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we obtained an explicit time dependence which we
could handle. "
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1. INTRODUCTION

&HIS article outlines the linear theory of waves
in stratifMd, compressible Quids in a gravity

field, at rest with respect to inertial or rotating co-
ordinates, and neglecting viscosity and heat con-
duction. From a mathematical standpoint, this is
one of the simpler branches of hydrodynamics, since
it involves the solution of second-order differential
equations which are linear. Despite its formal sim-

plicity, the field has not been truly preempted.
Eckart's recent and interesting book' on the subject
is clear testimony to this.

* Columbia University, Hudson Laboratories Contribution
No. 157.

~ This work was supported by the Once of Naval Research.
I Carl Eckart, IIydrodyncmics of Oceans and Atmospheres

(Pergamon Press, New York, 1960).

There are four principal effects in the assumed
model: compressibility, stratification, gravity, and
rotation. Considering individually the cases for
which these features are either present or absent,
one could construct many diferent models, the
simplest of which, obtained by ignoring all but one
or two of these effects, are well known and under-
stood. Thus, one may think of sound waves, surface
gravity waves, tidal oscillations, and the effect of
Coriolis forces upon these. On the other hand, the
effects of density stratification and gravity upon
very-low-frequency sound in the atmosphere and the
behavior of internal gravity waves in the oceans and
atmosphere have certainly not been as systematically
studied, although Eckart's work' ' has done much to
remedy this situation. The formal simplicity of the
equations may lead one to feel that the answers to
all these problems, even if not actually known in
detail, can at least be deduced from available solu-
tions. This point of view, although justifiable perhaps
from a purely mathematical standpoint, is of little
actual help to the physicist involved with these
questions. More often than not the propagation of
the various possible modes of motion is dispersive and
anisotropic, depending upon several physical parame-
ters, and a surprising variety of possibilities lurks
beneath the deceptively simple appearance of the
equations.

s C. Eckart and H. G. Ferris, Rev. Mod. Phys. 28, 48 (1966).
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The geophysicist, oceanographer, or meteorologist
needs more than the statement that a mathematical
or numerical solution is feasible. He is required to
make idealizations and approximations, and for this
he needs a precise understanding of both the nature
and the order of magnitude of the phenomena in-
volved. Otherwise he will make mistakes, and, ac-
cording to Eckart, ' mistakes of this type are not
infrequent in the oceanographic and meteorological
literatures.

One is led to wonder why no systematic treatment
of the field had appeared until 1960. Perhaps this
was because the wave motions predicted by theory
for a Quid at rest may often be masked in practice by
other natural motions due to currents, winds, turbu-
lence, etc., so that people were prompted to investi-
gate the more complex cases only, by-passing the
simpler but nonetheless fundamental problems for a
Quid at rest.

Another possible reason is the dearth of unambigu-
ous experimental data. Take the case of deep ocean
measurements of internal waves. It appears very
likely that such waves have in fact been observed
(see Cox, ' Haurwitz et cl.,' Pochapsky, ' and La-
Fond' ), but the results are ambiguous in the sense
that it is conceivable that these measurements do not
correspond to waves at all. All the data have been
taken at a single point, and as a result the true wave
nature of the observed motion has not been estab-
lished, e.g. , Haurwitz et al. ,

4 and Pochapsky. ' Meas-
urements at several fixed points will be required to
establish the travel-time and diagnostic dispersion
curves essential for showing that these are waves of
a given type. This raises some practical problems in
the case of deep water. In shallow seas the experi-
mental obstacles are less severe: LaFond, ' Ufford, '
Lee, ' and others have obtained unambiguous results,
and traveling internal wave systems have been posi-
tively identified. In the atmosphere the "lee waves, "
forming to leeward of a mountain range over which
a steady wind is blowing, ""have been shown to be

3 C. Cox, Meeting of the International Union of Geodesy
and Geophysics, Helsinki, Finland, August, 1960 (unpub-
lished).

4B. Haurwitz, H. Stommel, and W. H. Munk, in The
Atmosphere and the Sea in 3EIotion, Rossby Memorial Volume,
edited by B. Bolin (Rockefeller Institute Press, New York,
1959).

s T. E. Pochapsky, Deep-Sea Research S, 269 (1961).
s E. C. LaFond, J. Geophys. Research 57, 8578 (1962).

K. C. LaFond, in Marine Sciences Instrumentation, edited
by R. D. Gaul, D. D. Eetchum, J. T. Shaw and J. M. Snod-
grass (Plenum Press, Inc. , New York, 1962), Vol. I, p. 187—155.

8 C. W. Ufford, Trans. Am. Geophys. Union. 28, 87 (1947).
9 O. S. Lee, Lirnnol. Oceanog. 6, 312 (1961).
&e G. Lyra, Z. Angew. Math. u. Mech. 23, 1 (1948).
ii L. Prandtl, L&'ssentials of Fluid Dynamics (Hafner Publish-

ing Company, Inc. , New York, 1952).

internal waves (which can be viewed as excited by a
moving source, i.e., a wave wake in which the domi-
nant wavelengths are those whose phase velocity
matches the relative velocity between the source and
the receiver, as in Lamb's fishiine problem" ). It has
also been suggested that certain types of banded
cloud structures are explainable along these lines. "

It has seemed worthwhile to recast the subject
matter so as to provide a point of view different from
the usual ones resulting from linearization of the
equations of Quid mechanics. Thus, the formulation
of the equations of motion is greatly simplified by
using a variational approach (Sec. 2). It will be
shown that this leads to equations for the disp/ace-
ments from equilibrium (Sec. 3), which are directly
measurable and intuitively visualizable quantities.
These equations are identical to those one obtains
from Biot's theory for waves in prestressed elastic
media" (by making the rigidity vanish).

However, this article is more than a reformulation
of problems discussed elsewhere. It is also an e6ort
to shed further light on the basic mechanisms of
wave motion in stratified Quids, in the course of
which we shall examine a series of simple, limiting
cases obtained by considering the principal physical
effects either singly or in partial groupings. This
brings out some interesting phenomena and prepares
one for coping with more realistic and complete
models. This outline is self-contained and does not
not presuppose any prior acquaintance with the
subject matter.

2. ENERGY DENSITIES, LAGRANGIAN

Consider a vertically stratified, compressible fluid
at rest in a gravity field. We consider a stationary
Cartesian coordinate system, x, y, z, with s the verti-
cal axis (pointing up) and g the gravity field (point-
ing down). Let P, rt, i be the x, y, z components of dis-
placement of a Quid element from its equilibrium
position, and p(z) the equilibrium density of the fiuid
(Fig. 1).

The kinetic energy density is

(2.1)

iz H. Lamb, Hydrodynamics (Dover Publications, New
York, 1932).

'3 E. E. Gossard and W. H. Munk, J. Meteorol. 11, 259
(1954).

&& M. A. Biot, J. Appl. Phys. 11, 522 (1940). Also a general
variational theory by Biot, incorporating a number of new
results has appeared as a U. S. Air Force O.S.R. report
(September 1962), under the title "Generalized Theory of
Internal Gravity Waves" (to be published as a paper).
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there
(2.10)

where now the form of Ap depends upon the agency
setting up the compression. If this compression is

simply that due to the displacement field in the fiuid,where

wherethe dotsrepresent thedifferentiation8/Bt, with through some external agency the fiuid element is
respect to time. compressed. Equation (2.5) is still valid, and the

The potential energy density is a sum of several potential energy associated with a displacement f' is
terms. First of all, the fluid being compressible,
is an elastic energy, which is

(2.11)

Vs = —pgf'e.

Thus, the Lagrange density is

I = F —(Vg + V2 + Va)

(2.12)

(2.13)
FIG. 1. Coordinate sys-

tem used. g is the constant
gravity field.

is the incremental volume change or strain, and

) =pc

is the bulk modulus, c being the velocity of sound.
There is also a gravitational energy. Thus, if in a

stratified Quid an element is given a vertical dis-
placement, it is moved into surroundings of different
density. There will then be a buoyancy or Archimedes
force acting on it to bring it back to its proper equi-
librium level. This Archimedes force is, simply,

~ = —;p(i'+~'+P)——:&'

+ l gl'(~pl&~) + pgf~ (214)
where e is defined by Eq. (2.3).

From Eq. (2.14) we can now easily deduce the
equations of motion by applying Euler's variational
equations. Before we do so, let us resume the reason-

ing used in the derivation of the gravitational ener-

gies. Consider a single element of fiuid displaced
vertically from its equilibrium position, independ-

ently of its neighbors, e.g. , a sphere of unit volume

which we may conveniently visualize as surrounded

by a perfectly flaccid, thin membrane. ' When we re-
lease it, its motion will obey the equation

(2.15)

where Ap is compounded of two terms:

where

II = —ghp,

~P Pi Po

(2.5) hp = dpi+ Apg. (2.16)

The first term ignores compressibility and is given

(26) by Eq (27):

is the difference between the density inside the Quid

element p; and the density outside po.

For a vertical displacement f', in an incompressible

Ap, = —f'(dp/de) . (2.17)

The other term, hp&, is the change in density due to
compressibility, which, in this case, is produced by
the change in hydrostatic head P:

Ap = —l (dp/dz) (2.7) AP = l (dP/dz) .

But we know that for adiabatic expansion

(2.18)

F = gl'(dp/de) .

The corresponding potential is, therefore,

V2 = —-', gl'(dp/de) .

(2.8)

(2.9)

(2.19)

(2.20)

Ap = (1/e')AP .

The fundamental equation of hydrostatics being

If the Quid is compressible there is an additional term,
representing a correction to Eq. (2.9). Suppose that

we have

~p = —(gle')pl, (2.21)
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a,nd Eq. (2.15) gives

f —g[(d/de) ln p + g/c']f = 0. (2.22)

Thus, when the term in brackets is negative, the
element of Quid goes into simple harmonic motion
such that the square of its angular frequency is

X' = gKd/—de) ln p + g/c'] . (2.23)

The manner in which we have chosen our coordinate
system implies that (d/de) ln p ( 0. Thus, for a,

sufIiciently pronounced density variation

gravity Geld, at least in localized areas on the surface
of a planet. "In this approximation, we must add to
the r.h.s. of the P, g, 1 equations the z, y, e components
of

F = pVA2~, ,

where V is the particle velocity vector and ~„ the
angular velocity of the planet. To conform with
standard notation we define the Coriolis vector Q as

(3 4)

and the components of Eq. (3.3) are given by ex-
panding:

l(d/de) 1» pl ) g/c' (2.24)

the situation is stable, and the medium is character-
ized for each value of z by a natural, or resonant,
frequency of oscillation known as the Voisola fre
quent, defined by Eq. (2.23).

Note once more the two terms in Eq. (2.23) play
opposing roles. One is the eBect of density stratiG-
cation, and the other the effect of adiabatic expansion.
In general, terms of the type g/c' will represent buoy-
ancy effects due to the compressibility of a Quid in a
gravity Geld.

1, I„ 1,

0 0„ 0,
where 1., 1„, 1, are the x, y, z unit vectors and 0„&„,
0, the x, y, z components of Q.

Equations (3.2) a,re a, limiting form of Biot's equa-
tions for a prestressed elastic solid, '4 obtained by
making the rigidity vanish and assuming that the
state of prestress is that of a hydrostatic pressure
field due to the fluid's weight.

%e see that the derivation of these equations from
first principles is very direct and clear. They can also
be derived by applying the usual perturbation tech-
niques to the nonlinear Euler equations, but this
derviation is laborious and requires the use of
thermodynamic concepts. These equations are com-
pletely equivalent to Eckart's. '" They have the
advantage of describing displacements from an equi-
librium state, i.e., quantities which are both easily
visualized and directly observable. They also bring
out clearly the two essential physical parameters: the
density p and the bulk modulus X.

Note that the pre88ure8 p associated with the dis-
placements in Eqs. (3.2) can be deduced by referring
to Euler's equations, e.g. , in the absence of Coriolis
forces,

3. EQUATIONS OF MOTION

Given a Lagrange density L that is a function of
the generalized coordinates q and of their partial
derivatives q., q„, q., g&, the principle of least action
leads to the Euler-Lagrange equations:

B BL B BL
BS Bg~ Bg Bgg(

8 BL
Bt Bg,

Applying this to Eq. (2.14) and the coordinates P,

q, 1 wehave

=0,p4—

l9 Bl~e+ pg BBg Bg

~e Bp Bg
pl — Xe —pg + = 0 .

88 8$ Bgl

=0,
Bp/Bx = —pP.

(3 2) 4. SEPARATION OF THE EQUATIONS OF MOTION

These are the general equations of motion of a strati-
Ged compressible Quid in a constant gravity field, in
an inertial Cartesian frame x, y, z, expressing the fact
that the forces of inertia are balanced by those of
elasticity (or constraint) and those of buoyancy. If
one wishes to consider a rotating system of coordi-
nates, one must add to the r.h.s. the appropriate
components of the Coriolis and centrifugal forces.
The latter can be considered as incorporated in the

The equations of motion are separable for a
vertically strati6ed Quid, i.e., when p, X are functions
of e only. Separation is accomplished in the usual way
by assuming $, g, f proportional to e" + e"

I" The resultant of the centrifugal and gravitational 6elds
is then taken as defining both the direction of the vertical and
the constant magnitude of g7. This ceases to be a valid approxi-
mation for small scale problems with rapid rates of rotation in
which the centrifugal forces may drastically aAect the equi-
librium geometry.

I6 A proof of this statement is given in the Appendix.
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cf', —gf
2 2 2

AC CO

(4 8)
orm.

Substituting in Eq. (4.7b), we get Eq. (4.1) with

f(z) = (d/dz) ln (p/5')

f-+f()f.+ ()f =0
The standard transformation (4.9)

When this assumption is applied to the equations of Since X = pc2 (4.7a) gives
motion (8.2), with the Coriolis force terms [Eq. (8.5) j
on the r.h.s., after elimination of $, g, one obtains a
second-order differential equation for f of the f

gives

Z

f = h exp —-', fdz (4.2)
2 2 2

r(s) =5 —,g ln
n d p n g
co dz 6 co c

(4.10)

h„+yh =0 (4.8) where 5 represents the "pure" acoustical wave num-
ber in the absence of gravity and density effects:

V = & —Xf —2f*.1 2 1 (4 4) 5 = M/C n ~ (4.11)

It is clear from Eq. (4.10) that the gravity buoyancy
forces dominate at very low frequencies, but become
negligible at high frequencies. Note that f, r depend
upon both the density and sound velocity gradients,
but the latter only plays a role in practice for "pure"
acoustical waves in the high frequency range (see
Sec. 9). Thus, we assume for present purposes

Equation (4.8) is the usual separated form of the
wave equation. The function h has an oscillatory type
solution when y2 & 0 and y may be interpreted as
the vertical component of the wave number, 0. and

p being the horizontal components. When y' ( 0, its
behavior is exponential or hyperbolic.

There are no difhculties in obtaining Eq. (4.1) for
the general case when Coriolis forces are present.
However, there is not much point in doing this except
for special orientations of the Coriolis vector, be-
cause, in application to actual problems, the concept
of Coriolis forces in a Cartesian system of axes is
useful merely for qualitative, locally valid approxi-
mations. We shall be interested only in the type of
effect produced by Coriolis forces, and for this it is
suKcient to examine the two limiting cases of either
a purely vertical or a purely horizontal Coriolis
vector Q.

First we make a sample derivation of Eqs. (4.1)
and (4.8) in the absence of Coriolis effects, to illus-
trate the mathematical steps in their simplest form.
When 0 = 0 it is possible to consider the case of plane
waves propagating in the x and z directions without
loss of generality, and the equations of motion (8.2)
become

(4.12)c = const .
Then

f = (d/dz) In p,
r = ~ /c —n + n (X /(u ) .

(4.18)

(4.14)

The transformation of Eq. (4.2) is

g
—i/2 (4.15)

and the equation in A, ,

h., + y'Ii = 0, (4.8)
with

2
2 2 2 y d 12 1+ X ——,

' inP I
—

2 2.nP.c Go dz ) 6z

(4 16)
This is the equation describing the propagation of
waves in a density stratified compressible Quid in a

(4 5) gravity field, with constant sound velocity c.
If p is an exponential function of z,

P&
—(8/Bx)ke+ Pgg. = 0,

pl —(8/Bz)X2 —pg(, = 0,
with

2vz
~ = 4 + P. = in( + t * (4 6) P = P08 (4.17)

Using the assumPtion of ProPortionahty to e'"* "", g2, s a ~~~~ta~t and (d2/dz2) ln & 0
Eqs. (4.5) become (4.16) defines then a constant coegcient:

2 2
2 2 2 2= —

2
—n+ 2X —i

C GO

—p(o $ + Xn $ —Aint, + pox f = 0 (4.7a)
(4 18)

poPl + X,(in) + t,) + X(in), + f'„) + pgin$ = 0 .

(4 7b) An exponential distribution of density Eq. (4.17) is
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realized in the isothermal model of the atmosphere choose the y axis parallel to Q:
for which 0 = IQ~. (4.27)

g= 1.4 —2,c
g C)i

2P = 2
C Cv

where c„/cr is the ratio of specific heats.
Unfortunately, the assumption of constant co-

eKcients is seldom realized in nature. Typical N(z)
graphs show a series of maxima and minima in the
atmosphere (shown in Fig. 12 below) and usually at
Ieast one pronounced maximum near the surface for
oceans or lakes. ' However, we shall have occasion to
dwell at length on this idealized model, since it will
illustrate some of the basic phenomena in their
simplest form.

When Coriolis forces are included in the picture,
there arises a distinction between the x,y components,
and the full three-dimensional equations (8.2) must
be used, with the appropriate Coriolis forces on the
r.h.s.

If Q is purely vertical,

22 ~a~g+ pc
CO

—k C CO

2—coQII

(4.28)

Pg —~Pc
" —Pc f, , (4.29)

CO —k C M

Q~ 1 22 ~II+ 2 Ag+ pc MQ~
GD C GO

1 d 1
ln P ———

2 ln P .4 dz 2 Qz
(4.80)

This is an approximate model for the behavior of
waves in the equatorial regions.

(4.20)Q = 1,Qv)

and the Coriolis force components are, by Eq. (8.5),
pitQ&, —pjQ&, and 0 along the x,y, z axes. It is then
a simple matter, assuming as before proportionality
to e'( + ~" "'&, to obtain from the first two equations
(8.2)

S. GENERAL PROPERTIES OF THE
EQUATIONS OF MOTION

In the previous section we showed how the study
of waves in a general stratified Quid reduces to the

(4 21) equationin —p(Qv/~)
(gf Clz) 2 Q2 2( 2+ p2)

h,.+yh = 0, (5 1)
and we derived expressions for y2 valid for a broad
variety of conditions. Also we obtained explicit
expressions for the Quid displacements.

Several comments of a quite general nature should
be made at this point.

The first remarks concern the implications of the
form of Eq. (4.16), and Eqs. (4.26) and (4.80), for
p'. When y' ) 0, the solutions of Eq. (5.1) can be
analyzed into plane progressive waves, y being the
vertical component of the wave number. Equations
(4.16), (4.26), and (4.80) provide an explicit relation-
ship between it, the two horizontal components u, p,
and the frequency ~ of the form:

zp + n(Qi/a&)
(gt C tz) 2 Q2 2( 2+ P2)

(4.22)

Substituting Eqs. (4.21) and (4.22) into the third
equation (8.2) and writing

(4.28)k =a+p,
one finds, using Eq. (4.12),

f(z) = (d/dz) ln p (4.24)
2 2 2

CO 2 M N
r(z) 2 It 2 2 + ~ 2 2c —~v co —v (4.25)

and in Eq. (4.8) we put

(4 ]9) The Coriolis force x,y,z components to be introduced
on the r.h.s. of Eqs. (8.2) are, respectively, —p&Q„,O,

and p(Q~. It is easily verified that,

ln p y = F(n, p, (u) . (5 2)

1 , lnp.
dz

(4.26)

This describes approximately the behavior of waves
in the polar regions of the planet.

On the other hand, if Q is horizontal, we may

Now, since n, p, y are the three components of a
vector in a Cartesian system, it is clear that, if in
Eq. (5.2) they do not occur in the simple combination
~' + P'+ y' = E' = co'/V', the properties of the
propagation are going to depend upon direction,
i.e., there is anisotropy Also, if Eq. (5.2.) is not of the
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~ k'/a'~ 7'/b' = 1

k =n+P, (5.8)

defining an ellipsoid (two plus signs) or hyperboloid
of revolution about z of half-axes a,b. The radius
vector drawn from the center of the quadric inter-
sects the latter at a point defining the magnitude of
the wave number, i.e., the index of refraction, corre-
sponding to this direction. Thus, this quadric is the
analog of the ellipsoid of indices used in crystal optics.

There can be two kinds of hyperboloid:

k/a' —y/b' = 1

is a hyperbolid of one sheet, whereas

—k'/a'+ y'/b' = 1

has two sheets. In both cases

(5.4)

(5.5)

form K'V' = ~', the phase velocity co/K is not a
constant, i.e., it is frequency dependent and there is
dispersion. This dispersion is structural in origin, i.e.,
it is a characteristic property of the fiuid stratification
and is quite independent of any boundary conditions:
plane waves in an indefinitely extended medium will
be dispersive. This is to be contrasted with geometric
dispersion, which is brought about by interference
effects due to the reflection at boundaries. A simple
example of geometric dispersion is provided by per-
fect electromagnetic and acoustic waveguides. On
the other hand, a mechanism of dispersion which is
not geometric in origin is illustrated by the "anoma-
lous" dispersion of light caused by the existence of
atomic or ionic resonators in the medium. It seems
that structural and intrinsic dispersions are always
connected with such internal resonant frequencies
Thus, in the problems to be discussed here there are
three such resonances: one is the Vaisala frequency
(see Sec. 2), another is a distributed mass and spring
effect (acoustical resonance) (see Sec. 6), and a third
is gyroscopic resonance due to precessional motions
in a rotating fluid (see end of Sec. 6).

The anisotropy is, of course, due to the fact that
gravity and/or rotation establish a preferred orien-
tation in the system. In anisotropic systems it is
often convenient to consider Eq. (5.2) as the equa-
tion of a surface in n, P, y space, with ~ as a parame-
ter. This is known as the propagation surface, ' which,
in the cases we shall be concerned with, can be put in
the form

that only angles 0 & 0. are permissible, whereas for
Eq. (5.6) one must have e ( g. (Fig. 2).

Our third remark concerns curl or vorticity. If d is
the vector displacement ($,g, f'), it is seen from Eqs.
(4.8), etc. , that, in general,

curl d / 0. (5 7)

FIG. 2. Hyperboloid propagation surfaces.

For the case of no rotation [Eq. (4.8)] we have ex-
plicitly

'bA
curl d = 1„($,—f.) =

n c —co

X [c'f,. —gf. + (o)' —n'c') f'] . (5 8)

For the special cases g = 0, y' = ~'/c' —cF' (acoustic
waves in fluid of constant density) or f = e ', &v'

= ng (surface gravity waves), however, the bracket
vanishes and

curl d = 0.
6. INFINITE MEDIA: SPECIFIC EXAMPLES

OF BODY WAVES

(5.9)

%e can now illustrate the general features dis-
cussed in Sec. 5 by means of specific examples, first
reminding the reader that y', as given by Eq. (4.16),
(4.26), or (4.80), may contain four separate effects:
those of compressibility, density stratification, grav-
ity, and Coriolis forces.

The compressibility enters through terms of the
form oP/c' and g'/c' [second term in¹,Eq. (2.28)].
An incompressible model corresponds to c = ~.

The stratification comes into ¹ [first term in Eq.
(2.28)] and into the last terms of y', which are of the
form

e. = tan '(a/b) (5.6)

is the half-angle of the asymptotic cone, measured
from the vertica, l. In the case of Eq. (5.5) this means

1 d 1 d
Inp ——

2 lnp.
4 dz 2

In a homogeneous model (d/dz) ln p = 0.
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7' = co'/c' —a' (6 1)

and thus h, i obey the acoustical wave equation. "
(c) Density stratified compressible fiuid. For a

density stratified compressible Quid, without gravity
or rotation, our equations give results equivalent to
Bergmann's. "In particular, if

p = pp8

we get from Eq. (4.16)

2vz (6.2)

2 2g 2 2 2
y = co/C —a (6.3)

We see that the propagation surface is a sphere and
that propagation is therefore isotronic. We de6ne the
wave number in the direction of propagation:

K = [u'+ p']' '. (6.4)

&7 In the case of variable c, constant p, the displacement
Geld is irrotational, and it is well known that one may de6ne a
displacement potential @ which obeys the usual wave equation

4-+ v'4 = 0,
where y is given by Eq. (6.1), with c a function of z. Dif-
ferentiating this equation with respect to z and u, ing f = @„
we obtain Eq. (4.1) with f,g defined as in Eqs. (4.i0), (4.11),
and (d/dz) ln p = 0. Thus, the dispLacement g does not obey.
the wave equation in this case, although the potential @ and
the acoustical pressure p 82@j8t2 do.

rs P. Bergmann, J. Acoust. Soc. Am. 1T, 329 (1946).

Gravity enters in the definition of N2 and, when
the Coriolis vector is not vertical, through additional
terms.

The terms affected by rotation are obvious in Eqs.
(4.26) and (4.30). Note that for vertical 0 they corre-
spond to corrections of the order of 0'/u'.

Depending upon which of these effects are con-
sidered, one may construct a great number of distinct
models, corresponding to different types of wave
behavior, which may be entirely different in some
frequency ranges or almost identical in others. A com-
plete study of all these combinations would be too
long and rather unnecessary: it is enough to examine
the important cases.

(a) Incompressibte homogeneous fiuid without rota
lion. In an incompressible homogeneous Quid without
rotation, y' = ns, and n—o real propagating wave
systems exist in the absence of boundaries. The effect
of gravity enters in this case through the boundary
conditions only. Thus, surface gravity waves and
waves at the interface between two incompressible
media of different densities are pure boundary waves
and will be taken up in a later section.

(b) Compressibte homogeneous fiuid without gravity
or rotation. We need only point out that for a com-
pressible homogeneous fiuid without gravity or rota-
tion Eq. (4.16) reduces to

Thus,

(o = c[K + p']' '

K = [o)'/c' —v']'i'. (6.5)
The characteristic curve in the co,K plane is a hy-
perbola (Fig. 3).There is a cutoff frequency at

Mp =PC. (6.6)

—=CCd

K

Fre. 3. Structural
dispersion of acoustic
waves due to density.

The group and phase velocities U, V are, by Eq.
(6.5),

U = de/dK = c(l —a)'p/(o')' ',
V = a)/K = c(1 —cps/co')

' ',
UV = c'.

(6.7)

(6.8)

(6.9)

At pp = ~p, U = 0, c = pp, and the cutoff ~p is a
resonant frequency for propagating waves. This reso-
nance is characteristic of the fiuid body considered
as a distributed mass and spring system of variable
constants. This is the second type of resonance men-
tioned in Sec. 5 as being a source of structural dis-
persion in stratified media.

The particle motion can. easily be shown, with the
aid of Eqs. (4.8) and (6.3), to possess a transverse
component and to have a nonvanishing vorticity or
curl, P, —f;, as long as cop W 0, i.e., if the density is
not constant. Only in media of constant density are
sound waves purely longitudinal and irrotational.

It may be of interest to point out some orders of
magnitude. For the so-called isotht, rm, at atmosphere
Eq. (6.2) holds and

2v = — = —
2

———14 —,.g g Cp g
89 C CV C

(6.10)

When c„/cv is the ratio of specific heats, 8 = 2.9
X 10' erg/g deg. At g = 273'K, c ~ 3.3 X 10' cm
sec-' and 2v~ 1.2 X 10 ' cm ', corresponding to
periods Fp ——2s'/(op ~ 5 min. It is seen from Eqs.
(6.7) and (6.8) that departures of 5% or more f'rom

the propagation velocity e will occur for cop'/cu'

& 10-',i.e.,T & 1.7mi.n.
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In a typical ocean Eq. (6.2) does not hold. Laws of
variation of ¹ [Eq. (2.28)] are discussed in Eckart's
book' with reference to the real ocean. However, if
we assume, for estimating orders of magnitude, that
N' is constant and has the value /', we may apply
Eq. (6.2). A reasons, ble figure, corresponding to a
2% variation of p in 4km, is 2v ~ 5 && 10 ' cm '.
Since c ~ 1.5 && 10' cm sec-' this gives &as ~ 8 && 10 '
and Fs = 2s./&os ~ 85 min. Effects exceeding 5%%u~ of
the velocity of propagation of sound waves will ob-
tain for periods in excess of 10 min. This is hardly
likely to be an observable effect.

(d) Stratified incompressibLe Quid with gravity and
no rotation: internal waves. In this case, supposing
once more that Eq. (6.2) holds, Eq. (4.16) is

Thus, for instance,

3 2 3/2
—1 (y'+ v') '" (6.17)

V. = o~/a = co(X'/cv' —1)' '(y'+ v') ' '. (6.18)

Thus, the largest group and phase velocities occur
near co = 0 and for 7 = 0. As co —+ 0

V. ~ U. ~X/(y' + r')' '. (6.19)

The characteristic curves in the co,n plane are shown
in Fig. 4, where y is used as a parameter.

y' = a (X'/(v —1) —v' (6.11)

= 2' . (6.12)

The propagation surface is of the type (5.4) (hy-
perboloid of one sheet) with

2
P

X'/co' —1,
(6.18)

The asymptotic cone is defined by its half-angle
(Fig. 2a):

~pe

Q
eS+

Fig. 4. Dispersion of plane internal waves in infinite in-
compressible medium.

The particle motion is easily obtained as follows

by Eqs. (4.8), (4.15), and (6.2):

0 = tan '(¹/n~' —1) '~'. (6.14) &
= (i/a)L'* = (i/a) (v+ iv)L (6.20)

2 2 1/2

X /o~' —1
(6.15)

2 2 2 1/2 ~ (6 16)

This is the meaning of a rather recondite result displayed
by L. Landau and E. Lifshitz in their book Fluid Mechanics
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1959), Sec. 14.

Only the region 8 & 8. corresponds to real waves.
Propagation is therefore both intrinsically dispersive
and anisotropic. %hen w is suKciently small, and

e, p sufficiently large, the propagation surface is
indistinguishable from the asymptotic cone, and for
any given frequency there is essentially but one
direction of propagation. "

In general we see that one must have co & X:The
resonant sisal@ frequency is thus a high-frequency
cutoff. One may define the horizontal and vertical
components of the group and phase velocities as
8~/Ba, Boo/By and co/a, ~/y, respectively.

From Eq. (6.11) we deduce

for upgoing waves. Therefore, if

L
= cos ~t

$ = (v/a) sin cA —(y/a) cos nit, (6.21)

eliminating time, we obtain the equation for the
particle orbit

For ~ & X this is the equation of an ellipse.
For co~X, a —+ ~, $ = 0, and the motion is

purely vertical.
For y = 0, (horizontal propagation) we have an

ellipse of vertical semi-axis v'a '(¹/aP —1)-' and
horizontal semi-axis s'n '.

For cv X the motion is essentially transverse.
For X/2'~' ( oi (X the motion is elliptical with

vertical axis longer than horizontal.
At ~ = X2 ' ' the orbit is circular, and for 0 & co

& Ã2 ' ' it is a horizontally elongated ellipse.
Finally for co —+ 0 the motion becomes purely hori-
zontal and longitudinal.

(e) CompressibLe strati/ed Quid with, gravity, no
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CorioLis ef ects. We have, with the assumption (6.2) for given u, y, i.e.,

N = 2vg —g/c (6 24)

On the other hand, the acoustic modes have a low-
frequency cutoff characteristic of another type of
resonance, which we called cue [Eq. (6.6)]. It is clear
from Eq. (6.23) that y' = 0, u' = 0 corresponds here
also to ct) = Ggp.

One may rewrite Eq. (6.23) in the form

a&'/c —(u+ y + v )a) + uN = 0. (6.25)

This is a quadratic in cv2 with two roots corresponding
to the acoustic and internal wave branches.

~'.= (u' + y' + v') c' (6.26)

co'; = u'N'(u'+ y'+ v') '. (6.27)

We recognize these as the characteristic equations,
(6.3), for pure acoustic waves in the presence cf a
density gradient, and Eq. (6.11) for internal waves
in an incompressible medium of constant N' [except
that here N' has the meaning of Eq. (6.24)]. Equation
(6.25) is then

6)/Me co + co~ = 0 ~ (6.28)
Its roots are

(u' = -', a)'.[1 a (1 —4(co~~/a'. ))' '] . (6.29)

Assuming ~;/~. && 1 and expanding the square root
we have for one root [+ sign in Eq. (6.29)]:

2 2 2 2
Mg = M~(1 —

GO;/CO~ + ' ' ' )
and for the other

(6.30)

cur = aF, (1 + a)';/co. + . . ) . (6.31')

We see that corrections to the internal wave equation
(6.23) due to compressibility, and to the acoustical
waves [Eq. (6.22)] due to gravity are of the order of

y' = (v'/c' —u'+ u (N /co ) —v . (6.23)

We may expect to find here two branches: an acousti-
cal branch of the type discussed under (c), somewhat
modified by gravity; and the internal waves dis-
cussed under (d), modified by compressibility.

Insofar as internal waves are concerned, we saw
that, in the incompressible case, X is a high-frequency
cutoff'. N is typically very small. Since c is large, the
first term cP/c' in Eq. (6.23) will therefore be a rela-
tively unimportant term, of the nature of a correc-
tion. One may expect that the chief effect of com-
pressibility is to change the numerical value of N
from that given in Eq. (6.12) to

(u + V'+ v)'' (6.33)

We may estimate, for given y, the maximum size of
this correction term from the fact that

Be/Bu = 0

u = (7'+ v')' '. (6.34)

Since e decreases monotonically with increasing 7,
the absolute maximum of e occurs at y = 0, i.e.,

2 2 2
emsx = N /4v c ~ (6.35)

For the isothermal model of Sec. 6(c), letting c.
= c„/cv, 2v = gc/c' and e .„= (o —1)/y 2
X 10 ' (X 100km), whereas for our deep ocean
sample e . 1X10-' for ), 2500km.

In the co, 0. plane one distinguishes, therefore, three
regions separated by the curves y2 = 0, i.e., by co&

= f(u), co~ ——g(u) with y = 0. These are the disper-
sion curves for horizontally traveling internal gravity
and acoustic plane waves (Fig. 5). In the region be-
tween these curves y is imaginary, and there are no
propagating body waves in an infinite medium.

The propagation surfaces and particle orbits are
similar to those of Secs. 6c and d. For the acoustical
branch the propagation surface is an ellipsoid of
semi-axes in the ratio 1 —N'/cP, i.e., essentially a
sphere for ~ )) cop & X.

(f) Effects of rotation: gyroscopic (inertial) ioaves in
homogeneous incompressible fluid. In this case, Eq.
(4.26) gives, for a vertical axis of rotation,

y' = k'[co'/(0' —~')] . (6.36)

I'z G. 5. Ch a r a c-
teristic curves y = 0
for compressible strat-
ified fiuid in gravity
field. The dashed
curves correspond to
the co,(u) and co;(a)
curves for which one
neglects gravity (ca,)
or compressibility
(~').

o=vC

It thus appears that real propagating wave systems
can exist for co ( Q.

Since we assume c = ~, Eqs. (4.21) and (4.22)
give

(6.37)
2 / 2

GOi/ COa (6.32) (6.38)
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Since the propagation direction in the x,y plane is
immaterial we may suppose it to coincide with the x
axis, i.e., P = 0, n = k. Thus,

(6.89)

g = (1/k)(Q/cu)f, = i(y/k)(Q/o&)t (6.40)

for waves traveling up, in the z positive direction.
Since, by definition,

l-/P = —k/~ = —tan B, (6.41)

we see that, in the x,z plane, motion is along a straight
line of slope —B (see Fig. 6). Along this line, the

in Fig. 6. The characteristic equation (6.46) or (6.86)
can then be interpreted as the gyroscopic equation
for a Quid particle constrained to move with the
angular velocity co along a circular path: 0 is the
angular velocity of precession and 8 the inclination
of the circle with respect to the horizontal. These
waves, therefore, deserve to be called gyroscopic
Maves. Equation (6.86) or (6.46) implies that for
given co there is only one permissible direction of
propagation. The phase velocity in the direction of
His

V = (Q cos B)/K = A(Q/2~) cos B, (6.48)

A. being the wavelength in this direction.
The corresponding group velocity is

U = d~/dK = V —A(dV/dA) = 0 (6.49)

and must therefore be perpendicular to K. Its compo-
nents are, by Eq. (6.86),

Fxe. 6. Kin-
ematics of gyro-
scopic waves. U. = Ba)/Bk = —(ky/K')Q,

U. = Ba)/By = (k'/K')Q

and the magnitude of U is thus

(6.50)

(6.51)

q = (Q/co) (y/k)
~

f'~ sin cut .
But now Eq. (6.86) is also

(o' = (y'/K')Q',
where

K' = k'+ y',

(6.48)

(6.44)

(6.45)

K being the wave number absolute magnitude.
Therefore (see Fig. 6), Eq. (6.44) is simply

co =0 cos 0. (6.46)

motion is simple harmonic. Let a be the component
of displacement along this line:

a = R cosset = (&'+ t')' 'cosset = (~|~/sin 8) cos~t

(6.42)

and, by Eq. (6.40),

U = (U.'+ U.')' ' = A(Q/2m) sin B . (6.52)

It is, however, probable that these waves will be
diKcult to detect in the earth's oceans and atmos-
phere, because for short wavelengths (of the order
of a few kilometers), the velocities are small (of
the order of a few centimeters per second) com-
pared to background motions, and for longer wave-
lengths the present treatment must be modified to
include sphericity of the earth.

One should also note that this treatment applies
to the case X = 0. By Eq. (4.26) it can be seen that
for X ) Q waves of this type will not exist as free
body waves. They will exist, however, for X & 0, in
modified form.

If the Quid is homogeneous but compressible, Eq.
(4.26) reveals the existence of two branches: a dis-
persive acoustic mode and modified gyroscopic
waves. The acoustic mode is discussed by Eckart'
in the limit of horizontal incidence (8 = ~/2), when
it obeys the dispersion law:

Substituting in Eq. (6.48) immediately gives

g = Bsin~t. (6.47)

(v' = Q'+ K'c'.

7. BOUNDARY CONDITIONS

(6.58)

From this result and Eq. (6.42) it is clear that the
Quid particle describes a circular orbit in a plane
normal to the vector K, with angular velocity co. The
trace of this plane on the x,z plane is the line AB

At a rigid maQ, the normal component of displace-
ment vanishes. Thus, if the wall is horizontal

=0
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F(xyz, z) = 0 (7.2)

At a free surface the boundary condition can be
expressed in a number of equivalent ways. Since we
have formulated our equations in terms of particle
displacements, we shall derive this boundary condi-
tion in terms of f,f', W.e use the statement that if

Or, in view of Eq. (7.9), for c& ——c&

~ g (pi —p2) f 1 ~ (pl)la p2f2s) ~ (7 ~ 12)

Since c has canceled out, this is also the correct form
of the condition at the interface between two in-
compre8siwe fluids of different densities. When there
is no grauity field Eq. (7.12) gives

is the equation of the surface, then one must always
have

piiiz = pzizz ~ (7.13)

If there is no density di8continuity one has, with or
without a gravity field,

1z 2z ~ (7.14)
where the dots indicate differentiation with respect
to time. This is equivalent to the statement that a
particle at the surface stays on it."Now, if f(x,y, z, t)
is the vertical displacement of the fluid,

in) + iPg + f'. = 0. (7.5)

This is the general form of the free surface boundary
condition, which can be put into the desired form
involving only z and i, by use of Eqs. (4.8) or
(4.21—22), or (4.28—29), depending upon circum-
stances.

In the absence of rotation Eq. (4.8) gives

f*/f = ~g/~

For a vertical axis of rotation

(7.6)

fz'g
2 2 ~

cv —0v

Note that Eq. (7.5) is equivalent to the usual cri-
terion for vanishing of the incremental pressure for
a compressible Quid:

p= Xe. (7.8)

At a boundary betzueen tzoo compressibLe jlzzids of
different densities pi, pz we require continuity of i
and p j l.e.,

(7.9)

Xg(zap' + zPzzg + ig, ) = 4(zcx$2+ zPg2+ f2 ) . (7.10)

In the absence of rotation and for c~ & c,, Eq. (7.10)
is simply

2 2 2 2
2 2 2 2 C2 + Cl

pl(~ gal ~ /is) p2(~ gf2 ~ $2@) 2 2 2 2
C1 o. C2 —or

(7.11)

(7.4)

and Eq. (7.3) gives for a simple harmonic wave
system

8. REFLECTION AND REFRACTION OF PLANE WAVES.

BODY WAVE MODES

(a) General comments. The we11-known procedure
for deriving reflection and transmission coeflicients
for plane waves in media with constant coegcienfs is
to assume an incident wave e" " + ~" "' in medium

(1) and reflected and transmitted waves Be*'"
"'&, Te'& '+ ~'* "'& in media (1) and (2), respectively.

In the problems considered here there are two bound-
ary conditions at an interface between two media,
giving two inhomogeneous equations which one may
solve for 8, T. An interesting point arises in con-
nection with the possibility of change in type of
wave motion upon reQection or transmission. Thus,
it was shown in Sec. 6 that, in a fluid of constant
sound velocity and exponential density variation
(constant Vcisala frequency), in the absence of
rotation, two types of body waves could exist: the
acoustic and the internal gravity wave modes. One
is led to ask under what conditions an incident wave
of one type can produce reAected or transmitted
waves of another.

First of all, it is clear that this cannot occur upon
regectiozz: n, cv are invariant and in order that trans-
formations of this kind be possible, the characteristic
curves cv(n) for the two types of modes must be able
to intersect. This is not possible since the straight
line ~/n = c separates the acoustic and internal wave
regions (see Fig. 5). From the mathematical stand-
point this is due, of course, to the fact that the equa-
tions of motion are second order and that only two
boundary conditions are available at an interface. It
is only when the equations of motion are of higher
order, as in elastic solids, that transformations of
this type are possible (P to 8 conversions).

But, upon refraction, it is theoretically conceivable
that, for instance an acoustic wave incident from (1)
on the interface may give an internal gravity wave
in (2) upon transmission. For this to occur it is
sufficient that the ~(n) acoustic curves for medium
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(1) intersect the corresponding internal wave curves
for medium (2). This will be possible if the speed of
sound c1 is appreciably less than c2 (for media with
constant c, Ã). A. necessary (but not sufhcient) con-
dition for this is that the slope of the internal wave
curve for (2) near 01 = 0 exceed c1. This initial slope
is given by Eq. (6.19), so that for y2 = 0 one has

¹/V2) C, .

Another necessary condition is, of course, that

(8 1)

—2Vg z
PI = PIO|'

and in the underlying region z & 0
-2VZ z

P2 P20~ '

)

with

(8.3)

(8.4)

C1 = C2 = COnSt .

We write, as in Eq. (4.15),
—1/2

f =t, =p, h„z)0
—I/2

l- = l-2 = p, h„z ( 0,

(8.5)

(8.6)

(8.7)

&2 &»CI ) (8.2)

otherwise there can be no overlap in the permissible
frequencies. However, conditions (8.1)—(8.2) are not
sufhcient of themselves since they do not guarantee
intersection of the co~I and co12 curves.

For models with nonconstant coefficients one may
visualize a aeries of characteristic 01(n) graphs, each
characteristic of a given depth. If the 01(n) curves for
one type of mode and for some depth z, can intersect
those for another mode type and depth z2, then there
may be transformation of type, through a sort of
"high-velocity" barrier in which y2 & 0.

(t1) Specific forms of the reftection coegcient. We
have noted that the effect of gravity on the acoustic
branch is not, as a rule, very important. Thus in
cases involving reflection of acoustic waves at a
boundary of discontinuity of the sound velocity, one
obtains essentially the usual H,ayleigh reflection co-
eS.cient with a correction term. This term is only
important at very low frequencies and involves cor-
rections of the order of a few percent. %e will not
derive this coefFicient in its most general form: This
would unnecessarily lengthen our presentation and,
besides, the reader can easily do so for himself.

We shall examine first the case for which there are
discontinuities in density and density gradient, in

the presence of a gravity fiel. This brings out an
interesting phenomenon. %e consider two half-

spaces in contact at z = 0. In the overlying half-

space z & 0

with

il'rzx —
y2 z —cot) ~ ~ i (~x+y~ z —M t)

~ ifotx —y, z —cut)
h —T2=TED

(8.8)

(8 9)

The boundary conditions Eqs. (7.9) and (7.12)
applied at z = 0 give

p10 (1+ f1') = p20

(n'g/01') (P„—P„)(1 + R)P 0'
' = P'„'

X [»(1 + J1') + 2v1(& —1)] —p20 (v2 2+2)7' ~

(8.10)

(S.ll)
%riting

P20/P10

and solving Eqs. (8.10) and (S.ll) for R give

(8.12)

One has

72 = $72 .I (8.14)

with

g —2zX (8.15)

X = tan '(1/y, ) [(n'g/01') (1 —a) + av2 —v, + ay2] .
(8.16)

This corresponds to total reflection of plane body
waves. If » & v2, XI & X2, only acoustic waves
incident from above are totally reflected off the
surface of the underlying half-space (2) [see Eq.
(6.23) or Eqs. (8.18) and (8.19)], for frequencies and
wave numbers falling below the characteristic acous-
tic branch of medium (2). Conversely, if v1 ) v2,

S& & X2 only internal gravity waves may be simi-

larly subject to total reflection.
One may visualize a layer of thickness h, density

(8.3), inside an infinite space of density (8.4). Then
total reflection may occur at both upper and lower

boundaries, and energy may be trapped within the
layer by total reHection: We thus have a maveguide

(for internal gravity waves if X1 )¹,and for
acoustic waves if v1 ( v2).

Consider, for instance, the especially simple case
in which, neglecting gravity, there is a jump in

density gradient but none in density (a = 1, g = 0).
Let v2 &». Then, as shown in Sec. 6, the acoustic
waves are characterized by a dispersion which is de-

scribed in each half space by a hyperbola (as in Fig.

iy1 + (n'g/01') (1 —a) + av2 —v1 —iay2
i71 (n g/01 ) (1 c) nv2 + v1 + i1i|'2

(8.13)

If y2 is imaginary and yg real,
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3). This means that, , in the n, ai plane, real waves
correspond, in each case, to points which are, for
given co, to the left of the characteristic hyperbolas
shown in Fig. 7(f) .If k1 is the wave number along a ray,

density jump (a = 1) and that gravity is neglected.
Then Eq. (7.11) reads, at z = 0,

where

(a)

Vi =V@"-0
C~) C)

C1& „—-"
C)

=a

(b)
Cd

, Cp
Vl ~O ~J
V280

ey/

C~) Cl
C)r

O&0 P

/~ee
e e

(c)
Ci&

CV(( Vp r
Cp~C)

02

2 2 2 2
61 = &0 /Ci 1X

2 2 2 2
52 = CO /C2 Cg (8.22)

c~ are the squares of the usual acoustical z wave num-
bers in the absence of a density gradient. This implies

, that in Eq. (8.11) we simply multiply 7 by b', /b'2, i.e.,

cuo i

02

2C

& C

Cl

s'OZ

cuO i

(e)

C"Oa

Q ---~ Q
1

Fze. 7. Shaded region corresponds to total reHection of
plane acoustic waves traveling in medium (1) and incident
upon the surface of medium (2).

2 2 21/2
iS = [CX C + MO2] (8.18)

corresponds to total reQection, with a change in
phase:

then, for given co, the angle of incidence in medium

(1) is

01 ——sin '(n/ki) .

Then, any point in the shaded region in I'ig. 7 corre-
sponds to traveling waves in medium (1), z ) 0,
totally reflected at z = 0.

An even simpler example of total reflection of
acoustic waves by density gradients is given by a
hOmngeneOuS half-SpaCe Z ) 0(V1 ——O, ciiii = 0). In
this case the whole region below the curve

$71 Pl + (P2 2+2) 111/62

iver + P1 —(vg —iyg)b', /bg
' (8.23)

In the case vI = v2 = 0, bI = y1, b& = 72 one obtains
the usual Rayleigh coefficient (for displacements) in
the absence of density contrast:

62 —b~
BReyleigh

1 + (8.24)

The corresponding region of total reflection is
bounded by the two straight lines of slopes c1, c2 in
Fig. 7(a). On the other hand, if vi, v2 & 0, and vi ( vg,

the zone of total reflection is as shown in Fig. 7(c).
If v1 ——0, v2 / 0 we have the situation illustrated by
Fig. 7(b).

Similar diagrams, illustrating the conditions re-
quired for the total reflection of internal gravity waves,
can be drawn. Thus, under the assumption Eq. (8.5),
for v& & v2 we have X~ & X2, and internal gravity
waves incident in medium (1) upon the boundary
z = 0 will be totally reflected for the range of fre-
quencies and wave numbers (or wavelengths and
angles of incidence) corresponding to the shaded
region of Fig. 8. Here we may note that if v1

——v2

-1 vg + (p2 k cos 81)
x = tan

A' COS 01
(8.19)

FIG. 8. Total reHection
In terms of wavelength X measured along the ray, of plane internal gravity

points below the curve Eq. (8.18) correspond to

X1 ) (22r/vg) cos 01 . (8.20)

,0 r
"f 11

y aO
2

This is the condition for total reQection. At normal
incidence (81 ——0) wavelengths longer than 22r/P2 are
totally reflected. On the other hand, at grazing angles
(01 ——2r/2), all wavelengths are subject to total re-
fection if v2 / 0.

It is not dificult to obtain the corresponding
formulae for the case when there is also a jump in the
sound velocity. Suppose once more that there is no

Then, by Eq. (6.24),

Cx ) C2.

Xg & X2

(8.25)

(8.26)

internal waves will suer reflection at the boundary
z = 0 if Eq. (8.5) does not hold, i.e.,
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with

8 =e"", (8.29)

x = ta '(1/7)( 'g/ ' — ) (83o)
It is interesting to note here that pure acoustic

waves in the absence of any density gradient (v = 0)
suR'er a change in phase upon total reQection due to
surface gravity effects:

At grazing angles of incidence y —+ 0, 0 —+ z./2 and
this change in phase is not trivially small, as is
usually assumed in the acoustical literature: the
"free" surface acts, for grazing incidence, as a rigid
wall, since x ~ m./2, 8 ~ —1 (for displacements).

(c) Body wave modes. The modes of a stratified
Quid are the standing waves obtained by superposing
waves of equal amplitude, traveling in opposite di-
rections. In the case of total reHection, at some
boundary z = const, it is sufhcient to consider the
superposition of an incident wave train with its
reHection.

2O I. Tolstoy, Columbia University, Hudson Laboratories
Contribution No. 146. Presented at the Fourth International
Congress on Acoustics, Copenhagen, Denmark, August 21—28,
1962 (to be published).

and total reQection of internal gravity waves may
occur as in Fig. 8, even though —(d/dz) ln p = 2vi
= 2@2 = const.

Anticipating the discussion of Sec. 10, it is clear
that if we have a layer (1) of finite thickness lying
between two half-spaces such that the conditions of
total reQection are fulfilled at both boundaries,
energy will be trapped and the layer may act as a
waveguide for either acoustic or internal gravity
waves. For example, the previous discussion leads
us to the remarkable result that a homogeneous layer,
or a layer of low-density gradient, imbedded in a
space of higher density gradient may act as an
acoustical waveguide even in the absence of any
variation of the sound velocity. "

To conclude this section we derive the change in
phase upon total reHection at a free surface. In this
case we ts,ke medium (1) to be vacuum and consider
an up-traveling wave with its reHection:

f Ixx+Pz fd o y g 5 (xz fz cl1t) (8 27)

with the boundary condition Eq. (7.6) (in the ab-
sence of rotation) giving

v, (1 + R) + iy(1 —8) = (n'g/(o') (1 + 8) (8.28)

For example, consider a compressible half-space
z ( 0, with a free surface at z = 0. If it is density
stratified according to our usual exponential law, the
modes are, in terms of the displacements,

l = B[e'*+e' ' "*']e"' = Ae"' cos (yz —x), (8.32)

7 being defined by Eq. (6.23) and x by Eq. (8.30).
These are either acoustic or internal gravity wave
modes, depending upon the range of ~, n values being
considered. In the case of an incompressible Quid, y is
defined by Eq. (6.11), and Eq. (8.32) represents pure
internal gravity modes.

9. BDUNDARY WAVES

These are waves whose energy is concentrated at a
boundary of discontinuity of some parameter and
correspond to y' & 0 on both sides of the boundary,
i.e., to an exponential variation of amplitude. This
variation must be such as to give vanishing energy
density at infinity. Their existence is quite independ-
ent of that of body waves in the medium. Typical
examples of "boundary" (or "surface") waves are
gravity waves at the surface of an incompressible
homogeneous Quid, Rayleigh waves at the free surface
of an elastic solid, interface waves at the boundary
between an elastic solid and a liquid (Stoneley
waves), etc. In these well-known examples it is easy
to see the special nature of these waves. Thus, there
are no body waves of any kind in an incompressible
homogeneous Quid: Surface waves are an entirely
distinct mode of propagation existing by virtue of the
possibility of two methods of energy storage at the
interface (kinetic and gravitational potential ener-
gies). One may also think of Stoneley waves at a
solid-liquid interface: It has been pointed out by
Biot" that these may exist at the boundary between
a massless solid (p = 0) and an incompressible fiuid,
i.e., when neither of the two media in contact can
propagate waves of any kind by itself. Here energy
is transferred back and forth across the interface,
being purely kinetic on one side (incompressible
fluid) and purely elastic on the other (massless solid).
This independence from body waves is an essential
feature of true surface waves, as distinguished from
other types which may have only some of the charac-
teristics of boundary waves. Thus, Love waves,
which are simply body waves (horizontal shear)
trapped in a low velocity layer, are often improperly
classified as surface waves in the seismological litera-
ture. Likewise it would be inconsistent to describe
Lamb waves as boundary waves, ' since they are but

2i M. A. Biot, Bull. Seismol. Soc. Am. 42, 81 (19M).
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body acoustic waves traveling parallel to the density
st ratiflcatlon.

Stratified compressible fluids in a gravity field can
exhibit a number of types of discontinuity supporting
bono, fide boundary waves. We confine ourselves here
to a quick description of some of the simpler cases.

If we first consider two half-spaces (as in Sec. 8),
Eq. (7.9) implies that solutiona for the displacement
are

and Eq. (9.4) is

ng/co = v, + p,'. (9.11)

But then Eq. (9.9) still gives a root of Eq. (9.11),
since Eq. (9.10) becomes

p2 = (n —2v2n + v2)' = + (n —v2) ~ (9.12)

In practice, n )) v2 and we keep the plus sign. Then
we have by Eq. (9.11)

viz y zz iC~x ~t)
g1

——e e e, z& (9.1) ng/(v' = n, (9.18)
I

v, z p, z ifax —~t)
g2 ——e'e e (9 2)

These solutions are always consistent with the re-
quirement of vanishing energy density for z —+ ~ ~.

The general equation describing the possible solu-
tions of this type is Eq. (7.11), i.e.,

2 2 2ng, O, g bg
pl 2 (vl pl) p2 2 (v2 + 72) 2

Cd Cd b2

(9.8)

where b„b& are defined by Eqa. (8.22). A complete
analysis of the roots of this equation would be cum-
bersome at this point. %e first note that if c1 = c2
= c, it reduces to

which is verified by virtue of Eq. (9.9), which we had
assumed to hold. If the ha, lf-space is density stratified
and compressible, the characteristic equation (9.4)
still has the form (9.11), but with

2 2 1/2
2V2g g 2

r2 n 2 n 2 g 5 + v2 ~ (9.14)
c Cd Cd C

Equation (9.11) has two roots in this case. It is easily
verified once more that Eq. (9.9) is still valid for
n ) v2. Thus, the surface gravity wave solutions are
essentially unaffected by compressibility or by
density stratification.

The second solution corresponds to

(9.15)
2~g r
2 (V1 +1) P2

Cd

2ng —(v2+ y2)
I

Cd

for it ia easily verified by substitution into Eq. (9.14)
that one then has

p2 = g/c' —v2. (9.16)
This equation contains a variety of known solutions
as limiting eases.

Thus, the characteristic equation for surface
gravity ivavesover an incompressible homogeneous half
space is obtained by taking fm = e'", z ( 0. (9.17)

Substitution of Eqs. (9.15) and (9.16) into Eq. (9.11)
shows that Eq. (9.15) is indeed a solution. Equation.
(9.16) implies

p1=0,
C= EX))

V2=0.

(9.5)

(9.6)

(9 7)

This represents a korizontatty traveling sound nave
with a small vertical component arising from buoy-
ancy effects in the gravity field. Note that for the
infinite half-space, the condition of vanishing energy
density at z = —~, i.e., of vanishing

Then, by Eqs. (6.28) and (8.14)
pl =e (9.18)

and Eq. (9.4) gives

2
Ag = Cd )

(9 8)

(9 9)

y,' = [n —n'(2v, g/(g ) + v,] (9.10)

i.e., the well-known dispersion equation for surface
gravity waves in "deep water. " If the half-space is
density stra(@ed according to the law Eq. (8.4), and
still incompressible, we drop condition Eq. (9.7) and
obtain

requires that y,' ) 0, and g/c' ) v2, a condition which
may or may not be verified in practice (for instance,
it is verified for the case of the isothermal model of
the atmosphere). However, in a,ctual problems one is
always dealing with media of finite extent and may
thus expect a solution of this type to exist. It is not,
strictly speaking, a surface wave but an ordinary,
nondispersive, acoustic wave traveling in a horizontal
direction and slightly modified by the density stratifi-
cation and by buoyancy effects. It appears as a
possible root of Eq. (9.11) because of its (weak) ex-
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ponential behavior as a function of z. It is essentially
similar to the Lamb wave, which is usually introduced
for a density stratified half-space overlying a rigid
wall. In this case one assumes l = 0 everywhere, and
condition Eq. (7.1) is obeyed automatically. Then,
by Eq. (4.7b), ( is determined by a first-order differ-
ential equation:

or

(d/dz) V, = —(g/c') l« (9.19)

le
X$ = (.'e "'*, z ) 0, (9.20)

(9»)
Now, stabi1ity of the medium requires that 2v& ) g/c'
(Sec. 2), and the amplitude of $ increases exponen-
tially as z —+ + ~ . But the energy density is propor-
tional to

t'pi —g/c )z
PC (9.22)

and will tend to zero for g/e' ) v, a condition fulfilled

by the isothermal model. However, it should be kept
in mind that in nature one usually has models of
finite extent, so that these considerations of con-
vergence are not always binding.

Two remarks may be made in connection with the
Lamb waves [Eq. (9.21)] or Lamb-type waves [Eq.
(9.17)].

First of all, they are not true boundary waves, but
modified body waves (acoustic).

Second, in the case of a free surface, we see that the
characteristic curves Eqs. (9.9) and (9.15) intersect
in the a),u plane at the point

o' = g/e ~ (9.23)

Pj. P2
co = eeg + (9.24)

When p~ ) ps, these are bona fi,de boundary waves in
the sense used here. They should be distinguished
from internal waves in a stratified Quid, which are
body waves. Of course, a stepwise variation of p is

and one is led to ask why there is no interaction
between the surface wave branch [Eq. (9.9)] and the
acoustic (Lamb) wave [Eq. (9.15)]. The answer is
simply that, by virtue of Eq. (5.8), the surface
gravity wave is irrotational, whereas the Lamb wave
is not: In the absence of viscosity there can be no
transfer of energy between the two.

For the case of two incompreasibte, homogeneous

half spaces of -different densities, v& = ve ——0,
= y,' = ee and Eq. (9.4) gives the well-known equa-
tion"

merely an extreme case of stratification, and these
interface waves may be considered as a limiting case
of internal waves [in a layer of Vaisata frequency
g(Ap/p)5(z)]. However, this is altogether too formal
an analogy for physical purposes, and one should
distinguish between these two cases. One may refer
to the waves of Eq. (9.24) as interface gravity waves,

to separate them from the internal gravity body
waves.

This completes our review of the simplest types of
solution of Eq. (9.4) and of the corresponding bound-
ary waves. A more thorough investigation of Eqs.
(9.3) and (9.4), dealing with the effects of compressi-
bility stratification, jumps in sound velocity, etc.,
remains to be done and would undoubtedly be of
interest. This would, however, lengthen our discus-
sion beyond its intended bounds.

10. LAYERED WAVEGUIDES

If, in a stratified fiuid, wave energy can be trapped
or channeled within a zone of finite thickness h, one
has a moveguide. This occurs when the conditions for
total reaction of plane waves are met at two plane
parallel boundaries.

The classic example of this is the perfect acoustic
waveguide in which sound waves are trapped between
two rigid walls or between a rigid wall and a free
surface. Now it is well known that under these
conditions propagation is dispersive, the dispersion
being due to interference between up- and down-

going sound waves: Energy at a given frequency can
only propagate at certain angles of incidence without
losses due to destructive interference. The condition
of constructive interference, giving the dispersion
law, has then the same form as the diffraction grating
equation. ""This is often known as "geometrical
dispersion" to distinguish it from other types of
dispersion not due to interferences between reQec-
tions. Thus, the dispersion of plane acoustic waves in
an infinite, density stratified, fiuid [Eq. (6.5)], or of
plane internal gravity waves [Eq. (O.ll)], is due to a
quite diferent process. This type of dispersion is best
referred to as "structural dispersion" since it is
determined entirely by the assumed stratification and
the resulting natural resonant frequencies of the
medium.

If a density stratified Quid is bounded by two per-
fect reflectors, we may expect the observed dispersion
to be due to a superposition of these eGects: There
will be dispersive effects due to interference between

L. M. Brekhovskikh, Waees in Layered Media (Academic
Press Inc. , New York, 1960}.

ss Ivan Tolstoy, J. Acoust. Soc. Am. 2'7, 274 (1955).
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downgoing and upgoing plane waves, but these plane
waves are also dispersive of themselves, even in the
absence of boundaries.

As a first example, illustrating the combined effects
of geometrical and structural dispersion, consider a
layer of constant sound velocityc, density stratified
according to the law (8.3), with a free surface at
z = 0 and a rigid bottom at z = —h. This model
provides an average, qualitative picture of the types
of propagation to be expected in the ocean and will

illustrate the gross properties of the various modes.
On the basis of the preceding sections we may expect
these to be of two types: sinusoidal modes, with 7') 0 [Eqs. (4.16) and (6.23)], corresponding to stand-

ing, plane, body waves (acoustic and internal gravity
modes), and exponential modes, with y' & 0, which
will be essentially the boundary waves of Sec. 9,
modified here by the condition of finite depth.

In Sec. 8 we saw that a system of sinusoidal modes

corresponding to total reRection at a free surface
z = 0 has the form:

~h+ & = (m+ —',)~, m = 0,1,2 (10.2)

where x is given by Eq. (8.30). This has the form of
the usual geometric dispersion law for waveguides.
The fact that, propagation is also structurally dis-
persive, i.e., that the individual interfering plane
waves are by themselves dispersive, is reAeeted in the
definition of y by Eq. (6.23). It is seen thatin ,the
absence of gravity and stratification (g = 0, v = 0),
y is simply the usual acoustical z wave number 6 and
also that x = 0. Equation (10.2) then becomes the
familiar dispersion equation for the homogeneous
acoustical waveguide with one rigid wall and a free
surface.

Exponential modes corresponding to y = iy',
= ix' are more conveniently treated by changing

x to P in Eq. (8.30):

Thus,

y = x+ m-/2 = —tan ', , (10.3)a'g/o)' —v

1 = A sin (ye —i')

and Eq. (10.2) becomes

yh+it =ma, m =0,1,2

(10.4)

(10.5)

f' = Ae"* cos (pe —x) . (10.1)

In the present case we must also satisfy the boundary
condition t = 0 at e = —h, i.e.,

only m = 0 is possible. Thus,

7 —cV

(10.6)

OI'

y'h+p' = 0

tanhy'h = -2
7'

n g/a) —v

(10.7)

(10.8)

For the ocean

n'g/o) = v+ 1/h. (10.10)

v (( 1/h (10.11)

2 2 2
co/a =V =gh, (10.12)

which is the usual long wavelength approximation
for gravity waves.

The properties of the sinusoidal modes can also be
explored by means of approximations.

First of all, we have already noted that if gravity
and density gradients are neglected, Eq. (10.2) is the
usual acoustic waveguide equation. As seen in Section
6, g and v can be taken equal to zero for m )& coo ——vc.

But the lowest acoustical mode (m = 1) low-fre-

quency cutoff co, is, for our model,

For the limiting case h —& ~

p' = u'g/ru' —v, (10.9)
and we return to Eq. (9.11),with the two roots (9.9)
and (9.15) corresponding to the surface gravity wave
and the Lamb-type wave. The Lamb wave does not
actually exist in the case of our 6nite depth model,
since the condition uc = co would imply, by virtue of
Eq. (4.8), either that 1 = 0 everywhere or t = e'~"*.

In the former choice it is not possible to satisfy the
free surface condition unless P = 0, and in the latter
choice the rigid boundary condition at z = —h can-
not be obeyed. The Lamb wave, with 1 = 0, would
exist in the case of two rigid boundaries: Thus, in
these perfect waveguide problems, it plays the role
of the so-called zeroth acoustical mode which, as is
well known, exists only for the case of two rigid walls.
We may expect Eq. (10.8) to have only one physically
slgn16cant root) coI'I'espondlng to gravity waves on
the surface of a layer of finite depth, slightly modified
by the density stratification. Note that if h —+ 0, Eq.
(10.8) becomes

for exponential modes y, p become imaginary and co. = (m/2)c/h. (10.13)
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In view of Eq. (10.11),this implies a&. )) ~s. Thus, the
usual acoustical modes of the ocean are, to a very high
order of accuracy, unaffected by either gravity or
density gradients.

The other solutions of Eq. (10.2) correspond to
trapped internet gravity waves, with

Nodes for f' are antinodes for g and vice versa. The
ratio of maximum $,f amplitudes is

lkl/ll'I = v/n = (N'/~' —1)'" (1o.25)

by Eqs. (10.28) and (10.19). Thus, for N ~ co, the
motionismostly vertical (except, at the f' nodes), and

GO ~MS. (10.14)

In Sec. 6 we showed that if compressibility is neg-
lected one does not incur errors of more than 10%%uq.

Thus, the wave number p is then quite satisfactorily
represented by

Assuming

y = [(n'/(u')N' —n' —v']' '. (10.15)

(10 16) Fra. 9. Dispersion of normal modes of perfect internal gravity
w ave waveguide.

limits us to wavelengths in the x direction:

X. = 2s./n «2s./v. (10.17) for co « 2 '~' Ã the horizontal amplitude is much
greater. At tidal frequencies&a«N, andIn terms of the average orders of magnitude assumed

in Sec. 6 for an ocean, this implies
I&l/If I -N/~. (10.26)

(10.18) For these very low frequencies, Eq. (10.23) simplifies
to

X.«2.5 X 10 km.

Then, a good approximation is

nh = ms((v/N), (10.27)y = n[N'/(o' —1]' ',
and Eq. (10.2) becomes

(10.i9)
and the phase and group velocity for u « X are of
the order of

(10.20)pg = nh[N'/~' —1]'"= (m + —',)s. —x .
(10.28)U ~ V Nh/ms. .

(10.29)) = 2Ãh/ma .

This means that y is of the order of magnitude of
s/i't for moderate values of m. Now, for short wave- Note that the wavelength is

lengths the phase velocity of body internal waves is
very small, i.e.,

as co —& N, X ~ 0, M/n ~ 0,
and from Eq. (8.30) it is seen that

x~ s/2,
so that the characteristic equation becomes

(10.21)

(10.22)

nh[N'/(o' —1]' ' = mtr . (10.23)

This approximation is quite good even for wave-
lengths of the order of hundreds of ki1.ometers. Equa-
tion (10.23) gives the family of dispersion curves
shown in Fig. 9.

The shape of the particle orbit depends upon the
depth, mode number, and frequency. The particle
displacements are, approximately,

For our averaged ocean model X 2.8 &( 10 ', h

5 km. For a semidiurnal period, (o 1.4 )& 10 ',
and X 2000 km, U V 5m/sec for m = 1.
[These are but rough estimates, since, by Eq. (10.17),
our approximations become inaccurate for such long
wavelengths. ]

It is of interest to compute the pressure perturba-
tions connected with an internal wave system. Using
Eqs. (3.6) and (10.24) we have

p Ap((o'/n')y cos pz sin (nx —(ut) . (10.30)

For X « h and low modes, the maximum pressure
amplitude lpl is related to the maximum displace-
ment I|-I as «llows:

l = A sin yz sin (nx —cut)
lpl —(1/4 )pN'(l'/~) lfl,

(10 24)
whereas for X )& h,

(10.31)

P = A (y/n) cos yz cos (nx —at) .
I pl —(1/4~) pN'(4I /m) Itl (1o.32)
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In our idealized "average" deep ocean model, Ã'
~ 8 )& 10 ' h 5 km, and for X = 1 km, m = 1,
jpj = 1.5 )& 10 '

ll I
dyn/cm' (f in cm), whereas for

lI »h, Ipj 1.3 lfj dyn/cm'. In shallow seas the
VaisNki period may be much shorter, e.g., ~ 2 min,
X' 2.5 &( 10 ', and for a depth of, say, 10 m, ~
» 10 m, m = 1, lpj Il I

dyn/cm'.
In the present approximation, the free surface is

a node for the vertical displacement f, due to the
assumption Eq. (10.2). Dropping this assumption
one finds a small vertical displacement of the free
surface connected with any internal wave system. A
brief calculation shows, as one would expect, that
the maximum pressure amplitude lpj is simply the
change in hydrostatic head due to the surface dis-
placement fo, i.e.,

lpl =»It I
~ (10.33)

It is therefore easy, using Eqs. (10.24), (10.30), and
(10.33), to estimate the vertical displacement of the
surface. It is greatest for wavelengths X )) h and is
then about 10 ' of the maximum displacements ob-
served at depth.

The effect of a Coriolis field can be included
(Eckart'). Its influence, for a vertical Q vector, de-
pends upon whether N is larger or smaller than Q. If
X & 0 the effect of rotation is to cut off the internal
wave modes at ~ = 0, n = 0 (the curves in Fig. 9
then acquire a horizontal tangent at this point). If
X ( 0, the internal wave modes are replaced by
gyroscopic waves of the type examined in Sec. 6
with a low-frequency cutoff at co = Ã.

A second excite of waveguide propagation is
given by acoustic waves in a medium of constant
sound velocity c, but with a zone of minimum density

layer of constant density, as explained in Sec. 8. This
trapping is due to total reHection with a change in
phase [Eqs. (8.15)—(8.19)]. Letting the subscript 2
correspond to the two half-spaces and 1 to the homo-
geneous layer, we have

x = x~ = tan '(1/~ ) (~+ ~l)

at the lower boundary and

(10.34)

or

since

tang, h = y,'/y, , (10.37)

(10.38)

the condition of total reHection corresponds to 0
& p~ & u. At y, = v the r.h.s. of Eq. (10.37) is zero,
and the l.h.s. is tan vh. At y1

——0, the r.h.s. is ~ and
the l.h. s. is zero. There is, therefore, at least one root
0 & y& & v. If (n + l)z. ) vk ) nx, there will be
n+ 1 roots, or modes of propagation. If y&

——x
is a root, then the dispersion of the corresponding
mode is given by

co' = c'(n'+ x'), (10.39)

i.e., the characteristic curve is a hyperbola in the
co,o, plane, with vertical axis, intersecting the co axis
at the cutoff frequency

at the upper.
The dispersion of these trapped waves is purely

geometrical and is described by the interference
(grating) condition:

(10.36)

0~ = C&m ~ (10.40)

P = P ~-avz
0

-»(&+h)
0

FIG. 10. A simple waveguide for acoustic v aves with
c = const.

gradient. The simplest case of this sort of trapping
occurs for a homogeneous l.ayer of thickness h im-
bedded in an infinite medium which is density strati-
f18d according to the law Eq. (8.3) (Fig. 10).

In this case, acoustic waves will be trapped in the

l = Be"'e '**,
(10.41)

z ) 0, (10.42)

but 7,' & r, and ji I

—& ~ as z ~ + ~. Similarly, it
may be verified that the pressure pc'c —+ ~ as z

The group and phase velocities U, V obey the well-
known law

UV = c'.
Equation (10.37) may also be obtained in the custom-
ary but more laborious fashion by considering the
elementary solutions for l in the half-spaces and in
the layer and making them satisfy the conditions of
continuity for f' and t, . The amplitudes vary sinus-
oidally with depth in the layer and exponentially in
the half-spaces. Note that in the latter they are



WAVES IN STRATIFIED FLUIDS

~ —~. But the energy densities —&0 for z —+ ~ ~,
and we are in fact dealing with trapped energy in a
waveguide. For example, the kinetic energy is propor-
tional to pf'", i.e.,

QJ =Ca

duo= vC

Fxe. 11. Disper-
sion curves for
guided modes in
mode1 of Fig. 10.

that under suitable conditions we may have acoustic
waves trapped in a layer of higher sound velocity,
providing the contrast in density gradients is suf-
ficient [corresponding to total reflection of the type
shown in Fig. 7(e)].

It is clear from Eqs. (10.48) and (10.87) that the
concentration of energy is, at the most, of the order
of magnitude of the concentration of specific volume
in the medium. Thus, in the case of weak gradients
in shallow bodies of Quid as in oceans, these effects
are negligible. But in planetary atmospheres they
may be important.

11. WAVEGUIDES WITH CONTINUOUSLY

VARYING PARAMETERS

When the parameters p, X do not vary in the simple
ways considered so far, the quantitative description
of wave propagation becomes more diKcult. ¹ and
c may be arbitrary functions of z, and the coeKcient
p' in Eq. (4.8) is no longer a constant, . The properties
of such equations are well known and require no
elaboration. However, only a small number of types
of y'(z) variation can actually be solved in terms of
well-known and adequately tabulated functions. In
most cases of practical interest one must use numeri-

cal procedures or approximations.
In order to visualize the behavior of the various

solutions, it is often convenient to consider a continu-
ously stratified medium as a superposition of a great
many very thin layers with constant coeKcients. It
then becomes clear that for a given z one may con-
sider a locally valid ~,~ characteristic diagram, such
as that of Fig. 5, based upon the local values of Ã, c.

(10.48)

Figure 11 shows some typical dispersion curves. Note

In this manner one may distinguish easily the acous-
tic and internal gravity wave branches: There are
local values for the VNi8al@ frequency X and the
acoustic resonance coo.

ceo ——c'[,' ((-djdz) ln p)'+ -,'(d'jdz') ln p] . (11.1)
It becomes clear that the energy of internal gravity
waves of frequency co can be captured by total in-
ternal reflection (i.e., turning of the rays) in a zone
of maximum X(z) such that co (X .„. Acoustic
waves, on the other hand, may be trapped by two
different mechanisms of total reQection. One such
mechanism has been discussed in Sec. 10 and can be
translated into the present context by saying that a
zone of minimum ohio(z) may act as a waveguide
independently of what c(z) does, e.g. , it may be
constant. The other mechanism is classic and needs
no discussion here: it is simply the trapping of acous-
tic energy in zones of minimum c(z), independently
of the density stratification, e.g. , coo may be zero.
(This is typified by the SOFAR channel in the
oceans. ) In nature all three of these effects may co-
exist, although one or the other may turn out to be
negligible upon closer inspection, depending upon the
frequency range and model considered.

The Earth's Oceans

Eckart' has made a thorough study of an ocean
model with a maximum X at some finite depth. He
assumes that the sound velocity is constant, which is
legitimate for low frequencies: compared to X, the
usual "acoustical frequencies" subject to SOFAR
propagation are so high that the effects of density
stratification and gravity are entirely nigligible. He
also assumes X = coo. As a result of this, one may
expect the surface and bottom layers of the ocean,
where X = co0 is small, to act as acoustical wave-
guides. This effect shows up in Eckart's solutions but,
as pointed out in Sec. 10, it is of somewhat academic
interest since the energy concentration will be ex-
tremely weak. This fact can be used to justify his
assumption Ã = coo. The acoustic trapping is so
small, that it does not really matter what assump-
tions are made for co&&(z). Eckart discusses at length
the properties of the internal gravity wave wave-
guide due to X maximum and shows that reasonable
results can be obtained from WEB approximations.

The Earth's Atmosphere

Recent data on the earth's atmosphere'4 suggest

2 U. 8. Air Force Geophysics Research Directorate, Hand-
book of Geophysics (The Macmillan Company, New York,
1960).
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N(z), ~&(z), and c(z) curves of the type shown in Fig.
12. Clearly there is here a variety of waveguide con-
ditions. There may be two distinct channels for
internal gravity waves [maxima of N(z) in the strato-
sphere and at the top of the mesosphere], two acoustic
waveguides of the ordinary type [corresponding to

rect &oc(z) laws since the observed periods are in the
1- to 2-min range.

In addition, there should be late, very-low-fre-
quency arrivals. Part of these would be due to in-
ternal gravity waves. However, these are probably
not very efFiciently excited by explosions, since, as
we have seen (Sec. 6), the effect of compressibility on
the waves is minor (except in determining the value
of N). Other low-frequency arrivals would correspond
to the acoustic branches —here the sharp increase of
c(z) in the thermosphere and the decrease of &vc(z)

with height create an interesting situation.
In order to illustrate the type of effect one may

expect, we consider the model shown in Fig. 13,

P =100 KM

c = 5 X 46 X IO CM SEC

E~ 100—

MESOSPHERE

Fro. 18. An ide-
alized model hav-
ing acoustical prop-
erties qualitatively
similar to those of
the earth's thermo-
sphere.

QJO= 0

c=co=3.lo CM SEC

50—
o(2) = 5.IO HAD SEC

0
0

I

2
CX iO CM / SEC

I I

STRATOSPHERE

cu, N x to RAD/sEG

letting

co ——3 X 10' cm/sec

c~ ——3 X 6 X 10 cm/sec
Fr@. 12. Structure of the earth's atmosphere.

c(z) minima in the stratosphere and upper meso-

sphere] and possibly several more acoustic wave-
guides due to minima of cue(z). Of the last, the most
important is associated with the thermosphere itself,
in the 100—200 km height region. Thus, it would re-
quire a very elaborate analysis to account for ob-
served properties of low frequency atmospheric
waves. It is probable, for instance, that scorer's" and
Pekeris'" studies fail to provide an adequate descrip-
tion for the acoustic waves generated by the great
Siberian meteor because of insufhcient data concern-
ing the upper atmosphere. It seems likely that a good
part of the difhculty was due to ignoring the ordinary
c(z), upper mesospheric waveguide and the "lid"
effect of the thermosphere. But quantitative agree-
ment will also certainly require the inclusion of cor-

2~ R. S. Scorer, Proc. Roy. Soc. (London), A201, 187—157
(1950).

26 C. L. Pekerie, Proc. Roy. Soc. (London) A171, 484 (1989).

cup=0, z&0
orp = 3.10,z ( 0

h = 10'km = 10' cm.

We assume, for mathematical purposes,

c(z) = (pz+ V)
' '

where, in accordance with (11.2),

p = —9.2~ X 10

q = 1/co ——1.111 X 10

%e write

ZT
2

b(z) dz = — ~ b',
p 3' p

(11.2)

(11.3)

(11 4)

(11.5)

S + m/4 = x + mm- (11.6)

zr being the turning point b(zr) = 0 and b is defined

by Eq. (4.11).Assume' "that as a wave suffers total
internal refIection near a turning point it changes its
phase by m/4. The waveguide interference condition,
or Bohr-Sommerfeld eigenvalue equation, is
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where x is given by Eq. (10.84) with y&
——b&'

(11.7)

conditions are met, it appears justifiable to use the
simple equations of this article.

12. CONCLUSIONS

The numerical solution of Eq. (11.6) gives the charac-
teristic cu(n) curves shown in Fig. 14.

04
O

3

0 2

aXl0
Fre. 14. Dispersion curves for guided modes (solid curves)

of model in Fig. 13.

A somewhat more realistic solution would require
a rigid boundary at z = —h, to simulate the earth' s
surface. But since f decreases exponentially as
z —+ —~, the effect of this boundary upon the
branches shown in Fig. 14 is very slight. However,
they would now be continued into the region p' ) 0,
since total reQection is assured at z = —A.

The energy concentration in the waveguide of
Fig. 13 is quite strong. In the upper half-space it is
the usual c(z) effect, with pressures falling off like
6 '~' e s as z —+ ~. In the lower half-apace, the dis-
placement falls off as in Eq. (10.41) as z —+ —co .The
energy density behaves like e" * [Eq. (10.48)]. The
pressure, on the other hand, increases like e '"

Thus, at the earth's surface the pressure perturba-
tions may be quite large. Of course, the question of
validity of these equations at high altitudes may be
raised, the mean free path of the molecules being of
the order of meters. However, at these very low fre-
quencies the acoustic waves have very long wave-

lengths, and the displacements f' may be orders of
magnitude longer than the mean free path without
violating the conditions of linearity. As long as these

We have not ventured deeply into studies of more
special and realistic models of planetary atmospheres
and oceans.""Such studies are based essentially
upon familiar properties of the wave equation with
variable coefFicients, upon well-known techniques of
solution, and do not shed any further light upon the
basic properties of acoustic, internal, or gyroscopic
type waves. Our purpose here has been only to re-
view these basic properties in as simple and clear a
manner as possible. Thus, we have tried to bring into
focus the nature of the dispersion of acoustic and
internal waves in density stratified media, the central
role played by the acoustic resonance ~, and the
VNisald frequency X, the importance of total re-
flection phenomena, the twofold character (struc-
tural and geometrical) of dispersion in density strati-
fied acoustic and internal gravity wave ducts, the
presence of gyroscopic waves in rotating fluids, the
fundamental difference between surface and body
waves, etc.

We have found it convenient to use equations for
the displacements from equilibrium to describe the
propagation of small amplitude waves. We believe
that their use is to be recommended since displace-
ments are perhaps the most easily visualized physical
quantities and, also, because they are so simple to
derive. The reasoning used in arriving at Eqs. (8.2) is
easily generalized to include finite rigidity. Indeed,
our equations are but a special case of Biot's equa-
tions for waves in prestressed solids. Other formula-
tions for the equations of motion are usually em-

ployed in the literature, derived by perturbation
methods applied to the Eulerian equations of Quid

motion. Eckart'" has made use of a formulation
giving a slight gain in mathematical conciseness
which must, however, be paid for by using derived
variables difficult to visualize [such as the entropy
perturbation divided by (pc)'~'].

We have omitted discussion of possible methods of
excitation of the various modes of propagation. High
altitude explosions are an obvious, man-made source
of acoustic and internal gravity waves in the atmos-

27 J.E.Fjeldstad, Geofys. Publikasjoner Norske Videnskaps-
Akad. Oslo 10, 8 (1988).

&8 P. Groen, Eoninkl. Ned. Meteor. Inst. Bilt, 8, 2, No. 2
(1948).

~9 Carl Eckart, Phys. Fluids 4, 791 (1961).
30 F. Press and D. Harkrider, J. Geophys. Res. 67) 3889

(1962).
8I Yu. L. Gazaryan, Soviet Phys. —Acoust. 7, 17 (1961).
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phere at the low frequencies for which the eRects
discussed here become of interest. A realistic treat-
ment of this problem remains to be done. A natural
mechanism which has been definitely observed and
treated theoretically is that of Bow past an obstacle,
e.g., in the formation of lee waves in the atmos-
phere" " to leeward of a mountain range. This eRect
probably occurs also near seamounts in the ocean'
and is a,nalogous to all problems of wave production
by moving sources, in the sense that the major phe-
nomenon is the a,ppearance of those particular wave-
lengths for which the phase velocity matches the
relative velocity of medium and obstacle (Lamb' s
fishline problem, bow waves, ('erenkov radiation,
etc.). Adequate methods exist for calculating ampli-
tudes and details of the wavefield under these condi-
tions.

Although the whole subject of genera, tion of long
period acoustic and internal waves is of great inter-
est, a systematic and meaningful treatment is not
feasible at present. The chief reason for this is that,
in most cases, there is still no agreement as to how
the wave trains observed in nature are in fact created.
Thus, the reasons for the almost universal occurrence
of what appear to be internal waves of tidal frequen-
cies are not understood. ""Furthermore, the shorter
period internal waves may occur in conjunction with
shear Qow, and it is often not clear whether one is
dealing with the type of motion discussed in this a,r-
ticle or with waves of the type existing in stable shear
Qows. Thus, although the basic properties of waves in
stratified media are understood theoretically, the
problem of their identification a,nd observa, tion in
nature is still far from resolved.

For small perturbations pl, p&, gl from this equilib-
rium state Eq. (A.l) gives

where'

Pl Xo (pl/po) + Yogi (A3)

f being the vertical displacement from equilibrium.
Now, the linearized equations of small motion, ob-

tained by perturbation methods from Euler's equa-
tions are, in two dimensions, '

BQ BP1
Bt Bx

O'N 8P1
Po ~t

+gp~= —
~

(A6b)

where u, ta are the velocities &, f in the x, z directions.
Equations (A3)—(A5) give

BPl 2 BP1 dqo

Bt Bt dz
(A.7)

Substituting this into the equation of continuity
(AOc), and using Eq. (A2),

8pl 8po 2 BQ O'N

2 2
Xo = Po~o

and, in the absence of net heat accession (no conduc-
tion, no heat sources),

(A.5)

APPENDIX
But in the equilibrium state

dpo/d8 = ppg (A9)
To prove the equivalence of our equations of mo-

and thus
tion to the first-order (perturbation) form of Euler's
equa, tions of Quid dynamics we proceed as follows:

One needs the thermodynamic condition connect-
ing the perturbations of pressure p, specific volume

v, and entropy g.

Dpi/Bt = Mpog —poc (Bu/Bg + cite/cia) . (A10)

8 l6 O'N 8 2 O'Q O'N

(A]) 2 s x z 8Bt 8 8 8

8 tU BQ 8 2 BQ BN(
For the stratified equilibrium state pp, vp = 1/po, rto, po

&
o = pog

&
+

&
poc ~&

&
+

&
. (All)

th
Bt Bx Bz & 8x 8z

dip 1 dpo drip

ck pp d8

» Albert Defant, J. Marine Research 9, 111 (1950).
33 Maurice Rattray, Sr., Tellus 12, 54 (1960}.

But these are simply Eqs. (4.5) differentiated with
(A2) respect to time. Since we a,re dealing with perturba-

tions about an equilibrium state, Eqs. (4.5) do not
admit of time independent solutions, and Eqs. (All)
and (4.5) are completely equivalent.


