REVIEWS OF MODERN PHYSICS

VOLUME 34, NUMBER 4

OCTOBER 1962

Problems on the Frontiers between General
Relativity and Differential Geometry

JOoHN ARCHIBALD WHEELER

Yukawa Hall, Kyoto University, Kyoto, Japan,
and Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

I. INTRODUCTION

The Contributions of Mathematics and of Physics

N the work of Eugene Wigner one sees the basic

‘harmony between the conceptual framework of
physics and the structure of the mathematics associ-
ated with that physics. For example, the mathemat-
ical parameter that distinguishes one group represen-
tation from another measures a physical property of
the system under study, such as its linear or angular
momentum or its parity. From a first mention of these
and many similar associations between mathematics
and physics, it might seem that the main work of the
physicist is over, once he has discovered the basic
principles and equations in the given area of investi-
gation. All that then remains, it might be argued, is to
systematically develop the mathematics from this
basic starting point (the work of the mathematician),
and then to survey the derived quantities turned up
in the course of the investigation, find with what
physical magnitudes they are to be identified, and
give them names—the work of the physicist! How far
from the truth this perspective lies is shown through-
out Wigner’s work. There, physical motivation and
mathematical analysis are inextricably entwined. A
small example is his study of the transition from the
Lorentz group to the Galilean group in the limiting
case where the speed of light becomes very great. Un-
covered here was a significant type of connection be-
tween two distinet groups into which purely mathe-
matical motivations would seem likely to lead one
only by the rarest chance. Even more widely known,
to turn to an example where more minds have con-
tributed, is hydrodynamics. Here the basic equations
can be written in two lines and have been known since
the eighteenth century. A group of investigators
locked up with those equations with the promise of
release a year later would come out predicting sound
waves and possibly even shock waves. But to discover
(and to analyze on the basis of the equations of hy-

drodynamics) such effects as turbulence, cavitation,
vortices, and boundary-layer phenomena has been a
task demanding not mathematics alone, but decades
of the closest collaboration between mathematics and
physics at a high level of sophistication.! Physical
reasoning guided the selection of idealized models for
analysis, motivated the choice of approximation
method when approximations were necessary, and
gave meaning to the coefficients in power-series ex-
pansions (drag coefficient, heat-transfer coeflicient,
moments of the correlation in turbulent velocity be-
tween different points, etc.) when series were em-
ployed. Never otherwise would volumes of results
have been tied to two lines of equations!

The Unexpected Richness of General Relativity

Only one line is required to write Einstein’s equa-
tion

Ry — 3 guR = 8aT% 1)

telling how much curvature is produced in space by a
given concentration of stress and energy, and telling,
in addition, how a curvature—whether initiated in
this way or already existing in its own right—will
evolve in time.2 However, in this “geometrodynam-
ics” it has taken even deeper puzzling, and even
closer liaison between mathematics and physics, than
in the case of hydrodynamics to read out of the basic
law some portion of the richness that it contains: ef-
fect of a center of attraction on the physics in the sur-
rounding space; equation of motion of a concentra-
tion of mass-energy; precession of the perihelion of
Mercury, bending of light by the sun, and the gravi-
tational red shift; gravitational radiation; expanding

1 For an analysis of the relation between mathematics and
physics, see John von Neumann, Collected Papers, edited by
A. Taub (Pergamon Press, New York, 1962), Vol. 1, paper 1.

2 Notation: In a local Lorentz frame Too = —T§ = T® is
the density of energy of matter plus radiation; — 710 = — Tot
is the density of flow of energy in the x direction divided by
the speed of light; and Ti2 = To1 = T'2is the force in the =
direction (ekerted, for example, by the electromagnetic field)
per unit of area normal to the y direction. Asterisks, or in
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and recontracting universe; electromagnetism as an
aspect of the curvature—and the derivative of the
curvature—of an empty Riemannian 4-manifold;
electricity as lines of force trapped in the topology of
a multiply connected space; geons—Ilong lived con-
centrations of mass-energy built out of gravitational
or electromagnetic radiation or both, exemplifying
mass constructed from curved empty space; degrees
of freedom in the selection of initial value data—
which then determine the future dynamical evolution
of the geometry (“Cauchy problem’); canonically
conjugate “field coordinate” (the intrinsic geometry
on a space-like hypersurface) and “field momentum”
(the extrinsic geometry, measuring how this 3-space
is curved—or is to be curved—with respect to the en-
veloping 4-manifold); and other concepts, entities,
effects, and consequences? derived from general rela-
tivity. Moreover, the prospects of much immediate

some cases lower-case letters, denote familiar physical quan-
tities transcribed to geometrical units by the appropriate num-
ber of powers of Newton’s constant of gravitation G and the
velocity of light ¢:

T'%, (length?)

(G [c*) T yy (energy /length?);
m* (length)

(G [e2)m (mass);
q* (length) (G2 [¢®)q (electric charge);
Suv (length1) (G2 [¢2)F ,, (electromagnetic field).

The coordinates of a point in space-time are ze (Greek;
a = 0,1,2,3). The coordinates on a space-like hypersurface
20 = constant are x* (Latin; £ = 1,2,3). The distance between
two nearby points on the hypersurface is

ds? = ®gudridzh .

Here, and elsewhere, Einstein’s convention is employed, that
repetition of an index implies summation over that index. The
distance between two nearby points in space-time, whether
space-like (do) or time-like (dr), is given by the formula

do? = —dr? = gopdzedzB .

The reciprocal of the metric tensor has upper labels: ®git or
gaB. Note @ gos = go3 but ®g2% 5 ¢23, In a local Lorentz frame
of reference the Riemann curvature tensor is

o

Raﬁ'yﬁ = % (gaﬁ,ﬂ'y -+ 9By,ad — GBS,y — ga'y,ﬁﬁ) b

where labels after a comma signify variables with respect to
which differentiation is performed:

GaBys = 0%Gap [dxY0X3 .
The Ricei curvature tensor is
Rgs = gorRagys
and the curvature scalar is
R = gBiRg; .

For other notation from differential geometry, see, for ex-
ample, L. P. Eisenhart, Riemannian Geometry (Princeton
University Press, Princeton, New Jersey, 1949), revised second
printing.

8 For a collection of chapters dealing with recent develop-
ments in relativity, see L. Witten, editor, The Theory of Gravi-
tation (John Wiley & Sons, Inc., New York, to be published,
1962). See also J. A. Wheeler, Geometrodynamics (Academic
Press Inc. New York, 1962), cited hereafter as GMD.
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guidance out of experiment are far less in the dynam-
ics of geometry than they were and are in the dynam-
ics of fluids. It is interesting and important to study
with increased detail such effects as the correlation
of clocks, the bending of light, the gravitational red
shift, and the precession of gyroscopes and planetary
orbits. However, the physics of dramatically new
character already predicted by general relativity (and
the new phenomenology undoubtedly still to be pre-
dicted) comes at distances ~ 10?8 cm (radius of uni-
verse) and ~ 10732 cm [Planck’s characteristic length
for fluctuations in geometry, (AG/c?)'/?], both as far
removed as can be from the domain of everyday ex-
perimentation. Unexplained measurements and newly
observed effects are infrequent sources of the insights
one has needed to unravel the implications of Ein-
stein’s equations to the present incomplete stage of
exploration. There is no sign that this situation will
change. Therefore, there is every reason to believe
that geometrodynamics will be forced to evolve by a
pattern extraordinarily hard to find among any of the
other branches of physics. It will require a long and
arduous effort almost unassisted by immediately
relevant experiments. It will demand the closest
sharing and intermingling of the most modern devel-
opments of mathematics, together with physical
analysis of concepts and of model situations, all at an
unprecedented level of sophistication. Fortunately,
efforts in this direction, from both professions, have
increased in the past decade by a factor which one
can estimate roughly to be in excess of 2. Happily
also, the American Mathematical Society sponsored,
in the summer of 1962, an institute on Relativity and
Differential Geometry at which progress and prob-
lems were reported from both sides.

Survey of Contents

The present account, adapted from a report pre-
sented at that institute, consists of three parts. Sec-
tion IT recalls the basic principles of general relativity
in brief outline. Section III reviews some of the exact
solutions of Einstein’s equations, cites new insights
won from these solutions; also new issues that have
come to light in this way. Section IV recapitulates
these issues in the context of differential geometry.
At the Santa Barbara institute, Professor S. Chern, in
a wide ranging account of the developments in this
branch of mathematics, noted that modern differen-
tial geometry is global differential geometry. It is a.
mark of the central position of this subject in general
relativity that several of the major problems outlined
in IV have to do with topology, boundary value data,
and the behavior of solutions in the large.
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Is Geometrodynamics Valid at Small Distances?

Before entering on this account, it is hardly out of
place to at least touch upon a larger question. What,
of value to physics, can possibly come out of geomet-
rodynamics extrapolated, as it will necessarily have
to be when quantized, far below the range of dis-
tances directly accessible to experiment? (1) Con-
ceivably nothing at all! Then the whole effort will
have turned out to be only an academic exercise. Or
(2), perhaps only a few considerations fundamental
for thinking about the elementary particle problem.
Or finally (3), an insight into the structure of space at
small distances so nearly correct, and so penetrating,
as to explain, or as to come a large part of the way
towards explaining, how elementary particles are
built out of pure geometry and nothing more. For
general relativity to be of any use in discussing such a
question, Einstein’s equations must make sense not,
merely down to 107*%c¢m, but to distances 20 orders of
magnitude smaller. Such an outcome would not be
completely surprising in view of what Wigner would
call the ‘“unreasonable’” extrapolatory power dis-
covered for another simple physical law, associated
with the names of Coulomb, Faraday, and Maxwell:

1833: valid from 10%cm to 10~'cm;

1913: to 10%cm (stopping power and atomic struc-

ture);

1933: to 10~%cm (nuclear structure).

Unprecedented Analysis of Consequences of Theory
Required before any Correlation with Elementary
Particle Physics can Take Place

What are the implications for physics if geometro-
dynamics s good down to 10-33cm, when there is no
way to test this point by direct measurement? By
way of partial answer, ask what it would have meant
if Hamilton had taken the step, perhaps within his
reach in view of the physical optical motivations for
his work, from Hamiltonian mechanics to the
Schrodinger equation, and had, in addition, adopted
Coulomb’s law of force. Energy levels and spectra
would come out; though with what a struggle over
the probability interpretation and many another
builtin concept! However, the technology of the time
and for centuries to come, let it be imagined, is un-
able to do experiments at the atomic level. Only pos-
sible are measurements of density, elasticity, refrac-
tivity, viscosity, and others of those ‘“properties of
matter’”’ which were so much the center of attention
in Hamilton’s time. Then, still another round of effort
is imposed on theory, to work up from the atomic
level to the level of the solid-state and macroscopic
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phenomena, before a direct check against experiment
is possible. What a fantastic nonstop flight of analy-
sis! But at the end there are checks—enormous in
number and satisfying in accuracy!

Elementary Particles as Almost Negligible
Perturbations in Vacuum Physics

This comparison is apt in an important sense.
Every order of magnitude estimate?* of what it means
to put together the quantum principle and general
relativity, if correct, leads to five conclusions: (1) The
important features in the structure of space have a
dimension ~ L* = (hG/c*)'/? ~ 10~*3cm. (2) This
structure is a property of all space, not only of those
parts of space where there are elementary particles.
(3) The important part of the fluctuations in the en-
ergy density of the vacuum go on at a level of the
order of hc/L** (energy) or h/cL** ~ 10°g/cm?
(mass). (4) The supplementary energy density associ-
ated with an elementary particle, ~ 10'5g/cm?, is
negligible by comparison. (5) Thus, relative to the
Planck distance L*, elementary particles are large
scale and very diffuse objects with an enormous
amount of standard internal structure. According to
such estimates, particles are almost t6 be compared
with the clouds in the sky for the little that they
mean to the balance of energy and pressure in the
substrate. Towards puzzling out what goes on at dis-
tances of the order L*, it would therefore seem of
little help, at this stage, to ask questions about the
origin of nuclear forces, and about the specificity of
the interaction between one kind of particle and
another. It would be as well to ask, in the early
1800’s, how work hardening of metals was to be ex-
plained when one knew nothing about atomic struc-
ture, let alone about dislocations! There is a limit to
the extent to which the natural order of development
of a subject can be upset!

The phenomenology of the elementary particles is
obviously a subject of the greatest importance in its
own right. In addition, it will someday be decisive in
testing a theory of matter. But for purposes of arriv-
ing at that theory of matter, this absorbing area of in-
vestigation may not supply the most natural point of
entry. How can it, if twenty powers of ten supervene
between the objects studied and the decisive struc-
ture?

No Substitute Known for
Einstein’s Geometrodynamics

General relativity, in brief, is a theory with an un-

4 See, for example, GMD, pp 67-83.
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precedented and so far unbounded scope. Some con-
sequences of substantial interest to physics have al-
ready been read out of it. From it much more is yet
to be learned, especially at Planck’s scale of dis-
tances. Here no other source of guidance is available.

II. RELATIVITY IN RESUME

From Riemann and Mach to
Einstein and Equivalence

Einstein’s principle of the equivalence of gravita-
tional and accelerational forces, and the general
relativity that came out of it, represented the union
of two currents of thought. Of these, one went back
to Ernst Mach’s principle that inertia has to do with
the acceleration of one object relative to all other ob-
jects and must therefore be tied to an interaction be-
tween mass and mass—an interaction that Einstein
identified as the radiational component of the gravi-
tational force itself. The other stream of thought
traces back to Riemann’s arguments. Space controls
the motion of physical entities. Therefore, space must
be a part of physics. Consequently, space cannot be
assumed to have an ideal Euclidean character. Rie-
mann supplied, in addition, the mathematical ma-
chinery to analyze the curvature not only of 3-space
but also, fortunately, of a manifold of higher dimen-
sionality.

The Geodesic Postulate in the
Beginning and Today

Einstein’s description of gravitation is based upon
the idea of a field defined everywhere, following the
model of electromagnetism. This idea has two parts:
the action of the object upon the field, and the action
of the field upon the object. The field relevant for
gravitation had to be identified, according to the
equivalence principle, with the curvature of space-
time itself; in other words, with pure geometry. The
effect of the geometry on the particle is described by
saying that it follows a geodesic.

Two developments since the early days of relativity
have given increased insight into Einstein’s original
postulate, that a particle follows through space-time
a history of extremal length (measured in units of
proper time). (1) The quantum principle has made it
clear why laws of extremal action occur throughout
physies. Some explanation has at last been supplied
for the penetrating observation Newton made at the
very beginning of his Principia: ¢. . . the description
of right lines and circles, upon which geometry is
founded, belongs to mechanics. Geometry does not
teach us to draw these lines, but requires them to be
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drawn.”® But how? Feynman’s formulation of quan-
tum mechanics® attributes a probability amplitude of
standard magnitude to every history that leads from
an initial configuration at an initial time to a final
configuration at a final time. Only the phase differs
from one history to another, being proportional to the
classical ““action integral” or “‘dynamic path length”
Iy for the history in question:

(partial probability amplitude or propagation
amplitude associated with history H

= const X exp (¢Iux/h) . 2)

When these partial amplitudes are added, destructive
interference occurs. In this sense most of the histories
are not relevant. Only those histories contribute ef-
fectively to the propagation in time, whose ampli-
tudes combine constructively. They have phases
Iu/h which differ from the extremal phase by amounts
of the order of a radian and less. Thus, the classical
law of motion originates in a mechanism which “feels
out”’—and effectively rejects—nonclassical motions.

The reasoning about extremal dynamical path
length, that is illustrated here by the motion of a
particle, equally applies to the dynamics of a field. In
consequence, fields, like particles, come close, under
many circumstances, to following the classical laws of
motion. Therefore, most of the present account is
concerned with the dynamics of geometry at the
classical level.

(2) Einstein, Infeld, Hoffmann, and others” showed
that the geodesic law of motion need not be intro-
duced as a separate postulate, but can be derived
from the equation of time development of the geom-
etry itself. It is as if hydrodynamics had once con-
tained laws of motion for vortices in addition to the
standard laws of fluid motion, until one found that
vortex movement is a direct consequence of these
standard equations.

Gravitational and Electromagnetic Forces
Compared and Contrasted

So much for the geodesic equation of motion; now
for its use in studying the gravitational field, or the
geometry of space. One is first tempted to think of
gravitational forces as differing only in a little detail

5 Isaac Newton, Mathematical Principles of Natural Philos-
ophy, 1729 translation by Andrew Motte, revised by F. Cajori
(UnxverSIty of California Press, Berkeley, California, 1947).

6§ R. P. Feynman, Princeton Ph.D. Thesis, 1942; Revs.
Modern Phys. 20, 367 (1948); Phys. Rev. 76, 769(1949)

TFor an account of these researches see L. Infeld and
J. Plebanski, Motion and Relativity (Pergamon Press, New
York, 1960). Problem areas in the derivation of the equations
of motion from the field equation are discussed by J. A
Wheeler, Revs. Modern Phys. 33, 63 (1961).
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from electromagnetic forces. Consider, for example, a
center of attraction, massive and endowed with
spherical symmetry. Consider a particle approaching
with its line of approach offset by the amount b from
the parallel line that goes straight to the center of
attraction. Let this distance be great enough, so that
the change in direction is small. Then, for small
velocities one is accustomed to write

(transverse impulse given)
by center of attraction

" (forward momentum of particle)

. [ (transverse force) d (forward distance)

(momentum) - (velocity)

(QtostGeonter/ DMiesv®)  for electromagnetism
(GMtestMicenter/ bMiesiv?) for gravitation 3)

The field acting on the test particle in the frame of
reference of the particle is vectorial in the case of
electromagnetism, and tensorial in the case of gravi-
tation. Consequently, one is prepared for different
laws of transformation in the two cases, and quite
different angles of deflection at high velocities,

2(q*testq*center/bm*test)ﬁ—z(1 - 62)1/2
for electromagnetism
2(M*center/b) (1 +- 1/8%)

for gravitation . 4)

0 =

This comparison makes the difference between the
two forces appear as only a matter of detail. How-
ever, the over-all deflection is quite a complex con-
cept in the case of general relativity. It requires
sophisticated analysis® of a network of light rays and
world lines of distant geodesics for its sharp defini-
tion. Therefore, turn from the integrated force and
the total deflection to the local force.

The electromagnetic force is measured by the
deviation from a straight line path or, to use geomet-
rical terms, from a fiducial geodesic. Sometimes it is
useful to spell out this idea in the context of a par-
ticular geometry and, even more specifically, a par-
ticular coordinate system. Then, the fiducial geodesic
is described by the equation?

(D/Dr) (dz*/dr) = d°2*/dr”
+ T%,(de?/dr) (da"/dr) = 0 . (5)

Here D stands for the absolute derivative. It corrects
for any apparent change in direction which is caused
by mere curvilinearity in the coordinates. In the same
notation the equation of Lorentz for the motion of

8 E. Newman and J. Goldberg, Phys. Rev. 114, 1391 (1959);
J. Plebanski, sbid. 118, 1396 (1960).
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the charged test particle is
m*(D/Dr) (dx®/dr) = ¢*F*s(dz’/dr) . (6)

A knowledge of the force per unit charge on three
test particles passing through the same point, as de-
fined by the difference between (6) and (5), is
enough to allow one to determine all six independent
components F%g or Fog = —Fj, of the field at that
point.

In the case of the gravitational field the test par-
ticles are neutral from the start. Then nothing is to be
learned from looking at only one test particle. Of all
the lessons learned from general relativity, one of the
harder ones to assimilate was this, that no feature of
the motion of one particle, but the difference in posi-
tion #* between two nearby test particles at corre-
sponding proper times, is the proper measure of the
local gravitational field. This difference satisfies the
equation

D*y%/D7* 4+ Rfys(dz’/dr)n (da’/dr) = 0. (7)

For example, when two particles are initially at rest
in the chosen frame of reference, then their accelera-
tion, relative to each other, is given by the equation

D**/D7* + Réon' = 0. (8)

Often considered is the unexciting appearance of a
single test particle in a freely falling elevator. To in-
vestigate the local gravitational field, consider in-
stead a freely falling auditorium. Inside, well sep-
arated, and initially at rest with respect to each other
and this container, are four test particles. The first,
0, serves as standard of reference. A lies at an
easterly separation Az; B, at a northerly separation
Ay; and C is located at a distance Az above O.
Though the particles are falling freely, their state of
relative rest will not continue. The accelerations of O
and A have the same magnitude, m*/r3, but differ in
direction by the angle Ax/r. Therefore, the separation
Az changes with time—already in Newtonian theory
—in accordance with the equation

D’Ax/D7* 4+ (m*/r*)Az = 0. 9)

A similar equation holds for the separation Ay be-
tween O and B. The separation between O and C is
governed by the derivative of the Newtonian accel-
eration with respect to elevation:

D*Az/Ds? — (2m*/r*)Az = 0 . (10)

Thus, one arrives at a Newtonian estimate—and an
actually accurate figure—for those components of
the Riemann curvature tensor which are analogous to
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the electrostatic field of Faraday and Maxwell:

' (m*/r?) 0 0
| Rrowll =1 0 (m*/r%) 0
(k = 1,2,3 = row )
!l =1,2,3 = column (11)

So much for one example of curvature and its
measurement.

Curvature Tensor as the Physically Meaningful
Measure of the Local Gravitational Field

When the curvature tensor differs from zero in one
coordinate system, no change to a new coordinate
system can annul it:

Rapys = Ruow(92"/97%) (92/97°) (9" /0%") (027 /9%) .
(12)

It measures, not the curvature of coordinate surfaces,
but the curvature of space-time itself. There is no
way to make an immediate connection between the
physies of gravitation and the mathematics of geom-
etry except to recognize the physically relevant com-
ponents of the gravitation field—defined by the rela~
tive motion of two test particles—as but names for
geometric quantities, the components of the Riemann
curvature tensor.

Effects of Mass on Geometry
Local and Long Distance

Turn now from the effect of geometry on masses to
the effect of masses on geometry, where the concept
of curvature is again the key to the analysis. A dis-
tribution of mass in one region has two effects on the
curvature; one localized in that region, the other felt
at a distance. The local effects are measured by ten
combinations

R“y = R‘:wv (13)

of the twenty independent quantities Rag,s. The re-
mote effects are measured by the remaining com-
ponents of the curvature tensor.

One is familiar with a similar situation in electro-
magnetism. The electric field at point 4 depends
upon the distribution of electric charge, not only at
A, but elsewhere. To sort out the effects of the nearby
charges from those of the faraway charges, one takes
the surface integral of the normal component of the
electric field over the boundary of a localized volume
element, finding

divE = 47p . (14)
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The part of the gravitational field of local origin is
found by a similar analysis. However, here a straight-
forward application of Newtonian ideas leads to mis-
leading results. Consider the volume defined by a
cluster of particles originally at rest relative to one
another—like the freely falling particles 0,4,B,C in
an earlier example. In the local Lorentz frame
centered on O the position of the typical particle in
the cluster is given to the second order in the time by
the formula

(+*/2) Roxo mitian - (15)

The volume of the cluster, relative to its initial vol-
ume, and also calculated to terms of the second order
in the time, is

i i
N = MNinitial —

1 2 3

d (new volume) (' ,n ,ms)
9 (initial volume) ~ 8 (7in,n i)

1 — (r*/2)Roi0 — ("/2)Roze  — (7°/2)Roso

=1— (r"/2)Rtw = (1 — 7'/2)Rbw0

=1— ("/2)Roo . (16)

Newtonian physics looks apart from components of
the gravitational field of the character of magnetic
forces. The equation of motion of one particle in
Cartesian coordinates is

&'/’ = —dg*/ox’, (17)

where ¢* is the gravitational potential in dimension-
less units (usual Newtonian value divided by ¢)2. The
separation 7¢(z = 1,2,3) between two nearby particles
therefore follows the law of change with time

d’n'ldr® = — (8%¢*/0x'0x")n" . (18)
Without consideration for the non-Newtonian com-
ponents in the force, one would therefore make the
identification

Rowo = 62<p*/3xiaxk

and

ROO

I

PN fractional change in volume of
(d/dr")
4 cluster of particles

I ( density of mass-energy in geo-)
= V" =47 \ yotrized units of length/length3
= 47{' T:')‘o .

If this result were correct in one frame of reference, it
would have to be true in every frame of reference,
from which it would at once follow that the equality
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R,, = 47T%, holds for all components of both tensors.

Cluster Volume Constant to Second
Order in Source-Free Case

This incorrect analysis leads to a result which is to
this extent correct: When the stress-energy tensor
vanishes in a given region, then the Ricei curvature
tensor in that region also vanishes. Then every cluster
of comoving test particles preserves its volume to the
second order in time regardless of the changes in the
shape of that volume, a way of stating the content of
Einstein’s source-free field equation due to Roger
Penrose (unpublished).

To arrive at the correct form of the field equation
when matter is present,

Ryv - %g“yR = 87|'T;l:y B (19)

requires a deeper analysis which will not be given
here.

Now all of the foundations of relativity are at
hand. What do they say about the relation between
geometry and physics?

Geometry Uniquely Specified by the
Distribution of Mass?

A first look at (19) makes it appear that geometry
is the slave of mass-energy. This impression seems to
be confirmed when one looks at the simplest and best
known of the solutions of this field equation of Ein-
stein’s—that for the curvature produced by a static
spherically symmetrical center of attraction. The
geometry is described by Karl Schwarzschild’s ex-
pression for the distance between any two nearby
points in space-time,®

do* = —dr* = — (1 = 2m*/r)dt* + (1 — 2m*/r) " ds"
+ r*(d6” + sin® 6de”) . (20)

A single parameter m* determines the effect of the
central mass on every ray of light and on every
planetary orbit—thence all three well-known tests of
general relativity.

Degrees of Freedom Belonging
to the Geometry Itself

Geometry has a dynamics of its own. However,
this dynamics has been asleep so far because the
source was at rest. Let two masses oscillate or rotate

9 For a sketch of a catalog of the proper distances between
every point and every other point, and an account of how these
distances—like a table of airline distances between the prin-
cipal cities of the globe—determine the curvature of the mani-
fold to which they belong, quite without reference to any co-
ordinates at all, see for example GMD, p 12.
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with respect to each other. Then gravitational radia-
tion comes off. It is impossible to escape such effects
when, as relativity teaches, there is a limiting velocity
for the propagation of disturbances. A sudden change
in the position of two masses can and must make it-
self felt at a distance, but only after the lapse of a
finite time.

A Source-Free Gravitational Wave

Consider an array of sources of gravitational radia-
tion located in all directions but at great distances,
and so timed, relative to one another, that the pulses
or waves they produce arrive in the region under
study with the right phase relationships to produce
an imploding spherical wave. This wave can be dis-
cussed either as a consequence of the motion of the
distant sources or, in the case of infinitely distant
sources, as a phenomenon in its own right—a mani-
festation of the independent degrees of freedom of
geometry itself.

By way of analogy it is only necessary to recall
how the electromagnetic field, at first the quasi-static
but responsive slave of the charged particles, and
then the oscillatory carrier of energy from one group
of charges to another, was in the end most usefully
regarded as a dynamic entity in its own right. No one
feels uncomfortable considering a source-free plane
electromagnetic wave, nor even an imploding spher-
ical wave!

The Lorentz-Poincaré Theory of the
Electromagnetic Constitution of Matter

The inspiration of seeing this new dynamic object
come to life led, in the early 1900’s, to various pro-
posals by Lorentz, Poincaré, and others, for a purely
electromagnetic account of the internal structure of
elementary particles. The world, on this view, would
be constructed of pure electromagnetism and nothing
more. These attempts foundered on the problem of
imparting stability to a collection of identical
charges.’® It was possible to give up this theory and
return without loss to the dualistic picture of field
plus particles!

General Relativity With and Without the
Introduction of ‘‘Real’” Mass and ‘‘Real” Charge

Similarly, relativity splits naturally into two sub-
jects. One comprises geometry plus “real particles”
plus electromagnetism plus other ‘“real fields.”” This

10 For an analysis of this problem, together with a survey of
the earlier literature, see A. Pais, Developments in the Theory
of the Electron, a printed article not formally published, Prince-
ton University and Institute for Advanced Study, 1948.



880

is the dualistic world of standard general relativity.
There is little problem about tracing out the connec-
tion between this description of physics and that cur-
rently in use in theories that disregard the curvature
of space-time.

The other version of general relativity may be
called geometrodynamics because it considers only
those objects, structures, phenomena, and events
which arise out of pure geometry and its evolution
with time in accordance with Einstein’s equations. It
is the analog of the Lorentz-Poincaré world of pure
electromagnetism. It includes source-free electro-
magnetism as well as gravitation because through the
work of Rainich and Misner one has learned how to
regard electromagnetism as an aspect of geometry
within the framework of Einstein’s standard 1916
general relativity.!!

The world of geometrodynamies is more interesting
to consider than the world of Lorentz and Poincaré
for two reasons: (1) Electricity does not have to be
brought in from outside as something of a “physical”
or nongeometric character. Instead, it shows up nat-
urally as a feature of electric lines of force—them-
selves defined in purely geometrical terms—trapped
in the topology of a multiply connected space. (2)
Model objects can be constructed out of pure geom-
etry which are endowed with mass-energy and which
have any desired degree of stability. The simplest
such “geon” is composed of electromagnetic radiation
or gravitational radiation held in closed orbit by its
own gravitational attraction.?

The charge and mass that belong to certain geo-
metrodynamical structures are purely classical charge
and mass. They have not the slightest direct connec-
tion with the quantized charges and masses of the
real physical world. Therefore, the world of geo-
metrodynamics has to be regarded as a purely model
world, to be studied in its own right for whatever
modest insights come out of it of use for understand-
ing the real world. The unexpected scope of this
model world, as revealed in the past decade in purely
geometrical descriptions for charge and for mass, has
naturally caused renewed interest in the daring dream
of Clifford and Einstein that the universe is built of
pure geometry and nothing more—still only a vision,
though an inspiring one!

Nature of the Problems Uncovered by the Answers!

So much for the basic principles and outlooks of
general relativity and geometrodynamics. Now for
the main problem: to discover what is the problem!

11 See, for example, GMD, reference 3.
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What does one want to do with Einstein’s equations?
What does one want to find out? Where does one
want to go?

Dazzled by relativity theory and unprepared for
the perspectives which it opened up, physics made
headway mainly by investigating a number of special
solutions of Einstein’s equations, each associated
with a special problem. It is appropriate to review
some of the more interesting of these solutions, the
new concepts to which they led, and the problems
they posed (Sec. III) before looking for some of the
features common to some of these problems (Sec. IV).

III. SPECIAL SOLUTIONS AND THEIR FEATURES

Table I summarizes the special solutions consid-
ered in this section.

Application of General Relativity to Closed Universe

How one learned about the nature of general rela-
tivity by working with it is nowhere shown so spec-
tacularly as in the history of the cosmological prob-
lem.

It was reasonable in a first analysis to idealize to a
homogeneous isotropic universe and, according to
arguments of Einstein!? based in part upon Mach’s
principle, to treat this universe as closed. Today
another consideration can be adduced which favors a
manifold closed in space. The action integral I is no
longer a mere formal device to yield, by extremiza-
tion, the dynamic equation for the classical history
of the geometry H = Husir- It has acquired a
position of its own, as a measure of the phase I/% of
the contribution to the quantum propagator from
the history in question. It is difficult to see how any
well-defined value can be attached to this quantity
except in a closed space of finite content.

Were one dealing with a 2-dimensional space whose
radius a(f) varies with time, it would have been
reasonable to combine distances measured on the
sphere, and lapses of time, in the familiar way to
form the Lorentz interval do (space-like) or dr (time-
like) between one event and another

do® = —di® = —df® + o®(t)(d6° + sin’ 6de”) . (21)

The corresponding expression for a 3-dimensional
sphere is easily written down. It can be simplified by
representing the time coordinate in terms of a
parameter 7, defined up to a constant by the equation

dn = dt/a(t) . (22)
The quantity dn measures the angle of travel about

12 A. Einstein, The Meaning of Relativity (Princeton Univer-
sity Press, Princeton, New Jersey, 1950), 3rd ed., p. 107.
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TasLe I. Special solutions and the insights or issues to which they lead.

Solution

Insights or Issues

Friedmann and Tolman (expanding and recontracting uni-
verse).

Doubt versus confidence in the applicability of general rela-
tivity.

Singularity in geometry after a finite proper time.

Motive to look at gravitational radiation as a source of the
effective mass-energy needed to curve space up into closure.

Taub (closed universe where all the curvature is supplied by
gravitational radiation of maximal wavelength).

Simplest known example of a universe curved up into the
topology S3 of the 3-sphere by the equivalent mass-energy
contained in pure source-free gravitational radiation.

Singularity in geometry after a finite proper time.

Karl Schwarzschild (geometry associated with a spherically
symmetric and neutral center of attraction).

Asymptotic behavior furnishes guide to what one means by
mass-energy of any system restricted to a finite region of
an asymptotically flat space.

Non-Euclidean topology (bridge or wormhole) brought to at-
tention.

Singularity in geometry after a finite proper time (“pinch-off
of throat’”).

Causality preserved in a modified sense by this pinch-off.

Generalization of this causality analysis to arbitrary topology?

Reissner-Nordstrem (geometry associated with a spherically
symmetric and charged center of attraction).

Throat oscillates in circumference.

Is causality maintained?

Singularity in geometry after a finite proper time.

Simplest starting point for wormhole picture of electric charge.

Misner (3-geometry, at moment of time symmetry, descriptive
of wormhole with arbitrary ratio between size of throat and
spacing between the two mouths).

Initial conditions for the problem of two neutral masses
within the framework of pure geometrodynamics.

When the two mouths are very close together, they almost
amalgamate, and from the outside appear like a simple
Schwarzschild throat.

Expectation that geometry will become singular after a finite
proper time.

Many special solutions (Godel, Harrison, Jordan, Ehlers,
Kundt, and others), also general considerations of Lifshitz.

To what kind of singularities in the intrinsic geometry does the
source-free Einstein field equation lead?

No singularity-free solution can be periodic (Papapetrou,
Avez).

Small deviations from flatness, analyzed to the first order.

Degrees of freedom
Conserved quantities
Energy

Asymptotic flatness

Gravitational waves (Einstein and Rosen, Bonnor, Robinson,
Bondi, Pirani, Araki, Brill, Sachs, Arnowitt, Deser, Misner).

Positive-definite character of energy of pure gravitational
waves.

Asymptotic character of radiation field.

Situations where no space-like singularity-free initial value
surface can be found for defining Cauchy problem.

the sphere which can be accomplished by a light ray
in the time dt. In this terminology the interval be-
tween two events is

do® = —dr’ = a’(q)
X [—dn’ 4 da” + sin® 2(d6® + sin® 6de”)] .
(23)
So far the reasoning has been based upon symmetry
considerations. Now comes the equation for the
radius of curvature a as a function of the time—a re-
lation long known to be completely determined by

the formula connecting the pressure and the density
of mass-energy of the homogeneous medium that fills

the space (in this view of mass-energy as something
separate from and added to geometry). Any actual
case is bracketed between the two extremes in Table
II. It is surprising to hear this said when one hears of
many alternative cosmological models: de Sitter’s
open universe, the Lemaitre model, the speculations
about continuous creation put forward by Bondi,
Gold and Hoyle, and other concepts. The confusion
arises from the odd history of the subject.

Relativity Questioned because It
Predicted Nonstatic Universe

Einstein showed in his first investigation that a
homogeneous isotropic universe could not be static.
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TasLE II. Dynamics of a homogeneous isotropic closed universe in the two opposite limiting cases when the medium that fills

the space supplies zero pressure and maximum pressure. Times are expressed in the table in the units of length. The constant

(3¢?/87@) in the last formula has the value (1796 X 1030g/cm3) X (10° light year)?. The formulas listed here are depicted
graphically in GMD, p. 116.

Name Friedmann Tolman
Description Dust filled Radiation filled
Pressure/energy density 0 1/3

Maximum radius

Relation between time coordinate (measured in cm
or m) and the time parameter 7

Radius of curvature as a function of the time
parameter
Curve for radius as a function of time

Qualitative description of dynamics

How much progress does a photon make (y measured
in radians) in getting around the universe during
the whole time of expansion and recontraction?

Time back to start of expansion as estimated from
present radius and present rate of expansion (in-
verse Hubble “constant’)

Ratio between this extrapolated time and actual time
back to start of expansion

This ratio is never less than

Density of mass-energy at any specified phase of the
expansion

Qo Qo

t = (ao/2)(n — sinn) t = ao(l — cosn)

a(n) = (ao/2)(1 — cosn) a(y) = aosinny
Cyecloid
Universe in both cases starts in & singular condition,

radius increases with time to a maximum, them
system recontracts to a singular condition.

Semicircle

2 T
-1 a -1 a
da/dt da/dt
sin® /2 sin” 5
= Qg —"= = Qo ——
cos /2 cos 7
H? 2 sin’ n/2 sin® ¢
t  (n—sing)cosn/2 cosq(l — cosn)

H“)
(2 =20

3¢ A 3¢ R
SrGal) S 8rGa2) Sin (n/2)

This result could have been accepted and announced
as a fourth conclusion from general relativity in addi-
tion to the three well-known predictions. Then, in a
few years, the work of Hubble would have come as
an exciting confirmation of this forecast that the uni-
verse is necessarily dynamic.

The prediction appeared too radical, however.
From what one knew at the time, it seemed necessary
to think of the universe as static. Yet general rela-
tivity (Table II) offers no way for a homogeneous
1sotropic closed universe to be static. Therefore, Ein-
stein reluctantly concluded that he had made a mis-
take in the dynamic equation of general relativity.
He changed it in the most minor way he could find,
by adding a ‘“‘cosmological term” Ag,, to the left-
hand side of Eq. (1); a term otherwise unreasonable
because of its ad hoc origin and lack of correspond-

ence with any other existing knowledge. A short time
later the evidence became unmistakable that the uni-
verse is actually dynamic. The motivation for the
cosmological term disappeared. Finstein thereafter
advocated the removal of this term from relativity.

Relativity Questioned because It Predicted H-' > ¢

Soon attention fell on another argument for chang-
ing relativity, an argument equally fated for collapse.
The red shift and the velocity of recession were al-
ready known for many galaxies. Now supposedly
good figures were obtained for the distances to these
galaxies. These distances could be multiplied by an
empirical constant of proportionality H, so chosen by
Hubble as to give a good representation of the ob-
served velocities. The reciprocal H-! of this constant
gives the time back to the start of the expansion as
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estimated on the assumption that the rate of expan-
sion did not change with time. According to relativ-
ity, the expansion is slower now than it was in the
past. The extrapolated time, H, should be at least
1.5 times as great as the actual time, ¢ (Table II). In
contrast, the empirical value for this extrapolated
time, H! ~ 2 X 10° yr, was far less than the geo-
physical value for the age, t ~ 5 X 10° yr, of that
part of the universe which has been the most thor-
oughly studied, the earth itself. Therefore, some who
took seriously the astrophysical evidence as it stood
concluded that relativity was inadequate to account
for the situation. This was the era of theories of the
continuous creation of matter.

This objection to relativity collapsed when it was
discovered that the scale of galactic distances had
been drastically in error. Revised figures for the dis-
tances raised the linearly extrapolated time back to
the start of the expansion to 13 X 10° yr (plus or
minus perhaps 509%).1%

A less clear change also occurred in the time ¢
which had to be made available for astrophysical evo-
lution. Some stars with high content of heavy ele-
ments appear to require many times 10° yr for their
development. However, this subject is in such an
active state of development that it appears dangerous
to draw conclusions from the apparent age, as pres-
ently estimated, for a few exceptional stars. The de-
cisive time at present is not that estimated from the
internal evolution of stars, nor from the evolution of
the earth or of the solar system, but that required for
the evolution of globular clusters (¢ ~ 7 X 10° to
10 X 10° yr). There is no longer any well-established
discrepancy between the observational value for the
ratio H'/t and the minimum value of 1.5 predicted
for this ratio by general relativity.

Relativity Questioned because It Predicts
a Higher Density of Mass-Energy
Than What Is Observed So Far

Regarding a cosmological possibility to test and
disprove relativity, attention has turned from the
question whether the universe is dynamic, and
whether the time scale checks, to the issue whether
the actual density of mass-energy—between (1/3)
and 3 X 1073 g/cem?, according to a careful study by
Jan Oort'*—is seriously in disagreement with that
required by relativity to curve the universe up into
closure—between 7 X 1072° g/ecm?® and 100 X 10-2°

1B A. Sandage, in Onziéme conseil de physique Solvay, La
structure et Iévolution de U'univers (Editions Stoops, Brussels,
1958) (referred to hereafter as SEU).

14 J. Oort in SEU (reference 13).
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g/cm?, depending upon the values ascribed to H-!
and ¢.!5 The difference between past and present fig-
ures for all the relevant numbers warns one not to
overestimate the present apparent discrepancy. It is
impossible to overthrow relativity, or even question
it seriously, on the basis of this inadequate evidence.

So much for the past ups and downs of faith in gen-
eral relativity as a reliable guide for the study of
cosmology. They symbolize the uncertainties ex-
pressed from time to time in other branches of physics
about FKinstein’s central idea, that space-time is
curved! Now for a few current applications of general
relativity—more confident than ever—to cosmology.

The call to look for new sources of mass-energy is
less urgent than the need to obtain increasingly re-
liable figures for presently known sources—and
firmer values for H-* and ¢. Nevertheless, it must be
noted that the present figure for the density includes
no allowance for neutral hydrogen or neutrinos nor
for the equivalent mass-energy of gravitational radia-
tion. The reason is simple: The upper limits allowed
by today’s inadequate means of observation are too
fantastically high to contemplate seriously. Among
these potential sources of density missed in present
bookkeeping, the one of greatest interest from the
standpoint of general relativity is gravitational
radiation.

Gravitational Radiation as Contributor
to the Effective Density of Mass-Energy

Pure gravitational radiation, or ripples in the ge-
ometry, of reduced wavelength A = A/27 and of mag-
nitude 8¢g,, ~ &g, make zero contribution to the real
energy density—the 7', on the right-hand side of
Einstein’s Eq. (1)—but averaged over several wave-
lengths, they make an effective contribution to the
Ricei curvature of order (8g/1)2, and therefore a con-
tribution to the effective density of mass-energy of the
order

p effective (g/cm®)  (¢*/8xG) (5g/1)°  (24)
or in geometrized units (length/length?),
o* effective «~ (1/87) (8g/X)” . (25)

All by themselves, without any stars or dust to help,
they can curve a universe up into closure with a
radius of the order a, provided only (see Table II)
that the condition is satisfied

(69/R)" ~ (1/a0)” . (26)
(Example: 6g ~ 107*;X ~ 10° light years; ao ~ 10°

15 See, for example, M. Wakano et al. in SEU (reference 13),
also an updating of this work in GMD, p. 116.
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light years). If the wavelength is small compared to
the scale of the universe, one deals here with the
equivalent of the Tolman universe, filled however not
with electromagnetic radiation, but with gravita-
tional radiation.

Nothing will be said here about the pioneering ex-
periments that have already been made seeking, so
far unsuccessfully, to detect gravitational radiation
coming from outer space at one or another selected
wavelength.'® It is difficult to imagine the explora-
tion of this area ever ending.

In connection with the mathematical analysis of
such radiation it is appropriate to cite the work of
Lifshitz.'” He considers an ideal spherical universe
which derives its curvature from a uniform filling of
dust. He analyzes the small perturbations of this
geometry into harmonics on the 3-sphere. He studies
how the amplitude of each must vary with time as a
consequence of the expansion and reconstruction of
the universe. The results of this analysis have been
spelled out by Adams'® et al. and compared and con-
trasted with the growth of small perturbations in
shape of an oscillating underwater bubble. There,
small ripples in the sphere S? in late phases of recon-
traction grow up into horns and spikes—the more
rapid the growth the smaller their scale. In contrast,
small ripples 8g in the metric of the sphere S® vary
with time approximately as (1/radius) = 1/a inde-
pendently of wavelength. The wavelength itself
varies in proportion to a. Therefore, the derivative of
the metric goes as 1/a? and the energy density as
1/a*, just as in Tolman’s photon-filled universe.

The Taub Universe

Restrict oneself to the case where the wavelength
of the gravitational radiation has the maximum pos-
sible value compatible with the size of the universe.
The hyperspherical harmonic of Lifshitz then has the
minimum possible index number. Let the perturba-
tion in the metric of this order be so magnified in
amplitude that it supplies all of the needed density of
effective mass-energy. Let the dust be removed.
What does the resulting universe look like, and what

is its evolution with time? This question deals with a

disturbance of large amplitude in a nonlinear system
and looks difficult to answer.

Fortunately, the principle of pairing off of ques-
tions can be followed here as in other parts of physics.
Taub'® discovered the following geometry, an exact

16 J. Weber, Phys. Rev. 117, 306 (1960).

17 |. Lifshitz, J. Phys. (U.S.S.R.) 10, 116 (1946).
18 J. B. Adams et al. in SEU (reference 13).

19 A. H. Taub, Ann Math. 53, 472 (1951).
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solution of Einstein’s equation for source free geo-
metrodynamics:

do® = —di* = vid2® + (y1sin® & + s cos” 2)dy’
+ 2vs cos adydz + vsdZ® — vivsdt®,  (27)
where
v1 = (1/4) cosh t/cosh®(t/2) ,
vs = 1/cosh t, (28)
and the coordinates are angles with the ranges
0<e<rm, 0<yz<2r. (29)

The motivations and reasoning which led to the con-
struction of this remarkable solution did not supply
an account of the physics involved. How can it be
interpreted?

One has no alternative but to interpret Taub’s so-
lution as the low-order harmonic of Lifshitz, en-
dowed with the critical amplitude required by the
condition of closure! One has an exact solution for a
universe containing nothing but gravitational radia-
tion!

Some properties of the solution of Taub have al-
ready been discussed by Brill?® who notes that “it is
invariant under a three-parameter group which is
isomorphic to the group of four-dimensional rotations
without fixed points; . . . this universe is homogen-
eous. . . . but not isotropic.” Brill also gives an argu-
ment to show that the geometry becomes singular
after a finite proper time.

Brill’s Closed Universe

Elsewhere, Brill had already analyzed a class of
universes curved up to closure by their content of
gravitational radiation. Each is characterized by a
3-hypersurface of ‘“time symmetry’”’ on which the
distance between nearby points is

d82 _ l[/4[62M)(p'2) (dp2 + dzz) + pzd(p2] . (30)

Here ¢i(p,2) is an arbitrarily specified function,
measuring what might be called the “distribution of
gravitational wave energy”. It is regular everywhere
and is assumed to go to zero very fast outside of a
limited region in the p,z plane. The quantity N\ meas-
ures the “‘strength’” of this distribution. It has to
have a certain characteristic value to give proper
closure to the space. The function ¥(p,2) measures
what might be called the “static gravitational effect’
of this distribution of wave energy. The Einstein

20 Dieter Brill, General Relativity: Selected Topics of Current
Interest, photolithoprinted report SUI 61-4, State University
of Towa, Iowa City, May 1961.
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field equation not only determines the time evolution
of this initial geometry, but also imposes upon it a
solitary condition, that y satisfy the equation

Vay 4+ 4\gVeg = 0, (31)

where
Ve = 8°/0p" + 98°/07°
and

Vs = p ' (3/3p)p(3/0p) 4+ (8°/92°) + p7*(8°/0¢") .
The solution of interest at large r = (p® + 22)'2 has
the asymptotic form

v —A+ B/r.

The ratio of the constants, B/A, approaches infinity
as the eigenvalue parameter A, starting from zero, ap-
proaches the critical value required for closure. In the
limit A = Aerit, the metric coefficient has the asymp-
totic value

v~ B/r.

That the distances are finite at » — « may be shown
by introducing the new variable

R = B/r

in terms of which the asymptotic value of the metric
(R—0Y)is

ds’ = dR® + R*(d6° + sin® 6de”) . (32)

Brill shows that the Taub universe—like these uni-
verses of his—is time symmetric, in the sense that
there exists a space-like hypersurface on which the
“extrinsic curvature” or “second fundamental form”
K;(x,y,2) (defined below in more detail) is zero.

A singularity develops in the Taub universe in a
finite proper time. Is there not one of Brill’s universes
which will not become singular? Can a universe not
oscillate periodically in time? The answer to the
second question is definitely no, according to Papa-
petrou and Avez.?' Consistent with their general
analysis is another finding of Brill. He studies, by
power-series expansion, the first stages in the devel-
opment of the general one of his time-symmetric uni-
verses. He finds that the volume just before and just
after the moment of time symmetry is smaller than
the volume at that moment itself. There is no place
for a time-symmetric stage of maximum contraction!
Therefore, the ‘“singularity conjecture” has been ad-
vanced??: that “in every closed universe which has

2L A. Papapetrou, Ann. Phys. (Leipzig) 3, 360 (1959); A.

Avez, Compt. rend. 250, 3585 (1960).
2 GMD, reference 3, p. 61.
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the topology of the 3-sphere, and which obeys the
equations of geometrodynamics, there always exist
test-particle geodesics which cannot be continued in-
definitely, because they run into a region where the
metric geometry is singular.”

A Geon as Special Example of a Gravitational Wave

A gravitational geon is a special instance of a gravi-
tational wave held into a closed orbit by its own
gravitational attraction. In a space that is asymp-
totically Euclidean, the gravitational energy leaks
away at a rate which can be made as small as one
pleases—but not zero—by making the number of
wavelengths in the orbit sufficiently great. With this
slow decrease in mass-energy, the size of the geon
goes down. In the simplest type of geon the reduc-
tion is homogeneous and is represented by a scale
factor. Then simple arguments?® show that the mass
and radius decrease linearly with time up to a “zero
instant” when the geon vanishes:

m*(t) = —mat ;
R(t) = —Rit.

The derivative of the metric goes to infinity simply
because of this decrease in scale. Shall this be called
a singularity? Whatever be the answer in this case of
an open universe, a gravitational geon contained in a
closed universe with the topology S? is destined to be
caught up eventually in a singularity of a more
serious kind, if the “singularity conjecture” is correct.

Schwarzschild Solution

General relativity is evidently far from wanting in
consequences important for cosmology ; but the three
best-known predictions of Einstein’s theory are as-
sociated with another type of solution, Eq. (20), of
the field equation, due to Karl Schwarzschild. As this
solution has been studied more closely it has pre-
sented surprises, several of them recently.

In the beginning the treatment of the geometry
strictly followed the model of the Newtonian gravita-
tional potential. This potential varies as 1/r outside
a spherically symmetric center of attraction, is con-
tinuous, has continuous first derivative at the surface,
and inside a sphere of matter of uniform density, for
example, varies as a harmonic oscillator potential.
Similarly, one distinguished the “‘exterior’’ model-
independent solution (20) from an “interior’’ solution
governed by the equation of state of the material re-
sponsible for the attraction. In the Newtonian case
the interior domain could not be made indefinitely

28 GMD, reference 3, p. 144.
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small without leading to a singularity in the poten-
tial; not so in the Schwarzschild case. There it makes
sense to go to the limit in which there is no “real”
mass at all, only mass due to the curvature of space
itself. There is a moment of time symmetry. At this
time the 3-geometry,

ds’ = (1 + m*/2R)* (dR* + R*d6* + R® sin® 0ds”)

conformally related to Euclidean geometry, is quite
free of singularity.

A Non-Euclidean Topology

The geometry at this moment of time symmetry
has an unexpected character: a throat connecting
two nearly Euclidean spaces. The circumference of a
circle of coordinate radius R is

(1 + m*/2R)*R2r .

This expression reaches its minimum value 4rm* at
the center of the throat, R = m*/2. The geometry is
symmetric on the two sides of this throat, as seen by
representing the metric in terms of a new coordinate
R’, defined by

RR' = (m*/2)*.

Instead of speaking of a bridge in the sense of Ein-
stein and Rosen between two spaces, one can think of
the Schwarzschild geometry as a wormhole or handle?
connecting two regions (‘“mouths’) far away from
each other in one Euclidean space. Moreover, that
surrounding space need not even be Kuclidean; a
modification will impart to it a slight curvature of
such a character that the space is actually closed in
the sense of a 3-sphere at large distances.

Singularity in Schwarzschild Geometry
after a Finite Proper Time

So far the geometry has been examined as a func-
tion of position at one time. At earlier and later times
the Schwarzschild throat has a circumference which
is less than 4rm*. After a finite proper time (and also
before a certain moment) the throat has pinched-off
and the curvature is infinite.?’ Here is one more ex-
ample of a singularity, and one more occasion to ask
what position to take towards singularities!

Catastrophic and Noncatastrophic
Points and Regions

Turn now from the curvature of the space to the

24 J. A. Wheeler, Phys. Rev. 97, 511 (1955).

25 This pinch-off is best seen in the coordinates introduced
by M. Kruskal, Phys. Rev. 119, 1743 (1960), or in those intro-
duced earlier by C. Fronsdal, tbid. 116, 778 (1959).
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fate of a test particle moving in this space. Does the
world line begin or end in a region of infinite curva-
ture? This question leads to a classification of space-
time into catastrophic and noncatastrophic regions?®

A point (four coordinates!) is said to be catas-
trophic if every time-like world line through it ends
up, or starts, in a region of infinite curvature.
Through a noncatastrophic point there are at least
some time-like world lines which have no terminus.
To make this classification of points in the Schwarz-
schild geometry, look apart from the angular co-
ordinates 6 and ¢. Consider a 2-dimensional diagram
in which the coordinates have to do with distances
orthogonal to df and de—space-like distances hori-
zontal, time-like ones vertical, and light-like dis-
placements at + 45°. The origin is to be the throat
at the moment of maximum expansion. Light-like
lines through it define a cross
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in which regions I and III are catastrophic and IT and
IV are not. This classification is useful in dealing
with what looks like a violation of causality in a
space endowed with a wormhole.

Violation of Causality in a Doubly Connected Space

Consider a handle 3 m long providing a supplemen-
tary connection between two regions A and B which
are separated by 3 X 10 m in the surrounding
nearly Euclidean manifold. Then a signal can get
from A to B in 1078 sec rather than in the 100 sec that
one would expect. This possibility may be seen to
violate customary ideas of causality, as follows: View
events from a Lorentz frame moving in the direction
A — B at a speed exceeding 107'° ¢. Then one will see
the signal arrive at B before A has sent—or even de-
cided to send—a signal! Is there any escape from this
difficulty?2¢

It is possible to signal through the throat and
violate causality only if the source, or the receptor, or
both are in the catastrophic regions of space-time. In
contrast, no light signal will pass from a point in the
noncatastrophic region IV through the throat to a
point in the noncatastrophic region IT or the converse.
The throat is not open long enough! One still can and
must uphold the principle of causality. One can do so
only because one has been forced to limit the appli-
cation of this principle to noncatastrophic regions of

26 R. W. Fuller and J. A. Wheeler, Phys. Rev. 128, 919
(1962).
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space-time (in which one might reasonably think of
making experiments!). This is a restriction that one
previously never had occasion to consider. The re-
sulting distinction between catastrophic and non-
catastrophic regions is most interesting. It links two
distinctive features of a particular 4-dimensional
manifold: (1) the topology of the light cone, and (2)
the regions where the curvature become infinite.

General Causality Analysis based on
Topology Plus the Light Cone

What about the general 4-manifold of signature
—+4 4 +7? Is there any way to classify the regions
here as catastrophic and noncatastrophic? The an-
swer is not known. Traditional topology classifies
manifolds with the aid of Betti numbers and other
connectivity indices. It foregoes assignment of any
particular metric to the space. Smith?” has noted that
one can stop short of a complete assignment of the
metric and still give supplemental information of a
topological character by specifying the light cone at
each point in the manifold. He has examined some of
the consequences of combining this information with
the usual topological information. Kither by use of
his results or otherwise, it would seem essential to
establish a theory valid for the general case which
would connect the issues of topology, causality, and
singularities.

Reissner-Nordstrom Solution

For testing such a general theory there is available
not only the Schwarzschild solution for a neutral
center of attraction, but also the Reissner-Nord-
strom solution for a region endowed with both mass
and charge,

doy = —dr" = — (1 = 2m*r™" 4 ¢*’r)d’
+ 1 = 2m* 7 4 )
+ 7*(d6® + sin® 6de?) , (33)

( Flux of electric lines of force through any sphere)
of radius r

= 4x¢* (independent of r) . (34)

This solution deserves discussion in its own right as

well as for its connection with the subject of causality.
Oscillations

The traditional way (33) of writing the Reissner-
Nordstrom solution conceals from view the worm-
hole character of the solution at an initial moment

27 J. W. Smith, Proc. Natl. Acad. Sci. 46, 111 (1960).
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and also the evolution of this doubly connected ge-
ometry with time. The flux of lines of force through
the throat acts as a kind of elastic cushion against
pinch-off of the throat. As the circumference of the
throat shrinks to half-value, the density of lines of
force quadruples, and the density of electromagnetic
stress and energy rises sixteen-fold. Ultimately the
back pressure builds up to the point where the throat
re-expands. Oscillations in the geometry are there-
fore manifest to an observer stationed at the throat,
as has been shown by Graves and Brill.2® With the
throat always open as a short cut for transmitting
light signals, it might be supposed that wholesale
violations of the principle of causality will occur.
However, Graves and Brill show that the intrinsic
curvature of space-time near the throat becomes in-
finite. Yet to be explored are the consequences of
these singularities for defining catastrophic regions of
space-time, and for preserving causality as between
noncatastrophic regions of space-time.

Singularities All Characterized by the
Same Type of Approach to Infinite Curvature?

The singularities that develop after the lapse of a
finite proper time—the fifth example of infinites so
far encountered in this account—also have an in-
terest in and by themselves as guides to analyzing an

“ important general issue: What kinds of singularities

are possible, in principle, in the intrinsic geometry
(as distinguished from the coordinates!). Infinite
curvature is the characteristic feature of the singu-
larities here as in the Schwarschild solution.

Wormhole Topology

In the Reissner-Nordstrpm solution the regions
connected by the wormhole can be viewed either as
portions of two distinct Euclidean spaces or as two
remote parts of one Euclidean space. This second in-
terpretation is especially interesting in connection
with the net electrical neutrality observed in the
physical world. It leads in the most direct way to the
view of electricity as lines of force trapped in the
topology of a multiply connected space.?®

Electric Charge as Lines of Force Trapped
in the Topology of a Multiply Connected Space

It is not necessary to think of charge as a region of
space where the electric field becomes singular, or
where Maxwell’s equations. break down, or where

28 J. C. Graves and D. R. Brill, Phys. Rev. 120 1507 (1960).

29 J. A. Wheeler, Phys. Rev. 97, 511 (1955); C. W. Misner
and J. A. Wheeler, Ann. Phys. 2, 525 (1957): also GMD, ref-
erence 3.
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there resides some mysterious jelly called electricity.
It is not necessary to arbitrarily restrict attention to
those solutions of Einstein’s equations which have a
singly connected topology. The equations of general
relativity and electrodynamics are purely local in
character. They say nothing about the connectivity
of the topology. Only the assumption that the topol-
ogy of physical space should be Euclidean, E?, or at
most equivalent to.that of the closed 3-sphere, S?,
prevented consideration of multiply connected top-
ology in earlier times. On a 3-dimensional space-like
(metric positive definite) hypersurface ‘sliced
through” space-time let there be R. independent
types of homologous closed 2-surfaces—or in other
terms, let there be R, inequivalent wormhole mouths.
Then one is led, in the following way, to the picture
of electricity as trapped lines of force. Specify enough
information about the electromagnetic field to make
it possible to forecast its future evolution in time. As
in the case of other dynamical systems, give here the
“coordinate” of the field—the magnetic field B as a
vector function of position over the space-like hyper-
surface—and also the ‘“velocity” of the field—the
time rate of change dB/dt as a function of position.
These two vector fields are not specifiable quite
arbitrarily, for it is required that B and its time
derivative be divergence free:

divB =0 } vector

div (6B/dt) = 0 ) notation (35)
d*B=0 } language of exterior
d(0*B/at) = 0 ) differential forms . (36)

From the field coordinate and its time rate of change
it is possible in a singly connected 3-manifold to find
a unique value for the ‘“field momentum”—the elec-
tric field E as a vector function of position. With
electrodynamical coordinate and momentum thus
specified, the dynamical evolution of the sysetm in
time is then uniquely specified. This momentum is
obtained by solving the equations

divE =0 } vector
curl E = —9B/dt notation 37)
*d*E = 3E = 0 }differential
dE = —90 *B/d¢ ) forms (38)
to obtain the solution
E = Ebﬂsic(x;y7z)) ) (39)

(fixed by B and (6B/df)). However, in a space with
second Betti number R, (number of wormholes) dif-
ferent from zero, the solution of (37) or (38) is not
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unique. Instead, it has the form

R,
E = Euo(2,y,2) + Zl gHi(z,y2) . (40)
<

Here the constant coefficient ¢ measures the classical
electric charge associated with the kth wormhole; and
the quantity H; is a harmonic vector field with these
properties:

1. Zero divergence { divH, = 0  (vector)
8H, = 0 (form) (41)

2. Zero curl { curl H, = 0 (vector)
dH, =0 (form) (42)

3. Unit contribu-
tion to the ap-
parent charge of <
the kth worm-
hole

/ H.-dS = 47 (vector)

surface around mouth of kth
wormbhole

/ zi H, = 4n(form) (43)

4. Zero contribu-
tion to the ap-
parent charge of
every other
wormbhole (I5k)

fcz H;-dS = 0 (vector)
l

When the kth pair of wormhole mouths are well

" isolated, and when the dimensions of the mouths are

very small compared to the separation between them,
then the kth harmonic vector field almost everywhere
looks like the Coulomb field associated with a unit
positive charge at the one location and a unit nega-
tive charge at the other. Only close up to the mouths
and through the throat is the identity with a Cou-
lomb field lost. The Coulomb field refers to a Eu-
clidean space that has no throat in which to carry out
the comparison! Moreover, the Coulomb field is
singular. In contrast, the harmonic vector field re-
mains divergence free, curl free, and singularity free
right through the throat—as everywhere else.

Count of Equations Versus Unknowns
in a Skeleton Space

The following elementary reasoning may illustrate
how it comes about that the equations

8E =0, dE = —3*B/at (45)

should have the R. independent solutions, the exist-
ence of which has been proven by Hodge.?® Following

30W. V. Hodge, The Theory and Application of Harmonic
énifgrg,ls (Cambridge University Press, New York, 1952),
nd ed.
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a type of reasoning long familiar in topology?®! re-
place the continuous 3-dimensional manifold by a
lattice space of tetrahedrons fitted together, triangu-
lar face to triangular face. Also replace the continuous
electric field E by the voltage differences V, along the
edges ¢ which connect one vertex and another. If this
simplicial decomposition of the space is fine enough,
one will expect to be able to reproduce all details of
the field with arbitrary accuracy.

Abbreviate the surface integral of the normal com-
ponent of the magnetic field across the tetrahedral

face f as

face f

(46)

Then the condition on the curl of the electric field re-
duces to a condition on the sum of the voltages
around the edges of each triangular face f, with due
regard to sign:

=V, £V, £V, =—-9,. 47

Let F denote the number of faces; then there are F
equations of this type. These equations are not all
independent. A knowledge of the circuital voltage
around the edges of three faces of a tetrahedron suf-
fices for predicting the circuital voltage around the
boundary of the fourth face. Let 7' denote the num-
ber of the tetrahedrons that fill the space. Then there
are T relations of this kind by which to deduce the
curl conditions at one face from the curl conditions at
other faces. However, not all of these 7' relations are
independent. That for the last tetrahedron can be
deduced as a consequence of these relations associ-
ated with all the other tetrahedrons that surround it.
Thus, ¥ — (T — 1) is the number of curl relation-
ships left over.

The number of divergence relations is equal to the
number of vertices V. However, the divergence rela-
tion for the last vertex can be deduced from that for
the remaining V' — 1 vertices. Thus, V — 1 diver-
gence conditions are left over.

Counting curl and divergence relations together,
onehas # — T 4+ 1 + V — 1 linear equations for £

31 See, for example, P. Alexandroff, Elementary Concepts of
Topology, translated by A. E. Farley (Dover Publications,
New York, 1961); S. Lefschetz, Introduction to Topology
(Princeton University Press, Princeton, New Jersey, 1949);
H. Seifert and W. Threlfall, Lehrbuch der Topologie (photo-
reproduction by Chelsea Publishing Company, New York,
1947); and especially in connection with the application of
algebraic topology to numerical analysis of bridge structures,
electrical networks, and dynamic continua, see the paper of
J. P. Roth, Quart. Appl. Math. 17, 1 (1959) with its extensive
bibliography. For a similar way to skeletonize space-time and
formulate Kinstein’s field equations in purely algebraic form,
see Tullio Regge, Nuovo cimento 19, 558 (1960).
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unknown voltages V.. If these equations are linearly
independent, then the solution contains free param-
eters to the number

N

(unknowns) — (independent equations)

T—F+E—-V.

Il

(48)

This quantity is independent of the fineness of the
simplicial decomposition. For example, introduce a
new point at the center of one of the existing tetra-
hedrons. The resulting changes in the number of
simplexes of the various dimensionalities are

tetrahedrons: AT =4 — 1 =3 ;
triangular faces: AF = 6 ;
edges: AE = 4 ;

vertices: AV = 1. (49)

The change in the number of free parameters is

AN =AT —AF+AE —AV =3—-6+4—1=0
(50)

The quantity T — F + E — V, the Euler-Poincaré
characteristic, ¢tself vanishes if the 3-space, in addi-
tion to being closed, is orientable in this sense: two
gloves, originally compared and found to have the
same chirality, and taken on the most different
journeye, continue to be identical whenever they
meet. The vanishing of 7' — F + E — V, or its
higher dimensional equivalent, is known to be auto-
matic in any closed orientable space of odd dimen-
sionality.

The independence of the equations is a correct as-
sumption in a 3-space with the topology of the 3-
sphere. Then the field “momentum’’ E, as represented
in its skeletonized version by the E voltages V., is
uniquely specified by the time rate of change of the
field “coordinate’, the magnetic field B.

Final Value for Number of Free Parameters

In spaces of other topologies there are ordinarily
relations between the linear equations to be solved
for the V.. The number of these relations is equal to
the second Betti number, R., of the space, that is, to
the number of independent classes of homologous
closed 2-surfaces:

N=R.#T—-F+E—V. (51)

Consequently, there are R, free parameters in the so-
lution. They represent electric charge in the purely
classical, geometrodynamical, sense of electric charge.
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Parameters Enter the Quantum State Functional

These charge parameters have a consequence for
the quantum-mechanical description of the wave
function of the electromagnetic field in a multiply
connected space. The amplitude, a complex number,
cannot be represented as a functional of the magnetic
field alone. It depends, in addition, upon R, param-
eters ¢x, which are constants of the motion. Thus, a
proper way of writing ¢ is

Y = ¢(B(ZL,Z/,Z) 341,92, ':qu;t) .

In mathematical terms, it is a mapping from the set
of all real nonsingular divergence-free vector func-
tions B(x,y,2) of position in the given 3-space, onfo the
space of complex numbers. All this applies to a given
time ¢. At a new time the mapping changes according
to the laws of quantum mechanics, but the param-
eters ¢ remain unchanged.

The Initial Value Problem for Geometrodynamics

How to get field momentum from field coordinate
and its time rate of change has been analyzed for
electromagnetism ; now for the same problem for geo-
metrodynamics! The field “coordinate’ is the geom-
etry intrinsic to a 3-dimensional space-like hypersur-
face, defined, for example, by giving the six metric co-
efficients ®g;, as a function of three coordinates
x,y,2 on the hypersurface. A continuous parameter ¢
may be used to single out a particular member of a
family of such hypersurfaces. Then the ‘“‘time rate of
change of the field coordinate’ is one terminology for
the quantity d®¢..(¢,z,y,2)/9t. None of this informa-
tion allows one to calculate distances between two
nearby points with different time coordinates. For
this purpose it is necessary to know how the 3-mani-
fold is curved with respect to the enveloping 4-mani-
fold; to know the “‘extrinsic curvature,” or in math-
ematical terms the “second fundamental form,” or in
physical terms, the ‘“field momentum.” This field
momentum can be expressed in terms of four “po-
tentials” plus other information derived from the
field coordinate (and its time rate of change). The
analogy with electromagnetism is close, where the
momentum, the electric field E, can be expressed as
the gradiant of a single scalar potential plus a part
(curl A) derived from the time rate of change of the
field coordinate. A convenient choice of these poten-
tials has been given by Arnowitt, Deser, and Misner.??
These potentials have recently been employed to

32 R. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev. 122,
997 (1961) and earlier papers cited therein.
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formulate the initial value problem in the form stated
here.??

The Two-Surface Formulation
of the Initial Value Problem

Given in this formulation are the metric coefficients
®g'(x,y,2) and ®g''(x,y,2) for the geometries intrinsic
to two 3-spaces, not otherwise defined, which are
“nearby’’ in a sense discussed in the reference. To be
found are four functions of z, y, and 2: 7o (which in
the end will represent the orthogonal time-like proper
distance between the two surfaces) and #*(z = 1,2,3)
(which in the end will represent the coordinate dif-
ference between points on the two surfaces connected
by the same time-like normal). In terms of the given
®g and @g and the yet to be found four potentials,
everything else of relevance to the geometry of the
“thin sandwich”’—and hence the entire 4-manifold—
can be derived. (1) The distance between a point on
one surface and a nearby point on the other is

di® = —di’ =

— (6 — nn’) + 2nida’ + Pgada’da’,
(52)

where @g,; is a suitable average of ®gi, and ®gli.
(2) The extrinsic curvature is

K = (g — gl 4+ mils + m315)/2m0 . (53)

The four potentials, and hence the extrinsic curva-
ture, are to be found from the four initial value equa-
tions®

< energy flux in suit—)

(Ki — 6 TrK),; = able units

(54)

energy density in)

2 o 2 Gp
(TrK)" — Tr (K°) + "R = (suitable units

(55)

These equations have been known for a long time,
but their application to finding the time-like separa-
tion 7o and the space-like “shift” »;, and hence the
field momentum, is new.

Uniqueness of Solution as Guide to a
New Formulation of Mach’s Principle

More decisive than any other questions about new
implications of relativity would seem to be these: (1)

3 R. F. Baierlein, D. H. Sharp, and J. A. Wheeler, Phys.
Rev. 126, 1864 (1962).

34 K. Stellmacher, Math. Ann. 115, 136 (1937); A. Lich-
nerowicz, Helv. Phys. Acta. Suppl. 4, 176 (1956); Y. Fourés-
Bruhat, J. Rational Mech. Anal. 5, 951 (1956).
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In a 3-space with the topology of the 3-space is it suf-
ficient to give ®g.;, and 9®g,,/0t (or ®glf, — ®gl)—
plus the density and flow of energy, if any, as a func-
tion of position—in order to arrive at unique values
for the four potentials 5,? If so, the extrinsic curva-
ture will be determined, and thence the whole
dynamic evolution of the geometry, past and future.
In this event one will have a concrete expression for
Mach’s principle within the context of standard gen-
eral relativity, in the sense that the geometry—the
inertia, in physical terms—will be seen to be defined
by the distribution of energy and momentum. It is
presumably essential for the suggested uniqueness
that the universe shall have the topology S, or one
of a limited class of topologies. In this event Mach’s
principle can be reformulated as a boundary condition
on Einstein’s field equation, demanding that the 3-
geometry shall be “properly closed’ .®

The Case of Multiple Connectivity :
A New Kind of Charge?

(2) One class of topologies, let it be assumed, gives
uniqueness. Can multiply connected topologies per-
mit a number of independent solutions specified by
certain parameters Q,Qs,- -+ up to a number fixed
by the topological indices of the space? In this event
one will be confronted by a new kind of charge, pre-
sumably very different in character, because of the
nonlinearity of the equations, from the kind of elec-
tric charge already discussed.

Count of Degrees of Freedom

(3) These references to Mach’s principle and a new
kind of charge do nothing to satisfy the demands of
those who want a listing of the degrees of freedom of
the geometry analogous to that which one secures for
the electromagnetic field by Fourier analysis. How-
ever, in geometrodynamics as in hydrodynamics,
there is no evidence that such a count will ever be
possible. One has a zoology of vortices, shocks, etc.,
in the one subject; one is on the way to acquiring a
similar zoology in the other. Note, for example, that
the wormbhole is one example of “mass without mass’;
the geon is another; and less organized forms of
gravitational radiation provide a third. There are
ways, unlimited in number, to combine these kinds
of disturbance to get most complex geometrodynam-
ical objects. This is the nature of general relativity!

35 Note added in proof: A detailed description of this formu-
lation of Mach’s principle is given in a paper by the author to
appear in the proceedings of the July 1962 Warsaw conference
on relativistic theories of gravitation.
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The Volume Element in the Space of Spaces

(4) Special solutions have application to cosmology
and large-scale gravitational phenomena ; but at the
quantum level there is no more interest in these solu-
tions than in the solutions of the last century for
multitudes of special problems in mechanics! Such
classical solutions may illuminate a quantum prob-
lem in the semiclassical or JWKB approximation.
However, one has not progressed far enough to-day
in quantizing general relativity to know how to profit
from this circumstance. Questions are still at the
level of principle. Let one central question be stated
to illustrate the nature of the subject. It has to do
with the space over which one integrates the quantum
propagator.

The propagator {z’/#’|z’t') in the quantum mechan-
ics of a single particle is well known. Folded into the
wave function at one time, it gives the wave function
at a later time:

vy = [ e e . 56)
Qut of it can be read all one wants to know about the
quantum mechanies of the system. In electrodynam-
ics, in a closed multiply connected space the corre-
sponding formula is

Y (B (2,9,2) 341,02, =+ 5t"")
= / (B";q;¢" B 305t W (B 5q1,gz,+ + 5t ) DB’ . (57)

Here the functional integration goes over the space
of all vector fields B(z,y,2) which (1) are defined over
the specified three-manifold, (2) are divergence free,
magnetic charge!). Questton: What is the formula
and (3) have zero flux through each wormhole (no
which takes the place of (57) in geometrodynamics?
This question does not have the ambitious object to
find the propagator! Rather, if and when one suc-
ceeds in evaluating this quantity, how will one use it?

In relativity the specification of the 3-geometry
®g'—by way of six metric coefficients ®gii(z,y,2) or
otherwise—accomplishes in one stroke what is ac-
complished in electrodynamics by giving the field B’
and the téme ¢’. This unification of information—
about which hypersurface and what gravitational field
on this hypersurface—is one more consequence of the
covariance of general relativity. How does one take
apart this unity and integrate, not over the space of
all 3-geometries, but over a subspace of (2/3) the
dimensionality? What is the physical meaning of this
subspace of spaces?
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TasLe III. Issues at the frontiers between general relativity and differential geometry.

The problem

Implications and subsidiary questions

1. Initial value problem in the form in which the “coordinate”
—the intrinsic geometry~and its time rate of change are
given and one asks for the ‘“momentum’’—the extrinsic
curvature.

1A. Mach’s principle as a boundary condition (“properly
closed universe’’) on Einstein’s field equation.

1B. Charge-like parameters required in addition to foregoing
for unique specification of solution in a multiply connected
space.

1C. Means of bringing out what one can, and cannot hope, to
have in way of a count of the degrees of freedom of the
geometry.

1D. Volume element in, or measure for, the space of all geo-
metrical configurations.

1E. Problem of classification of all relevant 3-dimensional
topologies.

2. Singularities in Friedmann, Tolman, Taub, Schwarzschild,
Reissner-Nordstrem, and many other geometries

2A. Conjecture that every “properly closed space’” ultimately
develops a singularity.

2B. Problem of classifying all the types of singularities that
can develop out of Einstein’s field equation.®

2C. Question whether classification of singularities will, as in
the case of analytic functions, result in a classification of
the solutions themselves.

2D. Inevitability of singularity in classical solution implies
conditions always develop where quantum character of
geometry cannot be escaped.

3. Causality

3A. Existence of a correlation between (1) the topology of the
1space and of the light cone and (2) the location of singu-
arities.

4. Action integral as a real valued function (“functional’’) over
the space of all histories H of the 4-geometry which are
compatible® with specified bounding 3-geometries @G’
and ®G".

4A. Morse theory of minima, maxima, and saddle points of
this functional.

2 Investigations of the subject of singularities have been made by E. M.
Lifshitz and M. Khalatnikov, Zhur. Eksp. i Teoret. Fiz. 39, 149 (1960);
39, 800 (1960); Akad. Nauk USSR 40, 1847 (1961); I. M. Khalatnikov,
E. M. Lifshitz, and V. V. Sudakov, Phys. Rev. Letters 6, 311 (1961). For
a catalog of many solutions which display singularities, see B. K. Harrison,

IV. PROBLEMS AND PROSPECTS IN GENERAL
RELATIVITY HAVING TO DO WITH
DIFFERENTIAL GEOMETRY AND TOPOLOGY

New insights have come out of the special solutions
of Einstein’s field equation just passed in review, and
also new issues. A recapitulation of some of the prob-
lems which have shown up most strikingly is given in
Table III.

This account omits many important topics and
much interesting work. However, the issues discussed
here are enough to display the central point: The
analysis of the hidden aspects of Einstein’s theory
makes new demands, and offers unexpected insights,
both to mathematics and to physies.

Phys. Rev. 116, 1285 (1959) and P. Jordan, J. Ehlers and W. Kundt, Akad.
Wiss. Mainz, No 2 (1960).

b This toplc is closely connected with the theory of cobordism: René
Thom, Comentarii Math. Helvetici 28, 17 (1954).
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