DEFORMATIONS OF ATOMIC NUCLEI

dict a region of deformation where the proton
number goes from 50 to 82 and the neutron number
from 126 to 184 (i.e., in the highly neutron-excess
rare earths). However, at present the possibility of
the experimental observation of deformation in these
nuclei seems remote.
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1. INTRODUCTION

N recent years a considerable amount of progress
has been achieved in the study of the two-nucleon
interaction. The experimental investigation of polari-
zation and the triple scattering parameters of p-p
scattering at high energies has made it possible to
look into several features of the two-nucleon inter-
action which did not exhibit themselves in data on
cross section at lower energies. The first set of triple
scattering experiments was performed by Chamber-
lain, Segre, Tripp, Wiegand, and Ypsilantis' who
measured five scattering parameters; cross section
o, polarization P, depolarization D, rotation parame-
ters R, and A for p-p scattering at 310 MeV. Similar
experiments have since been performed at 150
MeV,2? 210 MeV* and at other energies. The theo-
retical investigation of the experimental data has
followed two main procedures, viz., (i) phase shift
analysis of the experimental data, and (ii) phe-
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nomenological potential models. In the first approach
one obtains several sets of phase-shift solutions which
fit the experimental data and then the problem is
that of discriminating among the various sets of
solutions on the basis of other experimental evidence.
Stapp, Ypsilantis, and Metropolis® have carried out
the phase shift analysis of the experiment of Cham-
berlain et al., obtaining several phase-shift solutions
out of which finally only four were acceptable. A
later modified analysis of the p-p scattering data at
310 MeV was carried out by Crziffra, MacGregor,
Moravesik, and Stapp® in which the partial waves G
and higher were calculated from the one-pion-
exchange pole in the scattering amplitude. This pro-
cedure left only two distinguishable solutions. In the
second approach followed by Signell and Marshak,”
Gammel and Thaler,® Otsuki,® Watari,’® and Tama-
gaki,"* one starts with a phenomenological potential
and calculates a set of phase shifts which finally
enable one to calculate the experimental scattering
parameters. Both Signell and Marshak (SM)” and
Gammel and Thaler (GT)? found it necessary to add
to the central and tensor potentials a strong spin-
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orbit short-range potential in order to explain the
polarization and the triple scattering data at 150 and
310 MeV. The introduction of the spin-orbit poten-
tial was earlier criticized by the Japanese group® 12
but now its presence is quite well established.® The
more recent phenomenological potentials are due to
Bryan,*Saylor, Bryan, and Marshak,' and Hamada'®
and these differ from the SM and GT potentials in
explicitly recognizing that the two-nucleon inter-
action in the asysmptotic region is given by the one-
pion-exchange contribution, which can be deter-
mined unambiguously.

The attempts to obtain the spin-orbit interaction
of the requisite strength from meson theory have not
been too successful. The two-pion-exchange inter-
action predicts a spin-orbit term,™-2° but the strength
is too small. Besides, the various authors differ in the
results because of the ambiguities involved in the
calculations and the treatment of the effects of
nucleon recoil. However, the approach of dispersion
theory®® (Mandelstam representation®?) is expected
to be more promising. In this the covariant S matrix
for the scattering process is obtained from the general
requirements of field theory, viz., analyticity and
unitarity, and the mass spectrum of the strongly
interacting particles.

The recent review articles on the nucleon—-nucleon
system have been written by Phillips,? Gammel and
Thaler,> Marshak,?® MacGregor, Moravesik, and
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Stapp,?® Moravesik and Noyes.?” The present article
is shorter in size and does not go into specific details
of the problems involved. It is mainly intended to
provide a broad background of the wvarious ap-
proaches used in the study of nucleon—nucleon inter-
action.

2. PHASE SHIFT ANALYSIS

The wave function which describes the scattering
of a two nucleon system can asymptotically be writ-
ten as follows®28;

ikr
(4

T

Yo N T M e, (1)

where x,™ is the singlet (s = 0,m, = 0) and the triplet
(s = 1,m, = 0, &= 1) spin states of the two nucleon
system and M™™'s(0,0) is the matrix, in spin space,
describing the scattering of an incident spin state
xs™'sinto the final spin state x,”s; the total spin s being
conserved for interactions conserving parity. Kk,
(0,0) are the momentum and the scattering angles in
the center-of-mass system. The asymptotic expres-
sions (r— ) for the incoming and the scattered
waves, in the lsmm,( =\) representation, are given
by '

e Y IO O
@
Vi) > 3 oY G0
eikr ’ ’
- Suee, ®)

where Y ;™(0,¢) is the spherical harmonic for angular
momentum [ with z component m,, s the spin with the
2 component m,, and the amplitude ¢ as given by a
plane-wave expansion of a wave proceeding along the
direction k/|k| = £ is

g = (@Ar/20)e" *Ym" (k) .

The amplitudes f and g are connected by the B matrix
(R = S — I) by the relation

T = 2207 ARIV)g (V) )
Substituting Eq. (4) in Eq. (3), we obtain
S XM (Be)xr = 3 YT (O,e)
X M (Ismm,;smt) 5)

26 M. H. MacGregor, M. J. Moravesik, and H. P. Stapp,
Ann. Rev. Nuel. Sci. 10, 291 (1960).

27 M. J. Moravesik and H. P. Noyes, Ann. Rev. Nucl. Sci.
11, 95 (1961).

28 .. Wolfenstein, Phys. Rev. 96, 1654 (1954); Ann. Rev.
Nucl. Sci. 6, 43 (1956).
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where

4 —ilw/2

= ik
X 3 QRN E) . (6)

Vimg?

M (Ismyms;smt)

We can choose the z axis along the direction of the
incident beam so that m:; = 0, and F=0=00
= 0). Since the total angular momentum j, its 2
component m;, and the spin S are conserved, the
R matrix is diagonal in these quantum numbers and
it is therefore convenient to express the R matrix in
the lsjm; representation using the relation
llsmm.y = 37 (lsmuma| jm;)|lsjms) 7)
dimj
where (lsmmm,|jm;) are the usual Clebsch-Gordon
coefficients. The matrix elements of B in the lsjm;
representation are then directly related to the phase
shifts through the S matrix. Denoting the matrix
elements of the R matrix by «; for scattering in the
spin singlet state, a;; and o’ for the diagonal and the
nondiagonal (in l) scattering in the spin triplet state,
ie.,

(lOlm,[R]lOlm,) = Qi
(ILjm;|R|ILjm;) = ay;

<.7 =+ 171yjami[R!j + 1;1,j)mf> =d (8)

where the o’s can be expressed in terms of the phase
shifts 8’s and the coupling parameters e;, which couple
the states of angular momenta j — 1 and j + 1 for
a given j, as follows

278
az=611—1

2i8;

a;,=¢ '—1, for I=3j

2 210 ; i + 2 219 ;- ;
aju,; = €OS g€ T 4 sin” ge T — 1

o = 1sin 2¢;(¢ 7 — &) (8a)
If we want to include the effects of Coulomb inter-
action for p-p scattering in a nonrelativistic manner,
then in the asymptotic expressions for ¢ and ¢* we
should replace kr by kr — 5 In 2kr where n = €*/Tv,
v being the velocity in the laboratory system. Further
R=8S—-1= (8- 8.+ (8 — 1), where S, is the
Coulomb scattering matrix. In the part S — S., S.is
expressed in terms of Coulomb phase shifts

l
o= Z arc tan -
n=1 n

and thereby the unity on the r.h.s. of the equations
for o’s, Eq. (8a), is replaced by ¢*¢:.. The part S, — 1

119
gives rise to the Coulomb scattering amplitude
fe(0) = —[n/k(1 — cos 6)]
X {exp[—ipIn 3 (1 — cos6)]} . (8b)

Substituting Eqs. (8) and (7) in Eq. (5), one obtains
M (0,0) = 17" 0)
+ 2 [{a?—slmf,s(gﬂp)af—u + a;?'“m,saﬁ + a;'nf;ni,saiﬂf}

+ @] T ©)
where fo(0) = fo(6) + fo(m — 0), f* = [ = [.(6)
— fo(m — 0), all others equal to zero, and because of
Pauli’s exclusion principle the first summation over j
goes over values corresponding to odd (even) [ and the
second summation over [ is over even (odd) values for
the nucleons in the isotopic spin state 7' = 1(0). The
coefficients a”™’s are given in Table III of Stapp et
al® From Eqgs. (8a) and (9), it is easy to obtain the
following expression for the M matrix in terms of
phase shifts'®

M™"+(0,0) = f7"(8) + Di { Domn ami”™ *(6,0)

X (m'myon| + f(ea0} %, P, a0 /2)

X G — 1,5+ 1}, (9a)
where mn take values jj,7 — 17, 7 + 17, and 7 and
m’ = m except when m =j — 1, m’ =5+ 1, and

(A,B| = 2ie'®4"® gin (54 — 65)

(e;,a,b,¢) = acos’ ¢ + bsin’ ¢ + ¢ sin 2. (9b)

3. S-MATRIX APPROACH

The scattering matrix for nucleon—nucleon scat-
tering can also be written from the general considera-
tions of charge symmetry and invariance with respect
to rotation, parity and time reversal. If k; is the
initial momentum in the center-of-mass-system, k;
the final momentum and ¢; and é: spins of nucleons
1 and 2, then the scattering matrix for each isotopic
spin state 7 = 1,0 is given by?®

M(B) =A + O(O’ln -+ O'Zn) + BG'1n0'2n
+ %G(0’1K0'2K + 0'1P<72P) ‘l‘ %I{(U1K02K - 0'1P0'2P) (10)
where

o kXl L, Ktk
om = 6:-1, etc. , n——lkixkf]’ P“|ki+kf|’
k, — k;

K = L% 11
k| (11)

and the coefficients 4,C,B,@A, and H are complex and
are functions of energy and angle. We can express the
coefficients of the M matrix in terms of its elements
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Mm™s™'s in spin space of the two nucleons by multiply-
ing Eq. (10) on the left by x™" and by x»'s on the
right. It is then easy to obtain from Eq. (10) the
following relations,

— % (2M11 + M00+ Mu)

C=31iv2M° — M™)
B=1(=2M""4+M"—-M")
G=rWM"+M" - M

H = (1/2cos0)(M* 4+ M7 — M™)

= —1 (+v/2/sin 8) (Mo + Mor) (12)
with

M“ — n1~1—1 MAll — 71[1—1

M™ = —M, M®=-M". (13)

The M matrix for p-p, n-n, and n-p scattering can
be expressed in terms of the M matrices M; and M,
for the total isotopic spin states 7' = 1 and T = 0,
respectively, by transforming from the 172712722
representation to the 17,771z representation, mak-
ing use of Eq. (7) and the fact of rotational invariance
of M matrix in isospin space. We then obtain (neg-
lecting Coulomb corrections)

(pp|M|pp) = (nn|M|nn) =

(np|M|np)y = § (M1 + M,)

(np|M|pn) = 3 (M, — M) .
We can rewrite Eq. (10) in the form

M(G) = b8 + C(Um + Uzn) + %9(011(021( -+ 01P02P)T

(14)

+ 3 h(o1xoex — o1p02p) T + NowonT , (15)
where
=i(0—616), T=3%(B+éb¢),
b=A—-B-G, ¢=C, h=H,

and use has been made of the relations

01202 T = 01,02, + S and
g1p02p - T1kO2k + T102. = G162 .

It is now easy to see?® from the requirement of anti-
symmetry of the two nucleon system with respect
to interchange of space (implying k; — — k;), spin,
and isotopic spin coordinates, that the coefficients
b1(6),h1(0),¢1(0),90(0),m0(f) remain unchanged for 6
— 7 — 6 while bo(6),h0(8),c0(0),6:(6),m:(6) change sign,
where the suffixes 1 and O refer to the value of the

29 L. Wofenstein, Phys. Rev. 101, 427 (1956).
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isotopic spin 7. Thus it is necessary to know the
coefficients only over the range 0 to #/2.

It has been further shown by Puzikov, Ryndin,
and Smorodinski®® that the unitarity of the S matrix
leads to five integral equations of restraints on the
coefficients of the M matrix. The unitarity of the
S matrix implies
S8*=1=(R+1DE +1),
ie, @R + R'Q) = — 2o~ @IRI2"XQ"|R"|2)

(16)
where @ = (6,¢) = k. From Egs. (2)-(4) it is easy to
obtain

Mkk') = (4n/2:k){Q|R|Q),
so that Eq. (16) becomes

— (M — M") = Im M (k&)

a7

_ k/ 12 1" * 111 12
=1 A" M @ K)M" (K"K .
(18)

From Eqs. (10) and (18), the following integral
equations can be obtained

4rTm A(9) = f 49" Tr [M (kK")M* (K" k)]
4z Tm B() = & f 49" Tr [M (kK" M (6" K o]
4r Re C(0) = L / g

X Tr []V[(k,k")M+(k” k') (o1n + 020)]

k /d(l”

X Tr [M(&X"YM* (k" &k )o1x00x]

47 Im [G(0) + H(9)] =

47 Tm [G(9) — H(9)] = — f g’

X Tr [M (k&M (& X )o1p02p] (19)

It therefore follows from Eq. (19) that, as a con-
sequence of the unitarity of the S matrix, the ten
complex (or twenty real) coefficients Ar,Br,Cr,Gr,
and Hr (T = 0,1) are not completely independent.
For each isotopic spin state T, there are five integral
equations of constraints the solutions of which
determine five parts (real or imaginary) of the five
complex coefficients provided the remaining five
parts are known over the angular range 0 to =/2 at
the energy under consideration. Thus the M matrix

30 I.. D. Puzikov, R. M. Ryndin, and J. Smorodinsky, Soviet
Phys—JETP 5, 489 (1957).
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for p-p (n-p) scattering at a given angle and energy
requires a knowledge of 10 (20) real coefficients
(phase factor being determined too) at this angle
and energy or alternatively 5 (10) real coefficients
over the angular range 0 to n/2 at this energy. It
may be remarked, that the number of elements of
the matrix M™™'s (m,m’, = 0, &= 1, and s) is also
10 (20) for p-p (n-p) scattering. It has been pointed
out by Golovin, Dzhelepov, Nadezhdin, and Satarov?®
that the performance of each pair of experiments to
determine the same characteristics of the p-p system
for 0 < 6 < /2 and the n-p system for the angular
range 0 to 7 provides information about three real
functions which describe scattering. Therefore, in
order to determine all the ten complex coefficients
(except for the common phase factor) it is necessary
to carry out six pairs of identical experiments on p-p
and n-p scattering, giving information regarding
eighteen real functions, and one more p-p or n-p
scattering experiment.

It has been pointed out by Schumacher and Bethe?®®
that because of the bilinear form of the expressions of
scattering parameters ambiguities arise in the con-
struction of the nucleon-nucleon scattering matrix
from data at one angle and energy. They have shown
that these ambiguities can be eliminated by a knowl-
edge of the polarization transfer tensor K, which
measures the polarization of the recoil (scattered)
nucleon in the scattering of a polarized (unpolarized)
beam from an unpolarized (polarized) target. Their
method does not make use of the condition of uni-
tarity and is therefore also applicable at energies at
which inelastic processes occur.

4. EXPERIMENTAL SCATTERING PARAMETERS

The scattering parameters describing nucleon—
nucleon scattering are referred to as single, double,
and triple scattering parameters. The cross section
for the unpolarized beam is the single scattering
parameter while the polarization P of the beam once
scattered by the target is the double scattering
parameter. The triple scattering parameters, de-
polarization D, rotation parameters R,A,R’, and
A’, describe how the second scatterer changes the
direction or magnitude or both of the polarization
—the first scatterer acts as a polarizer and the final
scatterer as an analyzer. These coefficients can be
defined by expressing the final-state polarization
(8;) in terms of the initial-state polarization

31 B. Golovin, V. Dzhelepov, V. Nadezhdin, and V. I.
Satarov, Soviet Phys.—JETP 9 302 (1959).
( 32 C. R. Schumacher and H. A. Bethe, Phys. Rev. 121, 1543
1961).
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(85). If k; is the initial momentum of the nucleon and
k; its final momentum, then it is convenient to
express (6;) in terms of the three mutually perpen-
dicular unit vectors %k X y, and % X (k: X &)
and similarly express (3;) in terms of the vectors
p s X ky and &y X (B X E;). Assuming that (6;)
depends linearly on (8;), and observing that ¢ is a
pseudovector, provided parity is conserved, we can
express (6;) in terms of the components of (é;) along
the three mutually perpendicular directions F£:k:
X 13,, and £; X (k: X k) as follows?®

I8y = LI{P + D(3:)- (k: X k;)} (B: X Ey)
+ {48 ki + R(@) ke X (ke X £y) Yoy X (e X Fr)
+ (A& T + R(8)- ke X (B X B YR, (20)

where I; is the cross section for all cases, I; is the
cross section for an unpolarized beam, and only those
terms occur on the right-hand side which transform
like a pseudovector. From Eq. (20), it is now easy
to understand the significance of each of the scat-
tering parameters P,D, A, A’, R, and R’ in the
transformation of the initial polarization {8;) to the
final polarization (8;). These are illustrated in Fig. 1.

In order to obtain expressions for the scattering
parameters, we quote a result, due to Wolfenstein,2®
which relates the final-state spin operator to the
initial-state spin operator by means of the M matrix
which transforms from the spin space of the initial

"/
o
_>2
R //

2

channel to the spin space of the final channel. If the
incident and the target particles have spins s and s,,
respectively, and S* denotes the base matrices,
where u runs from 1 to (2s + 1)%(2s, + 1)2, then

Fia. 1. Diagrammatic
representation of the scatter-
ing parameters. 1 and 2 de-
note the first and second
scattering. The horizontal
line describes the beam before
the first or the second scat-
tering and the inclined after
scattering. The arrows indi-
cate the direction of the
polarization vector, the circle
© indicating polarization di-
rection normal to the page.

Lok

- 1 —
S = G FnEs 1) =&

Tr (MS'M*SY, (21)

where I, is the differential scattering cross section.
Comparing the various coefficients of Eqs. (20) and
(21), we obtain
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LP = 1 Tr [MM*(8,k: X k,)]
ID = X Tr [M(sk: X k,)M"(3k: X k,)]
LA = 1Tr [M@k)M (6% X (ki X k;))]
LA’ = 1 Tr [M(é,k:) M (6,k/)]
LR = % Tr[M(@k: X (k: X k))M*

X (6% X (k: X k/))]
LR = 1Tr[M@k: X (ki X k))M*(3k,)] .

(22)

(Mn + M..)* + [Moo + cos @
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Using aa,a8,8a, and B8 as the basis spin states for
the two nucleons, the matrices ¢ can be explicitly
written down. Further expressing the elements of
the M matrix in this representation, viz., (sis:mima
| M | s182m/1m/2) in terms of elements (sis25m.| M |sis25m” )
= Mpnn, in the triplet-singlet representation, by
means of Eq. (7), one obtains the following expres-
sions for the scattering parameters:

— Re MmM(ﬁ s

n o

:I (M 4 Mi)* + [Moo + (cos 6 + 1) \/2M10:' M;’;}

sin 0

VoM \/2Mm] M*}
sin 6 =)

sin @

:l (Mn + Ml—l)* + [Moo + (COS@ - 1) \/2Mm:| Mk

sin 6

I,P = (\/2/4) Re {i(Mlo — Mo)(My — M, + MOO)*} ,
I,.D = %Re {(Mu —+ M1_1)M§: + (Mu - Ml—l)Mo:lf)}
co??/‘) = i Re {[M"" + (cost = 1) \/2M1°] (M + Mi)* + [Moo + cos \/QM")] M *} :
A [ V2Miw  /2Ma
sin9/2_ 2Re{ Moo + cos 6 ind  sno
LR oM
Sin00/2 = 3 Re {|jMoo + (cos 6+ 1) \/ 10]
IOA, = 1 {|: \/2M10 \/2M10
cos 6/2 = 3 Re || Moo + cos 0 Sin 0 -+ prm
Iy = [Mul + r lMoD‘ + v !MNI + 1M10l +

where the expressions for M, .- (6,¢) in terms of the
phase shifts are given by Eq. (9).

The other experimental parameters are the spin
correlation coefficients Ci., Cxp, Crp, and Cxx. In
these experiments an unpolarized nucleon beam is
scattered by nucleons and components of the polari-
zation of the scattered nucleon and the recoil nucleon
along the directions indicated by the indices, are
measured in coincidence. Thus C.. = (ou.02.), ete.,
the following expressions for these coefficients can
be obtained.

1 I,C.. = Re A*B + |CJ°
ICxp = —2Im C*H ,
3 Io(Crr + Cxx) = Re G*(A — B),
3 I,(Crr — Cxx) = —Re H*(4 + B) .

—%IG|2—|——1—|Hl2,

(24)

5. PHASE-SHIFT ANALYSIS OF EXPERIMENTAL
PARAMETERS

A complete set of experiments on proton—proton
scattering at 310 MeV was carried out by Chamber-
lain, Segré, Tripp, Wiegand, and Ypsilantis.! The
experiment consisted in the measurement of five
scattering parameters Io, P, D, R, and 4. As Puzikov,

|Mol* + § Mol (23)

Ryndin and Smorodinsky?® have shown, because of
the identity of particles it is necessary to make meas-
urements only in the angular range 0 to 7/2 and if the
unitarity of the S matrix is used, only five scattering
parameters need be measured at a given energy. It
has been further pointed out by Marshak? that the
S matrix will be uniquely determined only if at least
one of the experiments involves scatterings which are
not in the same plane. The phase-shift analysis of the
310 MeV proton—proton scattering experiment of
Chamberlain et al.! was carried out by Stapp,
Ypsilantis, and Metropolis® and led to 8 possible sets
of phase-shift solutions because of inaccuracies of the
experiments. Three of the solutions (solutions number
5,7, and 8) were excluded because they did not fit the
production of pions in the process p + p —d + =™.
The solution number 6 is possible to discard because
of the measurement?®® of Cxr at 7/2 at 382 MeV, thus
leaving four sets of solutions. A modified phase-shift
analysis of the p-p scattering data of the experiment
at 310 MeV has been carried out by Moravesik et
al.,* which makes it almost possible to obtain a
unique phase-shift solution. Their procedure is based

33 A. Ashmore, A. N. Diddens, and G. B. Huxtable, Proc.
Phys. Soc. (London) 73, 957 (1959).
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on the philosophy of the Japanese group, led by
Taketani, that the nucleon—nucleon interaction at
large distances is adequately described by the one-
pion-exchange potential. They therefore evaluate
the partial waves G and higher from the one-pion-
exchange pole in the scattering amplitude and calcu-
late the remaining lower partial waves from the ex-
perimental data. Moravesik et al.® arrive at the con-
clusion that the modified solutions 1 and 2 converge,
respectively, to solutions 3 and 4, so that one is left
essentially with only two solutions.

Experiments similar to those of Chamberlain et
al.! have been carried out at Harvard? and Harwell®
at an energy of 150 MeV. The group at Rochester*
has measured proton—proton scattering data—cross
section ¢, polarization P, and the triple scattering
parameters A, R, and D at 210 MeV. MacGregor and
Moravesik® have applied their modified phase-shift
analysis to the Rochester data,* and obtained four
sets of phase-shift solutions. Of these two have been
excluded primarily because they do not correspond
to one of the two acceptable phase-shift solutions at
310 MeV. '

6. PHENOMENOLOGICAL TWO-NUCLEON
POTENTIAL

The scattering matrix approach, though very
general, has its limitations. In order to determine the
wave functions of the two-nucleon system, its bound
states, and off-the-energy-shell matrix elements, it is
necessary to know the Hamiltonian for the system.
If the two-nucleon potential can be specified, then
it is possible to determine the phase shifts uniquely,
and hence, all the scattering parameters. An un-
ambigous derivation of the complete potential from
meson theory would solve this problem, but as yet
this does not seem possible; only the second-order
one-pion-exchange potential is unambigously known.
We shall therefore confine ourselves to the phe-
nomenological and the semiphenomenological po-
tentials based on concepts of meson theory.

Wigner?® proposed the first general form of the
phenomenological nucleon—nucleon potential under
the restrictions that (i) the potential depends on the
spins ¢; and 6:, the relative separation r, and the
relative momentum p of the two nucleons so that the
center-of-mass motion is separable and the total mo-
mentum is conserved, (ii) the potential has rotational
invariance so that the total angular momentum is

3¢ M. H. MacGregor and M. J. Moravesik, Phys. Rev.
Letters 4, 524 (1960).

3 I, Eisenbud and F. Wigner, Proc. Natl. Acad. Sci. U. S.
27, 281 (1941).
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conserved, and (iii) the potential depends, at the
most, linearly on the relative momentum p. Okubo
and Marshak?® have given the most general velocity-
dependent proton-proton potential by dropping re-
striction (iii). They determine the potential under
the restrictions of (i) translational invariance, (ii)
rotational invariance, (iii) Galilean invariance, (iv)
space reflection invariance, (v) time reversal in-
variance, (vi) charge independence, (vii) permuta-
tion symmetry, and (viii) Hermiticity and arrive at
the following expression:

V="Vo+ (6::6:) V1 + Si2Va + (L-S) Vs
+ 5 [(6-L)(62-L) + (d2-L)(d:-L)]Vs
+ (6:-p)(62-p) Vs + H.C.

where Sis = 3(61-1)(8z-1)/r* — (81-62) and the func-
tions V: = V.(r%,p?,L?). In the case of the n-p system,
the potential is the sum of the isospin T' = 1 and
T = 0 potentials each one of which is of the form of
Eq. (25). For elastic scattering (on the energy shell),
it can be shown, that the V; term can be dropped out
and V; = V(% L7).

Equation (25) describes the form of the most
general potential. Since the phenomenological po-
tentials have been obtained by fitting the experi-
mental data over a certain energy range, the general
practice has been to require determination of as few
parameters in the potential as possible unless it is
inevitable to introduce complexities by including
more terms in the potential in order to fit the experi-
ments. A very thorough effort was made by Gammel,
Thaler, and Christian® to fit the nucleon-nucleon
scattering data at 170 and 310 MeV by central and
tensor potentials of the Yukawa type outside the
hard core; the radius of the hard core assumed to be
independent of the parity. Their analysis led them
to the following results:

(i) The calculated n-p polarizations agree with the
experimental n-p polarization even at the highest
energies so that the potential describes the triplet
even-parity interaction correctly.

(ii) There is qualitative discrepancy between the
calculated and the experimental values of the high-
energy p-p polarization. The polarization predicted
by the potential being opposite in sign to the experi-
mentally observed.

(iii) For a singlet range ro = 0-4 X 107*® cm, the
1S,,1D;, and G4 phase shifts are of the type of Stapp’s

(25)

36 S. Okubo and R. E. Marshak, Ann. Phys. (N. Y.) 4, 166
(1958).

37J. L. Gammel, R. Christian, and R. M. Thaler, Phys.
Rev. 105, 311 (1957).
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solutions,® 1 and 3, so that the potential describes
the singlet even-parity interaction correctly.

The essential main conclusion of the analysis of
Gammel, Thaler, and Christian®” was that the triplet
odd-parity interaction is not capable of being de-
scribed by central and tensor potentials (and hard
cores) alone. Gammel and Thaler® noting the fact
that central and tensor potentials though successful
in many respects fails to predict the p-p polarization
data at 170 and 310 MeV correctly, observed that
Stapp’s® phase shift analysis of the 310 MeV p-p
scattering indicates that the triplet p-wave phase
shifts 3P, 1,2 are split in a manner inconsistent with
the tensor force. They therefore looked for a potential
which will fit the low-energy scattering experiments
and the phase shift solution 1 of Stapp et al.® In order
to achieve this, it was found that the potential should
have the qualitative features that (i) the tensor force
is long range and attractive in the 3P, state, and (ii)
that a strong short-range spin-orbit force which is
repulsive in the 3P, state is necessary. Thus the
general form of the potential taken was

V=4w, for »r<r,
= V.(r) + SwVr(r) 4+ L-SVyis(r), for r >
where V(r) = Ve ™/, . (26)

Assuming charge independence of nuclear forces, a
spin-orbit term in the triplet even-parity potential of
the same short range (but lesser depth) as the triplet
odd-parity spin-orbit term was also introduced. In
the following we list the parameters of their triplet-
odd and singlet-even potentials (the p-p system).

g = 0.4125 X 10 em, 'rf = 0.4 X 10 em
V. =0,

Vi = —22MeV,
*Vis = 7317.5 MeV ,
"W = 4255 MeV ,

‘ur = 0.8 X 10 em™

uzs = 3.7 X 10% em™ |

wh =145 X 10 cm™ .
@7

The p-p scattering data was well fitted by the above
potential, Eqs. (26) and (27), except that the dif-
ferential cross section was slightly low in the forward
direction at 90 and 156 MeV.

An alternative potential which also included a
spin-orbit interaction besides the central and the
tensor interactions was independently proposed by
Signell and Marshak? at about the same time as
Gammel and Thaler® had proposed their potential.
It was noted by Signell and Marshak” that though
several meson-theoretic two-nucleon potentials give

B.P. NIGAM

a reasonable fit of the data at low energies, yet all of
these, viz., Levy®® and Gartenhaus® potentials, fail
to fit the 100 and 150 MeV p-p scattering data. The
phase shift analysis by Ohnuma and Feldman*® of the
experimental cross-sections at 150 MeV favored the
inclusion of a spin-orbit potential. Signell and Mar-
shak SM” therefore decided to add a spin-orbit term
to the Gartenhaus® potential. The Gartenhaus po-
tential was derived by applying Chew and Low’s
Static nucleon extended source (cutoff) p-wave pion
PS(PV) interaction Hamiltonian to the two-nucleon
problem in the second- and the fourth-order non-
relativistic perturbation theory, omitting the so-
called ladder corrections, using coupling constant
(renormalized) f§ = 0.089 and a cutoff w., = 6y,
where u is the pion mass. Gartenhaus potential was
chosen by Signell and Marshak” because it appeared
to have the most plausible meson-theoretic basis and
because it fitted the low-energy data very well. The
following is the form of the SM potential’

V=VG—|—L-SI°——d—(e—>

__ forr <r
z. dr \T e

T=r,

V= VﬁL-Sﬁi(f—)
z dx

o forr > 7., (28)

where Ve is the Gartenhaus potential*® which has
central plus tensor parts, and x = r/ro,x, = /70,7
=1/M =0-21 X 10 e¢m, 7, = 1-07 X 107 cm,
Vo = + 30 MeV, the sign of V, being chosen to that
needed for the shell model. This potential was found
to be in very good agreement with experimental scat-
tering data up to 150 MeV. Later recognizing the fact
that Klein'” and Greene'® found evidence of the short
range spin-orbit potential in the fourth-order PS(PS)
field theory provided nucleon recoil is taken into
account, Signell, Marshak, and Zinn* modified the
spin-orbit part of the SM potential so that the spin-
orbit potential has a range of 1/2u corresponding to
exchange of two mesons by the nucleons. This is
called the SM1 potential* given by

Vo i <e—2z>

x dr \z /'’
where z = ur,Vo = 21 MeV, and the Gartenhaus
triplet-odd potential is modified to include an in-
finitely repulsive core out to x, = 0.37 in order to

avoid the bound 3P, state. The SM1 potential im-
proved the fit of the data up to 150 MeV.

VLS =

(29)

38 M. M. Lévy, Phys. Rev. 88, 725 (1952).

39 8. Gartenhaus, Phys. Rev. 100, 900 (1955).

40 S. Ohnuma and D. Feldman, Phys. Rev. 102, 1641 (1956).

4P, 8. Signell, R. Zinn, and R. E. Marshak, Phys. Rev.
Letters 1, 416 (1958).
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A separate effort to solve the two-nucleon prob-
lem was in progress in Japan. The Japanese group
led by Taketani*? attempted to solve the two-nucleon
problem with much stronger faith in the meson-
theoretic calculations. Their approach was discussed
in details by Iwadare, Otsuki, Tamagaki, and
Watari.’2 One of their essential steps consisted in the
division of the inter-nucleon distance into three
regions.

(7) Regron I. This is the outer region x > 1.5 (in
units of 7/uc) in which the potential due to one-pion
exchange is dominant and corrections to it can be
neglected. The asymptotic form of the one-pion-
exchange potential does not depend on the detailed
form of the coup ing or on the approximations, so
that the potential in this region can be specified
unambigously.

(#7) Region II. This is the intermediate region
0.7 < z < 1.5, where the two-pion-exchange poten-
tial is important and starts dominating over the
one-pion-exchange potential. The nucleon recoil
effects contribute appreciably to the two-pion-ex-
change potential and since it depends very much on
the coupling (p wave or other), the high-energy pion
field cutoff procedure, and the shape of the source
function, the many derivations of it are not free from
ambiguities.

(722) Region II1. This is the inner region z < 0.7,
where many-pion-exchange, heavy-meson exchange,
and other effects render this region beyond the scope
of theoretical investigation and therefore can be
treated only phenomenologically by means of hard
cores or by specifying the value of the logarithmic
derivative of the wave function determined by
fitting the experimental parameters.

In addition to the above division of the inter-
nucleon distance, wide use was made of the “impact
parameter”’ considerations. By an extensive calcula-
tion Matsumoto and Watari*® have shown that the
partial wave with angular momentum L is hardly
affected by the nuclear potential inside about b/2
where the impact parameter b = [L(L + 1)]V?h/p,
p being the momentum of the nucleon in the labora-
tory system. The Japanese group hoped to explain
the two-nucleon scattering experiments by means of
hard cores and central and tensor potentials arising
out of one-and two-pion-exchange processes, and
strongly criticized the use of spin-orbit interaction
by Gammel and Thaler® at 310 MeV and by Signell

42 M. Taketani, S. Nakamura, and M. Sasaki, Progr.
Theoret Phys. (Kyoto) 6, 581 (1951)
4 M. Matsumoto and W. Watari, Progr. Theoret. Phys.
(Kyoto) 12, 503 (1954).
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and Marshak? at 150 MeV as unwarranted. Otsuki,®
Watari,’® Tamagaki'® had reasonable success in
fitting the cross section and polarization at 90 and
150 MeV by purely central and tensor potentials.
However, it was pointed out by Nigam® that if the
Harvard data on depolarization parameter D at 150
MeV (in contrast to the Harwell data) is correct,
viz., that D goes over to positive values at 75° in the
c.m. system, it is very unlikely that pure central and
tensor potentials can achieve this result in spite of
the fact that polarization can be fitted. It was found
by Nigam that D is a very sensitive function of the
3P, phase shift and a positive depolarization requires
a small or even negative 3P, phase shift, a result
which can be obtained by introducing spin-orbit
interactions as done by Gammel and Thaler® and
Signell and Marshak.” With purely central and tensor
forces the depolarization at 150 MeV was predicted
to be too negative as was also found out later by
Otsuki et al.’? It was also suggested by Nigam that to
fit the Harvard data on depolarization, the spin-
orbit interaction should be strengthened compared
to its value in the SM1 potential.®* A considerably
improved fit to the high-energy p-p scattering data
from 40 to 310 MeV range was obtained by Bryan'
by choosing the static potentials (central, tensor, and
spin-orbit) of the general form

5
V=3 Aax"¢™ + V:(OPEP), (30)
n=2

together with infinite repulsive cores for the central
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potentials, where z is the distance in units of
%/ ue, Vo(OPEP) stands for the one-pion-exchange po-
tential, and A. are constants to be fitted from the
scattering data. The curves obtained by Bryan' are
illustrated in Figs. 2 to 5.
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An approach similar to that of Bryan* was also
carried out successfully by Hamada.® Since the
linear spin-orbit potential vanishes in the singlet
states, a quadratic spin-orbit potential was added to
fit the singlet even parity states. The various poten-
tials included terms corresponding to ranges of one-,
two-, and three-pion Compton wavelengths. A two-
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nucleon potential for the isotopic spin state 7' = 0
was also determined which when added to the 7 = 1
potential was found to reproduce the n-p experi-
mental data below 300 MeV. The triplet even parity
potential was not strictly energy independent, the
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energy dependence being rather small and mainly
confined to the core region. The 7' = 0 quadratic
spin-orbit potential is stronger than required in the
T = 1 state. Since the first triplet-even state affected
by the linear spin-orbit potential is the D-state while

B.P. NIGAM

the first triplet-odd state affected is the P state, the
linear spin-orbit potential is not as important in the
T = Ostateasin 7" = 1 state. On the other hand, the
quadratic spin-orbit potential plays an important
role in the 7' = O state.

The boundary condition model which was first
suggested by Breit and Bouricius** and used to
describe S-wave scattering was extended to higher
waves by Feshbach and Lomon*® who however pre-
dicted phase shifts of the type of solution 6 of Stapp
et al.® which solution was found to be in disagreement
with the measurement of Cxr at 380 MeV. Saylor,
Bryan, and Marshak,'® noting that the Bryan po-
tential* model for proton—proton scattering defines
in the triplet states a region of great strength be-
tween 0.6/u and the radius of the infinite core,
0.38/u, and outside the potential is weak, developed
a boundary condition model with potential tails out-
side with considerable success. Both the Taketani-
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Machide-Ohnuma# potential and the one-pion-ex-
change potential in the outside region with suitable
energy-independent boundary conditions for each
partial waves (at ro = 0:53/u for singlet states and
at ro = 0-56/u for triplet states) were found to fit
the proton—proton scattering data from 40 MeV to
310 MeV very well predicting a phase shift set con-
sistent with solution 1 of MacGregor, Moravesik,
and Stapp.® The predicted cross section was found to
be little low in the forward direction.

A study of the two-nucleon phenomelogic phase
shifts with energy has been extensively pursued by

44 . Breit and W. G. Bouricius Phys. Rev. 79, 1029 (1949),
A. M. Saperstein and L. Durand, sbid. 104, 1102 (1956).
( 4 H) Feshbach and E. L. Lomon, Phys. Rev. 102, 891
1956).
46 M. Taketani, S. Machida, and S. Ohnuma, Progr. Theoret.
Phys. (Kyoto) 6, 638 (1951).
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Breit, Hull, Pyatt, Fischer, Lassila, and Degges at
Yale*” by expressing the phase shifts as some function
of energy-containing parameters that can be varied
so as to obtain a fit of the data at several energies.
They have fitted the data over the whole energy
range up to 345 MeV. Starting with one of the phase-
shift solutions, say, the Signell-Marshak” (or Gam-
mel-Thaler®) corrections were suitably introduced
into the preliminary phase-parameters so that the
mean weighted sum of the squares of deviations from
experimental values was minimized. The quality of
the fits to angular distribution curves for the scatter-
ing parameters was also used in deciding on the cor-
rection functions to be tried. A similarity of results
was observed whether one started with SM or the
GT potentials. This was interpreted as an indication
of existence of a region in phase-parameter space
favored by experiment. Also, by adding the one-pion-
exchange phase shifts for the higher orbital angular
momenta to the phase-shift expression in the low
angular momentum states, the quality of the fit was
found to improve.

7. MESON THEORETIC POTENTIAL

The theoretical derivation of the two-nucleon po-
tential from meson theory involves the calculation
of the interaction between the two nucleons arising
from the exchange of one pion (second-order calcu-
lation), two pions (fourth-order calculation); and
higher number of pions between the two nucleons.
The calculations have been carried out with both the
pseudoscalar (pseudoscalar) [PS(ps)] and the pseudo-
scalar (pseudovector) [PS(pv)] interactions between
the meson field and the nucleon. The second order
one-pion-exchange potential in the static limit (lowest
order terms in u/M) is given by

VO(z) = % (¢°/4m)uc’ (s1+%2)
X {(61-62) + Sia(1 + 3/x + 3/2")}e "/,

and all authors agree on the form of this part of the
interaction. Also, the correctness of the one-pion-
exchange potential is now well established in view of
the detailed analysis of the nucleon-nucleon scatter-
ing data. The fourth-order contribution to the static
two-nucleon potential has, among various authors,
probably best been derived by Gartenhaus® who used
the nonrelativistic p-wave extended source (cutoff)
model of Chew and Low and carried out a non-
relativistic perturbation calculation. Gartenhaus was

47 G. Breit, Proceedings of the Conference on Nuclear Forces
and the Few-Nucleon Problem (Pergamon Press, New York,
1959), p. 23; G. Breit, M. H. Hull, K. E. Lassila, and K. D.
Pyatt, Jr., Phys. Rev. 120, 2227 (1960).
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successful in obtaining a good fit of the low energy
nucleon-nucleon scattering data with his potential.
However, Gartenhaus’ method is incapable of yield-
ing a spin-orbit interaction since the interaction
Hamiltonian used is completely static. Klein'” and
Greene™ have found that short-range spin-orbit po-
tential originated in the fourth-order field theory
provided nucleon recoil is taken into account. The
static limit consists in taking the lowest order in
u/M and the so-called ‘‘adiabatic approximation’
involves the limit p/M — 0, where p is the nucleon
momentum. Since both u/M and p/M are not very
small the nonstatic and the nonadiabatic corrections
which will take into account the nucleon recoil may
be important at high energies. Several authors!®:?
have calculated the two-pion-exchange contribution
to the two-nucleon potential taking into account the
nucleon recoil. In general, all of them have reported
a spin-orbit (L-S) interaction term, though there is
general lack of agreement on its sign and magnitude.
The most favorable LS interaction obtained meson-
theoretically is due to Tzoar, Raphael, and Klein?
who adopted the procedure used by Klein and Mec-
Cormick*® to construct the potential for pion—nucleon
scattering. The L-S term of Tzoar et al.?® is quite
similar to the one introduced phenomenologically by
Signell and Marshak.” Taketani and Machida,*
Hoshizaki and Machida,®® Otsuki, Tamagaki, and
Watari®® have recently carried out a detailed investi-
gation of the two-nucleon potential with full recoil.
It has been pointed out by Charap and Fubini®®
and by Gupta®® that the calculation of the nonstatic
corrections is not an unambiguous procedure. For
instance, for the static potential, the u/M limit must
be taken at the beginning of the calculations, as
otherwise it leads to ambiguities. Further, the
adiabatic limit p/M — 0 is unambiguous only if p is
the initial and the final nucleon momentum. Also the
nonadiabatic corrections cannot be separated un-
ambiguously from the higher order adiabatic cor-
rections. All these factors make the derivation of the
two-pion-exchange contribution to the two-nucleon
potential highly dependent on the approximations
used in the calculation.
It is worth mentioning regarding the three-pion-
48 A. Klein and B. H. McCormick, Phys. Rev. 104, 1747
(125)(15\/)[ Taketani and S. Machida, Progr. Theoret. Phys.
(Kyoto) 24, 1317 (1960).
80 N. Hoshizaki and S. Machida, Progr. Theoret. Phys.
(Kyoto) 24, 1325 (1960).
Otsukl, R. Tamagaki, and W. Watari, Progr. Theoret.
Phys (Kyoto) (to be published).
J . Charap and S. P. Fubini, Nuovo Cimento 14, 540

(1959)
5 8. N. Gupta, Phys. Rev. 117, 1146 (1960).
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exchange potential that not only will it be a prohibi-
tive job to calculate it but also that with the present
status of meson theory it is quite unnecessary to do
s0. The range of the three-pion-exchange potential
is ~0.47 X 10 cm which region is very much
masked by the replusive core introduced phe-
nomenologically and yet understood in terms of
meson theory.

8. MANDELSTAM REPRESENTATION

In recent years, wide use has been made of the
dispersion theory to compute the scattering matrices
for various processes through analytic properties of
the matrices and the requirement of unitarity (proba-
bility conservation). If the transition matrices are
boundary values of analytic functions of energy
variables, then, if they are known over a finite region,
they are fully determined over the entire region of
analyticity. The principle of causality, viz., light
signals cannot travel with a velocity larger than the
velocity of light, leads to a dispersion relation for the
real part of the scattering amplitude in terms of an
integral over its imaginary part (total cross section).
Karplus and Ruderman® and Goldberger et al.®
obtained dispersion relations in quantum field theory
using causality. There are two important concepts®
developed in the theory of dispersion relations: (i)
The scattering amplitudes which are analytic func-
tions of the energy variables have singularities which
can be determined from the knowledge of the mass
spectrum and the quantum numbers of the strongly
interacting particles, and (ii) near the singularities,
the behavior of the amplitudes is entirely determined
by the singularities; the singularities nearest the
region of investigation playing a more important role
than farther ones.

P
3 )
Fie. 6. Feynman
P+P +P +p= diagram describing two-
1772 P th=0 particle scattering.
R Fe

Major progress has been achieved in the theory of
dispersion relation through the work of Mandel-
stam.?? Mandelstam has written down double dis-
persion relations for two-particle scattering ampli-
tudes (Fig. 6). The Feynman diagram in the figure

% G. F. Chew, Ann. Rev. Nucl. Sci. 9, 29 (1959).
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is capable of describing scattering in the three chan-
nels (i) P, + P;— (—P3) + (—=P,), (i) P.+ Ps
— (=P2) + (=P, and (i) P»+ Ps— (—P)
+ (—Pu), where the P’s are the 4-momenta satisfy-
ing the conservation relation P, + P, + Ps; + P,
= 0, and the bars on P signify the antiparticle with
the corresponding 4-momentum. The energy varia-
bles for each of the channels are s = (P, + Py)?, ¢
= (P14 P3)% and T = (P. + Ps)?, respectively, so
that s+ ¢4 7 = mi + mi + m3 + mi. For each
channel, the other variables correspond to momen-
tum transfer. The following features are worth
noting:

(a) The two-particle scattering amplitudes are
functions of only two relativistic invariants, the
energy invariant and the momentum transfer in-
variant.

(b) If the initial two-particle state and the final
two-particle state can both assume the same quantum
numbers as a single particle of mass m, then the
nearest singularity to the physical region is a pole
at the invariant variable corresponding to the square
of the total four-momentum equal to m?2.

(¢) Substitution rule: All three channels are de-
scribed by a single analytic function, viz., the scatter-
ing amplitude for channel (i) is the boundary value
of the analytic function as the energy variable s
approaches the positive real axis in the physical
energy range; one of the momentum transfer varia-
bles being held fixed at a physical value.

(d) Crossing symmetry: If two or more identical
particles are involved in the scattering, exchange of
two identical particles does not change the value of
the amplitude (except, perhaps, by a sign).

(e) The imaginary part of the two-particle scatter-
ing amplitude in each channel is given by the unitary
condition in terms of the two-particle amplitudes.
Thus for channel (i) we have

I (PoPal (—Po),(—P) = [ (PyPalnn)

X (nnl (_P3)7(_P4))d'rn y

i.e., Im(Py,Ps|(— Ps),(— Ps)) is expressed by inserting
a complete set of “intermediate” physical states
|nn). Thus in the Mandelstam representation the
two-particle elastic scattering amplitude can be ex-
pressed as a double spectral dispersion relation in
energy variables for the three channels with branch
cuts starting at the lowest mass value corresponding
to the quantum numbers in that channel. Mandel-
stam representation therefore leads to an integral
equation for the transition amplitude for a given
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channel. Since the integral equation involves the
scattering amplitudes for the other channels (crossed
channels) also, we finally have a set of coupled inte-
gral equations to solve.

We will now discuss the features involved in
solving the two-nucleon scattering problem using
Mandelstam representation. One thing to note in
dispersion theory is that one always uses physical
masses and coupling constants so that there are no
renormalizations in the theory. Now since the ampli-
tudes for the three channels are coupled, the nearest
single-particle intermediate state is a one-pion state
arising in the (NN|NN) (bar for antinucleon) chan-
nel, giving rise to a pole term rather than a branch
cut. (In the n-p channel the pole contribution is due
to the deuteron state.) The next singularity, again
in the (WN|NN) channel, enters through the ampli-
tude (NN |zw) when using the unitarity condition a
two-pion intermediate state is introduced in this
process. The (NN|xw) amplitude is however re-
quired in the highly unphysical region ¢ > 4u?
(physical region being ¢ > 4M?). If we now analyze
the (NN |rr) amplitude in the Mandelstam repre-
sentation the crossed channel involves the (Nw|Nw)
amplitude which has as its nearest singularity the
famous pole in the pion—nucleon scattering. Further
since

Im (NN|=x7) = /(valvrm) (Taa| )

where now (NN|zw) would be a crossed channel
needed in the evaluation of the (N#|Nw) amplitude,
we find that we also must take into account the
« — w scattering. We thus arrive at the conclusion
that in order to solve the nucleon—nucleon scattering
problem, it is necessary to know firstly the (wr|7r)
scattering amplitude required for the evaluation of
the (wN|rN) amplitude. We can then obtain the
(NN|wx) amplitude, and hence determine the
(NN|NN) amplitude from the coupled integral equa-
tions of the Mandelstam representation.

It has been noted from a study of the electro-
magnetic structure of the proton and the neutron that
the 7 — 7 system should have a resonance in the
isotopic spin state I = 1 and P state. Frazer and
Fulco®® have carried out this calculation. Frautschi
and Walecka®® obtained the pion—nucleon amplitude
from Frazer and Fulco’s work on the 7 — 7 system.
Though the calculation of # — = and the = — N
scattering amplitudes is not completely satisfactory,

( ;i;g‘)f R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603, 1609
1 .
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Ball and Wong®* have used it to estimate the
(NN|xw) amplitude. Cini, Fubini, and Stanghellini®’
have applied the Mandelstam representation to
nucleon—-nucleon scattering and have been able to
obtain the cross section at 90°. Several®® calculations
which take into account the two-pion interaction in
nucleon—nucleon scattering have been carried out and
some are in progress.

9. CONCLUSION

It seems fair to say that in recent years the under-
standing of the two-nucleon interaction has im-
proved considerably. The phenomenological study
of nucleon—nucleon scattering and its comparison
with the experimental data is definitely in favor of
the existence of a strong spin-orbit interaction.
There is also evidence that the two-body spin-orbit
interaction is capable of explaining spin-orbit inter-
action in complex nuclei as desired by the shell
theory. Meson theoretic verification of the spin-orbit
interaction has not yet been satisfactorily accom-
plished because an unambiguous treatment of the
two-pion-exchange interaction without neglecting
nucleon recoil contributions is still lacking. However,
the validity of the one-pion-exchange potential in
the outer region has been well demonstrated through
the work of Iwadare et al.,'*% the modified phase-
shift analysis by Moravesik et al.,® Breit et al.,*”*° and
Saylor, Bryan, and Marshak.'®* The application of
dispersion relation theory to nucleon—nucleon scat-
tering has offered us with the possibility of carrying
out an unambiguous calculations in terms of one-pion
and two-pion-exchange contributions. The two-pion-
exchange calculations are highly involved and first
require the solution of the pion—pion and the pion—
nucleon scattering amplitude problems. It is how-
ever hoped that a satisfactory solution of the nucleon—
nucleon scattering problem within the framework
of dispersion theory will be available in the near
future.
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