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1. INTRODUCTION

T has been proved by von Neumann that the out-
come of a measuring process is independent of
the way in which one describes the effect of the
measuring apparatus, either by applying the for-
malism for observations considered as an irreversible
perturbation of the wave function of the system, or
by introducing a Schrodinger equation valid for the
observed system plus the measuring apparatus.! The
subject has been pursued and was presented in a
transparent form by Everett, in what he called the
relative state formulation of quantum mechanics.?
The essence of what was brought forward by Everett,
however, was already contained in a - paper by
Groenewold.®? Since interest in von Neumann’s
deductions is still alive,* it may be worthwhile to
give a unified presentation of the ideas of the three
authors mentioned which may bring out more clearly
a few of the assumptions contained in the argument.
We consider a collection of systems which during
a certain interval of time come into interaction with
other systems of such nature that the latter can pro-
duce a record of certain features connected with the
interaction. For convenience we call the first type of
systems particles and assume that they are all of the
same nature. The other type of systems are called
measuring apparatus. It is supposed that the records
produced by them remain more or less intact during
the future history, so that the records can be read
and interpreted by a human observer at some later
time.

The following history is analyzed. A collection of
particles is first subjected to a preliminary observa-
tion (0) that throws each particle into one of a series
of eigenstates ¢; of the operator connected with the
observation. It is then supposed that we are able to
select those particles which have been thrown into
one definite eigenstate ¢:, whereas all other particles

1J. von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Verlag Julius Springer, Berlin 1932), Chap. VI,
pp. 222-237. [English translation by R. T. Beyer, under the
title Mathematical Foundations of Quantum Mechanics (Prince-
ton University Press, New Jersey, 1955), Chap. VI, pp.
417-445 ff.

2 H. Everett, ITI, Rev. Mod. Phys. 29, 454 (1957).

3 H. J. Groenewold, Koninkl. Ned. Akad. Wetenschappen,
Proc. B55, 219 (1952).

4 See, for instance, A. Komar, Phys. Rev. 126, 365 (1962).

are rejected. Thus the preliminary observation serves
to prepare a collection of particles all having the
same initial state. Let this be accomplished at the
instant ¢ and write (¢x)o for the eigenfunction at this
instant.

The particles are then left to themselves during
the interval ¢ < t < #;. During the next interval
& < t < i; they are subjected to the interaction with
the measuring apparatus. After this, during the
interval & < t < s, they are left to themselves again.
In order to obtain information concerning the state
of the particles at the instant ¢;, we subject them to a
second measuring process. We follow two ways to
calculate the expected outcome of this second
measuring process; first we consider the interaction
that takes place in the interval & < ¢ <t as a
perturbation; second, we analyze this interaction
with the aid of the formulas for a continuous process.
Our purpose is to find out whether the two descrip-
tions give the same result for the expected outcome
of the second measurement, and which conditions
must be satisfied in order that the same result is
obtained.

The two periods in which the particles are left to
themselves have been introduced for completeness,
in order to show that what happens during these
periods has no influence upon the result. They could
be left out for simplification.

2. FIRST DESCRIPTION

At ¢, the wave function for the particles has the
form (¢:)o. During the interval {, < ¢ < ¢, the state
of the particles may change due to processes taking
place either within the particles or to interaction
with certain fields of force, not forming part of the
apparatus. This may bring about a unitary transfor-
mation S;, which can be derived from the Hamilton-
ian governing the change, and at the instant ¢ the
particles will be in a state (¢x): given by

(@)1 = Sr(de)o - 1)

During the interval & < ¢ < ¢ the particles are
subjected to a measuring process, which measures
the observable A, with eigenvalues «;. The apparatus
records the eigenvalues obtained and the record will
show which percentages of the particles have been
thrown into each of the eigenstates (¥:). correspond-
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ing to the eigenvalues. The subscript 2 has been
added to indicate that these eigenstates are obtained
at the instant ¢,.

To find the percentages we need the projections
of the eigenstate (¢x): upon the new eigenstates
(¥:)2, as given by

Qi = /dX(llli)Qk (P)1 2)

the asterisk denoting the conjugate value, while the
integration is extended over all values of the co-
ordinates x entering into the description of the parti-
cles. For convenience we suppose that a maximum
observation is carried out; the eigenvalues a; will
stand each for a set of values. We have

()1 = Zi i (Yi)e 3)
The statistical frequences or percentages are given
by

akia;’!? ) with 21 akia;cki =1. (4)

The collection of particles, which formerly could
be considered as a homogeneous collection in which
all particles belonged to the same eigenstate ¢x, has
now become a set of sub-collections, each character-
ized by an eigenstate ¥;. We suppose that during the
interval £, < ¢t < t; the particles are left to them-
selves. Their wave functions change and we write

Wi)s = Su(¥s)z, (5)

S1; being an operator depending upon a Hamiltonian
valid for the particles in this period, which operator
may act differently upon each of the eigenstates.

As mentioned in the introduction, the particles
are subjected to a second measuring process at the
instant ¢s;, since this is the only means for obtaining
information concerning their states. It is convenient
to assume that the second observation measures an
observable B not commuting with A. The new obser-
vation then throws the particles into eigenstates x;,
corresponding to this observable, with eigenvalues
B

The statistical frequency of the eigenvalue B;, for
the subcollection of particles in the state (¥:)s, is
determined by the projection of (¥:)s upon x;, as
given by

by = /dx X;F(\I/i)s .
The statistical frequency is then given by
bib¥, with D5 bibE = 1.

When we add together all subcollections and ask for

(©6)
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the total statistical frequencies of the results 8; re-
corded in the second measurement, we obtain

P(ﬂj) = Zi akiak’l;bijb;kj .

3. SECOND DESCRIPTION

The interaction of the particles with the apparatus
during the interval ¢, < ¢t < ¢, will not be considered
as an observation, but as a part of the development
in time of the combined system formed by a particle
together with the apparatus. We need a wave func-
tion ® for apparatus and particle combined, while
it is necessary also to consider the wave function ¥
for the apparatus alone, in the periods when there
is no interaction with the particles. The wave func-
tions for the apparatus depend upon a set of co-
ordinates € describing the apparatus, which coordi-
nates are different from the x, describing the parti-
cles.

Until the instant ¢, particles and apparatus have
been independent. At this instant the wave function
for particles and apparatus combined will be the
product of (¢x): and ¥;:

B (x,8)1 = (pu)h¥: . (8)

During the interval & < ¢ < ¢, the function @ is
subjected to a Schrodinger equation with a Hamil-
tonian H 4, resulting in a certain transformation of
&, which we write as

Dy = Ty®, = Taf{(w)1 ¥} . 9)

We must next follow the history of the combined
system during the interval t. < ¢t < t3, which elapses
before the second measurement is made. For sim-
plicity we assume that the apparatus does not change
during this interval, so that the coordinates £ retain
the values they had at .. Hence, there is only the
transformation expressed by Sp, acting upon the
particle functions, and at the instant ¢; we have

@3 = SuT4{(pr) W} = SIITA[Zi ars(Yi)2 1],

if we make use of (3).

We must now specify the nature of the Hamilton-
ian H,4 and the transformation 7'4. Those terms in
H 4 that operate on the coordinates x of the particles
must have the effect considered before: They pro-
duce the eigenstates (¥:). and record eigenvalues .
When a particle was already in an eigenstate (:)s,
it will remain in that state, according to the principle
holding for immediate repetition of the same observa-
tion.’ This makes it necessary that the coordinates x

(10)

5 Compare reference 2, p. 458 (first column); and reference
3, p. 220, in connection with Eq. (2.07).
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occur in H, only in the form of the operator A
corresponding to the observable which is measured.
For convenience, we assume that the operator 7’4 can
be represented as a power series with respect to 4,
of the form

Ti= D . T.4Y. (1)

where the functions I', depend exclusively upon the
coordinates £ of the apparatus. Since

A" (Wi)e = oi(¥i)z (12)

we then find
&, = Si Zn I, Zi aic;(Yi)2 ¥ .

This separates the variables £ from the x. We write®

(W) = D Tali¥y (13)

and at the same time make use of (5). This leads to
the result

[N Zz aki(l//i)a (‘I’i)z . (14)

When we now refer to (6) we can transform this into

D i aibixs ()2 = D05 { D05 aaibs (W:)a} x; -
(15)

The form of the last expression suggests that the
coefficients of the x; determine the statistical fre-
quencies with which the eigenvalues 8; are obtained
in the second measuring process, carried out at the
instant ¢; to obtain information about the state of the
particles. These coefficients, however, contain the
coordinates £ of the apparatus. When we do not wish
to make use of the record of this apparatus, but con-
sider it as a feature of the external field to which the
particles have been subjected, we must get rid of
these coordinates by integrating over them. Thus we
expect that the statistical frequency of a result 3; in
the second measuring process is given by the integral

s

_/-di{ Z«; a/kibij(‘l’i)?,} { Zt akﬁb?;(q”lkk} .

We now introduce the important condition that,
when the apparatus which measures the observable
4 is a good one, its indications must be such that the
various possible results are clearly distinguished. This
requires that the various states (¥;), be orthonormal
to each other, so that

(16)

de(W’L)2(‘P>lk)2 = 5iz .

This condition is mentioned without further com-

(17)

6 Equation (13) is similar to Groenewold’s Eq. (2.09) (see
reference 3).
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ment by Groenewold.” When it holds, formula (16)
reduces to

Zi akidi‘;bia’bﬁ' ’
which is identical with (7).

Von Neumann made use of an example, which is
also used by Everett,® in which it is supposed that,
for a simple case, the operator H 4 has the form

Hy = (h/271)A(9/0%) .
When during the interval t; < ¢ < ¢, its exponential
acts upon one of the terms
Qi (1l/i)2‘1’1
occurring at the end of (10), we obtain

aki(‘pi>2‘1,(£ - aitd) ’

where {4 = ¢, — {,. For sharp measuring properties
von Neumann requires that ¥(£) has the nature of a
Dirac function

(18)

V(&) =38(8) .
The required orthonormality for different «; then
follows immediately.

4. ADDITIONAL REMARKS

The identity of the results (18) and (7) is obtained
as a consequence of the integration with respect to
d€ applied in (16), combined with the orthonormality
condition (17). We can express this somewhat dif-
ferently as follows.

The outcome of the second measuring process
depends upon the projection of the wave function
®;, as obtained in (14), upon the eigenfunctions con-
nected with the second observation. The eigenfunc-
tions x;, however, refer only to the coordinates x
of the particle. Let us therefore extend the second
measuring apparatus with an imaginary part refer-
ing to the coordinates £ and independent of the x.
This additional part should project the apparatus
functions (¥;); upon a set of eigenfunctions &,
corresponding to some feature of the apparatus that
can be observed. We then obtain projection coef-
ficients

Cim = /dx /dz x;kl}zq)g

= /dx /df Zz arexF Y:)s9% (¥;), = ZL axibi; fim
(19)

7 Reference 3, p. 220, Eq. (2.08).

8 Reference 1, German edition, p. 236; translation p. 443;
Everett quotes this example on p. 456, second column, Eq.
(4) (see reference 2).
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where
fim = f dE9E(W)s, with 20, fonffa = 1. (20)
This enables us to write

Py = Zijm ibi; fimXiOm (1)

The statistical frequency of the result 8;, admitting

all possible eigenstates ¢, for the apparatus, is then
given by

Zim akiakﬂsbijbi’? imf:‘l:n = Zi akiaka;bijb?‘f; (22)
as before. The assumption that the measuring ap-
paratus is a good one, apparently is characterized
already fully by (11), and (17) must be seen as a
necessary conclusion.

Von Neumann’s proof has again been discussed in
a recent paper by Komar.* Komar’s interest is di-
rected to the question whether von Neumann’s proof
definitely shows that the use of hidden variables
never can account for the dispersion in the results of
experiments, or whether certain features of the proof
need reformulation; in this connection an alternative
proof is presented. Since Komar’s notation is greatly
different from the one used in the present paper, it
may be useful to mention that his Eq. (8) corresponds
to our (8), and his Eq. (9) is our (9). Further, his Eq.
(10) has some analogy with our (21), if we consider
his » and k as corresponding to our ¢ and m, re-
spectively. Our j has no analogy in Komar’s notation,
as he does not explicitly introduce what we called
the second measurement. Although a detailed com-
parison is difficult, it may be of interest to make the
following observations.

We write Eq. (21) back in terms of the (¥:); in-
stead of the x,; [making use of Eq. (6)], so that no
explicit reference is made to the second measurement.
At the same time we express (¥;)s in terms of (¥:):
with the aid of (5). This gives

®; = Su Zim i fim (W) 20m -

When the coefficients ax; and f;. are expressed
through the integrals (2) and (20), respectively, this
becomes

®; = Su Zim Vidm /]dde YidEdn¥; (23)

(for convenience we omit the subscripts 2). It is this
equation, rather than (21), which can be compared
with Komar’s Eq. (10). The double integral

/ / dxd¥ Y¥oEpV,

implicitly refers to some assumed initial state of the

(24)
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measuring apparatus [entering into the ¥; through
their relation to ¥, as indicated in Eq. (13)]; this
initial state is specified by Komar by a label j.

If we now look at Komar’s postulates (a), (b), and
(e), we see that postulate (a) corresponds to our
introduction of the function ¥, in (8). Postulate (c)
is also a fundamental point in our reasoning, leading
to our Eqgs. (11) and (12).

Komar’s postulate (b), requiring that the measur-
ing apparatus should throw the particle into an
eigenstate which is a unique function of ¢ and ¥,
has not been introduced into our description. It
would assert that, for a given initial state j of the
apparatus and a given initial state ¢, (in our nota-
tion) of the particle, there should be a unique 2
(Komar’s n), for which the double integral (24) will
be different from zero, at least for some m (Komar’s
k). This, however, is in contradiction with the as-
sumption that all our functions belong to a linear
vector space, since according to this assumption we
can always write

b = Zh Olm//h .

The double integral then reduces to

o /dE 1.?:,",‘1’1, y

and for any choice of ¢ there will always be values of
m for which this integral is not zero. Hence we cannot
say that for any ¢ there is only a unique k, or in-
versely a unique ¢ for any k. We have therefore ac-
cepted that the interaction with the apparatus
always leads to the appearance of many eigenstates,
with statistical frequencies b;; b¥.

5. PHILOSOPHICAL EXCURSION

Komar concluded his article with some remarks of
a philosophical nature, which go beyond the realm
of pure physical theory. He mentions that there is a
possibility of being led to the consideration of teleo-
logical forces in nature. Since this is a point of far
reaching consequences, which is also open to various
interpretations, it may perhaps be permitted to state
that my preference is to accept the point of view
developed in Whitehead’s philosophical works, in

9 Reference 4, p. 367, second column.

10 A. N. Whitehead, Science and the Modern World (The
Macmillan Company, New York, 1925); Process and Reality
(Cambridge University Press, London, 1929); Adventures of
Ideas (Cambridge University Press, London, 1933). (Paper-
back editions have appeared of Science and the Modern World
and Adventures of Ideas.) In the presentation of the ideas
as given in the text, I have introduced a certain formalism
not found in Whitehead’s books, in order to bring out in
shaper light what I consider to be the main assumptions.
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which the idea of a stepwise functioning of the uni-
verse is introduced as a basic assumption. Whitehead
has applied this postulate in order to present a new
view concerning the notion of causality. In this view
it is assumed that each subsequent step, while aris-
ing from the results of past steps, is not fully deter-
mined by them: It is supposed that the way in which
the new step accepts the experience of the past is
affected by an emphasis on certain forms of relation-
ship, selected in view of future possibilities. The in-
fluences from the past provide the basis for the
ultimate appearance of such relations as are studied
in physics and its related sciences; the assumption
of a selective or discriminating activity is a step be-
yond physics.

The reason for the introduction of this metaphysi-
cal principle is twofold. In the first place, physics
itself is no more than the formulation of chains of
relationship or rules of succession between events,
which always necessitate empirical specifications of
the situation or the objects to which one or other of
these rules can be applied. For instance, there are
electric and magnetic fields, which have different
influences on the motion of charged particles, but
there is no explanation of what a charge is, nor what
leads to the distinction between electric and magnetic
(or other) fields. To make a full description of the
universe, a metaphysical concept would be needed
which should provide a ground for these distinctions.
Without going into any detail, Whitehead assumes
that there exists an abstract principle of discrimina-
tion, a conceptual activity (which cannot be defined
in further terms), from which the distinctions can
follow. This brings into the picture the acceptance of
something related to mind, which in this system must
be a fundamental feature of the universe, and not
something accidental, or something merely additional
to the physical relations. With this point of view we
reach the second reason for Whitehead’s introduction
of the postulate, viz., to obtain a picture of the uni-
verse which is wide enough to include both the physi-
cal phenomena and the phenomena of life. I share
Whitehead’s conviction that the present philosophy
of physies is too narrow for a discussion of life with-
out submitting it to far-reaching distortion, and with
Whitehead, I prefer to believe that initiative and
creativity should rank as fundamental features in a
philosophical picture.

To make use of the possibilities for explanation
thus obtained, one can start by making a construc-
tion in more or less abstract terms, which con-
struction must obtain its meaning through the rela-
tions introduced between these terms, as well as
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through a comparison with the relations that we find
around us, that is, on the one hand the results of
physics and its related sciences; and on the other
hand, the subjective phenomena which we experience
within ourselves, in the belief that they derive from
general effects functioning in all forms of life. When
this system of relations is condensed to its most
important items, we arrive at the following state-
ments:

The ultimate reality of the universe is a multiple
and never ending complex of steps, for convenience
to be called processes, developing out of each other.

Each process is a mode of functioning, which arises
out of the experience of existing facts, and which, by
its completion, passes into a new fact. Thus, facts
are the results of processes, and facts are material
for experience out of which new processes arise.

Tach process is an instance of conceptual activity,
which means, it is the experience of facts with an
emphasis on certain forms of relatedness recognized
in the experience.

There are infinitely many forms of relatedness,
which embrace, e.g., forms of physical relationship,
quantitative relations, esthetic relations, ethic rela-
tions, the latter two to be considered not as acci-
dental byproducts of the former ones, but deriving
from fundamental aspects of the universe (to be
known, of course, only from what we can deduce
from experience, with all its uncertainties). Each fact
is experienced together with forms of relatedness, and
forms of relatedness can be known through the part
they play in conceptual activity.

The recognition of definite forms of relatedness in
experience, in preference to other possible forms, is
the essential feature of conceptual activity. Thus in
each instance of conceptual activity certain forms of
relatedness are emphasized or preferred, while others
are rejected or driven to a background of unim-
portance.

Through their entrance in conceptual activity, the
preferred forms of relatedness represent potentialities
for connections between future facts. Hence some
recognition of future possibilities is an essential
feature of conceptual activity. This is the teleological
element accepted in the picture, which is the basis
for the recognition of values. It is not to be construed
as directed to definite “final”’ ends: its ‘“‘vision,” to
use this term, is limited only to a near future.

New facts lead to new instances of conceptual
activity. Thus conceptual activity is rhythmic (is
“quantized”). It will never end so long as it is
impossible to give full expression to all forms of
relatedness in the outcome of a single process.
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Each instance of conceptual activity (each process)
has a certain freedom in giving emphasis to particu-
lar forms of relatedness. This assumption is the
expression of a belief in creativity as a fundamental
feature of the universe.

The freedom of selection, however, is limited by
the assumption that there is also a certain persistence
of the emphasis and of the selection which occurred
in the immediately preceding instance of conceptual
activity. This persistence is the germ of tradition in
emphasis. It makes possible the transmission of
certain forms of relatedness through complexes of
processes, and it leads to the appearance of societies
of processes. Societies of processes bring increased
strength of persistence in the selected forms of re-
latedness through mutual reinforcement, and thus
permit great intensity of these forms.

Societies in this way can lead to the establishment
of definite lines of tradition, in which forms of re-
latedness are transmitted from step to step with little
or no alteration. This is particularly the case in
societies in which conceptual activity has become
dormant. This means that tradition has grown so
strong that the awareness of possibilities for the
selection of new forms of relatedness has dwindled to
practically nothing. Consequently there is no aware-
ness of anything which would mean freedom, and
traditions develop into more and more rigid laws in
these societies. These traditions are the basis of the
physical laws—it is here that physics can come into
the scheme, as the analysis of persistent traditions
in the relations between processes. The picture thus
does not give an absolute character to the physical
laws (nor to what we call physical constants); as
traditions, although extending over immense periods,
they are still subjected to the possibility of changes
leading to new traditions.

The societies which are the carriers of physical
laws, constitute matter; the term is used here so as to
include both matter in the ordinary sense and fields,
and in general anything the comportment of which
is governed by definite laws.
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We know that the physical laws are of a statistical
character; this indicates that in each transmission of
forms of relatedness by mere tradition certain
features are lost. As there is practically no conceptual
activity in the societies considered here, which could
provide the possibility of making decisions with re-
gard to the lost forms of relatedness, there is random-
ness with respect to them in the outcome of the proc-
esses occurring under these circumstances. In other
words, for certain forms of relationship all possible
results have the same weight, if a method is intro-
duced for the distinction between different results,
such as is specified in quantum theory, which itself
should be an outcome of the relations between proc-
esses.

There are, however, also other complexes of
processes, for which we must assume that conceptual
activity remains effective, so that, at least on certain
occasions, it can exert a more or less decisive influ-
ence directed towards certain preferred forms of
relatedness. We can say that conceptual activity
then gives evidence of a certain purposiveness. The
assumption of this possibility leads to a description
of life, in which the essential aspect of life is not
sought in the phenomena of self-reproduction, but in
the possibilities of choosing particular, and some-
times new forms of relatedness. A consequence of this
is that systems of this nature to a certain extent can
combat the loss of definiteness which appears in
societies with dormant conceptual activity.

The development of the picture, of which this
sketch gives no more than the starting points,
towards the physical as well as towards the biological
side, needs a discussion of various further relations
and additional assumptions.™

1T hope to present elsewhere an account of those aspects
which I consider to be most important for establishing a con-
nection between these philosophical ideas and the conceptions
of physics and biology, although I am aware that there are
many problems which require extensive investigation, even
if the main lines of the picture should be found to be attractive.



