
developed to third order in order to exhibit third-
harmonic parameters. This treatment, with waves of
different frequency present in the medium, permits a
description of optical mixing and of situations where
significant conversion occurs.

Higher-order effects, including Faraday and quad-
rupole interactions, have been recently studied by
Price' and by Adler. ' This description leads to several
of the higher-order terms of Table II. In the present
paper we confine our attention to the lowest-order
processes.

E = Eo sin cot . (IV 1)

In dipole approximation the perturbation Hamilton-
ian becomes

H'= eE r. (IV.2)

In what follows p e ' ' will be the unperturbed wave-
functions of the system, assumed real without loss of
generality, and the subscript g will denote the ground
state. Under the inQuence of the time-dependent
perturbation Eq. (IV.2) the new ground-state wave-
function P for the system will be

where a„"' and a„"& denote the time-dependent ex-

P. J. Price (private communication, to be published).
P. J. Price (privste communication, to be published).

IV.I. The Strong Single-Wave Treatment

We begin with the problem of a medium exposed
to one strong electric field at the fundamental fre-
quency ~ and examine the consequent polarization
for those presumably small terms having a time
variation at frequency 2' and those with no time
variation at all (the "dc effect"). The electric —dipole
approximation (where the relevant wavelengths are
assumed to be very much larger than atomic di-
mensions) is exploited throughout, because it makes
for simplicity and is, in fact, a very good approxima-
tion. The reader is referred to Armstrong et al. (A62)
for a more fundamental and necessarily more elabo-
rate formulation. For pedagogic purposes, most of
the algebraic manipulations are exhibited; the reader
possessed of a relatively unrusted quantum mechan-
ics may with profit skim rapidly to Eq. (IV.5).

Consider an atomic system exposed to an electric
field of the form
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In these expressions, the perturbation was assumed
to be turned on at t = 0, and terms such as cv„,

denote &u„—cv, . Using Eqs. (IV.4) in (IV.3) to calcu-
late that part of the expectation value of er which has
a 2' time dependence, one obtains

(co~a —2M )

Q ~cr~lp)2 2~2 p (Eo r). ,(E, r)„,(er)„'.(cos 2cvt)
nn'

pansion coefficients in first and second order, re-
spectively.

We now wish to examine the time dependence of
the expectation value of the polarization operator for
this perturbed ground state (P~er~P). A. large number
of terms arise if the full expression Eq. (IV.3) is
used, since the expansion coefFicients themselves are
quite unfriendly. However, we are only concerned
for the moment with those terms in Q ~er~P) which
contain a time dependence at 2' and depend on E', ,
which is the lowest power of Eo that can develop the
second harmonic. These arise from the "sandwich"
of the first-order corrections with er, and with the
similar expression involving the unperturbed ground
state and those second-order corrections which carry
the 2~ frequency dependence directly. Terms con-
taining 2', which arise from the second-order cor-
rections sandwiched with the second-order corrections
are of order E', and, hence, to be ignored in this order
of the perturbation. The explicit expressions for the
expansion coefficients are given here for convenience:

ample, the requirement that there be no inversion
symmetry is apparent, because the products must
each vanish if the original unperturbed p„are eigen-
states of parity. An isotropic medium or one with a
center of inversion is necessarily a parity-conserving
system.

The first summation indicates a crystal is likely
to be particularly effective in producing the second-
harmonic polarization, if there exist excited states
that lie near a frequency co above the ground state.
Such crystals, however, are likely to be poor choices
owing to the almost certain occurrence of strong
absorption in the region of the second-harmonic
frequency.

If the first optical absorption band lies just above
2' from the ground state, the second summation of
Eq. (IV.5) indicates a most favorable condition. We
must then try to determine just how close one can
work to this absorption band, without seriously
affecting the radiation of the second harmonic. One
immediately notices in Eq. (IV.5) that several of the
dipole matrix elements and the resonance denomina-
tors are common to the calculation of an absorption
cross section. However, the 2' polarization depends
on a triple product of matrix elements, whereas the
absorption coefIicient goes as the square of a matrix
element. This fact alone just about precludes the
possibility of a useful calculation without an accurate
a priori knowledge of the relevant elements. One can
only point out that it is advisable, other factors being
equal, to work as close to an absorption band at 2'
as is consistent with a relatively large transparency
for the 2~ radiation. The experimental work of Lax
et al. (L62) lends some support to this contention,
but it is hard to grant the "other factors being equal"
plea in comparing quite disparate crystals.

An expression for the dc polarization can be de-
rived in exactly the same fashion as Eq. (IV.5). In
this case the expectation value Q ~er~P) is examined
for those terms which have no time variation. The
result is

(P~er~f)d, ——+,g (Eo r)„,(EO r),(er)„'
4h ..

X
CO COng

—
CO

X (Eo r)„'„(er),„(cos 2&et)

X
(co„,+ 2(u) (s)„', + (o)

(E. r
nn'

1

(co„, —2co) (cu„', —a))

1
COn'g —

CO tung —
CO

X, +
COn'g CO

2

+ '. g (E. r).„(E.r)„,(er)„,25' ..
(IV.5)

The symmetry restrictions discussed in Sec. II.1
for this second-harmonic process are embodied in the
triple matrix element products of Eq. (IV.5). For ex-

1 1
X (IV.6)

If we consider the case where the nearest absorp-
tion bands are of much greater frequency than M or
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2co, then a comparison of Eq. (IV.5) with Eq. (IV.6)
shows that the amplitude of the polarization at fre-
quency 2' is just equal to the dc polarization. This
is in agreement with the classical prediction Eq.
(I.2) and is expected because the large-gap approxi-
mation should carry the quantum mechanical formu-
lation directly to the adiabatic, or classical, limit.

It is of interest to compare the amplitude of the dc
polarization with that of the polarization at frequency
2' in the case for absorption bands near co or 2~. In
these cases, the 2' polarization increases as 1/D~,
where Ace is the difference between an absorption
frequency ~„,of the crystal and either co or 2'. In the
case of the dc polarization, however, there is no sharp
increase as the absorption band approaches 2~. The
dramatic effect occurs when the absorption band lies
near ~, in which case the dc polarization increases as
1/h~'. The objection noted earlier in this section to
using a crystal with such an absorption band for the
production of second harmonic is not operative for
observing the dc effect, since the fact that the 2'
radiation will very likely be absorbed by the crystal
is of no particular concern.

Finally, it is instructive to examine the quantum-
mechanical expression Eq. (IV.5) and see how it can
be reduced to a form resembling the classical ex-
pression given by Eq. (I.l). For simplicity let us
assume there is only one excited state and that the
matrix element of r is simply ao, some characteristic
atomic length, regardless of the indices. That is,
(Eo.r) .. ., ..= Ka, , ~(cr)i „. .. „„=«, , and &~.,
= e'/ao. (We are treating the whole affair as scalar
for this purpose. ) In the limit ~ (( cv„„Eq. (IV.5)
then becomes simply

p'" = 4a',E,[(a',/e)E, j . (IV.7)

Here, ao is simply the linear polarizability of the atom
and Eq. (IV.7) is therefore identical in form to the
second term in Eq. (I.l) which describes the second-
harmonic polarization. The factor a20/e is to be associ-
ated with ai in Eq. (I.l) and is nothing more than
an inverse atomic electric field. This reasoning led to
the original speculation (F61) that the second-
harmonic coefficients should be of the order of in-
verse atomic fields, something like 10 ' in Gaussian
units. The analysis of currently available data
indicates that the coeKcients are some three orders
of magnitude smaller in practice. This is most likely
due to the relevant dipole matrix elements being
quite a bit smaller than indicated by the little more
than dimensional reasoning given above. This mi-

nuteness occurs if the crystalline fields are not strong
enough to introduce the appreciable mixing of atomic

states of different parity which is required for a husky
development of the matrix elements.

It is important to emphasize that the treatment of
this and the following sections tacitly embraces the
ionic contributions to the nonlinear polarization.
The g„e '" ' which we have used as unperturbed
eigenstates do include the ionic states, insignificant
though their contribution may be too many of the
exclusively high-frequency phenomena. The possi-
bility of long-range effects or cooperative phenomena
between different cells are not included in the present
treatment.

IV.2. IQeinman's Conjecture

In Sec. II.3 Kleinman's conjecture concerning an
additional symmetry restriction on the second-
harmonic coeKcients was discussed from a thermo-
dynamic point of view. We are now in a position to
examine this restriction within the framework of the
quantum-mechanical formulation and elicit with
more precision the role played by optical dispersion.

The conjecture is that X',,"& ——X,',"&, where X'" is a
third-rank tensor describing the generation of the
second-harmonic polarization p'"

p;" = X;,"I,E,Eg, . (IV.S)
Keeping in mind that X';,"& ——-', (X';,", + X';~,), one
can group the terms in the quantum-mechanical ex-
pression for the second-harmonic polarization Eq.
(IV.5) in order to exhibit the tensor elements
explicit, ly:

2'
X;;p =

+ (r')-("(r ).'.&r~)-'+ (r')-'(r~)-'. ) ~-' (IV 9)

where r; denotes x, y, or z, and the frequency-
dependent terms A„„.and B„„are

= 1/(o). ', + (u) (co., —co)

8„„'= 1/(cu„, + 2co) ((u„', + cu)

+ 1/((o„, —2co) ((o. , —co) . (IV.10)
In the limit of the hser frequency co approaching

zero (very much less than co„„ca„.„etc.), Eq. (IV.10)
reduces to

lim IB„„=B„„=2A „' = 2A„'„= 2/~„,~„,.
(IV.11)

Under this circumstance a few minutes' inspection
of Eq. (IV.9) reveals the validity of Kleinman's
conjecture, that is

(IV.12)
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This is an expected result because the limit of low
laser frequency corresponds in the present model to
the classical, or adiabatic, condition, where all effects
due to dispersion or absorption should be negligible.
It is exactly in this region of the spectrum that the
thermodynamic argument of Sec. II.8 has a strong a
priori claim to validity.

The situation where the laser frequency is small,
but not entirely negligible compared with co.„co„.„
etc. , is the one of practical interest for most sub-
stances being currently investigated. Under these
conditions, Eq. (IV.9) becomes quite intractable.
However, we can gain some insight into the pathology
of X'", by introducing a dimensionless frequency
parameter e„„., which is a measure of how seriously
the limiting equality of Eq. (IV.ll) is violated:

8,'/2A, ' = 1 + e, ',
e„„=[((u„—co) (2' + co„co„)/((v.—4cu') (co„—cv)] —l.

(IV.18)

Defined in this way, c„„.can give a crude measure of
the validity of Kleinman's conjecture for a given
crystal:

[X„,, —X;;&~ = sX;,&, (IV.14)

where ~ is the average value of c„„.. It is instructive to
evaluate ~ for the case of quartz, where the energy

gap and, hence, ~„„co„.„etc., is roughly five times the
ruby laser frequency. We find that e = 0.3. This
result indicates, for example, that the d14 term in
quartz [Table I(b)] is not necessarily zero, as required

by the Kleinman conjecture, but that it could be of
the order of 1/8 as large as the d» term. Similarly in
KDP [Table I(b)] the d&4 and d„ terms need not be
equal but could differ by the order of 80%. For
crystals with absorption edges nearer the laser
frequency than quartz or KDP the validity of the
conjecture is damaged even more.

The fact that the relatively small ( 2%) dis-

persion in quartz between the laser frequency and
the second harmonic can lead to such a large disparity
in Kleinman's conjecture is actually quite reasonable.
While it is true that the dispersion is only about 2%,
it must be noted that this implies an 7% variation
in the optical polarizability x. (n' = 1 + x). Since x
depends on single energy denominators such as
1/(~„, —m), rather than the quadratic forms of Eq.
(IV.10), the relevant terms for the second-order
polarizability of qua, rtz each vary by some 15% in

going from the fundamental to the second harmonic.
It is this large variation which accounts for the pre-
dicted disparity in Kleinman's conjecture for these
materials.

E = Eg slI1 cogt + E2 S1I1 M2f . (IV.15)

After the pursuit of tedious algebra one obtains

1
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1
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1
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(IV.16b)

IV.3. Sum and Difference Frequencies, and
the Linear Electro-Oytic EBect

It is now instructive to examine the situation,
where two laser beams with frequencies co& and cv2 are
present in the medium. In particular, we seek those
terms in the expectation value of the polarization

Q~«~P) which exhibit a time dependence at fre-
quencies (col + N2) and also at (coy —(o2). The calcula-
tion proceeds exactly as in Sec. IV.1 but with the
complication that Eq. (IV.1) describing the electric
fieM E in the medium becomes
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0 oui (IV.19)

It is entirely as if the indices, as well as the frequenct'es,
were simply interchanged in Eqs. (IV.18a) and
(IV.18b) "

s B. H. Billings, J. Opt. Soc. Am. , 39, 797, 802 (1949);
R. 0. B. Carpenter, ibid. 40, 225 {1950).For a convenient
summary of the available data see: American Institute of
Physics Handbook, edited by D. Gray (McGraw-Hill Book
Company, New York, 1957).

Note added in proof. This permutation symmetry relation
can be derived without recourse to explicit quantum mechan-
ical expressions. [N. Bloembergen, private communicationI.

An examination of Eq. (IV.16b) in the limit of co~

approaching co2 yields an expression identical to Eq.
(IV.5) for the second harmonic. This is an entirely
expected result, since the generation of a second
harmonic may be considered as simply the mixing of
two identical frequencies.

The intimate connection between the generation of
low difference frequencies (the "dc effect") and the
linear electro-optic effect was first pointed out by
Armstrong et al. (A62) in their general three-field
treatment in which index and frequency permutation
relations are developed. We now wish to examine
this connection in the light of the explicit expressions
for the simpler two-field treatment of this section.

Eq. (IV.16b) may be conveniently expressed in
tensor notation

i&x ~2) Xi i &glE xE s (IV 17)

As before, the superscripts will serve to indicate
the frequencies. We now wish to examine Eq. (IV.17)
in the two interesting limits of ~2 approaching ~& and
of co2 approaching zero. These limits may be written
formally as

(us ~ &egin'; = X';,sE, 'Ep' (IV.18a)

(gs ~ 0
i
p" = X";,'I.E,"*Es (IV.18b)

The situation embraced by Eq. (IV.18a) is simply
that of the "dc effect, " or low-frequency difference
generation. Equation (IV.18b) however, describes
the linear electro-optic effect, in which the ordinary
optical polarizability of a medium is modified by the
presence of a strong electric field at "zero" frequency.
That is, the term p"; in Eq. (IV.18b) merely represents
the usually very small change in the optical polariza-
tion in the i direction due to a strong zero-frequency
electric field. (The ordinary linear optical polarization
is not included, nor is it germane of course, to the
development of this and other sections of the paper. )

An explicit examination of Eq. (IV.16b) in the lim-
its of co& approaching ~& and zero reveals the following
connection between the third-rank tensors of Eqs.
(IV.18a) and (IV.18b):

This identity of the "dc" and electro-optic tensors
enables one to predict the magnitude of the induced
dc polarization and the production of low-frequency
radiation (up to the far infrared in many substances)
produced by beating two lasers of nearly the same
frequency. To date none of the experiments have re-
vealed either dc polarizations or far infrared differ-
ence radiation, in seeming contradiction with the
prediction of Eq. (IV.19) and the numerical data
available for the electro —optic coefFicients. These
experiments and the numerical data are reviewed in
Sec. V.4.

V. REVIEW OF EXPERIMENTS

V.1. General Remarks

Many of the experiments involve shining the
focused or unfocused radiation from a ruby laser on
suitable materials and analyzing some part of the
spectrum of the transmitted light. The following re-
marks on experimental considerations are germane to
much of this work.

The green and shorter wavelength radiation from
the laser flashlamp must usually be eliminated from
the primary beam in order to avoid obscuring the
nonlinear phenomena under study. In most circum-
stances commercial, deep red glass filters of the
Corning type have proved satisfactory. It must be
pointed out that various filters, particularly some
of the gelatin types, can exhibit bizarre effects under
the inhuence of the extremely high radiation intensity
characteristic of laser beams. For example, the
transmission characteristics have been found to vary
with time during the pulse (BM 62).

In most of the experiments with second harmonics,
the intensity of the harmonic radiation is six or more
orders of magnitude below' that of the ruby-laser
intensity. A good quartz-prism spectrograph and
photographic detection with red insensitive plates
has proved satisfactory for many of these experi-
ments. However, this is a poor system for work in
which the second-harmonic radiation is too weak to
give a developable image in a reasonable number of
laser pulses. More satisfactory arrangements have
exploited photomultipliers in conjunction with mono-
chromators, or just a filter cell containing saturated
copper sulphate solution located in front of a photo-
multiplier. At 3500 A, 1.5 inches of this solution is
quite transparent and yet attenuates the ruby-laser
radiation by some 18 orders of magnitude. '

The data acquired with filtered photomultiplier

7 R. W. Terhune (private communication).
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detection schemes requires far more caution in
interpretation than the data achieved with a spectro-
graph. This is because it is possible in many experi-
ments to generate a detectable amount of radiation
in the 3000—5000 A range by incandescent processes
a,t those surfaces in the apparatus which are exposed
to the unattenuated laser beam. The use of a good
monochromator in conjunction with a filtered photo-
multiplier is a far more hygienic procedure.

V.2. Second-Harmonic Experiments

The generation of an optical second harmonic was
first observed in experiments where a ruby laser beam
was focused on the front surface of a plate of crystal-
line quartz (F61). The emergent radiation from the
crystal was examined with a prism spectrograph to
separate the second harmonic ( 3470 A) from the
enormous amount of laser radiation at 6940 A. It
was estimated that 10"incident laser photons pro-
duced 10" second-harmonic photons, in the inter-
val of 1 msec characteristic of the laser pulse. The
expected dependence (see Table I) of the conversion
efFiciency on the relative orientation of the crystal
axes and the laser polarization was verified.

Second-harmonic generation with unfocussed laser
beams was first demonstra, ted by Giordmaine (G62)
and Maker et at. (M62) in KDP and. quartz. Both
groups established the efIicacy of the index matching
scheme for EDP discussed in Sec. III.2. They also
found the index-matching technique very useful in
KPD and similar crystals even for the case of focused
beams, provided the impinging cone of laser radiation
contained the index-matching direction. In experi-
ments by both of these groups total conversion
efFiciences of the order of 10-' were achieved" with
KDP with laser pulses of a few joules in ~l/2 msec.

Kleinman (Kl 62b) ha, s estimated from the availa-
ble data, on the results of unfocused ruby laser beams
on quartz and KDP plates that d„(quartz) —10-"
esu and d&6 (KDP) = 6 && 10 " esu (see Table I for
notation). For a detailed and quantitative analysis
of the radiation problem with focused a,nd unfocused
beams the reader is referred to Eleinman's paper.

Lax et ot. (L62) have measured the second-
harmonic production in quartz, stra, ined A1203, and
ZnS. The data provides fair a,greement with their
semiclassical theory of the process.

Savage and Miller (SM62) have compared the

'7a Rote added in proof. Conversion eKciencies of about 20%
have recently been achieved by Terhune, Maker and Savage
(to be published). The experiments were performed with a 1
MW "giant-pulse" ruby laser focused into a plate of ADP at
the index-matching angle. These authors also report conver-
sion e%ciencies for the third harmonic as high as 10—~.

efFiciency of second-harmonic generation in a number
of crystals in a specific experimental situation. Their
results are reproduced in Table III. A ruby laser was
used giving an optical power of 200% in the pulse at
the focusing lens (except for crystals marked * in

Tasz, m III. Relative values of second-harmonic output (SM62).

Material
Number of

samples
Crystal face Relative

normal to beam value

EDP
ADP
E-doped NaNb03*
Quartz
NaClo3*'
NaCl03*-
Tourmaline
TGS
TGS
TGS
Rochelle salt
NaBr03
GASeH
GGSH
GASH
GGSeH

(110)
(110)
(101)
(001)
(110)
(ill)
(001)
(101)
(100)
(001)
(110)
(111)
(001)
(001)
(001)
(001)

1000
720
230
34.0
11.0
8.0

10.0
3.2
1.3
1.0
1.2
0.54
2.0
0.82
0.39
0.21

a Those crystals marked with an asterisk were explored with low laser
power.

8 Private communications from R. W. Terhune, H. Boyrle,
and our laboratory.

R. C. Miller (private communication).

Table III, which would have been damaged by such
an intensity. ) The focusing lens was 16 mm f.l. f/2,
and a fast (f/4 5) mon. ochromator with suitable
filters and photomultiplier detection was employed.
The apparatus could detect a minimum of 10 second-
harmonic photons per laser pulse. The variation of
the second-ha, rmonic intensity with fundamental in-
tensity and crystal orientation was checked. A 25%
variation in second-harmonic generation between
different crystals of the same substance, attributable
to surface irregularities, is a measure of the precision
of the experiment. Two results are of particular
interest. Triglycine sulphate (TGS) was found to be
an order of magnitude less efFicient than quartz in
contrast to the observations of other groups' who
have found TGS significantly more efFicient than
quartz. H,ecent unpublished work by Miller and
Savage' indicates that the variation of the domain
structure in TOS from sample to sample may ac-
count for this discrepancy. The other point of interest
is that no observable second harmonic was genera, ted
by guanidene carbonate (D4) which null result would
follow from Kleinman's conjecture (Secs. II.3 and
III.2).

Miller and Savage (MS62) have performed a
similar experiment using a CaW04. Nd+' laser as a
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source. Their laser radiated at 1.0582 p, with a power
of about 30 W during the pulse. The second harmonic
is now 5291 A, which allows the investigation of
crystals which are opaque to the second harmonic of
ruby-laser radiation. These considerations apply, for
example, to CdS, ZnO, PbTiO3, BaTi03, which were
among the crystals investigated. However, KDP and
ADP were still found to be the most eKcient second-
harmonic generat, ors even at this longer wavelength.
These authors have also survived visual observation
of this harmonic.

Boyne and Martin (BM62) have used a 21-ft
radius, 15 000 lines per in. concave grating to com-
pare the wavelength of ruby laser light to that of the
second harmonic produced in various matenals. In
experiments with two different ruby rods and three
different crystals, the ratio was found to be two,
within the experimental error imposed by the line-
width of the radiation and the resolution of the instru-
ment. The accuracy varied with the eKciency of
harmonic production and was given as: Quartz
& 6 ppm, EDP & 3 ppm, TGS + 4 ppm.

Abella (Ab62) has recently performed a series of
experiments with ruby laser second-harmonic genera-
tion in KDP. A distinguishing feature of this work
was that the laser was operated as close to threshold
as possible so that eGects due to thermally induced
shifts of laser frequency throughout the pulse were
minimized. The conclusion of this work is that the
frequency ratio is two, within ~ 1.5 ppm.

These careful examinations of the frequency ratio
are motivated in part by the possibility that phonon
processes in the second-harmonic production might
be significant. These processes could in principle pro-
vide shifts as well as broadening in the observed sec-
ond harmonic radiation. No evidence for these effects
were found within the precision of the work of Abella,
or Boyne and Martin. If and when second harmonics
can be achieved with the use of extremely mono-
chromatic sources it might be well worth extending
these studies.

V.3. Sum-Frequency Experiments

The wavelength of the ruby laser radiation depends
on the temperature of the ruby (AC61), with a
variation of about 10A between liquid nitrogen and
room temperature. In the experiment of Bass et ct.
(B62), the light from two lasers operated at these
temperature extremes were mixed in a TGS crystal.
The two laser beams were combined with a half-
silvered mirror and focused onto the crystal with a
16 mm f.l. lens. Spectrographic examination of the
emergent radiation revealed the presence of an

ultraviolet frequency equal to the sum of the two
laser frequencies, as well as the second harmonics of
each component, . The intensity of the sum frequency
was intermediate between the second harmonics, as
expected, and the second harmonics as well as the
sum frequency disappeared when the crystal was
above its Curie temperature (50'C), for which con-
dition TGS is known to be centrosymmetric.

Smith and Braslau (862) have demonstrated the
mixing of ruby laser radiation with both the green
and yellow lines from a mercury arc lamp. CollimaI;ed
beams from the sources were combined with a
dichroic mirror and the combined beam passed
through a KDP crystal in an index-matching di-
rection. The sum frequencies were distinguished by
a monochromator and filters and detected with a
photomultiplier. The intensity at the sum frequency
was shown to be proportional to the mercury lamp
intensity and to have the expected dependence on
orientation of the crystal. Estimates of intensities
were: ruby-laser beam, 1000 W; mercury green line,
0.02 W; sum frequency, 10-' W.

Miller and Savage (MS62) have observed the sum
frequency of ruby and CaWO4 ..Nd+' radiations which
were combined and focussed into various crystals
(KDP, ADP, BaTi03, tourmaline) exploiting index
matching, in the same apparatus mentioned in Sec.
V.2 for second-harmonic generation. The intensities
before combination were: ruby laser, 115W; CaWO4.'

Nd+' laser, 30 W. 10' to 10' photons at the sum fre-
quency were detected. "
V.4. The 8c Effect and Low Difference Frequencies

Theoretical aspects of the "dc effect" in which
radiation at two slightly different frequencies pro-
duce a low-frequency polarization in the medium
have been discussed in Sec. IV.3. The difference fre-
quency is considered "low" when it is small compared
with any ionic or electronic absorption bands in the
crystal. The theory of Sec. IV.3 established a rela-
tionship between the "dc effect" and the linear elec-
tro —optic effect. This relationship can be expressed in
terms of the contracted tensor elements X'; charac-
teristic of the dc effect and the elements X"„;charac-
teristic of the electro-optic effect

(V 1)
The experimental data on the electro-optic eGect'
is conventionally expressed by a contracted tensor

9' Rote added in proof. These authors have also observed the
sum frequency of the 1.0582 p, and 1.0652 p lines emitted
simultaneously by the CaW04'. Nd+3 laser, as well as the second
harmonics of each.
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r„; defined in terms of the index of refraction n by

6(1/n')„= r„;E';. (V.2)

Manipulation of Eqs. (IV.12), (V.l), and (V.2) yields
the relation

Quartz: r4, ——1.4, r» ——0.59,
X11 ———0.27,

X14 ——0.63

KDP: r63 ———32, r41 ——26, X36 ——13,
X14 = —11 . (V.4)

Oiordmaine, Richards, and Yariv" have searched
for the dc effect in quartz in a mixing experiment
with the beams from "hot" and "cold" ruby lasers
(See Sec. V.3 on the mixing experiments of Ba,ss et al.)
The difference frequency in this case lies in the far
microwave region at a wavelength of 0.05 cm. The
quartz was cut to satisfy index-matching require-
ments, and a search for the microwave radiation was
performed with a sensitive bolometer. The null result
of their experiment would indicate that the magni-
tude X', 1 & 10-' esu, to be contrasted with the ex-

pected value of 2.7 )& 10-' esu given above.
Blackwell, Col.egrove, and Walters" have per-

formed a series of experiments in which a ruby-laser
beam of one kilowatt intensity was amplitude modu-
lated at 9 kMc with a Kominow modulator. The
modulated beam was projected through various crys-
tals situated in a microwave cavity to which was
coupled a very sensitive superhetrodyne receiver
tuned to 9 kMc. From their null results they estimate
that the relevant coeKcients in KDP are probably
less than half the values listed above. '"

V.S. Surface Harmonics

A system which consists of two different media
separated by a plane boundary does not have a center

o These data are for the "unclamped" electro-optic effect.
For comparison with experiments at difference frequencies
large compared with mechanical resonances (say & 1 Mc) all
the numbers in Eq. (V.4) should be reduced by about 10%
[H. Saffe (private communication)].

~~ J. Giordmaine (private communication).
rs G. K. Walters (private communication).
~2 iVote added in proof. The dc effect has recently been ob-

served by M. Bass, P. A. Franken, J. F. Ward, and G. Wein-
reich. (Phys. Rev. Letters 9, 446, 1962.) The beam from a 1
MW "giant-pulse" laser was projected through a sample of
EDP which formed the dielectric of a parallel plate capacitor.
The induced voltages were found to be in reasonable agree-
ment with values predicted from the data of Sec. V.4. The de-
pendence of the voltage on the plane of polarization of the
laser beam, and the relative magnitude of the effect in EDP
and deuterated KDP are in good agreement with theory.

(V.3)

The relevant experimental data for quartz and KDP
in units of 10-' esu are ' "

of inversion. This implies that a nonzero third-rank
tensor may be associated with the system so that
second-harmonic generation is allowed, whatever the
point symmetries of the two constituent media. More
physically, the magnitude of the displacement of an
electron near the surface in the dielectric depends, not
only on the magnitude of the optical electric Geld, but
also on its direction. This picture also indicates that
only a few molecular layers of the dielectric can con-
tribute, so that the second-harmonic radiation will be
modest compared with the bulk effects described
previously.

Edwards et c/. 13 have reported second-harmonic
generation by an extensive list of surfaces. Terhune
et al. (T62) during their experiments with calcite to
be described in Sec. V.6 noticed that the second-
harmonic radiation had a contribution which was in

phase with the dc electric field induced bulk effect but
whose magnitude was independent of that Geld. The
slow variation in magnitude with the angle of inci-
dence of the laser beam for the field-independent con-
tribution contrasted with the sharp angular depend-
ence of the bulk effect near the index-matching angle.
The eA'ect was virtually eliminated when the calcite
crystal was immersed in a liquid of the same refrac-
tive index. These observations are consistent with the
interpretation that surface production of second
harmonic occurred.

The reader is referred to the paper of Bloembergen
and Pershan (BP 62) for a detailed discussion of light
waves at the boundaries of nonlinear media.

V.6. Higher-Order EBects

Evidence for several higher-order effects has come
from an elegant series of experiments by Terhune
et al. (T62). All third-rank tensor susceptibilities and
their associated effects vanish, as the crystal has a
center of symmetry but effects with fourth-rank
tensor coeKcients are not forbidden.

The third-harmonic production process is charac-
terized by a fourth-rank tensor X'" where

p; = X piE,EIE).
About 104 third-harmonic photons were produced per
laser pulse and the magnitude of the relevant ele-
ments of X,', &~ were estimated to be 10-""esu.

Second-harmonic production induced by the pres-
ence of a dc electric Geld is characterized by a fourth-
rank tensor X'""where

~3 D. F. Edward, J. G. Mavroides and B. Lax, Bull. Am.
Phys. Soc. 7, 14 (1962). These data were presented orally and
are not surveyed in the abstract.
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When a dc electric field of up to 250 kV/cm was ap-
plied to the crystal transverse to the incident ruby
laser light beam, significant second-harmonic produc-
tion was observed. The second-harmonic intensity
was proportional to the square of the dc electric field,
which is consistent with the above equation. The
same qualitative features were observed for each of
two incident beam directions —both satisfying the
phase matching condition and the magnitudes of the
relevant elements X;;~',P were estimated to be 10-"
esu.

As the dc electric field was reduced, another small
contribution to the second-harmonic radiation in
phase quadrature with the dc-induced radiation be-
came apparent. This is consistent with the processes

2' 2' ~cd ~co
gz~ = g'~7 t~l~i ~

between which the experiment was not able to dis-
tinguish. The magnitude of the relevant elements of
X",,"&~ or q,',"&f were estimated to be 10 "esu.

V.7'. Parametric Amyli6cation

Nonlinear optical effects provide two approaches
to the problem of using an optical source to provide
coherent radiation at a lower frequency. One, which
has been discussed in Sec. V.3, is the mixing of two
sources to give a difference frequency. The other is to
use the coherent source to provide pump power for
the parametric ampliGcation of lower frequencies in a
nonlinear material. An important feature of para-
metric amplification is that it takes place for two
frequencies simultaneously, ~+ and ~& (referred to as
"signal" and "idler" frequencies) which are related to
the pump frequency cubi by co& ——coa + ~,. The tech-
nique is appealing because the frequency of the radia-
tion generated (or rather, the frequency of the
"noise" which is selectively amplified) is in principle
continuously variable over a considerable range. The
severe experimental problems lie in devising a geom-
etry for the systems which, with the dispersion of the
medium, permit the index matching condition to be
satisfied. The conversion e%eiency for an ideal con-
figuration is ultimately limited by the Manley —Rowe
relations. Kingston (Ki62) and Kroll (Kr62) have
suggested ingenious arrangements which, to our
knowledge, have not yet been experimentally real-
ized.

For pedagogic purposes a schematic representation
of the parametric process is now given which makes
the following grossly simplifying assumptions [see

(Ki62), (462), and (Kr62) for more sophisticated dis-
cussions. ]:(i) ~i ——~& ———,

'
co~ ——-', a& that is, the sub-

harmonic is being amplified; (ii) The nonlinear ma-
terial has a permeability and linear dielectric con-
stant both equal to unity at all frequencies. This re-
moves from the discussion the possibility of phase
mismatching between pump and signal fields. It is
not to be inferred from this assumption that the prac-
tical problems which arise because of dispersion are
insignificant; (iii) The tensor character of the non-
linear susceptibility is ignored. Choosing phases so
that a real positive amplification results, plane waves
at pump and signal frequencies in the medium are
taken as

E„=ip, sin co(t —%),
E, = ip, (z) cos —', ~(t —z/c)

H, = jp, (z) cos —', ~(t —z/c) . (V 5)

p. (z) is a slowly varying function of z representing
the amplification and p, is taken independent of z, as
the interaction between pump and signal is small.

The nonlinear susceptibility X of the element mixes
pump and signal fields to produce a contribution to
the nonlinear polarization with x component p. given
by

(E, x H, ) dS = —— (E, + H, )dV
c -, 1

4~ s+s', ' Sx 8t

+ E, 'dV.
dt

(V.7)

The terms are, respectively, energy Qow out of the
element, energy stored in the element, and work done
by the nonlinear polarization. Inserting Eqs. (V.5)
and (V.6) into Eq. (V.7) and taking time averages
over an integral number of cyles yields

I 8p, (z) marco

p (z) Bz 2c (V.S)

p, = Xp„p, (z) cos -', co(t —z/c) sin cu(t —z/c)

= -', Xp„p.(z) [sin $ o)(t —z/c) + sin -', a)(t —z/c) I

giving a polarization P, at the signal frequency

P, = -', *"Xp„p,(z) sin -', co(t —z/c) . (V.6)

This polarization does work on the signal wave and
so ampliGes it. The two waves are incident on a non-
linear element of unit cross section in the xy plane
and we consider energy balance at the signal fre-
quency for the volume bounded by planes z = 0,
z = Az. S& and 82 are the outward normals at z = 0
and z = 5z, respectively.
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Integration of Eq. (V.8) gives

p. (s) = p (0)&* (V.9)

L = (2c/s-(u) (1/Xp„) (V.10)

For a ruby laser delivering 5 J per cm' in 5 p 10 '
sec and estimating X = 10 "esu we obtain

where p. (0) is the signal field amplitude at s = 0 and
L is the characteristic length for amplification by a
factor e:
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The eGect is therefore very small in the traveling
wave case. Various embodiments employing resonant
structures are considered by Kingston (Ki62) and
Kroll (Kr62) and are shown to be nearer feasibility.

V.8. Two-Photon Excitation

Kaiser and Garrett (KG62) have observed the very
interesting process of real two-photon absorption in
CaF2.Eu'+. In these experiments ruby-laser light
(6943 A) was focused into a thin slab of CaF2'.Eu'+
located at the entrance slit of a spectrograph. The
light transmitted by the crystal was found to contain
blue ( 4250 A) light as well as the incident laser
radiation. This effect was due to a process involving
two (6943 A) photon absorption to a real excited
level, followed by nonradiative decay to an inter-
mediate lower level and subsequent emission of 4250
A radiation from that level to the ground state.

The absorption of the laser radiation (~ 14 000
cm ') is interpreted as a two-photon process because
the lowest-lying levels in the crystal are at 22 000
cm ' and, most importantly, the observed intensity
of the blue light was found to vary quadratically with
the intensity of the incident radiation. The observed
magnitude of the effect is in satisfactory agreement
with a theoretical discussion of the process (K162c).

This process differs significantly from the lowest-
order second-harmonic production in that it involves
four rather than three (real and virtual) levels, so
that the restrictions imposed by symmetry considera-
tions are entirely different. In particular, the relevant
levels may now be eigenstates of parity so that the
effect can be observed in crystals such as CaF:Eu'+
which have a center of inversion. '" '"

I3' Note added in proof. Two photon excitation has recently
been observed in a vapor of atomic cesium by I. D. Abella.
[Phys. Rev. Letters 9, 458 (1962).] The 6SI/2 —9D3/2 transition
( 8470 A) was excited with a ruby laser ( 6940 A), and the
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subsequent emission of 9D3/2 —6P3/& radiation at 5850 A
was detected. Thermal tuning of the laser frequency was ex-
ploited in order to achieve the two photon resonance condi-
tion. The numerical results of this experiment are in reason-
able agreement with theory.

I3b Note added in proof. The striking discovery of stimulated
Raman scattering from organic liquids has recently been re-
ported by G. Eckhardt, R. W. Hellwarth, F. J. McClung,
S. E. Schwarz, D. Weiner, and E. J. Woodbury. [Phys. Rev.
Letters 9, 455 (1962).] The liquid was contained within the
optical cavity of a ~l MW "giant-pulse" ruby laser. In this
arrangement the intensity of the stimulated Raman emission
is proportional to the product of the Raman and ruby radia-
tion intensities in the liquid, and both radiated beams have
the same spatial characteristics. Conversion efFiciencies as
high as 10% are reported.


