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cess of Newtonian mechanics, it seemed tempting to
brush away the complex and eroded conceptual sys-
tem of scholastic philosophy. The proposition of
temporarily restricting oneself to the conceptual
framework of the new mechanics seems entirely
sound, even in retrospect. However, the contention
that this conceptual framework would be satisfactory
at all times was unwarranted, and turned out to be
actually incorrect.

During the mechanistic era it became customary
to dismiss types of questions that did not fit into
mechanistic systems as unscientific.

As the crisis of classical physics revealed the
limitation of the mechanistic conceptual scheme, the
first inference was that the range of tegitimcte sci-
entific questions is even further limited, since not even
the mechanistic questions are admissible.

The pluralistic character of the present approach
brings two new elements into this picture. In the
first place, each deductive system implies a character-
istic set of precise questions. The number of interest-
ing questions that become "meaningful" is particu-

larly extensive in thermodynamics and quantum
mechanics.

It is often stated that the concept of object breaks
down in quantum mechanics. Actually, however,
the opposite is true. As we have seen in Sec. IV, for
the first time in QM we are in a position to give a
formal representation of an object with many subtle
ramifications and we can now solve the related
philosophical puzzles that have been unresolved
since their discovery by the Eleatic philosophers.
It seems that the new object concept is flexible
enough to include living organisms that are entirely
outside the mechanistic scheme.

The extension of meaningful conceptual problems
in the present context proceeds in still another
dimension. Not only do we have the concepts within
each deductive system, but the deductive systems
themselves are conceptual entities of distinct indi-
vidual characteristics related to each other in quite
specific fashion. These entities are of a logical type
that is markedly diA'erent from that of the primitive
concepts within the deductive systems.
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INTRODUCTION

GENERAL class of linear stochastic operators
~ ~

~

E arises in problems involving propagation in a
random medium and in the processing (or observa-
tion) of an input quantity (which may itself be a
random process) by a linear system whose parame-
ters may be stochastic.

For example, in Mie scattering from aerosols in
the atmosphere, we might wish to give a probabilistic
treatment to the normally assumed uniform distribu-
tions of particle size and spacing. %e might investi-
gate ionospheric eGects on satellite communications
due to ionization variations brought about by turbu-
lence, upper atmospheric winds, or magnetohydro-
dynamic interactions. %e may want to inquire into
the ultimate accuracy and sensitivity in various
measurement processes basically subject to random
perturbations.

*This work is a part of the author's Ph.D. dissertation,
University of California, Los Angeles, California, 1961.

Applications of stochastic operators to quantum
mechanics is suggested by the fact that randomness
enters both into the initial state and also into the
transition from this state to another.

It is possible that some insight may be gained into
internal processes in stars and plasmas. In principle,
all physical properties of media containing radiating
atoms are reAected in the line structure. Thus, a
radiating atom can serve as a noninterfering probe
conveying signi6cant information regarding pres-
sure, temperature, distribution of molecular speeds,
and states of ionization in its surrounding medium.
Thus, assuming various probability distributions for
parameters of internal processes allows prediction
of the spectra to be observed as a result of the action
of the medium in terms of the normal or unper-
turbed spectra and a stochastic kernel or Green's
function dependent on the assumed distributions.
Successful correspondence of the observed and pre-
dicted spectra (line broadening, ete. ) would establish
the nature of the internal processes.
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Other possible applications include cosmic-ray
branching processes, biological and economic prob-
lems such a4 birth and death, processes occurring at
intervals governed. by a probability law (a much
desired modification of some earlier treatments), and
especially, problems in engineering. Thus, in the
latter area we can consider optimum filtering (a
generalization of Wiener —Eolmogoroff theory), con-
tributions to guidance, control, or tracking system
errors of various unavoidable random effects, the
effect of tropospheric fluctuations on the accuracy
of location of radio stars, and other problems.

Our primary goal here is the investigation of the
properties and use of stochastic operators as a unify-
ing method of dealing with some dificult problems in
the hope of gaining further insight into the physical
interpretation of the theory in some general physical
processes. Later work will attempt calculations,
based on a stochastic interpretation, of the Wiener or
Feynman integral in strong interaction problems
using extensions of this investigation. Also to be
emphasized in the following work will be a theory of
measurements and problems of wave propagation.

I. STOCHASTIC OPERATIONS ON RANDOM

PROCESSES ' OPERATOR FORMULATION

1. Development of a Stochastic Green's Function

We are concerned with an investigation of a
general class of linear operators we call stocha8tic
opera, tora. These are operators involving parameters
that are random and require probabilistic treatment.
Analogous to the usual representation of operators by
matrices, stochastic operators can be represented by
stochastic matrices. These are matrices whose ele-
Inents have a distribution. As randomness vanishes
and parameters become deterministic, stochastic
operators reduce to ordinary operators.

It is instructive to consider a special subclass of
stochastic differential operators given by

and differential equations of the form Iy = x, where
the nonhomogeneous term x(t), called the input or
forcing function, and the operator I, by virtue of the
coeKcients u„(t), are, in general, stochastic quantities.
The converse problem involving the conceptual in-
version of the matrix for the random differential
operator I is especially interesting. For appropriate
operators, we think of y as the result of operating on
the input by a stochastic operator symbolically de-
noted by H or by L-' and otherwise undefined except

to say it would include the action of any accompany-
ing boundary conditions. We wish to keep the di8er-
ential equation formulation in mind in the analysis,
although in this section we are primarily interested
in general operators H acting on a process x with as
little restriction as possible.

In general, stochastic operators arise in the process-
ing of an input quantity (which may itself be a
random process) by a linear system, observation, or
measurement, in which certain parameters are
random or stochastic variables. Problems involving
random inputs to fixed linear systems (i.e., where all
the a„are constants and only x is stochastic) are well

understood. A great deal of attention has been de-
voted also to deterministic time variations in linear
systems (linear differential equations with time-
varying coefficients). When random variations of
system parameters (or of the c„ in the differential
equation example) occur, the analysis is more subtle.
The output now for either a deterministic or a ran-
dom input is a stochastic process. A complete de-
scription of the output would involve the determi-
nation of all multi-variate probability distributions
of the output from similar knowledge of the input.
Such a complete description is usually neither possi-
ble nor necessary.

Suppose that x(t) is a known input process or the
operand. We wish to determine the result of an
operation on x by the stochastic operator H. Thus,
x might be a communication signal into the pro-
verbial black box which then represents the operator
II. The box may be a circuit, filter, servo, observa-
tion, experiment, or measurement, or a transmission
medium which has random properties. All real media
are inhomogeneous, i.e., the mean physical properties
vary from one point to another. When, in addition,
there is a variance from the mean at each point, the
medium is a random inhomogeneous medium. When
the propertiep or parameters of the medium are con-
stantis and x(f) ls nonstochastlc) the output g = L s
is easily found. When the x is stochastic, and certainly
when the properties of the medium vary randomly
with time, we can only hope to obtain various statisti-
cal measures or estimates of y in terms of similar
measures of x. If the inverse H of the stochastic
matrix I exists, we have the general problem again
given by y = Hz (where we emphasize the product
is not multiplicative but denotes the action of the
stochastic operator H on the process x) and the dif-
ferential equation could be solved as well as the
general problem Hx. However, the inversion of a
stochastic matrix is clearly to be avoided. Since we
are asking only for an appropriate statistical measure
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of y rather than y itself, we may be able to solve the
differential equation at the same time as the general
problem without the inversion. A well-known and
convenient statistical measure is the power spectral
density or power spectrum, or by the Wiener
Khinchin theorem, the autocorrelation function. '
Thus, if C,(f) is the power spectrum of the input and

C„(f) is the power spectrum of the output, we would
like to obtain 4„ in terms of 4.. Such an expression
can be obtained as an integral equation whose kernel
E& involves the random parameters of the operator
H. We will then clarif y the interpretation of the
stochastic kernel KH and show its derivation from
the L as well, providing certain restrictions on L are
met. The constant-parameter system is handled
easily in terms of Green s functions (weighting func-
tions in control system theory) or frequency response
functions and transfer functions, respectively, the
Fourier and Laplace transforms of the system Green's
function. We now (in the stochastic case) obtain a
stochastic Green's function that depends on the sta-
tistical measure chosen for a solution and which
reduces to the ordinary expressions when the parame-
ters are constants or nonstochastic.

Now consider a linear operation H, p ..., or H
for brevity, on an input process x for which the
spectral density C. is known. The operation repre-
sents a medium or processing system with parame-
ters n(t), p(t), , one or more of which are random.
Thus H is determined only by the probability distri-
butions of its parameters, i.e., in the sense of an
ensemble of possible operations H; which have a
distribution determined by the parameters Each of
the H; corresponds to an ordinary nonstochastic
matrix Each member H; of the ensemble H has
associated with it a Green's function h;(t, r) which
represents the response at time t of the system H; to
a unit impulse 5(t —r) a,pplied at time r. More
specifically, h; should be written h;(o', p, . t;r) where

p, o. are the parameters of H subject to proba-
bility laws. The 6; can be obtained either by knowl-

edge of the physical process represented by H; or by
eigenfunction expansion after solving an eigenvalue
problem for the deterministic operator H;. These
methods are reviewed later. The response of the H;
system to the input $(t), thinking of x as a defined
continuous member of the x process for the moment,
can now be given in terms of the Green's function by

or for brevity, where parameter dependence is not
used,

Hx(t) = h; (t;r)$(r)dr,

where for causal (physically realizable) systems,
h, (t, r) is zero for t ( r. The upper limit can also be
written t without change. The implication of the
lower limit is that all past values are significant. %e
can write the spectral density of H;x(t) by first de-
veloping this function in a Fourier integral. Thus as-
suming stationarity and supposing H;x to be zero
outside some interval [ —T,T] then taking the limit
as T~

H;$(t) = dfA' (f)c""

Crr, (f) = lim—1
T~op

dtH;{$(t) }e
' "

where the average is over the ensembles of H and of
x.

1
T z

err, (f) = lim — dt, dt2
T~~ ~ —T T

X (H, {x(t ) }H*, {x(t ) })e
""""

The quantity in brackets is evidently an autocor-
relation function. Let us define the autocorrelation
of the Hx as

R .(r) = (Hx(t)H*x(t y r)),
where the random process may be complex and we
have limited ourselves to stationary input x(t),
though it is possible the operator H may be non-
stationary. On using (1), this equation becomes

4 ~; (f) = lim —~A; (f) ~' .
T~OO T

Our stationarity assumption can be modified some-
what in that the A;(f) can depend on T, thusAr(f),
as long as the limit exists. The above expression holds
for all H;x which are members of the ensemble Hx.
Each H;x is developed in a Fourier integral as we
have shown. The corresponding spectra C H, are
averaged over the ensemble. The result which could
have been written immediately is C ~~,(f), the spectral
density of the output. Thus,

Brr. (r) drldr2(h(t, rl)h (t + r,r2)x(ri)x(r2)) .

h;(u, p, t;r)x(r)dr,H $(t)
—CO We note the h's correspond to different times t1 and

t, (or t and t + r). Thus we have h(o', ,p, , t, ;rr) andi J. L. Lawson and G. E. Uhlenbeck, Thre8hold Signcl8
(McGraw-Hill Book Company, Inc. , 1950). h* (n2)p2 ' ' 't2 r2) so all parameters are different.
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matrices whose elements have normal, or Gaussian,
distributions are well known. %e can make further
identifications by specializing to the case of such
distributions (possibly first determining the eigen-
values of the operator then. the Green's functions,
and consequently the kernel). To see how the distri-
butions enter, it is noted that the Green's functions
involve the random parameters n, p, , which have
distributions p(n), p(p), that must be used in
obtaining the average or expectation value involved
in the kernel. Thus, for ergodic operators

1
(h(n, p, . t;r, )h*(n, p, . t+r;r. )) = lim

T~ 00

&& du dn dP p(n)p(P) . .

X k(np, t + ur)h*(np, t + r + ur)
and we can specialize to certain distributions or even
to the case where the distribution is given by a 8

function and the parameter is not random.

3. Statistical (Measure) Operations

A class of operations on random processes includ-

ing, e.g. , the ensemble average of a random process,
the autocorrelation, mean squared, or higher means,
can be called statistical or measure operations. A
statistical operator or measure in this sense indicates
a (nonstochastic) deterministic operation on a random
process. It is distinguished from ordinary determi-
nistic operations on ordinary functions only in that
the operand is now a random process rather than a
function, so that the averages are with respect to a
random variable. Clearly, any ordinary deterministic
operator, e.g. , a Laplace (or other) transform should
commute with such statistical operators and one
could consider a possibility of appropriate (statisti-
cal) transforms of random processes since this would

just mean the ordinary transform of the result of the
statistical operation on the random process —or a
transform of a mean.

Stochastic operators present much more difhculty.
Let us consider a random function or process y(t). It
can be regarded as a generalized vector in an infinite
dimensional continuum or a (infinite) continuous
(column) matrix, since it consists of an entire en-
semble of sample functions or representatives. The
elements of the matrix vary according to the distri-
bution to which y(t) is subject. A (stochastic) opera-
tor represented by a (stochastic) matrix (with ele-
ments subject to an appropriate distribution) now
acts on the matrix of the input random process.
Clearly, we expect only to find some statistical prop-

4„= FHix(t)} = Ks(s, f)C, (s)ds.

%hen the stochastic operation H and the random
process x are statistically independent, the statistical
operator I' must act separately on each, i.e., pro-
viding I'H is defined (and it should be if H is repre-
sentable by a, matrix) and if neither I'H nor Fx is
zero (eliminating a zero-mean random process if Hx
does not also have a zero mean) then

rHx = rH. rx

This means the appropriate statistical operation
over each ensemble, i.e., FHH F.x. Thus Fx is found
by forming (x(t)x*(t + r)) then making the transform

j e' '~'( )dr. Similarly FH is given by

FH = e""(H(t)H*(t + r))dr .

Thus we can compute an appropriate autocorrelation
and then a transform to get FH, or a spectral density
of H, if we are given the stochastic matrix of H. Thus
we can write

s(s f)@*(s)ds .

If we can find Green's functions, the kernel Kscan'
be found and C„determined. %e can always do this
in principle for deterministic operators, as we shall
show, and at least for stochastic operators having
the ergodicity property, as mentioned earlier. If H
is given as a stochastic matrix, KH and therefore c„
correspond to the transform of the autocorrelation
of the matrices.

Finally, if H is a deterministic operator I'Hx
= HFx or 4„=HC. . Thus if H is the Laplace
transform operator, i.e.,

H( )= e "( )dt,

e "x(t)dt = e "rx(t)dt = Hrx.

erty of the result. Let us indicate the statistical
measure by F. Thus, emphasizing the random
processes by brackets }

}y(t)} = H}x(t)}
r [y(t) } = FH j x(t) } .

If we choose spectral density as our statistical
measure I', we have r[y(t)} = C„(f) and r}x(t)}
= C'.(f). Noting that r and H do not commute (un-
less H is deterministic), we have derived C„ in terms
of &, in the integral relation of Eq. (2), or
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A(tp 2g't) =- 1 if tg & t & tg + 2a

= 0 otherwise .
The spectral densities for the results of operations

on x by 8 or P are considered in the referenced
dissertation in connection with a generalized random-
walk problem, first studied jointly with DuBois. We
state the results here as examples.

HI"x = e I'x t dt = e
'

C, s dt,
0 0

noting the variable of C. should be the same as the
transform variable s. Thus

This clearly is not 1'X(s) where X(s) is the transform. where
I' acts only on the random function x(t). Further
even for stationary x(t), Hx or X(s) would not be
stationary and I'X(s) would be undefined. But (sup-
posing the statistical measure I' to be the spectral
density) we have

e'dt = 4.(s)
0 s

and we see that a statistical measure 1' (in this case
the spectral density) of the (Laplace) transform of a
random process x(t) is given by a pole of magnitude
I'x [the spectral density of x(t)] in the transform
plane.

4. Determination of the Kernel
from Physical Process

In many cases of physical interest (2) can be deter-
mined directly from the nature of the process. Thus
we have an input x(t) and a "stochastically filtered"
or processed output F,s, Ix(t) } w. .h. ere the stochas-
tic operator I",p ... depends on the distributions of
its parameters n, P, For example, (a) a function

x(t) is translated by amounts n. at intervals of time
r so FIx(t)} = x(t —n.) for nr ( t ( (n+ 1)r,
(b) x(t) is multiplied by Jb over intervals of length 7.
Thus FIx(t) } = p„x(t) for nr & t & (n + 1)r. These
are linear processes and the random variables in
question are the o..and the P . The distribution func-
tions of these parameters determine the statistical
properties of the process. An example (c), of greater
interest arising in an application to be considered is
the operation 8Ix(t) } = x(t.) for t„( t ( t.+, for all

n where the intervals l„= t.+1 —tn are random varia-
bles with a distribution P(2)d2. Thus 8 might be
called a "random sampling operator" (where the last
sample value is held until another is taken). The 8
operator gives the correct results for the much-used
case of regular sampling as randomness vanishes. A
closely related example (d) is P Ix(t) } which samples
randomly as before but inverts alternate samples.
Thus PIx(t) } = ( —1)"x(t„) for t„( t & t„+, where
the intervals 2. = t„+, —t„are specified by P(2)d2.

The Green's functions for these latter processes
(c and d) can be written by inspection

X [1 —z(s —f)] Q z"(s)
0

X [1+s(s —f)] Q (—1)"z"(s)
0

where s(f) is the characteristic function of the distri-
bution for the sampling intervals P(2), i.e.,

d2P(2)e
"'

2P(2)d2 = —— .s'(0),
0 27r2,

'

relations which are clearly of the same form as (8)
with rather complicated kernels dependent on the
probability laws [in this case just P(2)] for the param-
eters which are random. Evaluation of the kernel in

terms of distributions of the random parameters is
obtained directly from the nature of the process on

the input, i.e., from Hx.

5. Stochastic Green's Functions for Correlation
Measures of Input and output

The stochastic Green's functions or stochastic
kernels for other statistical measures of input and

output can be found in the same way as carried out
for spectral density measures. Some of these kernels,

e.g. , those for correlation functions, are particularly
valuable, both because we frequently want to deter-
mine the correlation matrix for a random process and

because of our suggestion for determination of the
nth joint distribution function, if we can first And

all the output correlations in terms of the input
correlations.

The kernel for the autocorrelation measure of in-

put and output for the stationary case can be seen

from the derivation of K~ in Sec. I.Thus, the relation
of the autocorrelations It'.~. of the output and B.of
the input for an operation H is
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wher'e the ker'Ilel GH ls given by

dr(h(t, r)A*(t + p,r + o)) .

a chosen measure defined over the space of the ran-
dom function y. Similarly, il(x) is defined over the
space of x(t) and may, for example, be the spectrum
4.(s). Now we can define

Transformation of BH. and 8 to spectral densities
again gives the relation involving the spectral density
kernel KR(s,f) B.ecause GR is simpler than ER, it, is
usually desirable to work with correlations although
this investigation has emphasized spectra.

and write (1) as

C,(s)ds = dp(x)

6. Nonstationary Processes'

If we had not restricted ourselves to stationary
processes in writing R&.(r) (early in Sec. I), we would
instead write RR, (t, , t2) or simply R(tl, t2) given by

Rtl'(') = f(h )4 )"'( ) (l4 )xl ))d R

R.(o,r) (h; (t„o)h, (tz,r))do dr,

where R.(o, r) is the correlation of the input. Thus,

R(tl t2) R (or)H(tl t2 'o r)dodr

where H(t„tz, o, r) can be considered a kernel for the
autocorrelation where the processes need not be
stationary. %hen the processes are stationary,

and H becomes H(tl —o.
, t2

—r) a function of 2
variates as in ER(s,f) We are stil. l assuming inde-
pendence of the system and the input. The output
is stationary and we can write our spectral density
expression by appropriate transformation.

7'. Mapping of Spaces

If the measure chosen for x(t) and y(t) is the spec-
trum C, we have

If the measure chosen is the autocorrelation we
have

R(p) = G(p,o)R.(o)do .

A mathematically more elegant formulation is to
define a general statistical measure p.' Thus the
measure of y is p(y) and the measure of x is tl(x).
Now p(y) may be C (f) or B(r), for example. It means

~ This treatment was suggested by Professor Balakrishnan,
of the University of California at I os Angeles.

3 Called F in the section on statistical measure operations.

This form is now appropriate to any chosen measure
operation. The kernel K(y,x) maps from the space
of x to the space of y and depends on the chosen p.

A. stochastic process X(t),' can be described in
terms of n-dimensional random variables X(tl),
X(t2), .X(t„) by means of their families of distri-
bution functions F„(tl,Xl, t2, X2, ,t.;X„).However,
such a law will be meaningless on the quantum level
since it implies the observation of a physical phe-
nomenon at an instant determined by a point on a
time scale, or generalizing immediately to random
fields for precise measurements of position, momen-

tum, or other variables. Such precise or instantaneous
observations are inconsistent with basic postulates so
a reinterpretation becomes necessary. However, it
is not essential to consider random processes as
families of random variables depending upon t (or t).
Instead we think of X as an element in a function
space. Each realization of the process X(t) becomes
one point in the function space. %e define a general
random element X with values in a space x in the
following way. Let x(u) be a mapping from a measur-
able space of elementary events U into the space x.
The random element X is the result of the mapping.
The elements of y are the values which X can take.
Fortet' gives some good examples. If X is a random
variable, x is the space R of real numbers. If g is a
A;-dimensional random variable, then y is a A;-dimen-

sional Euclidean space. If X is a Gaussian random
function of t on an interval (t, , t,) (with continuous
covariance) then x may be either the Hilbert space
of those functions on (t„t,) whose square is integrable
or the space of all functions on (tl, t2).

Now we can extend the definition of stochastic
operators to abstract spaces. Thus, the stochastic
operator L acting on the random function X can be
defined as the transformation which maps the space

y into a space K representing values which LX can
take. Any operator satisfies the definition so far;

4 We can generalize to a random 6eld by writing X(t,r) or
simply letting t be a vector, i.e., X can be a function of several
variables.

~ 8,. Fortet, Recent Advances in Probability Theory (John
Wiley 4 Sons, Inc. , New York, 1958).
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now we include linear transformations which them-
selves require statistical treatment in terms of realiza-
tions such as we gave X(t). A single realization of a
stochastic operator yields an ordinary operator or
nonrandom matrix. It is possible that a formulation
of quantum theory using stochastic operators may
couple the advantages of the Feynman formulation
with calculable expressions and a more natural ap-
pearance of probabilities. This work is intended to
lay the foundation for later use in this connection.
The extension will be of the nature of a general
transformation theory involving topological spaces
and functional analysis.

8. Some General Mathematical Properties
of Kernels and Operators'

We note in passing some general mathematical
properties of the kernel and its relations to stochastic
operations and statistical measure operations. If
y = Hx, where H is a stochastic operation on the
stochastic process or random function x and we take
the statistical measure p of both sides of this equa-
tion, we have

p(y) = p(Hx) = K(y,x)dp(x) =' Kil, (x)

(it being assumed that ii does not assign finite meas-
ure to a point). In order that the integral operator
K exists, p must have certain properties with respect
to H. From the above equation we can write the
opera, tor equation

pH —Ep = 0.
I et us assume that the quantity Hp is operation-

ally defined in some sense. We have already seen in
the section on measure operations that p, does not
commute with stochastic operations, i.e.,

Since we have assumed that Hil, is defined, we may
define the operator f by

Substituting this into the equation pH —Kp = 0,
we have

(H+1 —K)p, = 0.

where o- is any operator such that

op=0.
Conversely, if K exists and Hp is defined, then the
equation pH —Kp = 0 is satis6ed if and only if
there exists an operator t such that

Combining the above considerations, we obtain the
following result:

Theorem. If Hp is defined, there exists an operator
K which satisfies the operator equation

pH —Kp =0
if and only if there exists an operator t such that

~H=H~+fl .

If these conditions are satisfied, then K is given by

K = H + f' + o. ,

where 0- is any operator such that 0-p = 0.
Now assume that 0 is zero so H + |represents K.

The procedure is clear in principle. Nor a given
stochastic operation and chosen measure operation,
a kernel K exists if pH —Kp is a set of measure zero
over the space of x on which H acts. The commutator
of p, with H determines f. Then K = H + g.

If we consider p and H as operators each with a
unique set of eigenvectors and suppose these sets are
nonparallel, i.e., p and H do not commute, then g is
orthogonal to H, i.e. , the eigenvectors of f are orthog-
onal to the eigenvectors of H. |A'e are defining an
operator f such that the eigenvectors of H + l com-
mute with K. For H and p such that f is sufficiently
simple, it is conceivable that one could determine
K from H+ |.

Now consider the inverse problem Ly = x where
we are particularly, but not exclusively, interested
in the (unbounded) differential operator. Again we
suppose that ii(x) is a well-defined measure given for
x and we ask for p(y). Write ii(Ly) = il(x). I and y
are not statistically independent, so p does not act
separately on I and y as in the case Hx. A.gain the
measure operation p does not commute with the
stochastic operation L. Suppose the commutation
relation is

Thus, under the assumption that Hp exists, we have where again X may be, and in general is, quite com-

K —H+f+ 0 plicated. Now supposing p(y) exists,

6 Not used in further development. This section is of the
nature of a mathematical appendix concerning meaning of or
operations and is based on a discussion with D. Edelen at
Rand.

Li (y) + x~(y) = ~(x)

LKIi(x) + xKp, (x) = ii(x),
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and we can write the operator relation

(I +x)K = I.
Thus, given the measure operator p, and the

stochastic operator I, the operator K is defined and
exists when x exists or when p(y) and p(x) exist.
However this is not a method of calculating K since
we do not know how to calculate the inverse of a
stochastic matrix. We may also note that even if
y(x) exists, p, (y) may not exist. I is an unbounded
operator (I'or the differential operators) which may
be nonmeasure-preserving. The space of y must be
suitably restricted. If a measure on x space is mapped
into the same measure on y space, then it is clear that
not all measures will work for an arbitrary L.

This shows (I + x) (H + t) = I or H + l is in-
verse to I + x, but we started with the supposition
that H was inverse to L by writing y = Hx as the
solution for Iy = z. This implies that xH + Ig
+ xl = 0 or that x and l' are related for a particular
L and its inverse H.

We will now generalize our remarks in the fol-
lowing manner. We have seen that we can write

C„(f) = ChK~(s, f)C, (s)

= W(s, f) C*(s)

defining W(s,f) to mean the integral operator

f dsKli(s, f) The .above expression is equivalent to

FHx = W(s,f) Fx,
where 1 represents the statistical measure operation
of forming the spectral density. To keep track of the
arguments f or s we use subscripts on the I' operator.
Thus, C„(f) = FqHx and C.(s)[= F,z. Now

FJHx = W(s,f) F,x = FH Ffx

= FH8(s —f) F,x
so that

W(s,f) = FH8(s —f) .

Also, knowing FH is a noncommuting pair, we write

FH =HF, +&F,
qFf = FfH —HFf

= FHb(s —f)F. —HS(s —f)F,
= [W(,f) —»( —f)1F.

Thus, gFf is an essentially singular operation. g is
related to our kernel operation W(s,f) by an additive
Dirac matrix. We have shown that q exists and shown
its specific structure. If F were to represent an ordi-
nary averaging operation and H a stochastic opera-

tion, then FHx is a defined operation. H Fx is unde-
fined, but the Dirac function behavior of q is just
such as to eliminate the point in space from which
the indeterminism results.

We can state now the following as a theorem:
Theorem. There exists a kernel K(s,f) or the integral

operator W(s,f) = f"„ChKiI(s,f) if and only if there
exists an q satisfying the commutation relation
FH —HF = qF, such that

W(s,f) = FH8(s —f) + x,
where x is an arbitrary operator such that x Fx = 0,
i.e., x annihilates F.

We have shown K(s,f) exists under the assumption
1Hx = FH lx. Now one could consider all F for
example that result in FHx = FH 1x plus some
other term and again find a necessary and sufhcient
condition for existence of a kernel.

9. Physical Measurements and
Estimates of Statistics

With c priori knowledge of probability distribu-
tions of given random processes we have calculated
various statistical measures (moments, characteristic
functions, spectral densities, etc. ,) for these distri-
butions.

In physical measurements of random processes
with unknown distributions (where there is no possi-
bility of taking advantage of the central limit
theorem) a question of great importance we may
ask, is whether from a set of measurements we can
now determine some of the statistical properties
(mean, variance, etc. . . .).

Suppose we have available X measurements of a
basic experiment defining a process or X observations
or measurements of the value of a sample function
of a given random process at X diferent instants of
time. This set of X values is a sample point in a
X-dimensional space characterizing the entire experi-
ment. Clearly, this single point will not uniquely
determine the statistical property we seek. In this
situation the statistician speaks of making an estimate
of the particular statistical property by ending a
function or sta/istic of the set of results or values
which gives a reasonably close estimate of the sta-
tistical property for the process. This is called sam-
pling theory and is discussed by Davenport, '
Cramer, ' and others. It is clear from the theory and
our own results on the random sampling example,

7 W. B. Davenport, and W. L. Root, An Introduction to the
Theory of Random Signals and apoise (Massachusetts Institute
of Technology, Cambridge, Massachusetts, 1958).

8 H. Cramer, Mathematical methods of Statistics (Princeton
University Press, Princeton, New' Jersey, 1946), Part III.



LINEAR STOCHASTIC OPERATORS

that we can now give more generalized sampling
theorems for situations in which it may matter that
the X instants of time at which measurements are
made may not be regularly spaced but are subject to
a distribution. Such a case might occur, for example,
if the observations were to be made whenever an in-
coming particle triggered the observing apparatus.

The application of the theory to the statistical
description of mechanical systems of macroscopic
dimensions is a clear possibility. %e can assume a
stochastic process corresponding to the measurement
of an n-tuple of macroscopic observables. Then a
theory of repeated observations or measurements can
be made using stochastic operators, where some
parameter of the observation is unknown and can
only be given a distribution.

II. THE INVERSE PROBLEM: STOCHASTIC
DIFFERENTIAL EQUATIONS

I. Differential Oyerators

%e have discussed at some length in Part I various
statistical measures for the action of a linear stochas-
tic operator on a random process, or equivalently, a
linear (stochastic) transformation of a random proc-
ess. A particular measure of interest, the spectral
density measure, involves a stochastic kernel or
spectral density Green's function K& for a stochastic
operator H. This formulation is useful in some prob-
lems involving the statistical optimization of com-
plex systems and in the synthesis of models for some
physical phenomena. In other physical problems,
however, the convenient formulation involves a
"stochastic differential equation" rather than a given
operator. Generally, linear operators, linear transfor-
mations, linear filters, linear networks, and linear
control systems are equivalent mathematical systems
describable by systems of linear integro-differential
equations. The forcing functions are the inputs. The
outputs or dependent variables appear as the
operands. For simplicity, we consider a single input,
single output equation in the form

where
n

I = ga, (t) —,
dt"

and both a„(t) and x(t) are stochastic. Samuels, "
9 Since the term random sampling is already used by statisti-

cians to indicate that the sample is chosen from a general
population in a random manner, it might be better to call this
stochastic sampling.

~0 J. C. Samuels, Transactions of the 1M'9 International
Symposium on Circuit and Information Theory, Los Angeles,
June 16—18, lM'9. IRK Trans. Circuit Theory, CT-6 (Special
Supplement) |,'1959).

Sundstrom, " and others have pointed out that such
problems arise in the study of linear servomechanisms
in which several parameters are undergoing noise
modulations" "and in certain propagation problems
in stochastically varying media"" or media with
random inhomogeneities.

%e now consider the equation Ly = x, with L the
previously defined stochastic operator and x(t) a
random process. Defining H as the operator inverse
to L, we investigate the possibility of determining
the kernel K& for H by examining L and avoiding the
problem of inversion, i.e., not determining H. %e
assume reasonable restrictions on L.

1. The inverse must exist. Thus I must be non-
singular, i.e., the determinant of the matrix corre-
sponding to L must never become zero as the ele-
ments vary according to some distribution.

2. K~ is stationary or, at least, the coeKcients in
L can be translated, i.e., have stationary properties.

Now, differential equations can be solved in our
sense, i.e., in terms of a statistical measure, where
the coefFicients are stochastic as well as where the
coe%cients can be considered to be chosen from
random processes. Our stationarity condition means
simply that the probability distributions of the
random parameters are such that the stochastic co-
eKcients (time functions) in the differential equation
describe stationary processes during a time interval
of interest, i.e., the statistical characteristics during
the interval are constants. In order to have a full
description of the processes, the time interval must
be at least so long that the correlation between values
at the limit points can be neglected. Actually, wide-
sense stationarity is sufFicient for the coeKcients.

2. Evaluation of Stochastic Green's Function
for a Differential Operator

A series of papers by Sundstromis leads to the fol-
lowing approach for expressing the kernel in terms
of the coefEcients of the differential equation. Treat-
ng x not as a random process but as a defined con-
tinuous member of the x process in the interval

[ —T/2, F/2j, and similarly treating y and a„, we

n M. Sundstrom, Arkiv Mat. 2, 52 (1951).
rs A. Rosenbloom, Ph. D. Thesis, UCLA, 1954 (unpub-

lished).
rs J.F. Buchan, and R. S.Raven, IRK (Wescon) Convention

Record, Part 4, August 1957 (unpublished).
r4 P. G. Bergman, Phys. Rev. '70, 486 (1946).
&5 D. Mintzer, J. Acoust. Soc. Am. 26, 186 (1954).

6 L. A. Chernov, Wave Propagation in a Random 3fedium
(McGraw-Hill Book Company, Inc. , New York, 1960).

r7 F. Villars, and V. F. Weisskopf, Phys. Rev. 94, 282 (1954).
&8 M. Sundstrom, Tech. Notes TN 45, 46, 47, 48, 49, 50,

51, Royal Institute of Technology, Stockholm, Sweden (un-
published).
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define Fourier transforms of the "input" x, the "out- so that o.„represents the randomly fluctuating part
put" y, and the coeKcients a„. of a„(t). The differential equation can now be written

x(t) =

y(t) =

X(f)e""df

Y(f) ""df

a„(t) = ~.(f)s' "df

Now if y(t) is differentiated I times, we have

Now the left side can again be viewed as an operator
acting on y, but this is now a nonrandom operator
II, and a Green's function can immediately be writ-

(4) ten, say A(t, r), for the left side alone. Now the solu-
tion is

y'"'(t) = (2TTif)"Y(f)e' ' 'df .
y(t) = h(t, r)x(r)dr — h(t, r) g

" dy()
to v=0

Substituting in the differential equation X ~,(r)dr+ gc„y„(t),
v=1

dfm(f, s) Y(f) = X(s)

where the It), are a fundamental set of independent,
solutions of the homogeneous nonrandom equation
Hy = 0 and the c. are arbitrary constants. TheMuitipiying by e ' '" and integrating from —T 2
upper limit can be ~ for a realizable system. Theto 7 2, we obtain:
lower limit is a matter of memory. Vsing fo instead of
—~ implies simply that all earlier values are not
significant. Considering infinite limits

as a formal relation between input and output
transforms where: y (t) = F (t) — K (t,r) y (r)dr,

o'(f s) = Z. (2~2f)"~.(s f) — (6)

However, it is clear that we need an expression
for Y(f) in terms of X(s), since ensemble averages to
be taken later must be separable and, while the x can
be statistically independent of the a„, the output y
cannot, except in a trivial case, and except for one
special case of some interest considered by Samuels. "
He analyzes random linear systems containing one
or more nonindependent parameters under the re-
striction that the parameter processes and the solu-
tion or output process have very widely separated
spectra. He considers an equation of our form Iy = x
with the c,(t) and the x(t) as prescribed random
functions, supposing as in our treatment that x(t) is
statistically independent of any a, (t) while the a, (t)
may or may not be correlated with each other. Fol-
lowing his treatment we assume the mathematical
expectation22 (0„(t)) of each coefficient c. exists and
write

a„(t) = (c„(t)) + a„(t)

J. C. Samuels, Transactions of 1950 International Sym-
posium on Circuit and Information Theory, Ios Angeles, June
18—18, 1MB. IRK Trans. Circuit Theory, CT-6 (Special
Supplement) (1959).

20 Mathematical expectation or statistical average or mean
or ensemble average of a continuous random variable g(x) is

z(t) = h(t, r)x(r)dr + g c„g„(t) .

Now multiply y(t, ) and y*(t,) and average

(, ( ) *( )) = (J"( )J"*( ))

(K (t,r)F*(t2)y (r) )dr

(K*(t2,r)E(tI) y*(r))dr

(K (tl)rl )K (t2)T2) y (Tl )y (T2))dTIdT2 ~

Assume the o.„are stationary and ergodic and the
(a„) are constants so h(t, r) is h(t —r). Then it is
true that y(t) and cI„(t) y(t), etc. , are stationary and
ergodic. [Also, Samuels states if the (a„(t)) approach
constants as t —+ ~ then the products in question
are "almost ergodic" for large t jWe then assume.
both K and y are ergodic. Now we replace ensemble
averages by time averages, "e.g. ,

E{g(*)I = g(x) p(x) dx = (g(x))
~~ Time averages are indicated by a bar over a single letter

without exponents. For more complicated expressions we will
use the symbol [ ]a



y97RA TORSSTD& HASTILINEAR

g, (&)~ (~)d~
1

h the functions
uantity

e
if~ I

se the
bl far aPart, e.g;n which case
he autocorre a I

al densities are
t e

the spectra
f quency a

very narro
~

(g close to zeronarrow
pwn y

'
w pe»s-

teg rating y
rate

$ This is also s
Q w we can

farther o . '
6 (p)

1

pne rate) say,.ts assumrng '".
age the separa ' "

{t ))(p*(t,)y(r))(K(t r)p ( 2)y(

))(p(t )yo( r))(Kq{t, r)p(t&)y ( )) (K*(t„r
(„)y*( .))

{, , )K*{t„r2))(y(«y

nd notingSubstituting and

(y(t( yi *(t)) = R.(t(,t)
(j'(t,~F*(t )) =R (t„t,),

l' earintegral quatIOne a second-ord
uels develops; h can. be solved in o

and considers s

varyrng cap
tlon

~

erentralget a dr

ipns wher eare stabi i y)
~

l t i e reglo

(„'(t)) & ~
t~'O

t Mean-square pacitygnite constant'
. f the circurt

wh~~e ~ '
d against d™Pig~ .

On is plotte agadeviation
f table operation

scient
ipnso s a

re not su
p show r g

h interest'ng)
'

l. case
These resu t

he app y t
the, ate«n tthe ensemble a

e wpuld really
ere

Furthermor
th input (see

basis pf rate.
ms of ee Out, put in ter

t er tha
l t. n fpr the 0

ation rat eparameter v
tput aga

See. I) an
l

'
volving theegra InVterms

we return to Eq
b the fPllo

. 5).There&ore, w
g otion B(o s)We de6.ne a ne

re uirementthogonallty reqwe now have

R„(t„t.) = R.(t„t,)

(K{t~,r~„,)K*(tg,r, ))R„(r„r,)dr, dr, .

=5 f —o).dso, (f,s)B(o,s) =

d."'--From (5) and w
'

diate y(7) we immediate y

(7)

R(tz)t )2dt(dt2== ~, (l., l-.)e' ''

with inverse

1
R„(t(,t2) = —'((r, t~+r~ t~)

C (l. l. )dl d~e' ''
We can now wwrite

~-(l-.)= C'z (,ls) t Qoc,(l-, l-.) = C.(., ~

l —~.)c,(tt. , ~0—XC'ai PP

ectral densi yr», . the cross-spec
nar,- ense statron y,e a„are wr e-seeScients. If t e n„

he above kerne

j+I
)taK*t„..))= g(— ', ,K 2,r2 — —l)'

X f p~, (r(,r2)&(4p(

CrOSSwhen the various cro
t"1 d

~MFouner rt ansform of 8„

l'(f) = dsB (f,s)X(s) .

dodsB o, f)B'(s,f)X(o)X*(s

of the process isThe spectrum o

2
T~QQ

t so that t p
process are s a i

(B(,f)B*(s,f))C„(f) = lim
&

o.,

B o,f)B*(s,f)X. (o)X*(s dods-.

X (X(o)X*(s))dods,

2
C„{f)= lim

—2)rio td~x(t)e
-1'/2

&B(o,f)B*(s,f))
r/2

G9 ATds)x*(t e
—r/2

T/22
4„(f) = lim-

2g i (sv-rru)
X (x(u)x*(v))e

dodsdudv(B {(r,f)B*(s,f

ec r re resentative member
h

The power spec r
we have c oh sen) is then givof the ensemble w



&DOMINA&1 9 8

) this becomesry(s = tl+input is

(B(a f)jP (s)f))lim
r

2~is&(x(g)x (M +
) ( ) 2Ãlspd7'

, )e

and( (~)x*( +
Th s p can ivrit

~

n t;he limit
Sec. &.rlier result

c,(f = d,If„(,,f) C. ( )

I1with

2, (.—)(B( f)B*(s,f))eZ. (s, f) =

2,.t'. —)d (B(-f)B*( f» '"'

a known
~

kernel whic p
n function

is psitivesymmet I'ic

n nownepus term
uation IS

function i s p
~ 'ar condj-ti nt (g Ig) subIect

h t this statement aP
t;pn using spm' ']jes fpr pu r integral eq

theorem. Qe
~

ncip]e as aZima
of the integral eq '

Then of
thp so1ution o

.
h (~ Ip) —Q,x).tion fpr whic

~

is the one
p be any f""

this relation, g 'spstsfy g
Th s ot g

is actually B(a&

~(f)g(f, s)g(s)dsdf

p(s) e(f s)g(f)d'"f
)(B(a f)B*(s)f))

adding g~vesfrpm symmetry

s)dsdf(AIg) =
2

(AI4) & o

& ((g —4),I(g—

I —2Q, Ig) from

= (g,Ig) —(AI4)dsQ(f, s)B(a,s) =, 5(f —a.

i.e.,

00

n l is an equa-known kerne, ',considering Q, (f,s) tobea n
the form (g,Ig) & (4,A)tion of

Ie=s,
lsunction,
'

the unknown
to th"function B(o, -ero-s) and I is

of transpors mme s.
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To maximize the variational function using a
Lagrange multiplier to include the constraint

OI (O, IO) + )).[(O,IO) —
(O,x)] I = 0

OI(1+ ) )(O, IO) —) (O,x) I
= 0

(1 + X) B(o,f)8,(f s)B(c.,s)dfds

—) B(,f)O(f — )df =0

(1+X) B(o,f)S(.f,s)B(o,s)dfds —XB(o,o)= 0. .

Divide by 1+ X and let p, = ))./(1+ X)

&(f)&(f,;)&( ~)&f« —~&(, )) = o

Suppose we expand 8 in some suitable series of the
form

B(f,s) = g. n.O. (f,s) (»)
over a finite region a & f, s & b where the O. are
known functions making up a complete set and the
coefficients cr. are to be chosen so that B(f,s) is a
solution of the original integral equation I0 = x. %e
should then get integrals of the form (O.,IO„) and

(O„,x) that are coeKcients of quadratic and linear
forms in n„. Thus, the variational principle is ap-
plied to get the best choice of the 0..by differentia-
tion with respect to these variables (making the
variational function a maximum subject to the
subsidiary condition). The result is a set of linear
equations to be solved for the u. . For an exact solu-
tion we have an infinite sequence and therefore an
infinite determinant to be evaluated. Careful choice
of the O„may result in a good approximation with
only a few terms and choice of the 9. therefore de-
pends on the insight which can be obtained in a given
physical problem. %e think at this point in terms of
an exact solution to be evaluated to any desired
degree of accuracy by the Ritz method. "Thus, in
principle ecch 8 can be found from each S. If we now
let 6, and therefore 8 be random processes, the 0
become random variables to be evaluated.

In order to obtain a little more insight into this
forbidding problem, we digress now to review some
properties of Green's functions which we can use.

Consider then the following method" of finding a
Green's function for ordinary nonstochastic physical
problems.

25 F. B. Hildebrand, Methods of 8p p/i ed Mathematics
(Prentice-Hall, Inc., Englewood Cli6's, New Jersey, 1952).

26 G. H. Goertzel and N. Tralli, Some Mathematical Methods
of Physics, MeGraw-Hill Book Company, Inc. , New York,
1960).

LG(x,x') = 8(x —x')

with, the same boundary conditions as on f Thus. ,

G(x,x') = L 'O(x —x')

and (14) can be rewritten

(15)

f(z) = L '8(x —x')s(x')dx'

or, using (15),

f(x) = G(x,x')s(x')dx',

which is obvious anyway from the meaning of G or
from applications, e.g. , in electromagnetic theory.

A. particularly nice method of obtaining the Green's
function exists for self-adjoint (Hermitian) operators.
Thus if I = L~, the eigenfunctions of I form a com-
plete set. These eigenfunctions P), and the correspond-
ing eigenvalues X are found by solving the eigenvalue
problem

LP),(x) = )).P),(x)

witb, the same boundary conditions on P), as on f(x).
We require also the closure condition

it), (x)it~), (x') = b(x —x')

where 1), is used to mean I dX if the spectrum of
eigenvalues is continuous, or g~ if it is discrete. The
Green's function is given by an expansion over the
set of P thus,

G(xx') = A(x)4*.(x')
X

(16)

Let I be a differential operator and s a continuous
function. Consider the problem of finding the func-
tion f satisfying the inhomogeneous differential
equation

Lf(x) = s(x)

and certain specified boundary conditions. If there
exists a unique solution f for each s, there must exist
an inverse operator L-' such that for all s the formal
solution will be

f(x) = L 's(*) . (]4)
The inverse operator implies not only an operation

inverse to L but, also application of the associated
boundary conditions.

The solution of the differential equation (18)
corresponding to s(x) = O(x —x') is the Green's
function G(x,x') for the given L and boundary con-
ditions. Thus, G satisffes
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so long as X / 0 and no infinite sequence of ) 's ap-
proach zero as a limit point. "

Now one method which suggests itself is to use
such direct methods as the above for determining
6 by taking one member of the ensemble of the opera-
tor I, say I;, determining a single 6;, and then
averaging over the ensemble by using time averag-
ing—assuming an ergodic property holds for the
operator. This can be done when an explicit I; 1s

known and sometimes by considering a simpler
nonrandom problem. [An example is considered in
Chap. 4 of the referenced dissertation and in a paper
(to be published). ]

We ask ourselves now whether any expansion
analogous to (16) exists for a stochastic operator.
Analogous to the self-adjoint or Hermitian property
for ordinary operators, does there exist a correspond-
ing property for stochastic operators~ We might say
a stochastic operator is self-adjoint if it is stochasti-
cally self adjoint m-eaning all members of the ensemble
are self-adjoint, or we could consider a self adjoint--
in-the-mean property. Thus, suppose that the mean
operator is represented by the matrix whose ele-
ments are the means of the elements of the stochastic
matrix which corresponds to the stochastic operator.
This mean operator might well be self-adjoint and
possess an eigenfunction expansion. We can then
speak of the operator as being self-adjoint-in-the-
mean. Now hypothesize a stochastic expansion (for
the stochastic operator) whose mean is the above
mean eigenfunction expansion. The stochastic Green's
function could then be represented in terms of the
eigenfunctions and eigenvalues in a manner analogous
to the deterministic case, i.e., in terms of the stochas-
tic expansion. We have shown we can write the
Green s function solution for a deterministic differen-
tial equation Ly = x in terms of the eigenfunctions
of L. Regard this I as a single representation of the
stochastic operator g, i.e., one of the ensemble of
operations represented by . The eigenfunction ex-
pansion suitable for g must be the eigenfunction
expansion for L when g becomes L, i.e., becomes
Iionrandom. Thus, if 2 involves Gaussian parameters,
in the limit as their variance decreases to Dirac
8-function behavior, we get L and the expansions
now correspond. Imagine that all the representations
of 2 are expandable in the same basis —which can be
true for a properly defined class of Z. Then 2 has the
same set of eigenfunctions as L. Now, however, the
coeKcients of the expansion are random variables.
(Only the eigen values are random. When these

2~ Reference 26, p. 167.

random variables become nonrandom we get the
set for I.) If we write y in terms of x and a Green's

function written from the above expansion (analo-

gous to the determination of the Green's function
for I), multiply by itself displaced by r, take the
mean, and transform to get C„(f), we have a kernel

or stochastic Green's function involving the mean of
two Green's functions which involve random varia-
bles from the expansion for 2, . Taking the mean

involves only the random coeKcients of the expan-
sion for 2 and therefore the autocorrelation of those
quantities which we will want to relate to known

statistics of the operator. We define a stochastic
operator to be self-adjoint when its every realization
is self-adjoint. Such a stochastically self-adjoint
operator is also necessarily self-adjoint in the mean.

Every realization or representative L; of an en-
semble {I;}representing a stochastic operator 2 has
the same basis if and only if I;I; —L,L; = 0 for all

i and j, i.e., if every realization commutes with every
other.

%hen the conditions of the last statement are not
satisfied, i.e., when there does not exist a common

basis, a stochastic Green's function or kernel K~ is
formed in the same manner with the difference that
the eigenfunctions as well as the eigenvalues are
dependent on the random variable and the averaging
process involves these as well. For stochastic Ckger-

t.ntial operators, this is expected to be the usual case
since only a very restricted class of self-adjoint
operators would allow different realizations of 2 to
commute. For other operators than differential forms,
there are more possibilities. This then appears to be
an alternate met;hod of expressing the kernel K~ and
a more direct one since it gives E~ in terms of the
statistics of a„(t) for problems in which Green's

functions can be found. (This method will be dis-

cussed further in Sec. 5.) We also saw that KJI could

be expressed in terms of (B B*),which means (B B*)
can be written in terms of statistics of the a, and
relations exist between these quantities which it is
worthwhile to explore. Thus, in Eq. (13), writ-

ing 2 to emphasize according to the above discussion
the stochastic nature of the operator, each realization
or member or sample function 2; of the ensemble
corresponding to 2 has a Green's function 6;(x,x').
Correspondingly, each sample function of the output
satisfies

y; = g;(x,x')s(x')dx',

and the process y is the entire ensemble of the y;, i.e.,
{y;}.However, we are not solving for y but for an
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8.8*dfds = 5 ..

What we mean precisely by equating B with the
series is that for every f,s in the domain, we have the
limit-in-the-mean (l.i.m. ) .

or

B(f,s) = l.i.m. Qo„x„O„(f,s-)

N

lim (IB(f,s) —P x 8 (f,s)l') = O.
n=1

Actually, any random process, even a nonstation-
ary one, has an orthogonal expansion of this type
(with uncorrelated and random coeKcients). If the
orthonormal set used as a basis were that of the
ordinary or trigonometric Fourier series, the coef-
ficients would be correlated unless the process were
periodic. Suppose we can equate in the specified
sense the process B(f,s), with the given series for
some set of random variables x..

Equation (21) becomes

where we have substituted the form (12) for 8(f,s)
which will be taken to be a Earhunen —Loeve ex-
pansion.

This is just a generalized Fourier series or orthogo-
nal expansion such that the coeKcients are uncor-
related. A nonperiodic random process cannot, of
course, be written as a trigonometric Fourier series
with uncorrelated random coe ancients but it is
possible to obtain uncorrelated coeKcients by using
a Earhunen expansion instead of a Fourier series.
Thus, a, random process, in this case 8(f,s), is ex-
panded over a domain or region tt ( f, s ( b in the
form g ot.O„(f,s) Let. ting a = o. x where the o„are
numbers, possibly complex, and the x are random
variables, it follows that

(x x.*) = 5 .

could be obtained by the variational method, it
becomes simple to get the kernel itself, i.e., (IB(s,f) I')
or err(s, f)

However, it is not easy to find the appropriate set
0.. What we would like is a prescription for finding
the O„appropriate to the differential operator, bound-

ary conditions, and the given distribution functions
or other knowledge of the statistics of L. Iet us
examine what is involved. Multiplying both sides
of (22) by Ose(s,f), integrating over the domain
a & f,s & b, and using the orthonormality property
of the 8's, we get

dsdfKo(s, f)Os(s, f) = XA(s, f),
where Xs = Iosl

Thus the Of, are the eigenfunctions of the integral
operator Jf,' ds df Krr(s, f) for eigenvalues )Is, i.e.,

the solutions of a Fredholm integral equation. If
solved, this equation would give us numbers a-~ and
the set 8. for our expansion of 8(f,s). We can assume

cTI, to be nonzero and eigenvalues of multiplicity r ) 1

to be indexed with r different numbers so a Schmidt
orthogonalization procedure" can be employed. Take
os to be the positive square root of

I
o,l'.)

However this solution requires knowledge of the
8 or at least of the kernel (8 8*) so the basis func-
tions for 8 cannot be obtained without knowing B.
In principle, we might consider assuming a basis 0„

possibly from knowledge of the boundary conditions,
finding B then solving the Fredholm integral equa-
tion until we get the same basis. The difhculty in this
procedure is that our variational method gives us a
sample B for a sample 8, but what we want are ex-
pressions in terms of means of 0', or covariances of a„.

We return now to our condition defining B in
terms of 0,, i.e.,

dse(f, s)8(a, s) = 5(f —a) .

&IB(s,f) I') = do5(s —a)

&& (P„~„x„O„(a,f) g„o*.x.*O*.(s,f))

da8 s —a. „a. O„a.) 0„* 8,

= Z. l .I'8-(s, f)8-*(s,f) (22)

Thus, once the set 0. has been determined so that B
International Symposium on Circuit and Information Theory,
Ios Angeles, June l6'—18, 1M'8. IRK Trans. Circuit Theory,
CT-6 (Special Supplement) (1959).

29 K. Earhunen, Uber Lineare Methoden in der S"ahrschein-
lichheitsrechnung (Helsinki, 1947). Also, M. Loeve, Probabihty
Theory (D. Van Nostrand Company, Princeton, New J'ersey,
1960).

If we write B(s,o) instead of 8(o,s)—this was an
arbitrary choice—and conceive the functwn O, (f,s)
to be a matrix by imagining the f as representing a
continuous row index and 8 a continuous column
index, the left-hand side looks like a matrix product
while the right-hand side is similar to the identity
matrix except that the Dirac 6 in place of a Eronecker
6 implies ~ on the diagonal rather than a series of
1's. By analogy we are justified in applying the term
"inverse" to B.More specifically, we call B an inverse

30 P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill Book Company, Inc. , New York,
1953); F. Mandl, Quantum 1IIechanics (Academic Press Inc. ,
New York, 1959).
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functional of 8,. Now, it is obvious that (Cttt*) can
be given explicitly in terms of the correlations B.„for
the random coeKcients a„(t) in Z. To see this we use
the definition of A„and write

r/2

(a„(u)a„(v))dudv .
-r/2

Let v = u + r, then the above quantity becomes

i in terms of the cofactors of a row or column k
vanishes if i 4 k and is equal to ~A

~

when i = k.
Now Eq (24) looks like a matrix product. Set

a;; = A, ; and (24) becomes

Qg ave s= 'Qg ttsrag a= ')A)~sa )

which can be written in matrix form as

AA = AA = iAiI
1'/2 r/2 —u

dry. (r) .
—r/2 —u All A21 ' ' ' Anl

Finally,

«(f &)~'(f s)) = Z. Z. (—1)"(2~if)"'"

7/2 T/2 —g

—T/2 —T/2 —u
drR. „(r) . (23) Al„

If we could write B in terms of 8, form (B B*)and
possibly expand in a series of functions or powers of
(8 6*), we might have a computational method of
interest. Of course, we are still suggesting the in-
version of a matrix, but a much simpler one than the
problem of inversion of the matrix corresponding to
Z. Our matrices are continuous and infinite here but
can be made discrete by originally using series in-
stead of transforms. Consider the case of discrete,
ordinary or deterministic matrices and the matrix
product AB = I, where I is the identity matrix.
Now B is called the inverse or reciprocal matrix and
is indicated by A '. (It does not of course mean 1/A
or even I/A since division by matrices is undefined).
To see how A-' is written in terms of A let A be
represented by the array of elements:

~11 ~12 ' ' ' +ln

+nl ~n2
' ' '~nn

Now following Hadley" we define

(25)

AA'=A 'A =AA/iA) = I.
If A is nonsingular, it has an inverse defined by
(25) and further, the inverse is unique.

To sum up we say if AB = I then B = A/~A~

where we write A to mean the so-called adjoint
matrix of A where this overworked term is not to be
confused with the Hermitian adjoint A~ since A is
found from the transpose of the cofactors of the
elements of A not the transpose of the complex
conjugates of the elements of A.

Thus, in our own problem with the defined (but
discretized) 8 and B we write

O', O',* O', Q,*

which means precisely the average of the following

array

%e know, of course, that the determinant of A, or

~A ~, can be expanded by cofactors as

All A21 ' ' Anl

A12

All A21 ' ' ' Anl

if we define A;, as the cofactor of c;;.We know further
that ~A

~

vanishes if any two rows or columns of A are
the same. Thus,

g, a~~A;, = Q, a, ;A,, = 0 i ~ k.
Combining these statements

~11 +12

+21 +22
~11 +12

Q; a;~Ay; ——Q; a, ;A,s ——)A ~8p„, (24)

which says simply that expansion by a row or column

+nl +nl

+ G. Hsdley, Linear Algebra (Addison —Wesley Publishing
Company, Inc. , Reading, Massachusetts, 1961).
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where c;, are the elements of 0', and A;; are the co-
factors of c;;.

The difficulty in finding ISI and the above expres-
sion is avoided in quantum theory by using approxi-
mate representations in which 0', is diagonal. The
general problem here appears to be enormously
dificult even with arbitrary limitations of the num-
ber of rows and columns for successive approxima-
tions. Since we do know (8 8~) explicitly it is logical
to ask if we can write our expression in some series
of powers of (Q, 6,*)or soine function of (0', 0',*)which
could then be written as a function of B.„. It is not
clear how the desired expansion is to be made so the
problem is not completed. In the referenced disserta-
tion, a differential equation with a random Gaussian
coeKcient is studied at length and a solution is ob-
tained. Perhaps then if the expansion is used for the
same problem, we will be able to see how it can be
done or if (8 8*) is aires, dy the first term. We know
the series terminates in that problem and we can see
that the kernel is a function of the correlation of the
random coeKcient alone which is easily calculable.
It seems reasonable to expect that our desired calcu-
lation can be made for that same (Gaussian) case."

We will make a few remarks about the existence
of B given an 8 and then go on to other methods.

3. Necessary and SufEcient Conditions
for the Existence of B

4. Karhunen —Loeve Expansions

The solution we seek is dependent on appropriate
expansions of the random piocesses involved. Our
goal is to evaluate (8 8*)in terms of knowledge of the
statistics of the a„(t). If the a„are Gaussian processes
and their cross correlations are zero, they are sta-
tistically independent. Knowledge of their autocor-
relations B.„ is sufBcient for complete statistical
knowledge. Whatever the distribution functions in-
volved however, the a, (t) can always be expa, nded in
Karhunen —Loeve (K.L.) expansions. We consider
brieHy the nature of such expansions.

An expansion for a random process x(t) on an
interval (a,b) of the form P„o..x.p.(t), where the o;
are numbers, the x. are random variables satisfying
(x x.*) = 4., and the p. are orthonormal, i.e.,

Q.p*dt = 8 „,
is a K. L. expansion of the random process on (a,b).
What we mean precisely by equating x(t) with this
series is that for every t in (a,b) we have the limit-
in-the-mean

or

I et W be the class of all 22 integrable functions
(Z2 is the vector space of all real-valued functions
whose square is Lebesgue integrable over the in-
terval). Then, as ia well known, 8 exists and is
unique if and only if

implies W(f) = 0, i.e., the integral operator f „
8(f,s)df does not llave zero 111 Ita spectl'11111. (FOI'

discrete 8 this may be the case and can be seen
easily. For continuous 0', it s very difficult to decide. )

If 8, doesn't have this property, there exists no 8
satisfying our condition. As an example, take

The inverse is an unbounded second-order differen-
tial operator with zero in its spectrum. No 8 exists.

A.ny random process, even a nonatationary one,
has an orthogonal expa, nsion of this type with random
but uncorrelated coeKcients. If the orthonormal set
used as a basis were that of the ordinary trigonomet-
ric Fourier series, the coe%cients would be correlated
unless the process is periodic.

To find the appropriate set p. a,nd the numbers
o-. we suppose we can equate, in the indicated sense,
the process x(t) with the given series for some set of
random variables x..

where we have now de6ned the autocorrelation
function R.(t,s). Multiplying R(t, s) by p~(s) and
integrating over s in (c,b) and using orthonormality
of the p.

32An iterative method which appears very promising is
now being investigated and will be discussed in a forthcoming
paper.

33 See, e.g., M. H. Stone, Am. Math. Soc. Colloq. Publ. 15
(1937).

dsR(t, s)p~(s) = loll'p~(t),

which we recognize as an eigenvalue equation for the
integral operator f.' ds R(t, s) for eigenvalues
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= ~os~', (or the solutions of a Fredholm integral
equation). Solving this eigenvalue equation gives us
the numbers ff.s and the orthonormal set p. for our
expansion. Assume (Ts to be nonzero (and eigenvalues
of multiplicity r ) I to be indexed with r different
numbers so a Schmidt orthogonalization procedure
can be employed). Take s& to be the positive square
root of ~s&~'. The random variables x are found in
the usual manner for determining coeKcients of
expansions, thus,

C, is the spectral density of x(t) and is assumed posi-
tive and integrable [so B(7) is an autocorrelation] and
even [so B(r) is realI, and either rational or approxi-
mated by tt sum of rational functions. Thus, let 2sif

Pp

Substituting, we quickly verify

0'n(Tm(XaXm) = frn(Tmf)nm

or

where X and D are polynomials of degree n and d,
respectively, d being greater than n, and D(p') hav-

ing no real roots.

5. Evaluation of the Kernel

The example

(x.x.*) = a. dy/dt + g(t)y = si(t),

as speci(Md at the start. Further, denoting Z.-f where p and g are random is considered at length in
o„x„g„(t)by xN(t), we can calculate the referenced dissertation. "Suppose tt„(t) or in this

case g(t) is expanded in a E. L. series. In general then
tt„(t) = g (y„)„p„(t)or in this case,

and hence,

where the last term on the right side converges to
B(t,t) as X~ ~ by Mercer's theorem" establishing
the statistical convergence we specified.

We note in passing that the energy in a random
signal x(t) over time interval (a,b) must be the
average of the energy in different members of the
process x(t) or

b

dtx t

in tt & t & b, where the p„are orthonormal, the
random variables $. are uncorrelated, and the s; are
numbers. Again, the set ps is found from an eigen-
value equation involving B(t,s) = (g(t)P(s)). If $(t)
is stationary, B(t,s) = B(t —s) = B(r) = ($(t)P(t
—r).

Consider now the use of the E. L. coeKcients in-
stead of the courier transforms in defining the 6, and
8 functions. Thus, we would substitute into the
differential equation the following:

The solution of the eigenvalue equation can be
carried out when the corresponding spectral density
is rational, "i.e., when the Fourier transform of the
autocorrelation function B(s,t) is a rational function.

B.(s,t) = B,(s —t) = B,(r) =

34 Mercer's theorem for a positive-definite autocorrelation
function B(s,t) states

B(s,t) = Q Xgs(s)yt(t),
1

where the convergence is uniform for a and t in the closed
interval e,b {denoted Ia, b]).

35 The solution is made by Davenport and Root on p. 376.
{Seereference 7.)

x(t)fI.f.*(t)dt = 0.x. = E.L. transform of x
a

P. = f,(f)f,"(t)df = LS„=K,L.transform of y
a

b

a„(t)ys" (t)dt = e.(a„)„

= K.L. transform of a„.
Also considered are generalizations to random vector

fields and the wave propagation problem for a random in-
homogeneous medium and an illustration of the generation
of an approximate stochastic Green's function for such a
problem from the simpler Green's function of a nonrandom
case.
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Thus we need to differentiate p.' i times, multiply
by gf, and integrate from a to b T.he basis g. for z
can be determined from B., the basis p." for a„(t)
from B.„;however, the basis Q„' is unknown since it
depends on the solution we seek, 8„, so we cannot
hope to find the P„unless we have some reason to
choose the p„'.

We therefore expand only the coeKcients a„(t) in
K. L. series, each in its appropriate basis. We now
have explicit, i.e., known and deterministic, time
dependence in the Z and as many random variables
as there were random coeKcients in Z. We now seek
the eigenfunctions or basis functions which diagonal-
ize the operator Z. Treating the random variables
as constants we solve ZP~ = XP~. For all equations
in which this can be carried out we can complete our
problem since a Green. 's function can be written in
terms of the P and X. We limit ourselves to self-

adjoint operators for Z. Most physical problems can
be considered to result from variational statements
and the appropriate operations are always self-
adj oint, i.e., we might consider the Hermitian
property as being a physical realizability condition.
Thus 2 might conveniently be chosen to be of the
general form

z = (d/dt)"T. (d/dt)",
which is self-adjoint regardless of the distribution
of T„. If T is constant we get only even ordered
derivatives. If 2 is stochastic T„ is a function of time
for which we have a distribution function. A second
order operator Z acting on u is self-adjoint if the
form of Zu is fu" + gu' + ku where Iz, g, f are func-
tions of x and g = f' We can .take over Sturm —Liou-
ville theory or in fact any method of ordinarily
arriving at Green's functions.

Now, however, the Green's function depends on the
random variable or variables. When we form
{y(t)y(t —7)) then we will involve averaging over
the random variables appearing in the average of
two Green's functions. Where this average can be
carried out, it gives us the kernel Ezi or (8 8*).Thus
in the first order equation with random $(t) which is
stationary and gaussian, the Green's function h(&,u)
will depend on the random variable $„. The $„has a
joint Gaussian distribution so the averaging can be
carried out. If it does turn out that all the members
of 2 can be expanded in a common basis (if they
commute) we have Zp = Xp and the matrix elements

= P &*X.p„with only the X being random, not
the p„. The Green's function

would then have only the X dependent on $ and the
averaging over P would be much simpler. This is the
case in a restricted class of operators as we have dis-
cussed earlier.

The eigenvalue equation is in some respects easier
than the differential equation although at first sight
it appears equivalent. When the operator 2 is
stochastic, we actually have a non denumerable
ensemble of differential equations which we must
solve. An eigenvalue problem is a problem in matrix
algebra which can be handled on digital computers.
One can use finite difference methods to discretize a
differential operator and get approximate answers
with upper and lower bounds. If we have the matrix
in the given problem, considerable labor is avoided.

To sum up: A Green's function for a differential
operator L is the kernel of the integral operator that
inverts L. However, we are considering kernels for
statistical measures of the dependent variable y in
Ly = x rather than for y itself. For example, XII is
the kernel for 4„rather than for y. It corresponds to
the kernel for the transform then of the mean of the
product of y(t) and y*(f, + r). It's clear that the
form of K~ is then just such a triple integral as found
earlier. Each Green's function for y is a matrix; each
observation or realization gives us a sample or
representative matrix. The multiplication of y(t) by
y*(t —z) gives us a product of matrices. We eall this
product &een's matrix. When L becomes stochastic,
the Green's matrix becomes stochastic. Since the
correlation of y involved an ensemble average over a
product, we have the average of the Green's matrix
which is our stochastic Green's function. Each of the
original Green's functions means one integration.
The transform to power spectra gave the third
integration. This triple integral involving an expo-
nential (from the transformation) and an ensemble
average over the matrix product is precisely our
form for KIz(s,f)

Thus we can take each sample or realization or
representative of the stochastic operator, solve the
eigenvalue equation and get one of the Green's
functions discussed above. In the equation dy/dt
+ $(t) zy

= q(t) we can solve for y as if $ is not random
and then carry out the statistical measure operation.
To do it as stated we need to solve

Id/«+ 6(~)14 = ~4

for a nonrandom $ and write the Green's function in
terms of the eigenfunctions @.

The diS.culty in doing this is that the explicit
time dependence of even a representative $ was un-
known. When we made a E. L. expansion of $(t)
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we obtained an explicit time dependence which we
could handle. "
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1. INTRODUCTION

&HIS article outlines the linear theory of waves
in stratifMd, compressible Quids in a gravity

field, at rest with respect to inertial or rotating co-
ordinates, and neglecting viscosity and heat con-
duction. From a mathematical standpoint, this is
one of the simpler branches of hydrodynamics, since
it involves the solution of second-order differential
equations which are linear. Despite its formal sim-

plicity, the field has not been truly preempted.
Eckart's recent and interesting book' on the subject
is clear testimony to this.

* Columbia University, Hudson Laboratories Contribution
No. 157.

~ This work was supported by the Once of Naval Research.
I Carl Eckart, IIydrodyncmics of Oceans and Atmospheres

(Pergamon Press, New York, 1960).

There are four principal effects in the assumed
model: compressibility, stratification, gravity, and
rotation. Considering individually the cases for
which these features are either present or absent,
one could construct many diferent models, the
simplest of which, obtained by ignoring all but one
or two of these effects, are well known and under-
stood. Thus, one may think of sound waves, surface
gravity waves, tidal oscillations, and the effect of
Coriolis forces upon these. On the other hand, the
effects of density stratification and gravity upon
very-low-frequency sound in the atmosphere and the
behavior of internal gravity waves in the oceans and
atmosphere have certainly not been as systematically
studied, although Eckart's work' ' has done much to
remedy this situation. The formal simplicity of the
equations may lead one to feel that the answers to
all these problems, even if not actually known in
detail, can at least be deduced from available solu-
tions. This point of view, although justifiable perhaps
from a purely mathematical standpoint, is of little
actual help to the physicist involved with these
questions. More often than not the propagation of
the various possible modes of motion is dispersive and
anisotropic, depending upon several physical parame-
ters, and a surprising variety of possibilities lurks
beneath the deceptively simple appearance of the
equations.

s C. Eckart and H. G. Ferris, Rev. Mod. Phys. 28, 48 (1966).


