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INTRODUCTION

EFORMATIONS of atomic nuclei have been
calculated by many authors. These calculations
have both included and excluded pairing. The initial
calculations carried out by Mottelson and Nilsson!
indicated immediately that one could obtain an
estimate of the total nuclear energy as a function
of the deformation by summing the one-particle
energies of Nilsson.? The deformation then corre-
sponds to the minimum in the energy so summed. In
this simple calculation, a definite orbital assignment
is made for each nucleon and the total energy is
computed as a function of deformation for each
configuration. Recently, it has been shown that the
kind of scalloped curves obtained from these calcu-
lations are considerably smoothed out if one adds
the pairing correlation to the nuclear model. This is
not surprising, since the pairing model, in effect,
smears out the Fermi surface, making possible the
partial population of many levels, with the corre-
sponding smearing out of the potential-energy curves.
This is shown schematically in Fig. 1.
In general, however, calculations of deformation
with or without pairing have been made only for
those nuclei for which experimental deformations are
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available. In our work we calculate deformations
generally over large regions of the nuclear periodic
table. Our purposes are at least twofold. In the first
place, we search for nuclear regions where deforma-
tions might be theoretically expected, but not yet
experimentally observed. In the second place, even
in those regions where nuclear deformations are
expected, it is interesting to see what the general
contour of deformations is over a much broader
range of nuclei than experimentally observed. There-
fore, it seems worthwhile to calculate deformations
systematically, not only as a guide to present and
future experiments, but also to see how deformation
varies in nuclei much more widely differing than
those experimentally studied.
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Fra. 1. A schematic representation of the determination
of deformation and energy of deformation, showing the sum-
mation of Nilsson particle levels. The dashed curve marked a
is the envelope of the Nilsson levels, whereas the dotted curve
marked b shows the smoothing which results when a pairing
effect is added to the calculation. The inset shows the particu-
larly complex region in better detail.

Figure 2 is a schematic presentation of the nuclear
periodic table. The odd banana-shaped curve repre-
sents very approximately the general area in which
nuclei have been previously studied. Horizontal and
vertical lines represent proton and neutron closed
shells, respectively. Previously observed regions of
deformation are indicated by crosshatching. Those
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regions are A = 19 to 28, 150 to 190, 222 up, and
probably A = 8. They are numbered 2, 4, 5, and 6
in Fig. 2. It would be worthwhile to investigate
further the limits of these regions of deformation and
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Fra. 2. A schematic representation of the nuclear periodic
table showing the closed shells of neutrons (vertical solid lines)
and protons (horizontal solid lines). The dashed vertical and
horizontal lines represent semi-closed shells, which have an
effect on regions of deformation. The thin banana-shaped
curve approximately encloses nuclei that have been experi-
mentally studied. Regions where nuclei have been experi-
mentally observed to be deformed are indicated with cross-
hatching. Additional regions where it is reasonable to expect
to find deformed nuclei are labeled 1 and 3.

to ask the question why there are not other regions
of deformation. For example, it is particularly strange
that the region of deformation from 4 = 19 to 28
does not extend considerably further toward the
double closed shell Ca®. It is also surprising that in
the region A = 8 deformation does not extend fur-
ther. Finally, in the region around Sr and Zr, one
would expect to find a fairly extended region of
deformation. It seems probable that all these abnor-
malities may be explained on the basis of semi-closed
shells of 6, 14, and 40 neutrons or protons. If spin-
orbit coupling in nuclei were somewhat stronger, both
neutron and proton numbers 14 and 6 would be
closed shells. On the other hand, if spin-orbit cou-
pling were somewhat weaker, 40 neutrons or protons
would be a closed shell. Consequently, in spite of the
fact that these numbers of neutrons and protons do
not represent completely legitimate closed shells,
the additional rigidity expected from these con-
figurations keeps nuclei in these regions from becom-
ing deformed. In Fig. 2, therefore, these numbers of
neutrons and protons are indicated by dotted vertical
and horizontal lines. In the case of neutron and
proton numbers 6, the complexity of the diagram
does not allow the semi-closed shell dotted lines to be
drawn. Figure 2 does, however, point up clearly two
additional regions of deformation which have not
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been experimentally or theoretically observed. They
are indicated as regions 1 and 3 in Fig. 2. It is our
purpose in these calculations to make detailed studies
of the contour of the deformation and the deforma-
tion energy in regions 1, 2, 3, and 4 (Fig. 2).

In addition to suggesting new regions of defor-
mation like regions 1 and 3 (Fig. 2), we have another
purpose for these calculations. Consider region 2
(Fig. 2). This is enlarged in Fig. 3. Since calculations
of the deformation until now have largely been at-
tempts to reproduce experimental deformations, the
regular rare-earth region, shown in Fig. 3, has been
studied experimentally and theoretically. In both
cases, the deformation rises very rapidly at the be-
ginning of the region of deformation marked A,
quickly reaches the region of maximum deformation
marked B, and falls off gradually over a considerable
region of deformation in the area marked C. Thus,
nuclei have been studied in which there are both
proton particles and neutron particles (region A),
and proton holes and neutron holes (region Cs). On
the other hand, we have neither experimentally nor
theoretically studied those nuclei represented by the
regions D and E in Fig. 3. These regions represent
proton holes and neutron particles D, and proton
particles and neutron holes E. Therefore, theoretical
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Fic. 3. An enlargement of region 2 from Fig. 2. This
figure points out that in general the experimentally studied
regions of deformation represent, even in the most advanta-
geous experimental situations, only a small fraction of the
total region available for deformation. Of particular interest
are the regions marked D and E in this figure, where nuclei
representing proton holes and neutron particles, and proton
particles and neutron holes, respectively, are to be expected.
Calculations of the deformations and energies of deformations
for these types of nuclei should be especially worthwhile.

calculations that indicate whether or not regions D
and E are expected to be similar to the experimen-
tally observed regions should be of considerable
value.



II. DETAILS CF CALCULATION

If one neglects the pairing interaction, the calcula-
tion of equilibrium deformations is most elementary.
Given the single-particle eigenvalues of the deformed
self-consistent field, one chooses for each value of the
deformation parameter the configuration that mini-
mizes the sum of the single-particle energies. The
equilibrium deformation corresponds to that value
of the deformation for which the sum is an absolute
minimum. In our calculation, the eigenvalues of the
Nilsson-model Hamiltonian? were chosen as approxi-
mations to the self-consistent energies. Beginning
with the lowest level, the successive orbitals for each
value of e are filled with two nucleons apiece corre-
sponding to the double degeneracy of states with
opposite projections of angular momentum on the 2z
axis. The summations were performed at intervals of
e = 0.01, for various combinations of neutron and
proton numbers, and the minimum value of ¢ in the
range covered was found with a maximum error
of 40.01. The range covered was 0 < ¢ < 0.39 in
the rare earths, and 0 < € < 0.30 in the actinides.
All computations were performed on the IBM 650
computer.

In summary, we minimize the sum

W = 2:28(e), (1)
where &; are single-particle eigenvalues of the de-
formed field,

B, = g, )

with

o= 1 mlwsa® + oy’ + w2’] — khoo(20-5 4 ul®)

W = Wy = wO(E)(l + %e) )
w2 = a.)o(é)(l - %5) ’
wole) = wo[l — 1€ — 52563]_1/3 =w(l+3é),

and hwy = 41/4"° MeV. 3)

The use of the deformation parameter ¢, instead
of §, approximately takes into account neglected
couplings of the quadrupole-moment operator be-
tween different major shells, as explained by Nilsson.?
The relationship between e and § is

e=0+15854+00.

It is essential to include terms higher than second
order in the expansion of Wy(e) because an unreason-
ably large deformation may otherwise result. On the
other hand, if the original parametrization in terms
of §is used (neglect of intershell couplings), unreason-
ably small deformations are obtained.
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It has been previously emphasized that a calcula-
tion of the total nuclear energy as a function of
deformation requires that one subtract one-half of
the potential energy from Eq. (1) to avoid counting
twice the two-body interactions that give rise to the
self-consistent field.2® That is,

E =228 — 2. (4)
Moszkowski,* among others, has argued that such
a correction is necessary only for calculation of total
binding energies, but not for calculating energy
differences for Hartree fields. Recent theoretical dis-
cussions of equilibrium distortions taking pairing
effects into account also seem to indicate that such
a correction is unnecessary.>® At any rate, Inglis and
Lee have shown that such a correction is quite small.
Bes and Szymanski,” and Szymanski,® applying the
Bardeen—Cooper—Schrieffer theory, have calculated
equilibrium deformations for experimentally studied
rare earths and actinides; they minimize

W= 2528()Vi() — 47/, ®)

where V7 is the probability that the single-particle
state with energy &, is occupied, corresponding to
the diffuseness of the Fermi surface, A is one-half of
the energy gap, and @ is the “strength parameter’ of
the pairing force.

In the limit of vanishing superfluidity, that is, in
the case of a sharp Fermi surface, Eq. (5) reduces to
Eq. (2).

Their calculations also indicate that the pairing
force does not significantly alter large values of the
deformation, unless the potential-energy curve is
very shallow.”® On the other hand, the pairing force
is important in determining the boundaries of a
region of deformation, for it is just the pairing force
which makes the spherical shape stable even with a
few nucleons outside the closed shells. In the absence
of the pairing force, a single nucleon outside the
closed shells may cause polarization.

In this work we neglected pairing to avoid the
necessity of solving the nonlinear superconductivity
equations for the energy gap and for the Fermi level
as a function of deformation. Because of the large
number of nuclei studied, inclusion of the super-
fluidity would have made even a machine calculation

3 B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab.

Selska.b Mat.~fys. Medd. 1, No. 8(1959
48, A. Moszkowski, in Handbuch, der Physzk edited by S.

Fliigge (Springer-Verlag, Berlin, Germany, 1957), Vol. 39.

5S. T. Belyaev, Kgl. Danske Videnskab. Selskab, Mat.—Fys.
Medd. 31, No. 1 (1959).

6 M. Baranger, Phys. Rev. 122, 992 (1961).

7D. Bés and Z. Szymanski, Nuel. Phys. 28, 42 (1961).

8 Z. Szymanski, Nucl. Phys. 28, 63 (1961).
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excessively long. Even so, it is possible to roughly
estimate the boundaries of a region of deformation
by use of the magnitude of the deformation and the
difference in energy between spherical and deformed
shapes. It has been estimated that the pairing stabi-
lizes the spherical shape by 1 or 2 MeV relative to a
strongly deformed shape.® If the energetic economy
of a large deformation exceeds this amount, the
spherical shape will be unstable.

Another factor of importance in calculating equi-
librium distortions is the contribution to the energy
due to Coulombic repulsion between protons. It is
possible that the differences between neutron and
proton levels in the Nilsson scheme reflect the effect
of the Coulomb force (as has been suggested else-
where®). The differences are due primarily to a
different choice of the coefficient u of the I* term in
the Nilsson Hamiltonian, the choice being empiri-
cally motivated. Of course, there is no a prior: reason
why this term should have anything to do with the
Coulomb force. It is included only to simulate some
of the effects of a square well. However, Lemmer has
shown that such a term could arise from a nonlocal
interaction.’® At any rate, since the term in the
Hamiltonian is spherically symmetrical, it is un-
likely that it gives the right deformation dependence
of the Coulomb energy.!

A crude, but convenient, way to account for the
Coulomb energy is to add to the sum of Eq. (1) the
electrostatic energy of a uniformly charged spheroid:

(6)

Bes and Szymanski’ use a trapezoidal charge
distribution, but the difference is not significant.
Possibly, a better method would be to include the
contribution of the Coulomb interaction in the de-
formed field of the protons. This could be done by
assuming a larger coupling constant for the coupling
of a proton to the average quadrupole field of the
protons than for the coupling to the field of the neu-
trons.

In our calculation, it was found that inclusion of
Coulomb effects without pairing leads to anomo-
lously large deformations. This is because the restor-
ing force of the independent-particle potential is in
many cases too weak to overcome the Coulomb re-
pulsion. In the work of Szymanski® both pairing and
Coulomb effects are included, with reasonable results
indicating that the pairing largely counteracts the

E“ = %[(Ze)z/Ro](l ——4—4552-..) .

9 B. L. Birbrair, Soviet Phys.—JETP 6, 951 (1958).

10R. H. Lemmer, Phys. Rev. 117, 1555 (1960).

11 We are indebted to Dr. Sven Gosta Nilsson for clarifying
this point.
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disruptive influence of the electrostatic repulsion.
At the beginning of the rare-earth region, where the
potential-energy curves are shallow, the deformations
calculated by Bes and Szymanski, which include both
effects, are about 159, larger than our results, which
neglect both. Actually, our results are slightly closer
to experimental values, indicating that our method
of including electrostatic forces may be somewhat
inaccurate. In the actinide region, where the Coulomb
forces are even more important, Szymanski’s defor-
mations are generally 10 to 209, greater than ours
and closer to the experimental values.

In performing the calculations, some modifications
of the Nilsson scheme are necessary. Mottelson and
Nilsson® point out that slightly different choices of
the parameter u from those made in the original
paper of Nilsson? are needed to account exhaustively
for the observed spectra of odd-mass deformed nuclei.
A change in u results chiefly in a translation of the
subshells of an affected major shell along the energy
coordinate of the Nilsson-level scheme. The modifi-
cations recommended by Mottelson and Nilsson have
been made in our work. In addition to the observed
levels occuring between successive magic numbers,
there are sharply sloping levels from lower filled
shells and from upper unoccupied shells which pene-
trate into the regions of interest. Insofar as these
sharply sloping levels are not observed, it seems
necessary to shift them to prevent interference with
the proper sequence. That is, the values of u should
be readjusted to increase the gap between the closed
and open shells.

The shift of the upper levels does not seem at all
improper, since many of them would not appear at
all if a more realistic finite well were used instead of
an infinite oscillator well. Moreover, it was found
that unless such shifts are made, the calculated de-
formations become anomalously large at the bounda-
ries of a region, instead of getting smaller. Conse-
quently, the modifications made in the Nilsson
scheme are biased against very large deformations.
This should weigh against any suspicion that the
values predicted in the unstudied regions are artifacts
of our adjustments.

Table I gives the minimum shifts that are neces-
sary to produce reasonable deformations in the
experimentally studied regions. The same levels were
applied to the neutron-deficient regions. One excep-
tion is the scheme for neutron levels 50 < N < 82
used in the neutron-deficient rare earths. Although
there is no empirical basis for modifying these, it was
found that unless the shifts are introduced, we obtain
values of ¢ > 0.40 in most cases, which seems ex-
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tremely implausible. Finally, it should be empha-
sized that it is only the relative shifts which are
important for the calculation.

There still remains one more question essential to
the validity of the calculations performed here and
by Bes and Szymanski.” The question is whether the

TaBLE I. Parameters used in defining the Nilsson-level ‘
spectrum used in the calculations.

Protons
Region Shifts
N = 5 when h11/2 —O.20hw3
50 <Z <8 N = 5 except hi1/2 +0.15%08
N=6 +0.15702
82 <Z <126 N = 4 except go/2 —0.25hw?
N = 6 when %13/2 —0.35hw}
Neutrons
N = 4 when gg/2 —0.30hw?
50 < N <82 N = 5 except h11/2 ©
N =6 0
N = 4 except go/2 —0.37hw?
82 <N <126 N = 6 except n13/2 +0.15%w?
N = 5 when ps/2 +0.047%03
126 < N <182 N = 5 except hii/2 —0.25hw?
N = 7 when j15/2 —0.067&)3

model potential used fulfills the condition of self-
consistency; namely, that the anisotropy of the po-
tential, characterized by a deformation parameter
which measures the eccentricity of the equipotential
surfaces, must equal the anisotropy of the density
distribution of nucleons moving in the potential. It
has been shown by Moszkowski'? that for a harmonic
oscillator this condition is exactly fulfilled at equi-
librium if the equipotential volumes are independent
of deformation. The condition also holds in case
residual interactions are included if these are inde-
pendent of deformation. This general result has been
verified by the calculations by Bes and Szymanski.”

III. RESULTS

The calculated results are divided into the four
regions indicated as 1 to 4 in Fig. 2. The classification
is as follows:

Designation Neutron Proton Description of
in Fig. 2 number number region

Region 1 50 to 82 50 to 82 neutron-deficient
rare-earth elements

Region 2 82 to 126 50 to 82 rare-earth elements

Region 3 82 to 126 82 to 126  neutron-deficient
heavy elements

Region 4 126 to 184 82 to 126 heavy elements

128, A. Moszkowski, Phys. Rev. 103, 1328 (1956).
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Fic. 4. A contour map of the deformation vs neutron and
proton numbers in the region where the protons and neutrons
both go from 50 to 82. The numbers on the contour lines are
values for the deformation, e = 0.958.

In some cases, the calculations have not been
carried out for the entire region. This is especially
true if the nuclei are not easy to synthesize or not
important in a definition of the region of deformation.
For each region, we have plotted contour maps for
deformation and for energy of deformation (the
energy difference between the deformed nucleus and
spherical nucleus) against neutron and proton num-
bers for even-even nuclei. In all, there are eight
figures, Figs. 4 through 11. We present the data as
contour maps rather than tables to emphasize trends
and at the same time to de-emphasize exact values
for deformation and energy of deformation because
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F1c. 5. A contour map of the energy of deformation vs
neutron and proton number in the region where the protons
and neutrons both go from 50 to 82. The numbers on the con-
tour lines are the values for the energy differences between
spherical and deformed nuclei in MeV.
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F1a. 6. A contour map of the deformation vs neutron and
proton number in the region where the neutrons go from 82
to 126 and the protons go from 50 to 82. The numbers on the
contour lines are values for the deformation, ¢ = 0.958.

of the approximations involved in the calculations.
However, calculated deformations for those few
nuclei whose level structure is most amenable to
experimental observation are presented in Table IT.

TasLe II. Calculated deformations for even-even nuclei whose
level structures are amenable to experimental observation.

Deformation Deformation
calculated calculated
Nucleus without pairing Nucleus  without pairing
seBal24 0.30 ssRa206 0.11
Bal26 0.30 Ra208 0.10
Bal28 0.27 Ra?210 0.09
Bal30 0.17 90 Th208 0.11
58Cel26 0.31 Th210 0.10
Celz 0.30 Th212 0.10
Cel30 0.29 92J210 0.14
Cel32 0.21 U2 0.11
soNd132 0.26 U2 0.10
N34 0.22
78 [ T T T T
74+
or |2
é 66}
a
N 621
58|
541
505586 90 94 98 102 106 o 114 s 122
N Neutrons

Fi1a. 7. A contour map of the energy of deformation vs
neutron and proton number in the region where the neutrons
go from 82 to 126 and the protons go from 50 to 82. The num-
bers on the contour lines are the values for the energy differ-
ences between spherical and deformed nuclei in MeV.

NUCLEI
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1 1 1 1 1 1 1
82 86 90 94 98 102 106 1O 4 s 122 126
N Neutrons

F1a. 8. A contour map of the deformation vs neutron and
proton number in the region where the neutrons go from 82
to 126 and the protons go from 82 to 106. The numbers on the
contour lines are values for the deformation, e = 0.958. The
calculations have not been carried out for the entire region
because nuclei with proton numbers above 106 are not likely
to be studied thoroughly enough for these considerations.

IV. DISCUSSION

A. Caution about the Exactness of the Values
of Deformation and Energies of Deformation

In our calculation of the deformations and defor-
mation energies, kinds of scalloped curves similar to
those indicated in Fig. 1 were obtained. In general,
several minima were observed, with the differences
in energy among the minima usually being very
small in comparison with the total energy difference
between spherical and deformed nuclei. In general,
we used the absolute minimum, but on occasion
when the absolute minimum did not follow the trend
of absolute minima of neighboring nuclei, we chose a
relative minimum that did follow this trend. When
this happened, the effect on the energy was very
small, whereas the effect on the deformation was
relatively larger. By using Fig. 12, we can make a

Z Protons

—1 . A 1 1 1 1 1 ﬂ
82 8 90 94 98 102 106 IO 14 g 122 126

N Neutrons

F1c. 9. A contour map of the energy of deformation vs
neutron and proton number in the region where the neutrons
go from 82 to 126 and the protons go from 82 to 106. The num-
bers on the contour lines are the values for the energy differ-
ences between spherical and deformed nuclei in MeV. The
calculations have not been carried out for the entire region
because nuclei with proton numbers above 106 are not likely
to be studied thoroughly enough for these considerations.
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Fia. 10. A contour map of the deformation vs neutron
and proton number in the region where the neutrons go from
126 to 166 and the protons go from 82 to 110. The numbers
on the contour lines are values for the deformation, ¢ = 0.958.
The calculations have not been carried out for the entire
region because nuclei with proton numbers above 110 are not
likely to be studied thoroughly enough for these considera-
tions.

comparison between a contour map of the first
excited states in the rare-earth deformed nuclei and
the calculated deformation of Fig. 6.

The absolute value, both for the deformation and
for the energy of deformation, is to some extent at
the mercy of the approximations involved in these
calculations. The nature and effect of these approxi-
mations have been carefully considered in Sec. II,
but trends rather than absolute values have meaning
in these calculations.

B. Comparisons between the Different
Regions of Deformation

In general, the contour of energy of deformation
follows approximately the contour of deformation.

Z Protons

1 I
130 134 138 142 146 150 154 158 162

N Neutrons

Fig. 11. A contour map of the energy of deformation vs
neutron and proton number in the region where the neutrons
go from 130 to 166 and the protons go from 86 to 110. The
numbers on the contour lines are the values for the energy
differences between spherical and deformed nuclei in MeV.
The calculations have not been carried out for the entire
region because nuclei with proton numbers above 110 are not
likely to be studied thoroughly enough for these considera-
tions.
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(See Figs. 4 through 11.) However, some important
differences are immediately evident. Thus, while the
deformation rises steeply to a maximum early in the
region of deformation and then decreases gradually,
the energy of deformation is much more symmetrical.
Particularly, in region 1 the contour of deformation
rises most steeply in the proton-neutron particle
configurations (i.e., in the lower left-hand corner) as
compared to the proton—neutron hole configurations
(the upper right-hand region). This observation
seems most striking in region 1, but is to some extent
true in other regions also. The deformation generally
decreases slowly from region 1 to region 2 and from
region 3 to region 4. However, there is a large decrease
in deformation, by about 1/3, in going from regions
1 and 2 to regions 3 and 4. Furthermore, the contours
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Fra. 12. Contour plot of the first-excited-state energies
of even-even nuclei against neutron and proton number in the
rare-earth region. A comparison with the calculated deforma-
tion in Fig. 6 reveals similarities.

indicate that the deformation is considerably flatter
in regions 3 and 4 than in regions 1 and 2. The experi-
mental values for deformation for the heavy ele-
ments (region 4) are about 2/3 the values of the
rare-earth region (region 2) and are in fair agreement
with the calculated deformations. One of the most
striking differences between the contour maps for
deformation and those for energy of deformation is
the existence of four-leaf-clover contours in the
energy of deformation maps not present in the defor-
mation maps. This is most probably because the
energy of deformation is determined as 6 = FEuc:
— Epher. Since the Fyne: has a prominent closed sub-
shell structure, this is mirrored in the 8E of defor-
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mation. One expects closed subshells at

Z =N =64 = (gi12)° + (dss2)° + 50 = 64,
N =100 = (ho2)° + (frre)® + 82 = 100
and

N =164 = (go2)"° + (Gr1s2)” + (uss2)'® + 126 = 164.

These subshells probably give rise to the waists of
the cloverleaf regions. The waists seem to occur at
N = 162 instead of the expected N = 164.

C. Interpretation of the Contours within a Region

We have used the simple deformed harmonic
oscillator for calculating the deformation 8, which is
proportional to the quadrupole moments (see Lem-
mer and Weisskopf??), and

5—_—%21(2”;—”_;),
2N+ )
where the summation is over the nucleon numbers,
the N are the total oscillator quantum numbers, the
ns are the z components of the total oscillator quan-
tum numbers, and n, is the component perpendicular
to the z-axis.

Figure 13, where the deformation 6 is plotted
against A for a fixed value of Z in the N = 4 oscilla-
tor shell, shows that § rises more rapidly at the begin-
ning of the shell than it falls at the end of the shell.

Q35 T T T T T T T T T T T T T

030 Z:N -
E 025 i~ . ,
K Z=N
£ 020} .
g Z=54 \
e Z-46 \ 7254

Z=5: =50
g 0I5 | Z=48 2 z=4g 7352 -
Z=N[ Z=46 Z=50
<
2
E [oX[e 4
é Equal particles and holes
& Q05 N
1 1 1 L I L 1 L 1 1 1 1 1 L
0’0080 88 96 104 n2 120 128 136

Mass number, A

F1c. 13. The diagram of the deformation parameter plotted
as a function of the neutron and proton numbers in the
N = 4 simple-harmonic-oscillator shell.

At A = 110, where the numbers of particles and
holes are equal, the deformation increases as the
number of particles and holes increase. This indicates
that in our contour plots of deformation the contour

lines should be closer in spacing at the beginning of -

the shell than at the end of the shell.

BR. H. Lemmer and V. F. Weisskopf, Nucl. Phys. 25,
624 (1961).
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D. Comparison between Even, Odd A,
and Odd-0dd Nuclei

Calculations have also been made for odd-4 and
odd-odd nuclei in the limited region 50 < Z < 60,
and 50 < N < 82. The calculated deformations indi-
cate only small differences between even, odd-4 and
odd-odd nuclei in this limited region. This is to be ex~
pected, since the pairing interaction has been
neglected in our calculation. In view of this fact,
calculations are not presented for odd-4 and odd-odd
nuclei.

V. CONCLUSION

Calculations have been made over large regions of
the nuclear periodic table to determine the deforma-
tion of and the energy difference between spherical
and deformed nuclei as functions of neutron and
proton numbers. These calculations lead to the fol-
lowing conclusions:

1. There are extended regions of deformation for
relatively neutron-deficient nuclei in the region
where both proton and neutron numbers go from
50 to 82 and in the region where both proton and
neutron numbers go from 82 to 126.

2. Contour maps of the deformation and the
energy difference between spherical and deformed
nuclei do not mirror each other. Indeed, the differ-
ences are quite striking.

3. The deformation contour maps reach a maxi-
mum fairly soon after nuclear deformation is
achieved. The deformation then decreases slowly as
additional neutrons and protons are added. Such a
trend has been noted experimentally in the rare
earths.

4. Energy differences between spherical and de-
formed nuclei are much more symmetrical and tend
to show a ‘“four-leaf clover” kind of contour. The
waists in the “four-leaf clovers’” seem to be connected
with closed subshell structures in the spherical nuclei.

5. A number of experiments are suggested by
these calculations. Among them is the possibility of
observing another region of nuclear deformation, the
region labeled 1 in Fig. 1. These calculations were
started simultaneously with an experimental attempt
to observe this new region of deformation. The experi-
mental observation of the new region of deformation
came slightly before its confirmation by these theo-
retical calculations.

a. In the experiment, In and Sb were bombarded
with heavy-ion beams of O* and C'? to produce a
number of new nuclides. The new observed activities,
their half lives, and the nuclear reactions involved
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are shown in Table III. The decay of the odd-odd
nuclear species La'?®, La'?®, and La'° into even-even
Ba'¢) Ba'?®) and Ba'° allows observation of first
excited states in each of these species. The energies
of these excited states indicate strongly that the

TasLe III. Nuclear reactions showing the cross bombardments
used to produce the new nuclides Lal%, La'$, and La'30 whose
decay suggests a new region of nuclear deformation.

Heavy-ion

bombard-

Half-life ing energy

New nuclide (min) Nuclear reactions (MeV)

Lal26 1.0 £ 0.3  InY5( 0% 5n)Lal2t 94
Sb12l( C12,7n ) Lial2s 117
Lal28 6.5 £ 1.0  In15(063n)Lal28 65
Sb2l( C12,5n, )12 84
Sbi23( C12)7n, ) Lal28 117
Lals0 9.0 + 1.0 Sb2(C12,3n)La0 53
Sb123( C12,5n,)Lal30 84

even-even Ba isotopes are deformed and that, in fact,
one can expect a large region of deformation involv-
ing several hundred neutron-deficient species.’* It
will be important not only to find convincing evi-
dence for rotational bands in even-even nuclei, but
also to assign Nilsson levels in odd-A nuclei, to ob-
serve vibrational bands, vibration-rotation inter-
action, Coriolis coupling, and all the rest of the rich
experimental possibilities, which result from the
additional degrees of freedom in deformed nuclei.

b. A similar region of deformation (labeled 3 in
Fig. 1) is certainly also amenable to observation.
Perhaps the easiest way to search for this region of
deformation is to observe the alpha-particle fine
structure resulting from the decay of even-even
nuclei that is produced from nuclear reactions of the
types Hg'® (Ne?*,8n) Th?*® and Hg'® (Ne*°,8n) Th?°,
The Th?° and Th?°® should have extremely short half-
lives, in the millisecond-to-microsecond range. How-
ever, the background involved in an alpha-particle
experiment is so small that good results are possible.'
These isotopes should have deformations (8) of the
order of 0.10 to 0.13 similar to those of the Ra iso-
topes and Th??°.

c. In addition to those regions that have been
considered in these calculations, there are certain
other limited regions where deformation might be
expected (e.g., Fe isotopes other than Fe®, and As

14 Raymond K. Sheline, Torbjern Sikkeland, and Richard
N. Chanda, Phys. Rev. Letters 7, 446 (1961).

B R. D. MacFarlane and R. D. Griffioen, Bull. Am. Phys.
Soc. 6, 451 (1961).

E. MARSHALEK, L. W. PERSON, AND R. K. SHELINE

and Se isotopes). These regions have already been
discussed to some extent in the literature. In general,
the possibilities of observing the deformations are
marginal. In particular, however, we might mention
the region of the neutron-excess Ru and Pd nuclides.
Published information on Pd!® and Ru'*, both on
the energy of the first excited state and on the ratio

2+ 2¥ Pd 2+ -

Ru 2+
2+
! Pd 2+

Ratios of excited - state energies
to the first excited state

o) | 1 ]
50 60 62 64
Neutron number

Rotational
nucleus

Fig. 14. Data on the nuclear levels in even-even Ru and
Pd isotopes taken from K. Way, N. B. Gove, C. L. McGinnis,
and R. Nakasima Nuclear Data Sheets (National Research
Council, Washington 25, D. C.). The dotted lines are Pd
isotopes; the solid lines are Ru isotopes. Extrapolations toward
rotational-level systematics (solid lines) seem to indicate that
one can reach only an intermediate situation between vibra-
tional and rotational-level systematics. The best possibility
for a study of an even-even nucleus amenable to present experi-
mental procedures would probably be Rul% by the reaction
Rul¥ (¢,p) Rults,

of the second excited state to the first excited state,
indicate that we are approaching a new very limited
region of nuclear deformation (see Fig. 14). Of par-
ticular interest, therefore, in this case, would be the
observation of the nuclear levels in Ru'® and Pd"2.
We can study the levels in these nuclei by investi-
gating such reactions as Ru'®(¢,p) Ru'®® and Pd'°(¢,p)
Pd 2, It should also be of interest to look at odd-4
nuclei such as Ru'®® Pd, Agl ete., to see if the
intrinsic states correspond at all to those suggested
by the Nilsson levels. It seems probable from the
information already available that one will approach
only a transitional region where the nuclear charac-
teristics are intermediate, between those of spherical
and deformed nuclei.

Finally, these calculations do seem to indicate that
we understand where to expect deformed nuclei. The
simple empirical considerations presented in Fig. 2
are quite satisfactory in this regard. Thus, for ex-
ample, it is not hard to predict (using Fig. 2) that if
the calculations were made, we would probably pre-
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dict a region of deformation where the proton
number goes from 50 to 82 and the neutron number
from 126 to 184 (i.e., in the highly neutron-excess
rare earths). However, at present the possibility of
the experimental observation of deformation in these
nuclei seems remote.
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The Two-Nucleon Interaction

B. P. Nigam
Department of Physics, University of Buffalo, Buffalo, New York

1. INTRODUCTION

N recent years a considerable amount of progress
has been achieved in the study of the two-nucleon
interaction. The experimental investigation of polari-
zation and the triple scattering parameters of p-p
scattering at high energies has made it possible to
look into several features of the two-nucleon inter-
action which did not exhibit themselves in data on
cross section at lower energies. The first set of triple
scattering experiments was performed by Chamber-
lain, Segre, Tripp, Wiegand, and Ypsilantis' who
measured five scattering parameters; cross section
o, polarization P, depolarization D, rotation parame-
ters R, and A for p-p scattering at 310 MeV. Similar
experiments have since been performed at 150
MeV,2? 210 MeV* and at other energies. The theo-
retical investigation of the experimental data has
followed two main procedures, viz., (i) phase shift
analysis of the experimental data, and (ii) phe-

1 P. Chamberlain, E. Segré, R. D. Tripp, C. Wiegand, and

T. J Ypsilantis, Phys. Rev. 105, 288 (1957).

2J. N. Palmieri, A. M. Cormack N. F. Ramsey, and R.
Wilson, Ann. Phys. (N. Y.) 5, 299(1958) T. R. Ophel, E. H.
Thorndike, R. Wilson, and N, F. Ramsey, Phys. Rev. Letters
2, 310 (1959); C. F. Hwang, T. R. Ophel, E. H. Thorndike,
and R. Wilson, Phys. Rev. 119, 325 (1960); E. H. Thorndike,
J. Lefrancois, and R. Wilson, ¢bid. 120, 1819 (1960).

3 A. E. Taylor and E. Wood, Proceedings of the Sixth and
Seventh Annual International Conference on High Energy
ghyisi)cs, 1956 and 1957 (Interscience Publishers, Inc., New

ork

4 K. Gotow and E. Heer, Phys. Rev. Letters 5, 111 (1960);
A. England, W. Gibson, K. Gotow, E. Heer, and J. Tinlot,
Phys. Rev. 124, 561 (1961), J. Tinlot and R. Warner, ibid,
124, 890 (1961).”

nomenological potential models. In the first approach
one obtains several sets of phase-shift solutions which
fit the experimental data and then the problem is
that of discriminating among the various sets of
solutions on the basis of other experimental evidence.
Stapp, Ypsilantis, and Metropolis® have carried out
the phase shift analysis of the experiment of Cham-
berlain et al., obtaining several phase-shift solutions
out of which finally only four were acceptable. A
later modified analysis of the p-p scattering data at
310 MeV was carried out by Crziffra, MacGregor,
Moravesik, and Stapp® in which the partial waves G
and higher were calculated from the one-pion-
exchange pole in the scattering amplitude. This pro-
cedure left only two distinguishable solutions. In the
second approach followed by Signell and Marshak,”
Gammel and Thaler,® Otsuki,® Watari,’® and Tama-
gaki,"* one starts with a phenomenological potential
and calculates a set of phase shifts which finally
enable one to calculate the experimental scattering
parameters. Both Signell and Marshak (SM)” and
Gammel and Thaler (GT)? found it necessary to add
to the central and tensor potentials a strong spin-

5H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys.
Rev. 105, 302(1957)

6 P. Cz1ffra, M. H. MacGregor, M. J. Moravesik, and H. P.
Stapp, Phys. Rev. 114, 880 (1959); M. H. MacGregor, M. J.
Moravcsxk and H. P. Stapp, 2bid. 116, 1248 (1959).

S. Sl nell and R. E. Marshak, Phys. Rev. 106, 832
(1957), 109, 1229 (1958).

8J. Gammel and R. Thaler, Phys. Rev. 107, 291 (1957).

9 8. Otsuki, Progr. Theoret. Phys. (Kyoto) 20 171 (1958).

10 W. Watari, Progr. Theoret. Phys. (Kyoto) 20 181 (1958).

nR) Tamagaki, Progr. Theoret. Phys. (Kyoto) 20, 505
1958



