CONCEPTUAL STRUCTURE OF PHYSICS

cess of Newtonian mechanics, it seemed tempting to
brush away the complex and eroded conceptual sys-
tem of scholastic philosophy. The proposition of
temporarily restricting oneself to the conceptual
framework of the new mechanics seems entirely
sound, even in retrospect. However, the contention
that this conceptual framework would be satisfactory
at all times was unwarranted, and turned out to be
actually incorrect.

During the mechanistic era it became customary
to dismiss types of questions that did not fit into
mechanistic systems as unscientific.

As the crisis of classical physics revealed the
limitation of the mechanistic conceptual scheme, the
first inference was that the range of legitimate sci-
entific questions is even further limited, since not even
the mechanistic questions are admissible.

The pluralistic character of the present approach
brings two new elements into this picture. In the
first place, each deductive system implies a character-
istic set of precise questions. The number of interest-
ing questions that become “meaningful”’ is particu-
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larly extensive in thermodynamics and quantum
mechanics.

It is often stated that the concept of object breaks
down in quantum mechanics. Actually, however,
the opposite is true. As we have seen in Sec. IV, for
the first time in QM we are in a position to give a
formal representation of an object with many subtle
ramifications and we can now solve the related
philosophical puzzles that have been unresolved
since their discovery by the Kleatic philosophers.
It seems that the new object concept is flexible
enough to include living organisms that are entirely
outside the mechanistic scheme.

The extension of meaningful conceptual problems
in the present context proceeds in still another
dimension. Not only do we have the concepts within
each deductive system, but the deductive systems
themselves are conceptual entities of distinct indi-
vidual characteristics related to each other in quite
specific fashion. These entities are of a logical type
that is markedly different from that of the primitive
concepts within the deductive systems.
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INTRODUCTION

GENERAL class of linear stochastic operators
arises in problems involving propagation in a
random medium and in the processing (or observa-
tion) of an input quantity (which may itself be a
random process) by a linear system whose parame-
ters may be stochastic.

For example, in Mie scattering from aerosols in
the atmosphere, we might wish to give a probabilistic
treatment to the normally assumed uniform distribu-
tions of particle size and spacing. We might investi-
gate ionospheric effects on satellite communications
due to ionization variations brought about by turbu-
lence, upper atmospheric winds, or magnetohydro-
dynamic interactions. We may want to inquire into
the ultimate accuracy and sensitivity in various
measurement processes basically subject to random
perturbations.

* This work is a part of the author’s Ph.D. dissertation,
University of California, Los Angeles, California, 1961.

Applications of stochastic operators to quantum
mechanics is suggested by the fact that randomness
enters both into the initial state and also into the
transition from this state to another.

It is possible that some insight may be gained into
internal processes in stars and plasmas. In principle,
all physical properties of media containing radiating
atoms are reflected in the line structure. Thus, a
radiating atom can serve as a noninterfering probe
conveying significant information regarding pres-
sure, temperature, distribution of molecular speeds,
and states of ionization in its surrounding medium.
Thus, assuming various probability distributions for
parameters of internal processes allows prediction
of the spectra to be observed as a result of the action
of the medium in terms of the normal or unper-
turbed spectra and a stochastic kernel or Green’s
function dependent on the assumed distributions.
Successful correspondence of the observed and pre-
dicted spectra (line broadening, ete.) would establish
the nature of the internal processes.
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Other possible applications include cosmic-ray
branching processes, biological and economic prob-
lems such as birth and death, processes occurring at
intervals governed by a probability law (a much
desired modification of some earlier treatments), and
especially, problems in engineering. Thus, in the
latter area we can consider optimum filtering (a
generalization of Wiener—Kolmogoroff theory), con-
tributions to guidance, control, or tracking system
errors of various unavoidable random effects, the
effect of tropospheric fluctuations on the accuracy
of location of radio stars, and other problems.

Our primary goal here is the investigation of the
properties and use of stochastic operators as a unify-
ing method of dealing with some difficult problems in
the hope of gaining further insight into the physical
interpretation of the theory in some general physical
processes. Later work will attempt calculations,
based on a stochastic interpretation, of the Wiener or
Feynman integral in strong interaction problems
using extensions of this investigation. Also to be
emphasized in the following work will be a theory of
measurements and problems of wave propagation.

L. STOCHASTIC OPERATIONS ON RANDOM
PROCESSES: OPERATOR FORMULATION

1. Development of a Stochastic Green’s Function

We are concerned with an investigation of a
general class of linear operators we call stochastic
operators. These are operators involving parameters
that are random and require probabilistic treatment.
Analogous to the usual representation of operators by
matrices, stoehastic operators can be represented by
stochastic matrices. These are matrices whose ele-
ments have a distribution. As randomness vanishes
and parameters become deterministic, stochastic
operators reduce to ordinary operators.

It is instructive to consider a special subclass of
stochastic differential operators given by

n dV
= vt_v
L= 200y

and differential equations of the form Ly = z, where
the nonhomogeneous term x(t), called the input or
forcing function, and the operator L, by virtue of the
coefficients a,(?), are, in general, stochastic quantities.
The converse problem involving the conceptual in-
version of the matrix for the random differential
operator L is especially interesting. For appropriate
operators, we think of y as the result of operating on
the input by a stochastic operator symbolically de-
noted by H or by L and otherwise undefined except
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to say it would include the action of any accompany-
ing boundary conditions. We wish to keep the differ-
ential equation formulation in mind in the analysis,
although in this section we are primarily interested
in general operators H acting on a process x with as
little restriction as possible.

In general, stochastic operators arise in the process-
ing of an input quantity (which may itself be a
random process) by a linear system, observation, or
measurement, in which certain parameters are
random or stochastic variables. Problems involving
random inputs to fixed linear systems (i.e., where all
the a, are constants and only z is stochastic) are well
understood. A great deal of attention has been de-
voted also to deterministic time variations in linear
systems (linear differential equations with time-
varying coefficients). When random variations of
system parameters (or of the a, in the differential
equation example) occur, the analysis is more subtle.
The output now for either a deterministic or a ran-
dom input is a stochastic process. A complete de-
seription of the output would involve the determi-
nation of all multi-variate probability distributions
of the output from similar knowledge of the input.
Such a complete description is usually neither possi-
ble nor necessary.

Suppose that 2(¢) is a known input process or the
operand. We wish to determine the result of an
operation on z by the stochastic operator H. Thus,
x might be a communication signal into the pro-
verbial black box which then represents the operator
H. The box may be a circuit, filter, servo, observa-
tion, experiment, or measurement, or a transmission
medium which has random properties. All real media
are inhomogeneous, i.e., the mean physical properties
vary from one point to another. When, in addition,
there is a variance from the mean at each point, the
medium is a random inhomogeneous medium. When
the properties or parameters of the medium are con-
stants and xz(¢) is nonstochastie, the output y = Lz
is easily found. When the z is stochastic, and certainly
when the properties of the medium vary randomly
with time, we can only hope to obtain various statisti-
cal measures or estimates of y in terms of similar
measures of x. If the inverse H of the stochastic
matrix L exists, we have the general problem again
given by y = Hz (where we emphasize the product
is not multiplicative but denotes the action of the
stochastic operator H on the process z) and the dif-
ferential equation could be solved as well as the
general problem Hxz. However, the inversion of a
stochastic matrix is clearly to be avoided. Since we
are asking only for an appropriate statistical measure
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of y rather than y itself, we may be able to solve the
differential equation at the same time as the general
problem without the inversion. A well-known and
convenient statistical measure is the power spectral
density or power spectrum, or by the Wiener-
Khinchin theorem, the autocorrelation function.!
Thus, if ®.(f) is the power spectrum of the input and
®,(f) is the power spectrum of the output, we would
like to obtain &, in terms of ®,. Such an expression
can be obtained as an integral equation whose kernel
K involves the random parameters of the operator
H. We will then clarify the interpretation of the
stochastic kernel Ky and show its derivation from
the L as well, providing certain restrictions on L are
met. The constant-parameter system is handled
easily in terms of Green’s functions (weighting func-
tions in control system theory) or frequency response
functions and transfer functions, respectively, the
Fourier and Laplace transforms of the system Green’s
function. We now (in the stochastic case) obtain a
stochastic Green’s function that depends on the sta-
tistical measure chosen for a solution and which
reduces to the ordinary expressions when the parame-
ters are constants or nonstochastic.

Now consider a linear operation Hgg,..., or H
for brevity, on an input process x for which the
spectral density &, is known. The operation repre-
sents a medium or processing system with parame-
ters a(?), B(t),- - -, one or more of which are random.
Thus H is determined only by the probability distri-
butions of its parameters, i.e., in the sense of an
ensemble of possible operations H; which have a
distribution determined by the parameters. Each of
the H; corresponds to an ordinary nonstochastic
matrix. Each member H; of the ensemble H has
associated with it a Green’s function %(¢,7) which
represents the response at time ¢ of the system H; to
a unit impulse §(f — 7) applied at time 7. More
specifically, h; should be written A:(a,8,- - -t;7) Where
a,B3,- -+ are the parameters of H subject to proba-
bility laws. The h; can be obtained either by knowl-
edge of the physical process represented by H; or by
eigenfunction expansion after solving an eigenvalue
problem for the deterministic operator H;. These
methods are reviewed later. The response of the H;
system to the input x(¢), thinking of z as a defined
continuous member of the x process for the moment,
can now be given in terms of the Green’s function by

Hazx(t) = /_w hi(a,B,- - -t;r)x(r)dr,

1J. L. Lawsoh and G. E. Uhlenbeck, Threshold Signals
(McGraw-Hill Book Company, Inc., 1950).
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or for brevity, where parameter dependence is not
used,

Ha(t) = /:o hi(tr)x(r)dr (1)

where for causal (physically realizable) systems,
hi(t,7) is zero for ¢ < 7. The upper limit can also be
written ¢ without change. The implication of the
lower limit is that all past values are significant. We
can write the spectral density of H.x(f) by first de-
veloping this function in a Fourier integral. Thus as-
suming stationarity and supposing H.x to be zero
outside some interval [ — 7,T] then taking the limit
as T'— o

() = | apadper

&uc()) = lim 74D

Our stationarity assumption can be modified some-
what in that the 4;(f) can depend on T, thus A7 (f),
as long as the limit exists. The above expression holds
for all H;x which are members of the ensemble Hz.
Each H is developed in a Fourier integral as we
have shown. The corresponding spectra ®u, are
averaged over the ensemble. The result which could
have been written immediately is ®4.(f), the spectral
&4 (f) = lim

density of the output. Thus,
L /T dtH {x(8) e 2>
T—w T -7 ¢ ’

where the average is over the ensembles of H and of
x.

1 T i
(sz(f) = hm_/ / dtldtz
T/ 1/

X (H {60 VT {a(12) } )27/ 74

The quantity in brackets is evidently an autocor-
relation function. Let us define the autocorrelation
of the Hzx as

Ru(r) = (He()H*x(t + 7)),

where the random process may be complex and we
have limited ourselves to stationary input z(f),
though it is possible the operator H may be non-
stationary. On using (1), this equation becomes

Ry (r) = /:: _/_m dTld7'2<h(t;Tl)h*(t+T;72)x(71)x(72)>'

We note the A’s correspond to different times ¢ and
t: (or tand ¢ + 7). Thus we have h(ay,By,- - -ti;71) and
h* (a2,Bs, - +t2;72) 80 all parameters are different.
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In many cases of physical interest, the z(f) and the
a,(t) are independent. In other words, the input
process and the ‘“filtering”’ process are independent.
Transmission of a signal through a randomly varying
medium (a stochastic filter) is such a case. The result
of the action of the medium on z is the stochastically
filtered signal Hz. The term in brackets in the expres-
sion for Rx.(7) can now be factored. Indicating the
autocorrelation for x alone by R,

RI(Tz - T1) = <£U(7'1).’C*(T2)> )

with averaging obviously over the ensemble of z,
we now have

Ru. (1) = /dﬁ /deRz(Tz — ) (Em)RE (4 7m2))

The corresponding spectral density is

B (f) = / 7™ Rur (7)

= / dry / dre / dré™ R, (re — 71)

X (bt )B* (4 7572))

. /dT[ /d'rz /d’r /dse21ri-r/e—21ri(rz—'r,):

X Ah () h* (4 7572)) @ (s)

where &,(s) is the (power) spectral density of z(f).
The last equation is now rewritten in the convenient
form

() = [ aKiepne, @

where the integral kernel or “stochastic kernel”

. . .
irf —2milry—r,
Ku(s,f) = f dr / drs f dre™™ g

is a spectral representation of the Green’s function
of the stochastic operator H and may be called a
“stochastic Green’s function.” The form of the kernel
or stochastic Green’s function depends on the sta-
tistical measure chosen for the solution. In solving
Ly = z(f), we can express y in terms of z by the use
of a Green’s function G(¢,7). However, we are now
solving not for y but &, in terms of ®, and a “Green’s
function” appropriate to such measures. This is our
kernel Kr or what we call a stochastic Green’s
function. Since it depends upon the statistical
measure, we should properly identify the kernel Ky
as a stochastic Green’s function for power spectral
density measures or a spectral density Green’s
function.
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Now, in principle at least, we can express all the
correlations of the output by similar expressions
involving correlations of the input for general linear
stochastic operations on arbitrary random inputs.
But the n-dimensional multivariate characteristic
function ¢, of the “output’” or transformed process
can be given in terms of all the correlations of the
output, and by the above reasoning can now be given
in terms of all the correlations of the input. These, in
turn, are clearly determinable from knowledge of all
the joint distribution functions of the input process
or operand. Finally the n-dimensional joint distribu-
tion function for the output is obtained by Fourier
inversion of ¢.. Thus we have suggested a method, at
least in principle, for solving the most general sta-
tistical problem.

Equation (2) shows that the power spectrum (or
autocorrelation function by use of the Wiener—
Khinchin theorem) of the output can be given as a
transform of the corresponding measure of the input
and a kernel which, as we shall see, involves the
probability laws for the parameters. Thus the spectral
density of the output is related to the spectral density
of the input by a linear operation. The solution of any
problem of this type involves finding the appropriate
kernel. We write (2) symbolically as

by = Kﬂ‘q)x

understanding Kz to be the appropriate integral
operator. We note some properties which would
reasonably be expected.

If 2 = ax + bx. + - - -, where the 2; are mutually
independent, then Hzx = aHx, + bHx, +--- and
Sy = K ®, = ®Ky P + 0?Ky Pp +---. Also if
H = H, + Hs, then ®y, = (Kn, + Kz)- ®..

Whereas H and the above results are quite general,
the L in the differential equation was very special,
for convenience, though still an important form. No
difficulty in principle would be expected in generaliz-
ing to systems of differential equations with many
dependent variables (multiple inputs and outputs) or
to random fields V' (x,t).

To the spectral density derived for the “output”
we should add any contributions due to a mean value
since the derivation tacitly assumed a zero-mean
random process x. When the time average of the
process is nonzero, there are singular peaks of the
well-known Dirac §-function type in the spectral
density. Thus, to the ®,(f), which represents only the
spectrum of what we could call the a ¢ part in electri-
cal language, we should add a term 27%5(f). Equiva-
lently, to ®,(f) we add a term 27K (0, f).
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2. Interpretation of the Kernel in Special Cases

Consider first a special case of (2) corresponding
to a constant-parameter medium. For such cases
(differential equations with constant coefficients and
random forcing function), the Green’s function de-
pends only on the time interval between application
of the impulse and observation of the output. The
averaging is obviously unnecessary now, so that (3)
can be rewritten

e
Ku(sf) = f dn, f drs f drg ™ 7!

X h(t — )t +7—712),

which with appropriate changes of variables becomes

KH (S,f) — / dTe—Zwi(f—s)T / deeZWif,sh (Tz)
—» 0

>< [ dTle_zﬂh s]'b (7'1)
0

= Y& —s),
where
Y(s) = f ) dre " h(r)

i.e., the Fourier transform of the Green’s function.
Then (2) becomes

2w (f) = |Y(NI2:()

a well-known result.
Returning now to the general stochastic kernel
of (2) and proceeding in a formal manner

2rirf —2mwilr,—1,
Ku(s,f) = / d‘rl/ dn/ dré™™ ™ g TTTI
—0 —00 —o0

X (h(Gr)l* (¢ + 75m))
at least for stationary kernels

® @ @
2rirf —2wilr,
K]{ = / dT1/ de/ dTe o e milr,mn)e
— —w —w

X R}.“M*(T;Tz - 7'1)

© ©
—2mis(r, —1,) .
= / dTl / de@ T ¢hxh*2 (f}Tz - Tl) b
—» —o

where ®; ,*(f;m» — 71) is evidently a cross-spectral
density of the A; defined by

&, (fire — 1) = / dre%iﬂ(h(‘r;n)h*(t + 7;72))

Ai (fr)AE" (fim2)

= lim 2T ’

T—0
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where A} (f;r) is the Fourier transform of (¢, r)

h(t;r) = f_w dfAx (fm)e ™" .

We proceed by computing time averages of repre-
sentative Green’s functions (under the restriction
that the processes be ergodic) instead of ensemble
averages. The expectation value

(h(tr)B* (¢ + 7372))
1 / dah(t + a;r)h*(E + 7 4+ a;r2) .

= lm5p
Thus, we apply an impulse at 7, and make an obser-
vation at ¢ for one Green’s function and apply an
impulse at 7, and make an observation at ¢ 4 = for
the second Green’s function. We then average over
a translation of all possible values of the two obser-
vation times. The kernel depends upon time in the
most general case, while for ergodic operators, the
kernel is stationary. For nonstationary problems
with time-dependent kernels we need to specify the
output for a given interval of time.

Occasionally, the notion of frequency response
function is extended to linear time-varying systems
by defining:

Y(st) = / h(tt — 7)e”*™dr
0

The general kernel K x(s,f) becomes

3 w ©
27 —27 % 27iTy
KH — / dTe wzr// dee 1r't1’28/ dTle TITy S
—w —%

—o0

X (bt (E + 7572))

= / dré™™ </ droe 2T RE @t + 7;72)
% [ nin) >,

_ / ATV * (s, + 7)Y (s,0))

- / dre™ T Y (s,t + 1)V (s,0))

This is compatible with our definition for the con-
stant-parameter case since the above expression then
reduces to

deeZWiT(f—8)<lY(S)lz> =8(f—8)|Y(s).

So far, our stochastic kernel has been quite
general. The matrix H has elements with any distri-
bution. However, some statistical properties of
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matrices whose elements have normal, or Gaussian,
distributions are well known. We can make further
identifications by specializing to the case of such
distributions (possibly first determining the eigen-
values of the operator then the Green’s functions,
and consequently the kernel). To see how the distri-
butions enter, it is noted that the Green’s functions
involve the random parameters «,3,- - -, which have
distributions p(a), p(B),--- that must be used in
obtaining the average or expectation value involved
in the kernel. Thus, for ergodic operators

(h(a’ﬂy' . 't;Tl)h* (ayﬂi' et T;T2)> = lim —QIT

T—

x [ auf au a5 [ p@pe)--

X h(“ﬂ&' b+ u;n)h*(a,ﬁ, et T A+ u;"'?)

and we can specialize to certain distributions or even
to the case where the distribution is given by a §
function and the parameter is not random.

3. Statistical (Measure) Operations

A class of operations on random processes includ-
ing, e.g., the ensemble average of a random process,
the autocorrelation, mean squared, or higher means,
can be called statistical or measure operations. A
statistical operator or measure in this sense indicates
a (nonstochastic) deterministic operation on a random
process. It is distinguished from ordinary determi-
nistic operations on ordinary functions only in that
the operand is now a random process rather than a
function, so that the averages are with respect to a
random variable. Clearly, any ordinary deterministic
operator, e.g., a Laplace (or other) transform should
commute with such statistical operators and one
could consider a possibility of appropriate (statisti-
cal) transforms of random processes since this would
just mean the ordinary transform of the result of the
statistical operation on the random process—or a
transform of a mean.

Stochastic operators present much more difficulty.
Let us consider a random function or process y(f). It
can be regarded as a generalized vector in an infinite
dimensional continuum or a (infinite) continuous
(column) matrix, since it consists of an entire en-
semble of sample functions or representatives. The
elements of the matrix vary according to the distri-
bution to which y(¢) is subject. A (stochastic) opera-
tor represented by a (stochastic) matrix (with ele-
ments subject to an appropriate distribution) now
acts on the matrix of the input random process.
Clearly, we expect only to find some statistical prop-
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erty of the result. Let us indicate the statistical
measure by TI. Thus, emphasizing the random
processes by brackets { 1},

ly@®} = H{z(t)}
ry®} = TH{z()} .

If we choose spectral density as our statistical
measure I', we have T'{y()} = &,(f) and T'{z()}
= &,(f). Noting that I' and H do not commute (un-
less H is deterministic), we have derived ®, in terms
of ®. in the integral relation of Eq. (2), or

Il

Il

®, = TH{z(t)} = /KH(s,f)sz(s)ds.

When the stochastic operation H and the random
process x are statistically independent, the statistical
operator I' must act separately on each, i.e., pro-
viding I'H is defined (and it should be if H is repre-
sentable by a matrix) and if neither T'H nor I'z is
zero (eliminating a zero-mean random process if Hzx
does not also have a zero mean) then

THx = TH - Tz

This means the appropriate statistical operation
over each ensemble, i.e., I'yH - I';x. Thus I'z is found
by forming (x(¢)x*(t 4+ 7)) then making the transform
[ em7(" Ydr. Similarly TH is given by

TH = f ETH (OH*( + 7))dr .

Thus we can compute an appropriate autocorrelation
and then a transform to get I'H, or a spectral density
of H, if we are given the stochastic matrix of H. Thus
we can write

@y = $z-P, = /KH(S,f)q)I<S)dS .

If we can find Green’s functions, the kernel K can
be found and &, determined. We can always do this
in principle for deterministic operators, as we shall
show, and at least for stochastic operators having
the ergodicity property, as mentioned earlier. If H
is given as a stochastic matrix, Ky and therefore &,
correspond to the transform of the autocorrelation
of the matrices.

Finally, if H is a deterministic operator I'Hx
= HTz or ® = H®,. Thus if H is the Laplace
transform operator, i.e.,

H( >=f:e*“< Yt
then

THx = r/ e (t)dt =/ e "Tx(t)dt = HTx .
0 0



LINEAR STOCHASTIC OPERATORS

This clearly is not I'X (s) where X (s) is the transform.
I' acts only on the random function z(f). Further
even for stationary x(¢), Hx or X(s) would not be
stationary and T'X(s) would be undefined. But (sup-

posing the statistical measure T' to be the spectral

density) we have

©

HTz = f e Tz (t)dt = f e '®,(s)dt
0 0

noting the variable of ®, should be the same as the
transform variable s. Thus

®,(s)

HTz = <I>z(s)/ e dt =
0

and we see that a statistical measure I' (in this case
the spectral density) of the (Laplace) transform of a
random process z(t) is given by a pole of magnitude
I'z [the spectral density of z(f)] in the transform
plane.

4. Determination of the Kernel
from Physical Process

In many cases of physical interest (2) can be deter-
mined directly from the nature of the process. Thus
we have an input z(f) and a “‘stochastically filtered”
or processed output F,,p,...{x(t)} where the stochas-
tic operator F, g,... depends on the distributions of
its parameters «,8,- - -. For example, (a) a function
z(t) is translated by amounts «, at intervals of time
r 80 Fiz(@®)} = z(t — ) for nr <t < (n 4 r,
(b) 2(¢) is multiplied by B, over intervals of length 7.
Thus F{z(t)} = B.x(t) fornt <t < (n + 1)7. These
are linear processes and the random variables in
question are the a, and the 8,. The distribution func-
tions of these parameters determine the statistical
properties of the process. An example (¢), of greater
interest arising in an application to be considered is
the operation S{z(t)} = x(t.) for t. < ¢ < t..1 for all
n where the intervals [, = f,.. — ¢, are random varia-
bles with a distribution P(l)dl. Thus S might be
called a “random sampling operator’’ (where the last
sample value is held until another is taken). The S
operator gives the correct results for the much-used
case of regular sampling as randomness vanishes. A
closely related example (d) is P{z(f)} which samples
randomly as before but inverts alternate samples.
Thus P{z()} = ( — 1)"2(t.) for ¢, < t < tux Where
the intervals I, = t.,.. — t. are specified by P(l)dl.

The Green’s functions for these latter processes
(¢ and d) can be written by inspection

s:(tr) = Dp Altlst)d(r — &)

piltr) = 2op (=D A Lt)o(r — &),
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where
Alhit) =1 if &<t <t+h
= 0 otherwise .

The spectral densities for the results of operations
on z by S or P are considered in the referenced
dissertation in connection with a generalized random-
walk problem, first studied jointly with DuBois. We
state the results here as examples.

®s(f) = Re {1 ;rzjzvz({;)/_wds@(s )

X 11 = 56 = ] 5 76)

e (f) = Re {1—5_7;2;2#/‘_&0 ds®.(s — f)

X[+ = ) 3 (170

where z(f) is the characteristic function of the distri-
bution for the sampling intervals P(l), i.e.,

2(f) = f ) dlP()e ™!

. -
Z=fo POl = —5 =2 (0)

relations which are clearly of the same form as (3)
with rather complicated kernels dependent on the
probability laws [in this case just P(l)] for the param-
eters which are random. Evaluation of the kernel in
terms of distributions of the random parameters is
obtained directly from the nature of the process on
the input, i.e., from Hz.

5. Stochastic Green’s Functions for Correlation
Measures of Input and Output

The stochastic Green’s functions or stochastic
kernels for other statistical measures of input and
output can be found in the same way as carried out
for spectral density measures. Some of these kernels,
e.g., those for correlation functions, are particularly
valuable, both because we frequently want to deter-
mine the correlation matrix for a random process and
because of our suggestion for determination of the
nth joint distribution function, if we can first find
all the output correlations in terms of the input
correlations.

The kernel for the autocorrelation measure of in-
put and output for the stationary case can be seen
from the derivation of K » in Sec. I. Thus, the relation
of the autocorrelations Rx. of the output and R. of
the input for an operation H is

Ry (8) = f_w doGu(B0) R (0) ,
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where the kernel G’y is given by

@

GH(ﬁ,O') = f‘w dT(h(t,T)h* (t + ByT + 0)) .

Transformation of Ry, and R, to spectral densities
again gives the relation involving the spectral density
kernel Kx(s,f). Because G is simpler than Ky, it is
usually desirable to work with correlations although
this investigation has emphasized spectra.

6. Nonstationary Processes?

If we had not restricted ourselves to stationary
processes in writing Ry.(7) (early in Sec. I), we would
instead write Rp.(t,t:) or simply R(t,t:) given by

R(t,t2) =/ (h;(t,0)x (o) hi(toyr)x (1) )dodr

= //Rx (o,7){hi (b1,0) hi (b2y7) Ydodr

where R.(o,7) is the correlation of the input. Thus,

R(t,t:) = //Rx(U,T)H(tl,tz,a,r)dadr ,

where H (f,,t2,0,7) can be considered a kernel for the
autocorrelation where the processes need not be
stationary. When the processes are stationary,

R.(o,7) = R.(c — 1),
h,'(tl,O') = hi(tl - 0') ’
hi(te,7) = hi(te — 7)

and H becomes H(t — o,ts — 7) a function of 2
variates as in Kxu(s,f). We are still assuming inde-
pendence of the system and the input. The output
is stationary and we can write our spectral density
expression by appropriate transformation.

7. Mapping of Spaces

If the measure chosen for z(f) and y(¢) is the spec-
trum &, we have

,(f) = f K (5,f) @2 (s)ds .

If the measure chosen is the autocorrelation we
have

R®) = [660)R.@)ds

A mathematically more elegant formulation is to
define a general statistical measure p.® Thus the
measure of y is u(y) and the measure of z is u(z).
Now u(y) may be ®(f) or R(r), for example. It means

2 This treatment was suggested by Professor Balakrishnan,

of the University of California at Los Angeles.
8 Called T in the section on statistical measure operations.
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a chosen measure defined over the space of the ran-
dom function y. Similarly, u(z) is defined over the
space of z(t) and may, for example, be the spectrum
®.(s). Now we can define

®,(s)ds = du(x)

and write (1) as

w) = [E@)du@) .

This form is now appropriate to any chosen measure
operation. The kernel K(y,x) maps from the space
of z to the space of ¥ and depends on the chosen p.

A stochastic process X (¢),* can be described in
terms of m-dimensional random variables X (%),
X(t2), - - X (t,) by means of their families of distri-
bution functions F,(t,;Xi,t2;Xo,- - - ,t.;X,). However,
such a law will be meaningless on the quantum level
since it implies the observation of a physical phe-
nomenon at an instant determined by a point on a
time scale, or generalizing immediately to random
fields for precise measurements of position, momen-
tum, or other variables. Such precise or instantaneous
observations are inconsistent with basic postulates so
a reinterpretation becomes necessary. However, it
is not essential to consider random processes as
families of random variables depending upon ¢ (or t).
Instead we think of X as an element in a function
space. Bach realization of the process X (f) becomes
one point in the function space. We define a general
random element X with values in a space x in the
following way. Let x(«) be a mapping from a measur-
able space of elementary events U into the space x.
The random element X is the result of the mapping.
The elements of x are the values which X can take.
Fortet® gives some good examples. If X is a random
variable, x is the space R of real numbers. If X is a
k-dimensional random variable, then x is a k-dimen-
sional Euclidean space. If X is a Gaussian random
function of ¢ on an interval (¢,t:) (with continuous
covariance) then x may be either the Hilbert space
of those functions on (4,t:) whose square is integrable
or the space of all functions on (¢,t2).

Now we can extend the definition of stochastic
operators to abstract spaces. Thus, the stochastic
operator L acting on the random function X can be
defined as the transformation which maps the space
x into a space X representing values which LX can
take. Any operator satisfies the definition so far;

4 We can generalize to a random field by writing X(t,r) or
simply letting ¢ be a vector, i.e., X can be a function of several
variables.

5 R. Fortet, Recent Advances in Probability Theory (John
Wiley & Sons, Inc., New York, 1958).
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now we include linear transformations which them-
selves require statistical treatment in terms of realiza-
tions such as we gave X (¢). A single realization of a
stochastic operator yields an ordinary operator or
nonrandom matrix. It is possible that a formulation
of quantum theory using stochastic operators may
couple the advantages of the Feynman formulation
with calculable expressions and a more natural ap-
pearance of probabilities. This work is intended to
lay the foundation for later use in this connection.
The extension will be of the nature of a general
transformation theory involving topological spaces
and functional analysis.

8. Some General Mathematical Properties
of Kernels and Operators®

We note in passing some general mathematical
properties of the kernel and its relations to stochastic
operations and statistical measure operations. If
y = Hx, where H is a stochastic operation on the
stochastic process or random function z and we take
the statistical measure u of both sides of this equa-
tion, we have

wy) = nHz) = /K(y,-’c)du(x) = Ku(z)

(it being assumed that x4 does not assign finite meas-
ure to a point). In order that the integral operator
K exists, u must have certain properties with respect
to H. From the above equation we can write the
operator equation

uwH — Ku=0.

Let us assume that the quantity Hyu is operation-
ally defined in some sense. We have already seen in
the section on measure operations that u does not
commute with stochastic operations, i.e.,

uwH # Hp

Since we have assumed that Hu is defined, we may
define the operator ¢ by

vl = Hu + ¢u .
Substituting this into the equation pH — Kp = 0,
we have
HA+¢—Kp=0.
Thus, under the assumption that Hu exists, we have

K=H+t+o,

6 Not used in further development. This section is of the
nature of a mathematical appendix concerning meaning of
operations and is based on a discussion with D. Edelen at
Rand.
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where ¢ is any operator such that
au =0.

Conversely, if K exists and Hyu is defined, then the
equation pH — Ku = 0 is satisfied if and only if
there exists an operator ¢ such that

wH = Hy 4+ ¢u .

Combining the above considerations, we obtain the
following result:

Theorem. If Hyu is defined, there exists an operator
K which satisfies the operator equation

vH — Ku=0
if and only if there exists an operator { such that
wH = Hu + {p .
If these conditions are satisfied, then K is given by
K=H4+¢+o,

where ¢ is any operator such that ou = 0.

Now assume that o is zero so H -+ ¢ represents K.
The procedure is clear in principle. For a given
stochastic operation and chosen measure operation,
a kernel K exists if u — Ku is a set of measure zero
over the space of x on which H acts. The commutator
of u with H determines ¢. Then K = H + ¢.

If we consider u and H as operators each with a
unique set of eigenvectors and suppose these sets are
nonparallel, i.e., u and H do not commute, then ¢ is
orthogonal to H, i.e., the eigenvectors of { are orthog-
onal to the eigenvectors of H. We are defining an
operator ¢ such that the eigenvectors of H 4+ { com-
mute with K. For H and u such that ¢ is sufficiently
simple, it is conceivable that one could determine
K from H + ¢.

Now consider the inverse problem Ly = z where
we are particularly, but not exclusively, interested
in the (unbounded) differential operator. Again we
suppose that u(z) is a well-defined measure given for
x and we ask for u(y). Write u(Ly) = u(z). L and y
are not statistically independent, so x4 does not act
separately on L and y as in the case Hz. Again the
measure operation u does not commute with the
stochastic operation L. Suppose the commutation
relation is

uwL = Ly + xu,
where again x may be, and in general is, quite com-

plicated. Now supposing u(y) exists,

Lu(y) + xu(y) = p(x)
or

LKu(x) + xKp(z) = u(z),
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and we can write the operator relation
L+xK=1.

Thus, given the measure operator u and the
stochastic operator L, the operator K is defined and
exists when x exists or when u(y) and u(x) exist.
However this is not a method of calculating K since
we do not know how to calculate the inverse of a
stochastic matrix. We may also note that even if
u(z) exists, u(y) may not exist. L is an unbounded
operator (for the differential operators) which may
be nonmeasure-preserving. The space of y must be
suitably restricted. If a measure on x space is mapped
into the same measure on y space, then it is clear that
not all measures will work for an arbitrary L.

This shows (L + x) (H 4+ ¢) = 1 or H + ¢ is in-
verse to L + x, but we started with the supposition
that H was inverse to L by writing y = Hzx as the
solution for Ly = z. This implies that xH + L¢{
+ x¢ = 0 or that x and ¢ are related for a particular
L and its inverse H.

We will now generalize our remarks in the fol-
lowing manner. We have seen that we can write

8,(f) = [dsku(s,u(s)

= W(s,/)®:(s)

defining W(s,f) to mean the integral operator
[ dsKu(s,f). The above expression is equivalent to

THx = W(s,f)Tx,

where T represents the statistical measure operation
of forming the spectral density. To keep track of the
arguments f or s we use subscripts on the I' operator.
Thus, ®,(f) = I''Hz and &.(s)[= I'sx. Now
T He = W(s,f)Tsx = TH-T'yw
= THi(s — )T
so that
W(s,f) = THo(s — f) .
Also, knowing T'H is a noncommuting pair, we write
I;H = HT; + 9Ty
an = PfH - H Pf
= THé(s — f)T, — Hé(s — /)T,
= [W(s,f) — Hé(s — f)IT. .
Thus, 7T, is an essentially singular operation. 7 is
related to our kernel operation W (s,f) by an additive
Dirac matrix. We have shown that % exists and shown

its specific structure. If T were to represent an ordi-
nary averaging operation and H a stochastic opera-
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tion, then I'Hz is a defined operation. H I'z is unde-
fined, but the Dirac function behavior of 5 is just
such as to eliminate the point in space from which
the indeterminism results.

We can state now the following as a theorem:

Theorem. There exists a kernel K (s,f) or the integral
operator W(s,f) = ffmdsK u(s,f) if and only if there
exists an 7 satisfying the commutation relation
I'H — HT = qT, such that

W(s,f) = THs(s — f) + x,

where x is an arbitrary operator such that xI'z = 0,
i.e., x annihilates T.

We have shown K(s,f) exists under the assumption
T'Hz = TH-Tx. Now one could consider all T' for
example that result in 'Hz = TH-T'z plus some
other term and again find a necessary and sufficient
condition for existence of a kernel.

9. Physical Measurements and
Estimates of Statistics

With a prior: knowledge of probability distribu-
tions of given random processes we have calculated
various statistical measures (moments, characteristic
functions, spectral densities, etec.,) for these distri-
butions.

In physical measurements of random processes
with unknown distributions (where there is no possi-
bility of taking advantage of the central limit
theorem) a question of great importance we may
ask, is whether from a set of measurements we can
now determine some of the statistical properties
(mean, variance, etc. . . .).

Suppose we have available N measurements of a
basic experiment defining a process or N observations
or measurements of the value of a sample function
of a given random process at N different instants of
time. This set of N values is a sample point in a
N-dimensional space characterizing the entire experi-
ment. Clearly, this single point will not uniquely
determine the statistical property we seek. In this
situation the statistician speaks of making an estimate
of the particular statistical property by finding a
function or statistic of the set of results or values
which gives a reasonably close estimate of the sta-
tistical property for the process. This is called sam-
pling theory and is discussed by Davenport,’
Cramer,® and others. It is clear from the theory and
our own results on the random sampling example,

7 W. B. Davenport, and W. L. Root, An Introduction to the
Theory of Random Signals and Noise (Massachusetts Institute
of Technology, Cambridge, Massachusetts, 1958).

8 H. Cramer, Mathematical Methods of Statistics (Princeton
University Press, Princeton, New Jersey, 1946), Part III.
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that we can now give more generalized sampling
theorems for situations in which it may matter that
the N instants of time at which measurements are
made may not be regularly spaced but are subject to
a distribution.® Such a case might occur, for example,
if the observations were to be made whenever an in-
coming particle triggered the observing apparatus.

The application of the theory to the statistical
description of mechanical systems of macroscopic
dimensions is a clear possibility. We can assume a
stochastic process corresponding to the measurement
of an nm-tuple of macroscopic observables. Then a
theory of repeated observations or measurements can
be made using stochastic operators, where some
parameter of the observation is unknown and can
only be given a distribution.

II. THE INVERSE PROBLEM: STOCHASTIC
DIFFERENTIAL EQUATIONS

1. Differential Operators

We have discussed at some length in Part I various
statistical measures for the action of a linear stochas-
tic operator on a random process, or equivalently, a
linear (stochastic) transformation of a random proc-
ess. A particular measure of interest, the spectral
density measure, involves a stochastic kernel or
spectral density Green’s function Ky for a stochastic
operator H. This formulation is useful in some prob-
lems involving the statistical optimization of com-
plex systems and in the synthesis of models for some
physical phenomena. In other physical problems,
however, the convenient formulation involves a
“stochastic differential equation’ rather than a given
operator. Generally, linear operators, linear transfor-
mations, linear filters, linear networks, and linear
control systems are equivalent mathematical systems
describable by systems of linear integro-differential
equations. The forcing functions are the inputs. The
outputs or dependent variables appear as the
operands. For simplicity, we consider a single input,
single output equation in the form

Ly =z«
where

n dv
L = ;ay(t) 'd‘t—,

and both a,(f) and z(f) are stochastic. Samuels,*

9 Since the term random sampling is already used by statisti-
cians to indicate that the sample is chosen from a general
population in a random manner, it might be better to call this
stochastic sampling.

10J. C. Samuels, Transactions of the 1969 International
Symposium on Circuit and Information Theory, Los Angeles,
June 16-18, 1959. IRE Trans. Circuit Theory, CT-6 (Special
Supplement) (1959).
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Sundstrom, and others have pointed out that such
problems arise in the study of linear servomechanisms
in which several parameters are undergoing noise
modulations'®*® and in certain propagation problems
in stochastically varying media'*" or media with
random inhomogeneities.

‘We now consider the equation Ly = z, with L the
previously defined stochastic operator and z(f) a
random process. Defining H as the operator inverse
to L, we investigate the possibility of determining
the kernel Ky for H by examining L and avoiding the
problem of inversion, i.e., not determining H. We
assume reasonable restrictions on L.

1. The inverse must exist. Thus L must be non-
singular, i.e., the determinant of the matrix corre-
sponding to L must never become zero as the ele-
ments vary according to some distribution.

2. Ky is stationary or, at least, the coefficients in
L can be translated, i.e., have stationary properties.

Now, differential equations can be solved in our
sense, i.e., in terms of a statistical measure, where
the coefficients are stochastic as well as where the
coefficients can be considered to be chosen from
random processes. Our stationarity condition means
simply that the probability distributions of the
random parameters are such that the stochastic co-
efficients (time functions) in the differential equation
describe stationary processes during a time interval
of interest, i.e., the statistical characteristics during
the interval are constants. In order to have a full
description of the processes, the time interval must
be at least so long that the correlation between values
at the limit points can be neglected. Actually, wide-
sense stationarity is sufficient for the coefficients.

2. Evaluation of Stochastic Green’s Function
for a Differential Operator

A series of papers by Sundstrom® leads to the fol-
lowing approach for expressing the kernel in terms
of the coefficients of the differential equation. Treat-
ng x not as a random process but as a defined con-
tinuous member of the x process in the interval
[ — T/2,T/2], and similarly treating y and a,, we

1 M. Sundstrom, Arkiv Mat. 2, 52 (1951).
. L‘M&) Rosenbloom, Ph. D. Thesis, UCLA, 1954 (unpub-
ished).

13 J. F. Buchan, and R. 8. Raven, IRE (Wescon) Convention
Record, Part 4, August 1957 (unpublished).

14 P, G. Bergman, Phys. Rev. 70, 486 (1946).

15 D. Mintzer, J. Acoust. Soc. Am. 26, 186 (1954).

16 1,. A. Chernov, Wave Propagation in a Random Medium
(McGraw-Hill Book Company, Inc., New York, 1960).

17 B, Villars, and V. F. Weisskopf, Phys. Rev. 94, 232 (1954).

18 M. Sundstrom, Tech. Notes TN 45, 46, 47, 48, 49, 50,
51, Royal Institute of Technology, Stockholm, Sweden (un-
published).
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define Fourier transforms of the “input” z, the “out-
put’ y, and the coefficients a,.

20 = | x(neay
v = | vpea

w®) = | anéa. @)

Now if y(2) is differentiated » times, we have

20 =] enpripneay.

Substituting in the differential equation

> a@y” ) = 0.

Multiplying by €™ and integrating from — 7/2
to T'/2, we obtain:

/_z afa(f,s)Y (f) = X(s)

as a formal relation between input and output
transforms where:

a(f,s) = 22 Cmif)' A,(s — f) (6)
However, it is clear that we need an expression
for Y (f) in terms of X(s), since ensemble averages to
be taken later must be separable and, while the x can
be statistically independent of the a,, the output y
cannot, except in a trivial case, and except for one
special case of some interest considered by Samuels.!?
He analyzes random linear systems containing one
or more nonindependent parameters under the re-
striction that the parameter processes and the solu-
tion or output process have very widely separated
spectra. He considers an equation of our form Ly = z
with the a,(f) and the z(f) as prescribed random
functions, supposing as in our treatment that x(¢) is
statistically independent of any «,(f) while the a,(f)
may or may not be correlated with each other. Fol-
lowing his treatment we assume the mathematical
expectation® (a,(f)) of each coefficient a, exists and
write

(5)

a(t) = (@ () + o (?)

19 J. C. Samuels, Transactions of 1959 International Sym-
postum on Circutt and Information Theory, Los Angeles, June
16-18, 19569. IRE Trans. Circuit Theory, CT-6 (Special
Supplement) (1959).

20 Mathematical expectation or statistical average or mean
or ensemble average of a continuous random variable g(z) is

E{g(z)} =f g(z) p(x) dz = <g(z)> .

—»
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so that a, represents the randomly fluctuating part
of a,(). The differential equation can now be written

n dvy n dvy
= ,(t)) = = i) — v Ty e
Hy = 2 (@®) 5 = 2) = 2o,

Now the left side can again be viewed as an operator
acting on y, but this is now a nonrandom operator
H, and a Green’s function can immediately be writ-
ten, say h(t,r), for the left side alone. Now the solu-
tion is

v® = [ hneer - f w3 U0

X a,(7)dr + ey (t)

v=1

where the ¢, are a fundamental set of independent
solutions of the homogeneous nonrandom equation
Hy = 0 and the ¢, are arbitrary constants. The
upper limit can be « for a realizable system. The
lower limit is a matter of memory. Using ¢, instead of
— o implies simply that all earlier values are not
significant. Considering infinite limits

v = FO — | Koy,

where

n dy
K(tiT) = h<t;7') Z:;) aV(T> W‘

= > (=1) % [o (T)R ()],

= [ htnatin + 3 o0,
Now multiply y(&) and y*(t) and average
W 6) = (PP ()

- [ ®enrreyen

Ft)

- [ &t r e o

+ //_w (K (tl,Tl )K* (t2;7'2)y (7'1 )y* (Tz))dT]de .

Assume the o, are stationary and ergodic and the
(a,) are constants so h(t,7) is h(t — 7). Then it is
true that y(f) and «,(f) y(¢), etec., are stationary and
ergodic. [Also, Samuels states if the (a,(f)) approach
constants as { — o then the products in question
are ‘“‘almost ergodic” for large t.] We then assume
both K and y are ergodic. Now we replace ensemble
averages by time averages,? e.g.,

2 Time averages are indicated by a bar over a single letter
without exponents. For more complicated expressions we will
use the symbol [ .
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BEOGE) = in+ [ aoaed - 33,

if the rates at whlch the functions change are reasona-
bly far apart, e.g., if G1 is a rapidly changing quantity
and @ is slowly varying, in which case the plot of
the autocorrelation of @, is wide and that of G, is
very narrow, so the spectral densities are well sepa-
rated narrow peaks. (G- close to zero frequency and
@G, farther out.) This is also shown by integrating by
parts assuming one rate, say G3(¢£) ~ 0. Now we can
make the separations

(K, n)F*(t)y(r)) = (K¢, 7)XF*(L)y(n))
(B*(to, 1) F (0)y* (7)) = (K*(t2, 7)XF (L)y* (7))
(K (ty 1) K* (b2, 72)y (1) y*(72))
= (K (t, 7)) K*(t2, 2) Xy () y*(72))
Substituting and noting (K) = 0, since (o) = 0,
YR)y*(t)) = RBy(tte)
(Ft)F*(t)) =Rr(tit2) ,
we now have

Ry(tl,tz) = RF(tl,t2>
+ // (K (tiyr1) K* (taym2) )Ry (ma,72) dadlrs

The above kernel is given by

Itk

(K (b)) K* (ta12)) = Z (—1y"0er a
X {pwi (Tl}TZ)H (tl,Tl YH (t2y72) }

which is a convenient form when the various cross
correlations py; are given. If the cross-spectral densi-
ties are specified and (a,(¢)) are constants, a more
convenient form is obtained by taking a double
Fourier transform of R,(t,,t:) thus defining

J[* eonsop uindn - &)

with inverse

R,(tit:) = ﬁrz//_ ¢ OB g (0 6)didg -

We can now write

. -1 k+j w
P, (51,82) = Pr(S1,8e) + ;o( 41'_2 /_w ®x (1)
X B (52)B1Ba®py,; (61 — Btz — B2) B, (B1,82)dBidBs

where ®,, . is the cross-spectral density of the co-
efficients. If the «, are wide-sense stationary,
@, (&1 — Bt — Be) ‘
= 27"¢'ij(§2 - 62)5@'1 - ,31 + §‘2 - )82) .
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Now we have a second-order linear integral equation
which can be solved in closed form. Samuels develops
a mean square stability theory and considers some
special cases, e.g., an RLC circuit with randomly
varying capacitance. He applies Kirchoffs laws to
get a differential equation then considers mean-
square stability, i.e., regions where

lim (y*(5)) < M,

where M is a finite constant. Mean-square capacity
deviation is plotted against damping of the circuit
to show regions of stable operation.

These results, though interesting, are not sufficient
for our purpose since they apply to a special case
where the ensemble averages can be separated on the
basis of rate. Furthermore, we would really like a
solution for the output in terms of the input (see
Sec. I) and the parameter variation rather than in
terms of an integral involving the output again.
Therefore, we return to Eq. (5).

We define a new function B(s,s) by the following
orthogonality requirement

[ asaoBes =0 -0 @
From (5) and (7) we immediately obtain
() = [ asBoxG). ®)

The power spectrum (of the representative member
of the ensemble we have chosen) is then given by

G.(f) =1tim & [ dodsB (o, 1B (6, X (@)X 9
The spectrum of the process is (G,(f)) or

2,(f) = lim - I[BB8 61X (@)X 5))dots.

But B depends only on the coefficients a, not on the
input z so that the parameter processes and the input
process are statistically independent. Thus,

a() =tim = [| BB 60
X (X ()X *(s))dods ,

a(p) =1m 2 [ BenB 6.0

) T/2 ) T/2 )
X </ x(t)e " "dt / x* (t)ez"”‘dt>dods,

&, (f) = hm ———/f // dadsdudv(B(a,f)B*(s i)

X <x<u>x*<v>>e”“”"’"> :
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If the input is stationary (v = w + ) this becomes

tim 2 [ - dodsduds(B o, 1) B* (5, 1))

T—

X <.’l; (u)x*(u + T>>627ri(s—a)u621risr .

But, {(z(w)z*(u + 7)) = R.(r) and [ R.(r)e**dr
= &, in the limit 7"— «. Thus we can write our
earlier result from Sec. 1.

() = [ dsKu(s. N0 (6)
with Ky now defined by

Ku(s,f) = —/:, do fw du(B(g,f)B*(s’f»eZvri(s—a)u
= /d‘7<B(<T,f)B*(S,f)> fduez"”"")"

~ [aods = ) Blo, B 5,1
or

KH(Syf) = <lB(S,f)lz> ) (9)
so that the stochastic kernel has been expressed in
terms of the coefficients of the differential equation.
While this result establishes the existence of the
connection we were seeking in a surprisingly simple
relationship, it can only be useful in solving problems
or specific equations if we can evaluate it, using the
definitions (6) and (7). Now the difficulties become
clear, for if @ and B are represented by matrices,
these matrices must be orthogonal and the two are
obviously not independent so we cannot make
separations in any ensemble averaging. Thus, we
have not shown a prescription for the solution of
differential equations unless a method can be shown
for finding the ensemble mean given by (9) in terms
of the given statistics of the a,(f). Let us restate our
problem in a convenient way. We wish to solve for
B in the integral equation

| asatr)Bes) =3 a),

considering @(f,s) to be a known kernel, is, an equa-
tion of the form

16 =z,

where z is the Dirac 6 function, 6 is the unknown
function B(s,s) and [ is the integral operator with a
symmetric kernel G(f,s). In the study of transport
phenomena (Boltzmann equation) we have just such
an inhomogeneous integral equation?? with a known

2 A. H. Wilson, Theory of Metals (Cambridge University
Press, New York, 1953).
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symmetric kernel which is positive definite, a known
inhomogeneous term z, and an unknown function 6.
Kohler?® has shown that the Boltzmann equation is
equivalent to a variational principle for which the
variational function is simply the inner or scalar
product (6,16) subject to the subsidiary condition
0,18) = (0,x). We now show that this statement ap-
plies for our integral equation using some results of
Ziman.?* We restate our principle as a theorem. Let
6 be the solution of the integral equation /6 = = and
¥ be any function for which (,Iy) = (¥,x). Then of
all funetions ¢ satisfying this relation, 8 is the one
which makes (¢,Iy) a maximum. Thus, noting 6(s)
is actually B(o,s)

¥,10) = ff_wlﬁ(f)@(f,S)@(S)dsdf

= // ¥(s)@(f,8)0(f)dsdf

from symmetry of G(f,s). Adding gives

w19) = L [ w8 + veoiadsasy
- 6,7)

from symmetry of integral between 6 and .
Putting § = ¢ we obtain integral with a square and
if @(f,s) is positive definite, we have for any ¢

W) 2 0. (11)

Now since 6 is the solution of the integral equation,
the condition on ¢ in the theorem implies

W,10) = ,2) = W, 1¢¥) .
From (11) we have

0<((6—¥),I0—¥))

(10)

= (0,16) + (Y, Iy) — 2(¢,16) from (10)
= (0,10) — (¥, 1Y) from (11) ,
ie.,
6,16) > (¥, 1y) Q.E.D.

Thus, we now write
0.10) =[] dasB et Bes)
0) = | dfBns - ) = Blow)

23 M. Kohler, Z. Physik 124, 772 (1948); 125, 679 (1949).
24 J, M. Ziman, Can. J. Phys. 34, 1256 (1956).
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To maximize the variational function using a
Lagrange multiplier to include the constraint

5{(6,16) + N[(6,16) — (6,2)]} = 0
s{(1 +2)(6,16) — N6,2)} =0

s{ + [ Benatasesas
[ Banits - s} = 0

6{(1 + )\)//B(a,f)@(f,s)B(a,s)dfds — \B (a,o)} =0.
Divide by 1 4+ X and let w = A/(1 + \)

o{ ([ BonataBlsais - b)) 0.

Suppose we expand B in some suitable series of the
form

B(f;s) = 2on cubu(£5) (12)
over a finite region a < f, s < b where the 6, are
known functions making up a complete set and the
coefficients «, are to be chosen so that B(f,s) is a
solution of the original integral equation 76 = z. We
should then get integrals of the form (6,,/6.) and
(6.,x) that are coefficients of quadratic and linear
forms in o, Thus, the variational principle is ap-
plied to get the best choice of the a, by differentia-
tion with respect to these variables (making the
variational function a maximum subject to the
subsidiary condition). The result is a set of linear
equations to be solved for the «,. For an exact solu-
tion we have an infinite sequence and therefore an
infinite determinant to be evaluated. Careful choice
of the 6, may result in a good approximation with
only a few terms and choice of the 6, therefore de-
pends on the insight which can be obtained in a given
physical problem. We think at this point in terms of
an exact solution to be evaluated to any desired
degree of accuracy by the Ritz method.? Thus, in
principle each B can be found from each @. If we now
let @ and therefore B be random processes, the a,
become random variables to be evaluated.

In order to obtain a little more insight into this
forbidding problem, we digress now to review some
properties of Green’s functions which we can use.

Consider then the following method?® of finding a
Green’s function for ordinary nonstochastic physical
problems.

2 F. B. Hildebrand, Methods of Applied Mathematics
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1952).

26 G. H. Goertzel and N. Tralli, Some Mathematical Methods
of P;Lysics, MecGraw-Hill Book Company, Inc., New York,
1960).
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Let L be a differential operator and s a continuous
function. Consider the problem of finding the func-
tion f satisfying the inhomogeneous differential
equation

Lf(z) = s(@) (13)

and certain specified boundary conditions. If there
exists a unique solution f for each s, there must exist
an inverse operator L~ such that for all s the formal
solution will be

fl@) = L7 () . (14)

The inverse operator implies not only an operation
inverse to L but also application of the associated
boundary conditions.

The solution of the differential equation (13)
corresponding to s(x) = 6(x — 2’) is the Green’s
function G(z,z’) for the given L and boundary con-
ditions. Thus, @ satisfies

LGz, 2’) = 6(x — 2')
with the same boundary conditions as on f. Thus,
Glxz') = L7%s(x — a')

and (14) can be rewritten

(15)

fl@) = fL_IB(x — a")s(x)dx’
or, using (15),

1@ = [6@a)s@ia,

which is obvious anyway from the meaning of G or
from applications, e.g., in electromagnetic theory.

A particularly nice method of obtaining the Green’s
function exists for self-adjoint (Hermitian) operators.
Thus if L = LT, the eigenfunctions of L form a com-
plete set. These eigenfunctions ¥, and the correspond-
ing eigenvalues A are found by solving the eigenvalue
problem

L (x) = Mn()

with the same boundary conditions on ¥y as on f(z).
We require also the closure condition

A W(@Wi@) = 6@z — ')

where [ is used to mean [ d\ if the spectrum of
eigenvalues is continuous, or Y., if it is discrete. The
Green’s function is given by an expansion over the
set of ¢ thus,

Gz’ = A Pr (16)
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so long as A ¢ 0 and no infinite sequence of A’s ap-
proach zero as a limit point.??

Now one method which suggests itself is to use
such direct methods as the above for determining
@ by taking one member of the ensemble of the opera-
tor L, say L;, determining a single G;, and then
averaging over the ensemble by using time averag-
ing—assuming an ergodic property holds for the
operator. This can be done when an explicit L; is
known and sometimes by considering a simpler
nonrandom problem. [An example is considered in
Chap. 4 of the referenced dissertation and in a paper
(to be published).]

We ask ourselves now whether any expansion
analogous to (16) exists for a stochastic operator.
Analogous to the self-adjoint or Hermitian property
for ordinary operators, does there exist a correspond-
ing property for stochastic operators? We might say
a stochastic operator is self-adjoint if it is stochasti-
cally self-adjoint meaning all members of the ensemble
are self-adjoint, or we could consider a self-adjoint-
in-the-mean property. Thus, suppose that the mean
operator is represented by the matrix whose ele-
ments are the means of the elements of the stochastic
matrix which corresponds to the stochastic operator.
This mean operator might well be self-adjoint and
possess an eigenfunction expansion. We can then
speak of the operator as being self-adjoint-in-the-
mean. Now hypothesize a stochastic expansion (for
the stochastic operator) whose mean is the above
mean eigenfunction expansion. The stochastic Green’s
function could then be represented in terms of the
eigenfunctions and eigenvalues in a manner analogous
to the deterministic case, i.e., in terms of the stochas-
tic expansion. We have shown we can write the
Green’s function solution for a deterministic differen-
tial equation Ly = z in terms of the eigenfunctions
of L. Regard this L as a single representation of the
stochastic operator £, i.e., one of the ensemble of
operations represented by £. The eigenfunction ex-
pansion suitable for £ must be the eigenfunction
expansion for L when £ becomes L, i.e., becomes
nonrandom. Thus, if £ involves Gaussian parameters,
in the limit as their variance decreases to Dirac
d-function behavior, we get L and the expansions
now correspond. Imagine that all the representations
of £ are expandable in the same basis—which can be
true for a properly defined class of £. Then £ has the
same set of eigenfunctions as L. Now, however, the
coeflicients of the expansion are random variables.
(Only the eigenvalues are random. When these

27 Reference 26, p. 167.
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random variables become nonrandom we get the
set for L.) If we write y in terms of 2 and a Green’s
function written from the above expansion (analo-
gous to the determination of the Green’s function
for L), multiply by itself displaced by 7, take the
mean, and transform to get ®,(f), we have a kernel
or stochastic Green’s function involving the mean of
two Green’s functions which involve random varia-
bles from the expansion for £. Taking the mean
involves only the random coefficients of the expan-
sion for £ and therefore the autocorrelation of those
quantities which we will want to relate to known
statistics of the operator. We define a stochastic
operator to be self-adjoint when its every realization
is self-adjoint. Such a stochastically self-adjoint
operator is also necessarily self-adjoint in the mean.

Every realization or representative L; of an en-
semble {L;} representing a stochastic operator £ has
the same basis if and only if L;L; — L;L; = 0 for all
7 and 7, i.e., if every realization commutes with every
other.

When the conditions of the last statement are not
satisfied, i.e., when there does not exist a common
basis, a stochastic Green’s function or kernel Ky is
formed in the same manner with the difference that
the eigenfunctions as well as the eigenvalues are
dependent on the random variable and the averaging
process involves these as well. For stochastic differ-
ential operators, this is expected to be the usual case
since only a very restricted class of self-adjoint
operators would allow different realizations of £ to
commute. For other operators than differential forms,
there are more possibilities. This then appears to be
an alternate method of expressing the kernel K and
a more direct one since it gives Ky in terms of the
statistics of a,(f) for problems in which Green’s
functions can be found. (This method will be dis-
cussed further in Sec. 5.) We also saw that Ky could
be expressed in terms of (B B*), which means (B B¥*)
can be written in terms of statistics of the a, and
relations exist between these quantities which it is
worthwhile to explore. Thus, in Eq. (13), writ-
ing £ to emphasize according to the above discussion
the stochastic nature of the operator, each realization
or member or sample function £; of the ensemble
corresponding to £ has a Green’s function G:(z,z").
Correspondingly, each sample function of the output
satisfies

Yi = fGi(x,x’)s(x’)dx’, a7

and the process y is the entire ensemble of the y;, i.e.,
{y:}. However, we are not solving for y but for an
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appropriate statistical measure and we have chosen
power spectra as a convenient one, thus,

8, = [ax|B(s0) o) as)
or, for convenience in writing,
P, = fdsC(s,f)@, (s) (19)

or alternatively a matrix product C- ®,. The C is the
(stochastic) Green’s function for the appropriate
statistical measure (in this case, the spectral densi-
ties) of the functions instead of for the functions
themselves. C is the same as K of course, except that
H has no particular significance here. From {y:} one
can obtain a corresponding power spectrum &,. If
the output is stationary, &, could be obtained from
(17) since each sample function or member then gives
the same spectrum. We assumed in deriving Eq. (9)
that the input is stationary. Thus, it is necessary that
the stochastic operator have stationary properties,
which is why we specified the coefficients could be
translated without affecting the statistical properties
under consideration. The C in (19) clearly corre-
sponds to some mean combination of the G; and is
therefore expandable in the set ¥, appropriate to a
member £; of the £ process but involves an ap-
propriate averaging process. Thus, from (17) we can
write
R, (r) = (y:@)y¥ (@ + 7))

and

() = #,() = | &R, (i

w 7/2 /2
/_ ) dre™™" /_ e da /_ oo as
X (Gi(z,0)G¥ (@ + 7,8))(s(a)s*(8)) -
If the input is stationary, let 8 = a + &
(s(@)s*(a + 8)) = R(5)
®,(f) = f ds f dr f da / doe™™ VT
X (G:i(2,0)G¥ (x + ma + 8))P.(s)
. /dsC’(s,f)@(s)
so that C(s,f) = Ku(s,f) = (|B(s,f)|?) satisfies
C(s,f) = / dr / do / doe™™ VT

X G (z,0)G¥ (x + 7,00 + 8)) .
By use of the ergodic hypothesis, we can replace the
ensemble average by an integration over x which

I
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corresponds to time in this notation.

° T/2 T/2-a )
C(S,f) = _/:w dT '/’—T/z da[ dae%n(f‘r—s&)

~T/2-a

T/2
X lim -%,—/ dzGi(2,0)G¥ (x + 7,2 + 8) .
T -T/2
(20)

Thus, for ergodic operators we could write the kernel
C (or Ky) from knowledge of a solution for a deter-
ministic member. We might then conceive of a future
study of deterministic equations or systems by
imagining them embedded in a larger class or en-
semble and expressing functional relations among
members of this class to obtain further insights than
could be obtained through consideration of the
original process alone, an idea also considered by
Bellman and Kalaba.?® For some problems (20) may
be sufficient, however, for the problem at hand, the
expressions obtained are not satisfactory since we
want a solution in terms of the statistics of the coef-
ficients (their covariance) rather than in terms of a
representative or sample function of the operator.

Returning to the general discussion, we are now
concerned with cases where the stochastic operator
is not ergodic or does not otherwise lend itself to the
Green’s function expansion method. In such cases
(as well as for the sake of discovering all relationships
even if we can get the Green’s functions in terms of
the £ directly), we are once again interested in the B
quantities defined earlier. In Eq. (12) the complete
set 6, was said to be arbitrary. However with our
differential equation Ly = z (we no longer emphasize
the stochastic nature of L by writing £, since we need
not distinguish it from a deterministic L), we, in
general, have some boundary conditions on y(¢). If
these are either given directly or can be translated
to restrictions on ®,(f), these restrictions must also
hold on the kernel Ky (which is the output for a
particular input, the § function). Therefore, it is
possible that the expansion functions 6, can be chosen
to satisfy these restrictions and the « can then be
determined by our variational principle. Then, B(s,f)
is evidently known in terms of G(s,f), i.e., in terms
of the coefficients of the differential equation [see
Egs. (6), (7), and (9)].

The desired kernel is

UBGNE = [dos(s — ) (B NB* 5,

= /doa(s — a)(Z” 03200 (0, f) Z". okxX0%(s, 1)),
(1)
28 R. Bellman, and R. Kalaba, Transaction of the 19569
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where we have substituted the form (12) for B(f,s)
which will be taken to be a Karhunen—Loeve ex-
pansion.??

This is just a generalized Fourier series or orthogo-
nal expansion such that the coefficients are uncor-
related. A nonperiodic random process cannot, of
course, be written as a trigonometric Fourier series
with uncorrelated random coefficients but it is
possible to obtain uncorrelated coefficients by using
a Karhunen expansion instead of a Fourier series.
Thus, a random process, in this case B(f,s), is ex-
panded over a domain or region a < f,s < b in the
form > .a.0.(f,s). Letting o, = 0.z, where the o, are
numbers, possibly complex, and the z. are random
variables, it follows that

(XnTF) = Oumn
and

b
f 0,0%dfdS = Gm .

What we mean precisely by equating B with the
series is that for every f,s in the domain, we have the
limit-in-the-mean (Li.m.).

B(f,S) = llﬁm. Ziro'nxnan(f)s)

or
}31_2, (B(f,s) — nz;a,.xn@n(f,s)\z) =0.

Actually, any random process, even a nonstation-
ary one, has an orthogonal expansion of this type
(with uncorrelated and random coefficients). If the
orthonormal set used as a basis were that of the
ordinary or trigonometric Fourier series, the coef-
ficients would be correlated unless the process were
periodic. Suppose we can equate in the specified
sense the process B(f,s), with the given series for
some set of random variables ..

Equation (21) becomes

ABGNE = [dosts — o)
XA n a0, f) Dom oEak0%(s, 1))
= [Jasss = @) Silenlu(o, 5208 (5.1
= Daloal’0u(s, 10X (s, 1) - (22)

Thus, once the set 6, has been determined so that B

International Symposium on Circuit and Information Theory,
Los Angeles, June 16-18, 1969. IRE Trans. Circuit Theory,
CT-6 (Special Supplement) (1959).

29 K. Karhunen, Uber Lineare Methoden in der Wahrschein-
lichkeitsrechnung (Helsinki, 1947). Also, M. Loeve, Probability
fl;)heg;y (D. Van Nostrand Company, Princeton, New Jersey,
1960).
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could be obtained by the variational method, it
becomes simple to get the kernel itself, i.e., {|B(s,f)|?)
or Kxu(s,f).

However, it is not easy to find the appropriate set
6,. What we would like is a prescription for finding
the 6, appropriate to the differential operator, bound-
ary conditions, and the given distribution functions
or other knowledge of the statistics of L. Let us
examine what is involved. Multiplying both sides
of (22) by 6#(s,f), integrating over the domain
a < f,s < b, and using the orthonormality property
of the ¢’s, we get

JI asagicas ps ) = M),

where N\, = |2

Thus the 6, are the eigenfunctions of the integral
operator ffa” ds df Ku(s,f) for eigenvalues )\, i.e.,
the solutions of a Fredholm integral equation. If
solved, this equation would give us numbers ¢; and
the set 6, for our expansion of B(f,s). We can assume
o t0 be nonzero and eigenvalues of multiplicity » > 1
to be indexed with r different numbers so a Schmidt
orthogonalization procedure?® can be employed. Take
o1 to be the positive square root of |a|2.)

However this solution requires knowledge of the
B or at least of the kernel (B B*) so the basis func-
tions for B cannot be obtained without knowing B.
In principle, we might consider assuming a basis 6,
possibly from knowledge of the boundary conditions,
finding B then solving the Fredholm integral equa-
tion until we get the same basis. The difficulty in this
procedure is that our variational method gives us a
sample B for a sample @ but what we want are ex-
pressions in terms of means of @ or covariances of a,.

We return now to our condition defining B in
terms of @, i.e.,

[ wsat9B@s =5~

If we write B(s,o) instead of B(c,s)—this was an
arbitrary choice—and conceive the function Q(f,s)
to be a matrix by imagining the f as representing a
continuous row index and s a continuous column
index, the left-hand side looks like a matrix product
while the right-hand side is similar to the identity
matrix except that the Dirac § in place of a Kronecker
8 implies « on the diagonal rather than a series of
1’s. By analogy we are justified in applying the term
“inverse”’ to B. More specifically, we call B an tnverse

30 P, M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill Book Company, Inc., New York,
1953); F. Mandl, Quantum Mechanics (Academic Press Inc.,
New York, 1959).
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Junctional of @. Now, it is obvious that (@G*) can
be given explicitly in terms of the correlations R,, for
the random coefficients a,(¢) in £. To see this we use
the definition of A4, and write

T/2
(A,(s — HA¥(s — 1)) = /'/—le {a,(w)a, (v))dudy .

Let v = u + 7, then the above quantity becomes

T/2 T/2-u
f du / drR. (1) .
-T/2

—T/2-u

Finally,
(@(f,9)8* (f,8)) = 220 220 (—1)*@mif)""”

T/2 T/2—u
X f du f drR., (7). (23)
-T/2 -T/2-u

If we could write B in terms of @, form (B B*) and
possibly expand in a series of functions or powers of
(@ @*), we might have a computational method of
interest. Of course, we are still suggesting the in-
version of a matrix, but a much simpler one than the
problem of inversion of the matrix corresponding to
£. Our matrices are continuous and infinite here but
can be made discrete by originally using series in-
stead of transforms. Consider the case of discrete,
ordinary or deterministic matrices and the matrix
product AB = I, where [ is the identity matrix.
Now B is called the inverse or reciprocal matrix and
is indicated by A-1. (It does not of course mean 1/4
or even I/A sincedivision by matrices is undefined).
To see how A~ is written in terms of A let 4 be
represented by the array of elements:

Q11 Qaz* * * Qi
a21 a22 DY

Q1 An2* * * A

We know, of course, that the determinant of 4, or
|A|, can be expanded by cofactors as

4] = Za‘ aijdi; = Z; aijA i,
if we define 4 ;; as the cofactor of a;;. We know further
that |A| vanishes if any two rows or columns of 4 are
the same. Thus,

Z:’ A = D il =0 15%k.

Combining these statements

Z]‘ aijAkj = Zj a;ild = |A|5u ) (24)
which says simply that expansion by a row or column
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7 in terms of the cofactors of a row or column k
vanishes if 7 # k and is equal to |A| when 7 = k.

Now Eq (24) looks like a matrix product. Set
d:; = Aj; and (24) becomes

Zi aiidp = Za‘ Grias = lAIﬁks,
which can be written in matrix form as

AL = A4 = |A|T

if
All A21 . 'Anl
X A+
A = d,’j =
Aln' ° Ann

Now following Hadley®! we define

A7 = (1/|ADA. (25)

Then
AA™T = A7'A = AA/|A| = 1.

If A is nonsingular, it has an inverse defined by
(25) and further, the inverse is unique.

To sum up we say if AB = I then B = A/|A|
where we write A to mean the so-called adjoint
matrix of A where this overworked term is not to be
confused with the Hermitian adjoint A since 4 is
found from the transpose of the cofactors of the
elements of A not the transpose of the complex
conjugates of the elements of 4.

Thus, in our own problem with the defined (but
discretized) @ and B we write

which means precisely the average of the following
array

An Axn Am Ax AFx ... AX
A12 *

Aln Ann A;I;L An’fp

’
Q11 Q12
af  ab
Q21 Q22
An1 a¥ am

3L G. Hadley, Linear Algebra (Addison—Wesley Publishing
Company, Inc., Reading, Massachusetts, 1961).
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where a.; are the elements of @ and A;; are the co-
factors of a.;.

The difficulty in finding |@| and the above expres-
sion is avoided in quantum theory by using approxi-
mate representations in which @ is diagonal. The
general problem here appears to be enormously
difficult even with arbitrary limitations of the num-
ber of rows and columns for successive approxima-
tions. Since we do know (@ @*) explicitly it is logical
to ask if we can write our expression in some series
of powers of (@ @*) or some function of (@ @*) which
could then be written as a function of R,,. It is not
clear how the desired expansion is to be made so the
problem is not completed. In the referenced disserta-
tion, a differential equation with a random Gaussian
coefficient is studied at length and a solution is ob-
tained. Perhaps then if the expansion is used for the
same problem, we will be able to see how it can be
done or if (@ @*) is already the first term. We know
the series terminates in that problem and we can see
that the kernel is a function of the correlation of the
random coefficient alone which is easily calculable.
It seems reasonable to expect that our desired calcu-
lation can be made for that same (Gaussian) case.3?

We will make a few remarks about the existence
of B given an @ and then go on to other methods.

3. Necessary and Sufficient Conditions
for the Existence of B

Let W be the class of all £, integrable functions
(L2 is the vector space of all real-valued functions
whose square is Lebesgue integrable over the in-
terval). Then, as is well known, B exists and is
unique if and only if

| agawmar =0

implies W(f) = 0, i.., the integral operator [~
Q(f,s)df does not have zero in its spectrum.?® (For
discrete @ this may be the case and can be seen
easily. For continuous @ it’s very difficult to decide.)
If @ doesn’t have this property, there exists no B
satisfying our condition. As an example, take

a(fs) =

The inverse is an unbounded second-order differen-
tial operator with zero in its spectrum. No B exists.

82 An_iterative method which appears very promising is
now being investigated and will be discussed in a forthcoming
paper.

( 3;%&:, e.g., M. H. Stone, Am. Math. Soc. Collog. Publ. 15
1937). .
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4. Karhunen—Loeve Expansions

The solution we seek is dependent on appropriate
expansions of the random processes involved. Our
goal is to evaluate (B B*) in terms of knowledge of the
statistics of the a,(¢). If the a, are Gaussian processes
and their cross correlations are zero, they are sta-
tistically independent. Knowledge of their autocor-
relations R,, is sufficient for complete statistical
knowledge. Whatever the distribution functions in-
volved however, the a,(f) can always be expanded in
Karhunen-Loeve (K.L.) expansions. We consider
briefly the nature of such expansions.

An expansion for a random process z(f) on an
interval (a,b) of the form ) .c.2.¢.(f), where the o
are numbers, the z, are random variables satisfying
(ZnZE) = By and the ¢, are orthonormal, i.e.,

b
/ St = B,

is a K. L. expansion of the random process on (a,b).
What we mean precisely by equating x(f) with this
series is that for every ¢ in (a,b) we have the limit-
in-the-mean

N
z(t) = Lim. D cazupu(t)
N/  n=1

or

lim (| () — ;gnmn(t)ﬁ') =0.

Any random process, even a nonstationary one,
has an orthogonal expansion of this type with random
but uncorrelated coefficients. If the orthonormal set
used as a basis were that of the ordinary trigonomet-
ric Fourier series, the coefficients would be correlated
unless the process is periodic.

To find the appropriate set ¢. and the numbers
o, We suppose we can equate, in the indicated sense,
the process z(¢) with the given series for some set of
random variables ..

(E@)2*(s)) = Ru(t,8) = (D oultutu(t) s oiaEei(s))
= Do) (s) ; (@<t <D,

where we have now defined the autocorrelation
function R.(t,s). Multiplying R(t,s) by ¢.(s) and
integrating over s in (a,b) and using orthonormality
of the ¢,

j{; dSR(t,S)d)k(S) = |0'Ic]2¢k(t),

which we recognize as an eigenvalue equation for the
integral operator fﬁ ds R(t,s) for eigenvalues M\
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= |os|?, (or the solutions of a Fredholm integral
equation). Solving this eigenvalue equation gives us
the numbers ¢; and the orthonormal set ¢, for our
expansion. Assume o to be nonzero (and eigenvalues
of multiplicity » > 1 to be indexed with r different
numbers so a Schmidt orthogonalization procedure
can be employed). Take o: to be the positive square
root of |ox|?. The random variables z. are found in
the usual manner for determining coefficients of
expansions, thus,

b
Onln = f z (b)) (t)de .
Substituting, we quickly verify

02T nlTah) = 020 mOum

or
<xnx:> = Onm

as specified at the start. Further, denoting > &,
o229 (8) by 2x(f), we can calculate

(x@®OzF®) = @ Oax(®)) = @v(OzF()

= > chudt
and hence,
N
<mm—mmﬁ=Rm0—;ﬁmm

where the last term on the right side converges to
R(t,t) as N — o by Mercer’s theorem® establishing
the statistical convergence we specified.

We note in passing that the energy in a random
signal z(f) over time interval (a,b) must be the
average of the energy in different members of the
process z(f) or

</Ebdt|x(t)lz> = 2::002

The solution of the eigenvalue equation can be
carried out when the corresponding spectral density
is rational,®® i.e., when the Fourier transform of the
autocorrelation function R(s,t) is a rational function.

R.(st) = R.(s — t) = R.(7) = f_: &, (f)df

3¢ Mercer’s theorem for a positive-definite autocorrelation
function R(s,t) states

R(S,t) = Z )\k¢k(s)¢7ﬁ(t) )
k=1
where the convergence is uniform for s and ¢ in the closed
interval a,b (denoted [a,b]).

35 The solution is made by Davenport and Root on p. 376.
(See reference 7.)
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®, is the spectral density of z(¢) and is assumed posi-
tive and integrable [so R(7) is an autocorrelation] and
even [so R(7) is real], and either rational or approxi-
mated by a sum of rational functions. Thus, let 2wif
=D

R@) = | i

&(f) = E" ‘I):Ek)(f) = 2 Zn: ciA—I:CI‘p? = %Eﬁ% ’

T k=1

where N and D are polynomials of degree n and d,
respectively, d being greater than n, and D(p?) hav-
ing no real roots.

5. Evaluation of the Kernel
The example

dy/dt + @y = 2(0) ,

where ¢ and 7 are random is considered at length in
the referenced dissertation.?® Suppose a,(¢) or in this
case £(f) is expanded in a K. L. series. In general then
a,(8) = D u(vs)nda(t) or in this case,

E() = D vutn(t) = Dmuatn(?)

in a <t <b, where the ¢, are orthonormal, the
random variables £, are uncorrelated, and the o, are
numbers. Again, the set ¢ is found from an eigen-
value equation involving R(t,s) = (¢()£¥(s)). If £(8)
is stationary, R(,s) = R(t — s) = R(7) = (¢@)£*(¢
— 7.

Consider now the use of the K. L. coeflicients in-
stead of the Fourier transforms in defining the @ and
B functions. Thus, we would substitute into the
differential equation the following:

() = 2 aubult)
y(@) = 2 Badh(t)
a(t) = 20 (vt (1)

b
an = / (8¢ (t)dt = owz. = K.L. transform of z

b
Br = f y()o¥ (£)dt = 8.y, = K.L. transform of y

€n (av)n

O f a, () ¥ (t)dt

Il

K.L. transform of a, .

36 Also considered are generalizations to random vector
fields and the wave propagation problem for a random in-
homogeneous medium and an illustration of the generation
of an approximate stochastic Green’s function for such a
problem from the simpler Green’s function of a nonrandom
case.
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Thus we need to differentiate ¢, v times, multiply
by ¢%, and integrate from a to b. The basis ¢. for z
can be determined from R,, the basis ¢.” for a,(t)
from R.,; however, the basis ¢, is unknown since it
depends on the solution we seek, R,, so we cannot
hope to find the 8. unless we have some reason to
choose the ¢,’.

We therefore expand only the coefficients a,(¢) in
K. L. series, each in its appropriate basis. We now
have explicit, i.e., known and deterministic, time
dependence in the £ and as many random variables
as there were random coefficients in £. We now seek
the eigenfunctions or basis functions which diagonal-
ize the operator £. Treating the random variables
as constants we solve £y, = M. For all equations
in which this can be carried out we can complete our
problem since a Green’s function can be written in
terms of the ¢ and A\. We limit ourselves to self-
adjoint operators for £. Most physical problems can
be considered to result from variational statements
and the appropriate operations are always self-
adjoint, i.e., we might consider the Hermitian
property as being a physical realizability condition.
Thus £ might conveniently be chosen to be of the
general form

£ = (d/dt)"T.(d/dt)",

which is self-adjoint regardless of the distribution
of T,.. If T\, is constant we get only even ordered
derivatives. If £ is stochastic T, is a function of time
for which we have a distribution function. A second
order operator £ acting on u is self-adjoint if the
form of Luw is fu'’ + gu’ + hu where h, g, f are func-
tions of z and g = f. We can take over Sturm-Liou-
ville theory or in fact any method of ordinarily
arriving at Green’s functions.

Now, however, the Green’s function depends on the
random variable or variables. When we form
{y(®y(E — 7)) then we will involve averaging over
the random variables appearing in the average of
two Green’s functions. Where this average can be
carried out, it gives us the kernel Ky or (B B*). Thus
in the first order equation with random £(f) which is
stationary and gaussian, the Green’s function A(¢,u)
will depend on the random variable &,. The &, has a
joint Gaussian distribution so the averaging can be
carried out. If it does turn out that all the members
of £ can be expanded in a common basis (if they
commute) we have £¢ = A¢ and the matrix elements
Lun = Y ubihg. With only the N\ being random, not
the ¢.. The Green’s function

Gz = Zﬂ’a_h_"(_@_;‘_i’fi@

G. ADOMIAN

would then have only the A dependent on £, and the
averaging over £, would be much simpler. This is the
case in a restricted class of operators as we have dis-
cussed earlier.

The eigenvalue equation is in some respects easier
than the differential equation although at first sight
it appears equivalent. When the operator £ is
stochastic, we actually have a non denumerable
ensemble of differential equations which we must
solve. An eigenvalue problem is a problem in matrix
algebra which can be handled on digital computers.
One can use finite difference methods to discretize a
differential operator and get approximate answers
with upper and lower bounds. If we have the matrix
in the given problem, considerable labor is avoided.

To sum up: A Green’s function for a differential
operator L is the kernel of the integral operator that
inverts .. However, we are considering kernels for
statistical measures of the dependent variable y in
Ly = z rather than for y itself. For example, Ky is
the kernel for ®, rather than for y. It corresponds to
the kernel for the transform then of the mean of the
product of y(t) and y*(¢ + 7). It's clear that the
form of Ky is then just such a triple integral as found
earlier. Each Green’s function for y is a matrix; each
observation or realization gives us a sample or
representative matrix. The multiplication of y(f) by
y*( — 7) gives us a product of matrices. We call this
product Green’s matriz. When L becomes stochastic,
the Green’s matrix becomes stochastic. Since the
correlation of y involved an ensemble average over a
product, we have the average of the Green’s matrix
which is our stochastic Green’s function. Each of the
original Green’s functions means one integration.
The transform to power spectra gave the third
integration. This triple integral involving an expo-
nential (from the transformation) and an ensemble
average over the matrix product is precisely our
form for Kxu(s,f).

Thus we can take each sample or realization or
representative of the stochastic operator, solve the
eigenvalue equation and get one of the Green’s
functions discussed above. In the equation dy/dt
+ £@)y = n(t) we can solve for y as if £ is not random
and then carry out the statistical measure operation.
To do it as stated we need to solve

[d/dt + £(B)]¢ = N¢

for a nonrandom £ and write the Green’s function in
terms of the eigenfunctions ¢.

The difficulty in doing this is that the explicit
time dependence of even a representative £ was un-
known. When we made a K. L. expansion of £(f)
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we obtained an explicit time dependence which we
could handle.?
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1. INTRODUCTION

HIS article outlines the linear theory of waves

in stratified, compressible fluids in a gravity
field, at rest with respect to inertial or rotating co-
ordinates, and neglecting viscosity and heat con-
duction. From a mathematical standpoint, this is
one of the simpler branches of hydrodynamics, since
it involves the solution of second-order differential
equations which are linear. Despite its formal sim-
plicity, the field has not been truly preempted.
Eckart’s recent and interesting book! on the subject
is clear testimony to this.

* Columbia University, Hudson Laboratories Contribution
No. 157.

T This work was supported by the Office of Naval Research.

1 Carl Kckart, Hydrodynamics of Oceans and Atmospheres
(Pergamon Press, New York, 1960).

There are four principal effects in the assumed
model: compressibility, stratification, gravity, and
rotation. Considering individually the cases for
which these features are either present or absent,
one could construct many different models, the
simplest of which, obtained by ignoring all but one
or two of these effects, are well known and under-
stood. Thus, one may think of sound waves, surface
gravity waves, tidal oscillations, and the effect of
Coriolis forces upon these. On the other hand, the
effects of density stratification and gravity upon
very-low-frequency sound in the atmosphere and the
behavior of internal gravity waves in the oceans and
atmosphere have certainly not been as systematically
studied, although Eckart’s work? has done much to
remedy this situation. The formal simplicity of the
equations may lead one to feel that the answers to
all these problems, even if not actually known in
detail, can at least be deduced from available solu-
tions. This point of view, although justifiable perhaps
from a purely mathematical standpoint, is of little
actual help to the physicist involved with these
questions. More often than not the propagation of
the various possible modes of motion is dispersive and
anisotropic, depending upon several physical parame-
ters, and a surprising variety of possibilities lurks
beneath the deceptively simple appearance of the
equations.

2 C. Eckart and H. G. Ferris, Rev. Mod. Phys. 28, 48 (1956).



