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theory, particularly since the general idea of using
“different orbitals for different spins” is by no means
limited to alternant systems.

Note added in proof: A numerical investigation of
the direct exchange of 3d electrons based on the
Heisenberg exchange integral has been reported by
R. Stuart and W. Marshall, Phys. Rev. 120, 353 (1960).
A similar investigation based on the more exact

definition of the exchange integral presented here has
been carried out by A. J. Freeman and R. E. Watson
Theory of Direct Exchange in Ferromagnetism (available
in preprint; to be published).

The two papers on the application of the alternant
molecular orbital method to the linear chain by Pauncz,
de Heer, and Lowdin has now been accepted for
publication in J. Chem. Phys.
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I. INTRODUCTION

URING the last decade a considerable amount of

work has been reported on the calculation of
molecular diamagnetic susceptibilities and of proton
shielding constants. Although there is not much
resemblance between these two quantities from an
experimental point of view, their calculations show
many points of similarity and it is therefore profitable
to consider the theories of both phenomena simul-
taneously. The theoretical value of a molecular dia-
magnetic susceptibility x may be derived from a study
of the interaction between the electronic motion in the
molecule and a homogeneous magnetic field H, whereas
a theoretical determination of a proton shielding
constant ¢ involves a calculation of the interaction
between the electronic motion, a homogeneous mag-
netic field H, and an infinitesimally small magnetic
dipole u at the position of the proton. Widely different
methods for calculating these interaction terms have
been suggested. The present paper gives a critical
evaluation of the various approaches and investigates
whether there are any connections between them. In
particular we wish to discuss a few questions that are
connected with calculations of x and o from gauge
invariant atomic orbitals that were either overlooked
or not satisfactorily answered in previous work.

A necessary condition that has to be imposed on
calculations of molecular magnetic properties is that
they lead to correct, or at least reliable, numerical
results. Therefore it is necessary to study not only the
general theory but also the numerical applications.
However, we do not wish to obscure the main points
of the argument by many tedious numerical calculations,

* Research supported by a grant from the U. S. Army Re-
search Office (Durham) to The Johns Hopkins University.

so that we will take the hydrogen molecule as a basis
of our discussion. This follows the customary trend in
the calculations where each method is usually tested by
applying it to the hydrogen molecule and extended to
more complicated systems only after a satisfactory
result has been obtained for the simple case. At least
a qualitative discussion of the question as to whether
each calculation for hydrogen can easily be extended
to larger molecules is included in this paper.

We discuss the theory of diamagnetic susceptibilities
first. This has the same basic problems as are en-
countered in calculations of ¢ but lacks some additional
complications.

The various theories on diamagnetic susceptibilities
and magnetic shielding constants are often subdivided
into three sets, namely (1) those that are derived by
means of perturbation theory, (2) those that are based
on applications of Ritz’ variational principle, and (3)
those that make use of additional experimental in-
formation connected with the rotational magnetism
of the molecule. It is shown that a distinction between
the first two sets is artificial because all results may be
derived from variational methods.

First we give a general survey of the various varia-
tional methods, next we investigate some questions that
are connected with calculations from gauge invariant
atomic orbitals, and after that we discuss the connection
between diamagnetic susceptibilities and rotational
magnetism.

II. VARIATIONAL METHODS

We are interested in finding the lowest eigenvalue
Ey’ of the equation

Hopd=Ed, (1)
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where

1 ~ e \?
Scopz_—' Z (pi+_Aj) +V(r1)r2, o ‘,I‘N) (2)
c

2m =1

is the Hamilton operator of an N-electron system, V is
the potential energy function, and A; is the vector
potential acting on electron j. Let us now define

A/=3HXr; A/ =r"(uX1q), 3)

where H is a homogeneous magnetic field, u is an
infinitesimally small dipole at the position of proton
a, r; denotes the position of electron 7, and r,; denotes
the position of electron j with respect to proton a.
Substitution of A;=A; or of A;=A;+A;"” into Eq. (2)
then leads to the calculation of x or o, respectively.

In most calculations it is assumed that all eigenvalues
E and corresponding eigenfunctions ¥y of the equation

gcop (O)‘I/Icz EY,

N
Hop@=(2m)1 3 pi+V

=1

(4)

are known exactly. By means of second-order pertur-
bation theory, it may then be derived that!

x=— (2L/H*)[(¢¥/2me*){(¥o| X ; (A))?|W0)
— (e12/m2c®) X_r (Ex—Eo)™(Wo| 2, (A} -1V ;)| W)
X (¥ 25 (A -iv3) | ¥e)], (5)
and also that

o= (uH)[(¢&/mc?)(¥o| L ; (Ai-Aj") [ o)
— (&1 m?®) T (Ex—Eo) (ol 2 (A -1V ;)| Vi)
X X5 (A -0V ) [Wo)+(Wo| X5 (A" -V ;) [ W)
X 25 A1V )| ¥o)} ] (6)

It is instructive to show, before transforming these
two expressions, that they may equally well be derived
by means of a variational treatment. To this end we
expand the function ® in terms of the complete set of
eigenfunctions ¥, of Eq. (4),

=3 Ap¥y. Y

The expansion coefficients 4 are necessarily functions
of H and pu. The summation sign is to be read as a
summation over all discrete states and also as an
integration over the continuum states, but in order to
keep the notation simple we do not denote the latter
integration explicitly. Since the functions ¥ form a
complete set, a variational treatment taking the
function ® of Eq. (7) as a trial function and varying
all coefficients A; simultaneously yields the exact
eigenfunctions of 3Co, of Eq. (2). This means that the
exact value Ey’ is obtained as the smallest root of the

secular equation
| Hy— Edi| =0

Hkl= <\I,k I scop I \Ill)'

1J. H. Van Vleck, Theory of Electric and Magnetic Suscepti-
bilities (Oxford University Press, New York, 1932) p. 275.

&)

It is impossible to obtain a solution of Eq. (8) in
closed form but fortunately that is not necessary. We
can imagine that Ey’ is expanded as a power series in
and u; for a calculation of x we may then break off the
series after the quadratic terms in H and for calculations
of ¢ we may break off after the term containing first
powers in both H and u. Throughout this paper we
restrict the calculations to this part of the series. This
restriction implies that only an approximate value for
Ey will be obtained, but since the exact values of the
coefficients of the series are determined, the calculation
yields the exact values of x and ¢. Under these circum-
stances it may now easily be found that

Ey=Hy—2_r HuH o/ (Ex—Ey), ©)

which leads directly to Egs. (5) and (6). These two
expressions may be transformed into the well-known
Van Vleck and Ramsay formulas'? by substituting Eq.
(3) and by averaging over all possible orientations of
the molecule with respect to the magnetic field. If
we define

i) 9
M,=iY; (yr———— zJ——) and cycl.,
9z; dy;

1 9 9
L,=1 Zj—(ya,—— za,—) and cycl., (10)
T\ 9z 9y

Yaj
it is easily found that

—x= (eL/6me*){¥o| 3" 7| ¥o)
— (e2h2L/6m3c®) 31, (Ex— Ep)™!

and also that
o= (6%/3mc®)(¥o| 20 7257 (r¥a5) | Wo)
— (e2h2/6m2c?) 3 (Ep—Eo)™!
X0 M| W), (i | L|¥o))
+ ((To| L[ W), (T | M[To))].  (12)

If all lengths and energies are expressed in terms of
atomic units these equations become

x=xo[(¥o| ;77| ¥o)— & (Ex— Eo)™
X ((To| M [ W), (¥ | M| W0)) ],
a=0o{(¥o| 2 74 (t;1a;) [ ¥o)—% 2 i (Ex—Eo)!
XLo| M| W), (¥ | L ¥o))
+ (Wo| L[ W) (¥ [ M[¥)) ]}, (13)

where xo=— (¢2a?L/6mc?) and ao= (e?/3mcay) are the
natural units of diamagnetic susceptibility and of
magnetic shielding in molecular calculations. They are
used throughout the rest of this paper. It may be
added that xo=-—0.79242X10-% (cgs units) and
00=1.77504X 1075,

The variational derivation of Eq. (13) is useful in
investigating the gauge invariance of these expressions.

2 N. F. Ramsey, Phys. Rev. 77, 567 (1950).
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Since the functions ¥, form a complete set, the following
expansion is possible:

® expl (—ie/fic) 35 ¢5(r;) J=2k Bil¥r,  (14)

where the ¢; are arbitrary functions of the coordinates
(%4,94,%7), and also of H and u. Consequently ® may be
expanded as

d=3"; Byl

V' =W}, exp[ (ie/c) 225 ¢;(rj) ],

where the ¥,/ form an orthonormal set. It follows again
that the exact value E, is obtained as the smallest
root of the secular equation

| Hy'— Ebi| =0
Hy'= (¥ |30, | ),

(15)

(16)
so that

Efy=Ho'—2 1« Ho' Hyo'/ (Ex— Eo). a7

It follows from the properties of the gauge trans-
formation® that

(W | 3Cop | W1 )= (¥ 5Cop’ | W), (18)
where
1 ~ /h € 2
Hop'=—2_ (‘_VJ'+—{AJ',+AJ'”+grad7‘¢j(ri)})
2m i=1 \ 1 c
+V(I‘1,r2, t ';rN)' (19)

This implies that in Egs. (5) and (6) we may replace
A/ and A/, by A/+V ;¢ and A;/'4V ;¢,, respectively,
where each function ¢; is an arbitrary function of the
coordinates x;, v;, zj, and H and u. The various func-
tions ¢; may all be different. This result was to be
expected from purely physical grounds since x, being
a physical observable, should not depend on the gauge
of the vector potential, but it is more satisfactory to
have proved this point explicitly.

From the gauge invariance of Eq. (5) it is easy to
derive a variational method to calculate x which was
first suggested by Rebane* who obtained it from a
different approach. Equation (5) may be rewritten as

x=xo[(¥o| 2; (A} |¥0)—% 2 & (Ex—Eo)™*
X | (W | 25 { (A -1V )+ (V;-1A)} [ W) | 2],

where

(20)

A/=3HXr+V0,(r;) (21)
since the operators occurring in the infinite series of
Eq. (20) are all Hermitian.

Both the first term on the right-hand side of Eq.
(20) and the infinite series are functions of the ¢;, but
their difference is independent of the ¢;. Furthermore

3 H. A. Kramers, Quantentheorie des Elektrons und der Strahlung
(?kademisehe Verlagsgesellschaft, Leipzig, Germany, 1938) p.
270

47T, K. Rebane, J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 963
(1960).

each term of the infinite series is positive. Consequently
(x/x0) S (Xo| 25 (A7)*| W) (22)

for each possible set of functions ¢;. Equation (22)
becomes an equality only if for this set of ¢; the
condition

2i{(A/-V)+(V;-A)} [ ¥e)=0

is fulfilled.

This enables us to formulate the following variational
theorem for a calculation of x: If we wish to omit the
infinite series in Eq. (17) and obtain a value of x by
evaluating the first term only, we will obtain the best
possible value of x by minimizing the right-hand side
of Eq. (22) with respect to all ¢;. This procedure will
yield the correct value for x only if there exists a set
of ¢; which form a solution of Eq. (23). Rebane has
proved that there exists a solution of Eq. (23) for one-
electron systems, but at this moment nothing is known
about more complicated situations.

It will be clear that the analogy of this variational
theorem for calculations of ¢ cannot be proved in this
way and probably does not exist.

A different approach to the calculation of x and ¢ is
connected with the use of gauge invariant atomic
orbitals.®¢ Here it is supposed that the eigenfunctions
¥} of 30, @ [see Eq. (4)] are constructed from atomic
orbitals ¢re, where the first subscript denotes the
functional form of the orbital and the second subscript
denotes the corresponding nucleus. We will now write
the vector potential A; as

(23)

A;0=FHX (rj—q) 47,7 (uX1.j), (24)
and subsequently define the functions
0ra‘? = o, expliey(q—a)/%c] (25)

y(@=3(HXu)-r.

The gauge function ¢; has been chosen in such a way
as to determine the origin of r; in the formula for the
vector potential and the same gauge is assigned to the
atomic orbitals; hence the name gauge invariant
atomic orbitals (GIAO). It is now possible to obtain
the functions ¥, (9 from the functions ¥; by replacing
all atomic orbitals ¢, by @re‘?:

VO =V ( 010 ?, 015(D, 0y D« - +). (26)

Although the ¥;(? are not strictly orthonormal, it
may be shown that the function ® may be expanded as

=3, Cpl,,(@ 27)

by expanding the ¥,¢? as power series in H and by
considering the coefficients of the various powers of H
on the right-hand side of Eq. (27). The energy Ey is
now obtained again as the smallest root of the secular
equation

|Hii— ESi| =0,

5 H. F. Hameka, Mol. Phys. 1, 203 (1958).
¢ H. F. Hameka, Z. Naturforsch. 14a, 599 (1959).

(28)
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where
H =V, @ lgcop(q) I \I;l(q)>,
Si= (V@ | ¥, (0)= (‘h]‘h) )

1~ e 2
o= 5 (A AS) +V (0t ). (29)
2m =1 ¢
Although the ¥,(? are not orthonormal, we have
S=1+0(H?),
H,=E+O(H?),
Su=0(H) k#l,
Hyu=0(H) k#l, (30)
so that
Ey'—Eo= (Ho— EoSo0) =2 (Ej— Eo)™
X (SooH jo— S joH 00) (SooH jo—Sj0H 00)*. (31)

Let us first discuss the application of this expression
to calculations of x; in that case u may be taken equal
to zero in Eq. (24). One might say now that the special
choice of gauge of A; in combination with the introduc-
tion of the gauge factors of the atomic orbitals form an
approximate solution (or in some cases an exact
solution) of Rebane’s Eq. (23). The infinite series in
Eq. (31) is usually smaller and converges more rapidly
than the corresponding series in Eq. (13), so that the
former equation is better adapted for numerical
applications than the latter.

Each quantity Hy; and Sy, is independent of q and
may be expressed in a number of integrals involving
atomic orbitals multiplied by gauge factors. It follows
from the properties of the gauge transformation that
in each term the operator and the gauge factor upon
which it works may be commuted if simultaneously
q is taken as the position of the nucleus corresponding
to the atomic orbital upon which the operator works.
After this exchange we expand the operator as a power
series in H and write symbolically

Hiyg= (V3| 300 | W)+ (V1| 4301 | W)+ (T | 30 | F2).

The expansion terms are uniquely determined by this
definition although we may have a different expansion in
each integral into which Hj; may be expressed. Equa-
tion (31) may conveniently be rewritten as

x=x0(Qo+01+Q2),

— i Qo= (Fo| T2 | o) — X & (Ex—Eo) (¥ |i5C: | ¥o)
X (T |13 [Fo)¥,

(32)

— Hx Q1= (‘i’olﬁfo‘“Eo[‘I’n) .
— Xk (Ex—Eo) (¥, | 5o— Eo| ¥o)
3 X (Wi | Ro— Eo| o)*,
— H2x0Q= (Yo i1 | ¥o) 3
— >k (Ex— Eo)'[(¥1]i80: | ¥o)
X(‘i’”j&o—Eo{‘i’o)*"f‘ <§’k‘13‘é1| ‘PO>*

X (¥ |Ro—Eo[¥o)].  (33)

HAMEKA

In former work®? it was erroneously supposed that
Q1 and Q; both vanish identically.® We investigate this
matter in Sec. IV, where it appears that for the H,
molecule Q1 and Q, give small but non-negligible
contributions to the susceptibility.

Also for a calculation of ¢ it is convenient to commute
the Hamiltonian and the gauge factors following it,
and subsequently to expand the operator as a power
series in H and u. We write symbolically

Hyq= (U1 | 8o,0| W0)+ (V| iF01,0| Ti)+ (W | 300 1 | F))
(W[ Re1,1 [ ),
where the first and the second subscripts of 5 denote

the powers of H and u, respectively, that are contained
in the operators. Then

o=0¢(Py+P1)
uHooPy= (V0| 501,1| To)+(Fo|iFCo 1| ¥o)
=2k (Br—Eo){(¥x] i8C1,0| ¥o)*
X (W] 80,1 Wo)+ (¥ | iFC1,0 | W)
X (T [i5Co,1 | Fo)*)
/J,HU()P1= ""Zk (Ek"Eo)_l{Ci’klij‘Co'l[jé@*
X(‘i'k]@O,O*Eol‘io>+<‘i’k!i@0,ll‘i’0>
X (Wi |5Co,0— Eo| To)*}.

(34)

(35)

Also P, was erroneously supposed to vanish identi-
cally in previous work®®; we investigate the conse-
quences of this in Sec. V.

Both Eq. (13) and Egs. (33) and (35) are exact
formulas for x and ¢. For practical applications we
have to introduce some approximations. The eigen-
functions ¥, and ¥}, are not exactly known in general,
so that we have to substitute approximate functions
¥y and ¥;. Usually the eigenfunctions ¥, are known
less accurately than ¥. The errors that are introduced
in this way are inherent to the approximations in the
wave functions and the discussion of this is beyond
the scope of this paper. We do believe, however, that
the magnitude of these errors has been grossly over-
estimated in the past.?1°

An additional source of error results from the approxi-
mations involved in evaluating the infinite series in
Egs. (13), (33), and (35). It would be virtually im--
possible to calculate every term of this series so that
various approximations have been introduced: (i) The
energies in the denominators have been replaced by an
estimated average energy, so that the sum could be
transformed into a single term containing only W,;
(ii) only a finite number of terms have been taken into
consideration; and (iii) the series has been omitted
altogether. Only the first of these approximations has

" H. F. Hameka, J. Chem. Phys. 34, 366 (1961).

8 This error was brought to my attention by J. H. Van Vleck
(private communication).

% C. A. Coulson, Proc. Phys. Soc. (London) A54, 51 (1942).

10 ].)V. Bonet and A. V. Bushkovitch, J. Chem. Phys. 21, 2199
(1953).
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some claim of reliability, but since it is difficult to
estimate the average energy it can still lead to a large
error.

In various cases the magnitude of the infinite series
has been derived from experimental data on rotational
magnetism; we discuss this in the next section. Apart
from this, only one serious effort to make a detailed
study of the behavior of the infinite series is known.
Snyder and Parr" investigated for the hydrogen atom,
for which an exact calculation can be performed, the
contribution of the various terms of Eq. (13) to the
magnetic susceptibility for a few possible choices of
gauge of the vector potential. Although the infinite
series is zero if the origin of r in the vector potential is
taken as the nucleus, they deliberately made some
unfavorable choices to investigate the behavior of the
infinite series. It was found that a large part of x
resulted from contributions of the continuum and that,
if the infinite series is calculated by taking an average
excitation energy in the denominators, this energy
term may vary as much as by a factor 500 for the
different choices of gauge that were considered.

This shows that it is very difficult to make reliable
theoretical estimates of the infinite series in Eq. (13)
for molecules. Therefore it is highly desirable to choose a
favorable gauge for the wave function, so that the
infinite series becomes as small as possible or at least
rapidly converging. This is realized by the procedure
that leads to Egs. (33) and (35). Also Rebane’s varia-
tional method* seems to offer a promising approach
into that direction but no practical applications of this
procedure have been reported.

Since it seems to be inevitable that use be made of
approximations in the calculations, one might just as
well introduce them at an earlier stage. The ground
state eigenfunction ® of 3C,, may be written as

@=¢‘0+H' (1’1*'!}‘ (1’2, (36)
where the ®; are functions of the electron coordinates
only. It is possible to obtain approximate values for
Ey, x, and ¢ by taking various trial functions for ®,
®;, and @, each containing a certain number of
parameters, and by minimizing the energy with respect
to the parameters. The gauge of the vector potential
then becomes irrelevant because the parameters
automatically adjust themselves to the most favorable
gauge during the minimizing. A very complete calcu-
lation of x and ¢ of the hydrogen molecule was per-
formed by Ishiguro and Koide? along these lines by
substituting James-Coolidge type functions®® for the
®,. However, an extension of this method to more
complicated molecules than H, seems to be practically
impossible.

111, C.Snyder and R. G. Parr, J. Chem. Phys. 34,837 (1961).

12 E. Ishiguro and S. Koide, Phys. Rev. 94, 350 (1954).

BH. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825
(1933).

A special type of variational function was proposed
by Tillieu and Guy,**'* namely
o=Y,(1+H-g), @37
where for ¥, some known approximate ground-state
wave function is substituted, whereas g is a simple
linear or quadratic function of the electron coordinates,
the coefficients of which are varied in order to minimize
the energy. The accuracy of this procedure is difficult
to judge at first sight, but the method has given fairly
reliable results in various applications. Das and
Bersohn!® have calculated proton magnetic shielding
constants from similar variational functions.

III. ROTATIONAL MAGNETISM

It is expected from general physical considerations
that in a rotating molecule there may be a magnetic
moment resulting from the ring currents of the electrons
around the center of gravity. The theory of this phe-
nomenon was worked out by Wick,'” who established
a connection between the rotational magnetism and
some earlier work on the diamagnetic susceptibility
by Van Vleck and Frank.!® A closely related quantity
is the value of the magnetic field at the position of a
proton in the hydrogen molecule due to the rotational
magnetic dipole, which was also calculated by Wick.?
It was shown that this effect is related to the proton
magnetic shielding constant.?

These two phenomena have become very important
in the theory of diamagnetic susceptibilities and proton
magnetic shielding constants, since it was reported that
reliable experimental information about them may be
obtained from molecular beam experiments.2—2

We outline the theory of the rotational magnetism,
following the work of Wick.!”+*® The rotational magnetic
dipole ur may be calculated as the expectation value
of the angular momentum operator M with respect to a
fixed coordinate system, and the magnetic field H, at
the position of proton ¢ due to this dipole may be
derived from the operator r,73(jXr,), where j is the
electron current density vector. However, there is an
additional complication in the calculations, which we
investigate for the special case of the hydrogen molecule.

1 J. Tillieu and J. Guy Compt. rend. 239, 1203 (1954); 239,
1283 (1954); 240, 1402 (1955).

15 . Tillieu, thesis, Paris 1957 (unpublished).

16 T, P. Das and R. Bersohn, Phys. Rev. 104, 849 (1956).

17 G. C. Wick, Nuovo cimento 10, 118 (1933).

18 J. H. Van Vleck and A. Frank, Proc. Natl. Acad. Sci. U. S.
15, 539 (1929).

19 G, C. Wick, Phys. Rev. 73, 51 (1948).

20 N. F. Ramsey, Phys. Rev. 78, 699 (1950).

2L R. G. Barnes, P. J. Bray, and N. F. Ramsey, Phys. Rev. 94,
893 (1954).

22 N. J. Harrick, R. G. Barnes, P. J. Bray, and N. F. Ramsay,
Phys. Rev. 90, 260 (1953).

23 H. G. Kolsky, T. E. Phipps, N. F. Ramsay, and H. B. Silsky,
Phys. Rev. 87, 395 (1952).

24 N. F. Ramsay, Phys. Rev., 87, 1075 (1952).
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The Hamiltonian of the hydrogen molecule consists
of the sum of the four kinetic energy terms of the two
protons and the two electrons, and of the potential
energy. Consequently it is a function of 12 variables,
namely the four sets of Cartesian coordinates of the
protons and of the electrons. It is now profitable to
introduce the following new set of coordinates: the
coordinates X, ¥, and Z of the center of mass; the
distance R of the two protons; the angles § and ¢,
which denote the orientation of the vector 4B connect-
ing the two protons; and the Cartesian coordinates
(&1,11,¢1) and (£9,m2,¢2) of the electrons with the center
of mass as origin and AB as z axis. The Hamiltonian
may now be rewritten as?

H=3Co(X,Y,Z)+31(£,m,$1;5 £2,m0,25 R)

~+3Co (R)-+R~23C5(6, 0)
+R—2ZC4(51,711,§1; 52777215-2; 0; ﬁ")) (38)

where 3Co is the kinetic energy of the center of mass,
3Cy1s the Hamiltonian of the electrons for the case where
the nuclei are fixed at distance R, 3C, represents the
vibrations of the protons, 3C; stands for the rotation of
the molecule, and 3C4 is a small correction term that
couples the electronic motion with the rotation which is
usually neglected but is very important in the theory of
rotational magnetism. The term J3C; may be separated
and is of no further importance; it will therefore be
omitted.

A reliable approximation to the eigenfunctions of
Eq. (37) may be obtained as follows: First we find the
eigenvalues E;, and eigenfunctions F of 3Ci, they will
contain R as a parameter. We substitute this result
into Eq. (37) and assume that the derivatives of F
with respect to R are negligible as compared to the other
terms.?8 This enables us to find the eigenfunctions v,
and eigenvalues %, of 3Cy; they are to a good approxi-
mation the solutions of the harmonic oscillator equation.
If we finally neglect 3C4 we obtain the eigenvalues es
and the eigenfunctions gs,ar of 3C3; the gs,ar are the
solutions P;!Ml(cosf)e™¢ of the rigid rotator equation.
The approximate eigenvalues and eigenfunctions of 3¢
are thus

E(kn,J)=Et+hates,

Q(k)”’:])M) =Fk(£17771,§'1§ 52;772);-2; R)vﬂ (R)
X P Mi(cosf)eiMe, (38a)

If one attempts to evaluate pu, and H, from the
function ®(k,n,J,M) the result is zero. Clearly it is
too approximate a wave function for this purpose.
From a careful analysis of the various approximations
involved in deriving Eq. (38a), Wick concluded that it
was inadmissable to omit 3C4, whereas the other approxi-
mations are allowed for calculations of u, and H,. The

25R. de L. Kronig, Band Spectra and Molecular Structure,
(Cambridge University Press, Cambridge, 1930).

26 This is inherent with the Born-Oppenheimer approximation:
M. Born and J. R. Oppenheimer, Ann. Physik 84, 457 (1927).

detailed form of 3C4 is

7? )
3Cy= [2im;—~+mgz+m,,2

pR? a6

1 9
+2m;; <z‘———+m; cos0>:|, (39)
sinf\ d¢

where

{9 ] 9 9
my= —z(nr———— Sr—Fne—— §‘2—> and cycl., (40)

1 I I O
and where M p is the mass of the proton. We may treat
JC4 as a small perturbation, so that to a first approxi-
mation the wave function for the electronic ground
state becomes

V(0,/,M)=®(0,J,M)—>"x X5 2om+ (Ex—Eo)™
X(@(k,J',M")|A|®(0,],M))

X®(k,J' M), (41)
where
h? I:Z 0+ 21 d )
A= M— —~—m———] 42
MpRL 00 sing oo

The other terms of Eq. (39) cancel on account of the
radial symmetry of the electronic ground state.

The rotational magnetic moment u, may be calcu-
lated as the expectation value of the angular momentum
operator in a fixed coordinate system with respect to
the function ¥(0,7,M). According to Wick?!

pr= 452/ M pR?) 3"y (Ex— Eo)™
X ((Fo|M|Fy),(F| M|Fo))[J (J+1) 0

This infinite series is identical with the sum in the
first of the Egs. (13) if in the latter the gauge is chosen
in such a way that the origins of the r; occurring in the
A/ are all taken as the center of mass of the molecule.

By taking the expectation value of 7,73(3Xr,), where
] is the electron current density, Wick® also found

H,= 21/ M pR?) >}, (Ey—Eo)™!
X{((Fo|L|Fy),(Fc| M| Fo))
+ ((Fo| M| Fy),(Fu| L|Fo)}[J (J41) %

The infinite series here is the same as the sum occurring
in the second Eq. (13) if in the latter the gauge is chosen
in such a way that the origin of the r; is taken as the
point where the magnetic field H, is calculated, in this
case the proton a.

The connections between Egs. (43) and (44) and
Egs. (13) have proved to be very useful for calculations
of x and ¢, since for a specific choice of gauge we may
replace the infinite series by reliable values obtained
from measurements of u, and H,. The first one to use
this connection was Ramsay® in his determination of
o for the hydrogen molecule. There is no experimental
value available for this quantity, so in this case it is
especially important to obtain a reliable estimate for ¢

(43)

(44)
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and it is very useful if one is able to reduce the possible
errors in the theory by making use of experimental
results. For more complicated molecules the experi-
mental data of H, seem to be less reliable than for
hydrogen, so that semi-empirical calculations in which
values of H, are incorporated are less accurate than
for Hz.

In the theory of magnetic susceptibilities Weltner?”
made use of experimental values of u, to derive the
x values for a series of molecules, including hydrogen.

Now that connections have been established between
x and u., and also between ¢ and H., it is obvious that
there are various possibilities in doing theoretical work.
Apart from performing ab initio calculations of either
X or u. it is possible to perform calculations of x in
which experimental data on u, are incorporated and
vice versa. In general the theoretical values of u. are
much less reliable than the results for x. This was
already observed in the original paper by Wick,”
which confirmed the results of earlier work by Van
Vleck and Frank,'® where it was found that it is
difficult to make accurate estimates of the infinite
series. Only in a recent paper by Espe,*® who based his
calculations on a model assuming irrotational flow of
the electronic motion, satisfactory values were obtained
for u, and H, in the hydrogen molecule.

IV. CALCULATIONS OF x WITH GIAO

In Sec. IT we discussed the calculation of x and ¢
from molecular wave functions that are constructed
from gauge invariant atomic orbitals (GIAO). In
particular we derived Eq. (33) for x and Eq. (35) for o.
The magnetic susceptibility x was found to be a sum of
three terms: Qo, Q1, and Qs; and similarly the proton
magnetic shielding constant o is the difference of Py
and P;. It was mentioned that in earlier work®7 the
contributions of Qi Qs and P; were erroneously
supposed to be all zero.® In the present section we
investigate what are the consequences of this error
for calculations of x, the next section is dedicated to
similar considerations for calculations of ¢. In this
paper we consider only the hydrogen molecule; this
does not mean that there is no need to consider more
complicated molecules, but solely that the consequences
of this omission may be better understood for a simple
system. We will consider more complicated molecules
only after the theory has been put on a satisfactory
basis for hydrogen.

The values obtained for Qo, Q1, and Q. depend on the
particular approximate function ¥, that is substituted
into Eq. (33). In the following three subsections we
first consider the case where ¥, is a molecular orbital
function suggested by Coulson,”® next we substitute
a function that was derived by Wang® and finally a

27 W, Weltner Jr., J. Chem. Phys. 28, 477 (1958).

28 T, Espe, Phys. Rev. 103, 1254 (1956).

2 C. A. Coulson, Trans. Faraday Soc. 33, 1479 (1937).
% S, Wang, Phys. Rev. 31, 579 (1928).

TABLE I. Integrals for Coulson’s function.

S (ha |k 0.675 998
I/ Uta| ot | ) 1.197 000
I (ho|7ra™1— Rzara™| hv) 0.182 458
Iy (o |7a™t| ha) 0.599 456
I/ (ha|7a?| o) 2.093 789
I (o |7a2| ha) 2.009 196
Iy {ha| 52| ha 0.697 930
I/ (ho| 22| ha) 0.537 237
Iy 2(ha|8%/052| hta) —0.955 206
1y 2(hy|32/02| ha) —0.478 366
Ilo' <hb st hb> 0.647 337
My (ha| %o 37y | By 0.121 437
My (ho|a®ra 3rs 2| ho) 0.099 074
My (ha|aPra ™7y By) 0.203 129
My {ho| 2o 3r 2| hy) 0.083 853

function proposed by Rosen.’! For both Coulson’s and
Wang’s functions Q. is equal to zero.

1. Calculations with Coulson’s Function

Coulson® proposed the following simple molecular
orbital function for the ground state of the hydrogen
molecule:

Vo=do(1)¢o(2), (45)
where
G0(1) = (24+28)H{ha(0)+hs(3)}
S= (la| v
ho= (¢/m)t exp(—gqra) ¢=1.197. (46)

This approximation, where ¥, is written as a simple
product of one-electron functions, implies the assump-
tion that there exists an effective Hamiltonian 3C¢,
such that

3Co'do= eatho, (47)

where ¢ is the smallest eigenvalue of the operator.
There exist also the higher eigenvalues e, and corre-
sponding eigenfunctions ¢;:

3Co'dr= expr (48)
which together with ¢ form a complete set.
For this particular function ¥, we have
Fe1| ¥o)=0 (49)

where the notation of Eq. (32) is used. Consequently

Q2=07

Qo= (¥ |3 | Fo), (50)

which simplifies the calculation of x considerably.

The contribution of Qo to the susceptibility may now
easily be expressed in terms of the integrals that are
defined and tabulated in Table I:

Qo= B3/E)(A+S)[(I/— 1+ I —I/)(H2+H,?)
+2(I¢+I7)H 2]
31 N. Rosen, Phys. Rev. 38, 2099 (1931).

(1)
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The quantity Q; may be expressed in terms of
the operator 3Co" and its solutions e and ¢y:

XoQ1= (2/H)[(bo| 5o’ — eo| $0)
—>" % (ex—€0) " Hr| Fo’ — €o| o)
X (P | To'— €0] p0)* ],
where the following notation is used:

(a) The functions ¢ are derived from the functions
¢ by replacing the atomic orbitals by GIAO;

(52)

b1= kat i
- 53
&r= favrat foors, (53)
where
fa=expliey(q—a)/kc] (54)

fo=exp[iey(q—b)/kc].

(b) The operator o is obtained from 3C,’ by
commuting the latter with each gauge factor f, and f;
following it.

We may now write

Go=3(fat fo)bot+3(fa— fo)go

0= (24+25) b= 1) 9
and consequently,
3¢y’ — eo] o) =3 (fa— /5) (30’ — €0) | go)- (56)

If this result is substituted into Eq. (52) we obtain

xoQ1= (4L/H®)[{go| 5 (fa— f5)*5(fa— f5) (3o’ — €0) | g0)
— 2k (ee—e0) ™ Yor| 3 (fa— fb) (38— €0) | go)
X (@13 (fa— f5) (3o’ — €0) | g0)* .
If we define

;= CR(nyi"nyi)/‘th,

7

(58)

where R is the distance between the two protons, this
expression may be simplified to

x0Q1= (4L/H2)[<go l e (3Cy' — €o) { go)
=2k (er—e€0)Yx| (30— €0) | go)

X {@r*|a (3 —e0) [g0*)].  (59)
By making use of the following two relations:
(di*| (3o — €0) | g0*)=(go| (3€s'— €0)ar| B1)
= (ex— €0){go| @] p1)—(go| A|B4),
eRA 9 d
Ai=—(H,,——-—Hx ) (60)
dmec\  Ox; 3y
and
{go] a*(3Co'— €0) | g0)
=2k (gol | pr){er] a(3C' —€0) [ g0), (61)
we may transform Eq. (59) into
4L _ (x| (3 — €) I80><g0|A|¢/c>' ©2)

XoQ1=—2_"k
) H? €1~ €0

F. HAMEKA

Again, since

{pr]a(3C' — €0) | go)= (er— €0){¢r| @[ go)

(gol M| goy=2"r {go| Al pu){r || go), (63)
we obtain
(H*0Q1/4L) = (go| Acr| go)+2_x (ex—€0)™
X{gol A|pr)(Pr|A]go). (64)

We may define an average excitation energy &é—eo
by means of

(E—e0)™ 2ok (go] A pr){de] A go)

=21 (ex— €)™ (go[ A B )i [ A go).  (65)
This definition allows us to rewrite Eq. (64)\ as
Hx0Q1
=(go|Aa|go)+—(go[A*[g0),  (66)
4 - €— €0
or
3R(H2+H,2) If—1Iy
Q1=———l:(1—5)+ :l, (67)
AI(14-S) e— e

where Is', I, and S are reported in Table I.

The calculation of Q; is straightforward if we can
make a reliable estimate of é—eo. Unfortunately this
is not easy; in order to solve it for this and other cases
let us reconsider Eq. (65). It is always permissible to
define é— €9 by means of Eq. (65), but this definition is
meaningful only if certain conditions are fulfilled, the
most important of which is in our case that the terms
of the infinite series are either all positive or all negative.
This requirement is satisfied for the series in Eq. (65).
Fortified by these considerations one might be tempted
to state that the value of é— ¢ should be taken between
the energies of the lowest antibonding 7 orbital and
the highest bound state of the molecule, that is 0.504 < &
—€<0.567 a.u. (compare®?). However, it may easily be
shown that this type of approach leads to incorrect
results.

Let us imagine that everywhere in .Eq. (59) the
function go is replaced by the function ¢, obviously
the right-hand side then becomes identically zero. By
means of the procedure that led to Eq. (67) we then
find
(@olAlgealAlg0)_

€ €0

(po| Aa|po)+2 %

(68)

Replacing the energies in the denominators by an
effective average energy ¢ —eo [see Eq. (65)], we
obtain

(1+8)+ (€ =€) (Zs'+1y) =0, (69)

which yields € — ¢9=0.855 a.u. There is not much doubt
that this value is outside the range of values between

3 G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1950) p. 340.
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the lowest bonding = state and the highest bound state
of the molecule; the value of € lies somewhere in the
continuum.

The preceding argument has only a negative value;
it has shown that an obvious way of estimating & is
wrong, but it does not offer an alternative method of
obtaining a more reliable value of &.

However, there is a different procedure by means of
which we may obtain a reliable estimate for & Let
us again consider Eq. (59) and let ¢; and e be the
eigenfunction and eigenvalue of the lowest antibonding
o state. Then

{b1]02(3C" — €1) [ ¢1)— 2ok (er— 1) ™| a(3Co'—€1) [p1)
X{p:|a(3d —e1)[¢1)*=0. (70)
Although the function ¢, is not exactly equal to go, it

bears a close resemblance to it, so that for an estimate
of an average excitation energy we may assume that

{gol@?(3C"— €1) [ go)— 2_k (er— €1) (| (3Co"— e1) | o)
X{pr|a(3Cy'—e1) [ go)*~0 (71)
and consequently

{go] Aa| go)+2"k (ex—e1)™(go| A|bx)

X {(ox|A|goy=0. (72)
If we now define
(&= €)™ 2i{go| Al dr)(de] A] g0)
= (e —e)(go| A2 )(o | Al g0), (73)
then
(1=38)+ (a1—e)(Is'—15') =0, (74)

which makes &—e=1.472 a.u. To within a good
approximation we may now take &—eo= (&1—e1)
~+ (e1— €0) and since e;—ep=0.410 a.u. (see reference 32),
we obtain é—eo=1.882. Substitution of this value into
Eq. (67) yields

H20:1=0.06195 (H 2+ H,?). (75)
From Eq. (51) it follows that
H200=5.13333(H 2+ H,2)+4.42184H.2.  (76)
Consequently, by combining Eq. (75) and (76):
Xz=Xy="95.19528x0; x.=4.42184x0;
x=4.93747x0. (77)

The contribution of Q; to the susceptibility is 0.0413xy,
which is 0.89, of the total effect.

We can take this result as a basis for calculating u..
Let us calculate the first term of Eq. (13):

X' =xo{¥o|r2+7r2?| Vo), (78)

taking the origins for both r; and r; as the center of
gravity of the molecule. Then

X' =201+ L+ I+ (1=5R] (79

or x’=5.08562x,. Consequently u,’=x'—x=0.14815x,.

2. Calculations with Wang’s Function

In this subsection we take W, as the following
function:

Vo= (242427 {s54(1)55(2)+55(1)54(2)},
A=(sal5s);
sqo=(8/7) exp(—pr.) B=1.17. (80)

Also in this case Eq. (50) is valid so that we are
concerned only with the first term of Qo and with Q..
It is profitable to make use of integrals that were
defined and evaluated in previous work.® We have
recalculated all required integrals and corrected some of
them together with some additional integrals that were
not calculated previously; they are all defined and
reported in Table IT.

From Egs. (33) and (80) we find that now

Qo= (Bxo/H?) A1+A2) [ (Ls+AT5— Aud

—AA) (HA+HH D) +2(0n/+A0)H ], (81)
TasLE I1. Integrals for Wang’s and Rosen’s functions.
A (salsp) 0.686 577
Aga (ua %m) 1.007 305
Aap (| 143) 0.779 704
A‘ml (15::::1 an) 0730 514
At/ (pral pzt) 0.568 552
I, (sa|7a7| 5a) 1.170 000
I, (sp|7a"1— Raara73| s0) 0.189 006
I3 {sp|7a 2| Sa 0.599 910
1, {$a|7a?| 5a) 2.191 541
I; {sb|74%| 5a) 2.109 364
Is 2(s4|8%/3x2|s4) —0.912 600
Iy 2(sq|0%/3%%|s6) —0.467 930
Iy (sp|7a7|50) 0.643 099
J1 {ta | 72| 2.231 564
J2 (tha |7a2| ) 2.369 811
Ja (140 | 22| tha) 0.738 519
Js (1o | 22| wp) 0.643 886
Js 21,82/ | a) —0.916 600
Jq 2{144|9%/02% | uv) —0.532 528
Js (1o | 72| ) 2.536 685
Js (o | 72| %p) 1.993 258
K, (ta|7a7 | %a) 1.174 273
K, (wp|7a 1 — Rzara 3| us) 0.210 323
j & (s | 7ot | 4a) 0.682 923
K, (up| 22r478| 54) 0.195 216
K (up|ra™ | Us) 0.682 620
L, (sa| 227673 5a) 0.390 000
L, (sa| %2073 sb) 0.175 338
Ls {sp| 22773 58) 0.125 044
L (ta| %2707 Sa) 0.427 350
Ls (o | 82757 SB) 0.316 412
M, (sa|a2ra 3rs 2| 55) 0.121 309
M3 (sp|ara %52 5p) 0.099 009
1"[5 (Sa xzfa_%'bgl Sb) 0.207 365
Mg (sp| 22737572 | s0) 0.082 145
M (e | 2270377 ) 0.162 327
M (up | s 3r5 7t up) 0.113 016
M, (o | 2% 5 | b)) 0.236 518
My (| 220 352 Un) 0.090 000
N, {1y, | %7473 Sa) 0.390 000
N (| 2%ra73| s3) 0.133 259
N, (1| a2rg 3| Sp) 0.180 008
N, {up| 2o 3| Sa) 0.195 216
N (o | 22074 Sa) 0.912 600
N (up| 22ra %7572 55) 0.104 690
N, (o | %274 55) 0.112 071
N (up| 227637571 5a) 0.133 465
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or
H2(Qy=5.13579(H 2+ H ?)+4.57066H 2.  (82)
For a calculation of Q, it is profitable to write
Vo=3{fa(1) fo(2)+ fo(1) fa(2)} ¥o
H (D) f5(2) = f6(1) fa(2)} Go,
Go= (2424%)7{s54(1)55(2) — s0(1)54(2)}, (83)
and to observe that
Ro—Fo| ¥o)=3{fa(1) f5(2)— fo(1) fa(2)}
X (3Co—Eo) | Go).  (84)

For our purpose we may replace Egs. (83) and (84) by

. ~‘i0= \I/0+i(a1—a2)Go,
Bo— Eo| ¥o)=1(c1—as) (3o— Eo) G,

[compare with Eq. (58)7], so that

H2% Q1= (Go| (a1~ 0a2)*(3Co— Eo) | Go)
=2k (Ex—Eo)™ (W[ (01— a2) (3o— Eo) | Go)
XA R*| (a1—as) (30— Eo) | Go*).  (86)

By means of a procedure analogous with Subsection
IV.1, one finds

H2X0Q1= (Gol (AI‘AZ) (ar-az) [GO}
+>k (Es—Eo)™M{Go| Ai— Az | T)

X{Ti|A1—A2|Go)  (87)

[compare with Eq. (60)]. Again we define an average

excitation energy E— E, by means of

(E—Eo)_l Zk <Go[A1—Az [‘I’k><‘I’kIA1_A2IGO>

=31 (Exv—Eo)y™{Go| Ar—Az| ¥y)

XU, | A1—As| Go).

(85)

(88)

This definition is meaningful as all terms of the series
have the same sign. As a consequence

H2X0Q1= (Gol (AI_AZ) (_cq—-az) iG0>
+(E—Eo)™Go| (A1—A2)*|Go)  (89)

3RNH2+H,2)
4R+

or

Is— Alg] (90)
E—FE,J

The critical point of the calculation is again finding a
reliable estimate for K. Following the procedure of
Subsection IV.1, we will again define an energy E, from

(Br—E1) ™ 1 {Go| A= As | Wi ) (W1 | A — A2 | Go)
=2k (Ex—E1)™Go| As— A | V)

[(1—A2>+

X (W[ A1—A2|Go),  (91)
and make use of the approximate equality
(1= 22+ (By— E)) ' (Is—Al) =0, (92)

where E; is the energy of the lowest antibonding o state.
It follows from Eq. (92) that E1—E;=1.119 and if we
take again E— Eo= (E1—E1)+ (Ei—Eo) we find that

HAMEKA

E—FE;=1.529 a.u. and also that
0?0,=0.14174(H 2+H ?).
Combination of Eq. (82) and (93) gives
Xz=xXy="5.27753x0; x.=4.57066x0; x=5.04191x,. (94)

The contribution of Q; to the susceptibility is 1.99,
of the total effect.

Also in this case we calculate x’, namely the first
term of Eq. (13) with the origin of r; as the center of
gravity of the molecule:

X' =2x0(1—A) [T+ Al:+1(1—A)R?]. (95)

It follows that x’=35.29949x, and that u,”, which is the
difference of x’ and ¥, is u,’=0.25758x.

(93)

3. Calculations with Rosen’s Function

In this section we substitute for ¥, a function that
was first proposed by Rosen®!:

Vo= (2A0a*+ 24062 H{uta (D)o (2) +us(1)ua(2)},
o= Sa+bpza,

Up= Sp—bP.s,
sa= (8%/)* exp(—Pra),

Dea=2%aSa Pp=2pSp and cycl,,

=117 5=0.10, (96)

where the positive z axis points from nucleus e to
nucleus b.

Now we have an additional complication since
301 ¥y) is not equal to zero. Instead we have

31| W)= — (et/2aomc)b[ Hy{ poa(1)us(2)
= pap(1)%a(2)F p2a(2)15(1) = pa(2)ua(1)}
—H o{ pya(D)us(2) — pys(1)%a(2)+ pya(2)ns(1)
—pus(2ua(1)} ], (97)

so that now we have to calculate Q. and the second
term of Qo. Fortunately it appears that the function of
Eq. (97) may be taken as a linear combination of the
eigenfunctions of the lowest antibonding = state in our
model, so that only one term of the infinite series in Qo
is different from zero. It thus follows easily that

Q=00 +Q0".
H2Q0'= 3 (Aaa2+Aab2)—'1[ (Aaa]1+ AgpS 2s—Aaat s
—Aap]5) (H2+H 2)+2(Aso] s+ Ao 5)H 2],
HQ" = — (Aad®+Aap?) HAE) 0 (Aalad’

_AabAab’) (H:c2+Hy2)7 (98)

where AE is the energy difference between the lowest
antibonding 7 state and the ground state. We will follow
Herzberg® in taking AE=0.504 a.u.; then

H2Qy = 5.26869 (H 2+ H 2)+4.60725H 2,

99
H2Qq"'=—0.01073(H 2+ H ). (99)
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The contribution Q; may be computed according to
the method outlined in Subsections 1 and 2. The
result is

3R (H2+H,?)
1=
4H2 (Aaa2+Aa b2)
]6 - Aa, bJ7

Aqq
X [ (Aaaz_ A, b2) +—_-——

E—FE, ] (100)

In order to estimate E—FE, we first calculate B1— E;
from

(Aaaz_'Aab2>+ (EI_E1>_1(AMI‘]6_AGZ>]7)%07 (101)
which yields B;— E1=1.249 a.u. Consequently we take

E—E;=1.659 a.u. (see Subsection 1), so that
H?(Q,=0.09102(H 2+ H ?) (102)

In order to calculate Q, we make use of the following
expression :

X0H2Q2= (’i(al—az)Gol '—‘13‘-(.31 I \I’0>
+<‘I’0|i(al—02)(—i5~cl)lGo>
=2k (Be— Eo)'[{¥i| —i50: | Wo)*
X (¥ (e1—az) (30— Eo) | Go)+{Ti| — il | W)

X ¥, | i(a1—as) (3Co— Eo) | Go)*], (103)
where ,
Go= (20 e+ 2A032) 10 (1)205(2) — 25 (1)%a(2)],
3C1= (et/2aimc)H-M,
M.=3;{y4(0/92;)—24(8/dy;)} and cycl,, (104)

and where ¢ denotes the nucleus belonging to the atomic
orbital upon which the operator works. These expres-
sions were also used in obtaining Eq. (97).

We may transform Eq. (103) into

xoH2Q2=—{(Go| (a1—a2) 1 [ W)+ (¥ | (01—2) 31 | Go)
+ 225 [{(Golar—aa| W )(¥ | 3C1 ] ¥o)
+<G0lal"'a2!\Illc>*<\I/lc[3-éll\I’0>*]
=2 k(Bx—Eo) [(Go| Ax— A [ Wi )(¥ | 81| W)
+(Go| Ay—Aq [ W )* (Wi | 1| ¥o)*], (105)
or
H2xoQ2={Go*| (e1—a2)1 | ¥e*)+(Wo| (e1—a2) 1| ¥o)
=2k (Ex—Eo) ™ [{Go| A1—Ag | Wi )(W | 31| o)
F{Go¥ | Ar— Ao | T*) (T * [ 501 | W) ). (106)
This may be reduced to
6Rb(H 2+H,?)

B H2(Aaa2+Aab2)

B
XI:AGGAGGI——A;(L‘iAaa_LEAa b)], (107)

A

since the only ¥ that need to be considered in Eq. (106)

are those that belong to the lowest antibonding =
orbital. The numerical value is

H?Q,=—0.16010(H 2+ H }?). (108)

The final result is obtained by taking Egs. (99),
(102), and (108) together:

Xz=Xy=5.18888x0; x.=4.60725x0;

x=4.99500x0. (109)

In order to determine u,” we calculate x’, the first

term of the right-hand side of Eq. (13) with the center
of mass of the molecule as the origin of r;:

XI = 2X0 (Aaa,z'l"Aabz)*l (Aaa]8+Aab~]9),

or x'=5.06516x,. The rotational dipole is found as the
difference of x’ and x : u,/=0.07016x,.

(110)

V. CALCULATIONS OF ¢ WITH GIAO

In this section we discuss the calculation of the
magnetic proton shielding constant ¢ of the hydrogen
molecule. In particular we consider the evaluation of
the quantity P; of Eq. (35), which was omitted in
previous work.®® Again we consider the three cases
where ¥, is approximated by Coulson’s function,® by
Wang’s function,® and by Rosen’s function.®

1. Calculations with Coulson’s Function

If we substitute in Eq. (35) Coulson’s function for
¥, as defined in Egs. (45) and (46), both quantities
Py and P; may be expressed in terms of one-electron

integrals. The calculation of Py yields
Po= (14+9)1(I/+1,'+21)=1.53841. (111)

For a calculation of P, it is convenient to define the
one-electron operator

. e 1 9 9
Ko () = ——r ~[u,(ya,—— za,—>

MC Vaf dz; 3y;
d a
+ﬂy(za]__ xuf—>
(-)x,- aZj

a a
+I»‘z(xa1—"'“ yaJ—'—):I- (112)
ay; ax;

We may then write

pHooP1=—2 3 i (ex— e0)'[(Pr|i3Co,1| o)*
X{r| T’ — €0l d~>0>+<$k|iﬂco,1l|¢~>o>

X |3Co"— €0 $0>*:|- (113)

Tt is useful to note that

3o, (o (f) = (24-25)73Qh(5),

(114)
Q= (qRet/mc)rairs ;™ (uyti—psys),
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which permits us to write Eq. (113) as

pHooPi=—VZ(14-5)72 3ok (ex— €)' [{px| Q| 113)
X{pr| (38" — o) | o)+ (b | 2| /o3)

X{pr|a(3Co'—e0) [g0)], (115)
or
uHooP1= —\/ZZ(I—I-S)_%{Z(go[aQ]hb)
— 2k (ex—e0)"[{go| A br)(dk 2] F0)
+{go[Aloi*)(pi*| @] 1)1} (116)
If we define an energy é—e by
(&—e0)™ 2k [{go| A pr){¢r 2] 212)
+{(gol A ¢*Nbi*[ 2 7)]
=2k (ex—e) " [{go| A | pr){¢x | 2] F10)
+{gol A o™ N ¥R 2], (117)
then we can transform Eq. (116) into
pHooPy=—2V2(1+S)*[(go| | 113
— (&= (go| AQ[ B2)], (118)
or
Py=—gR(1+45)
XLMy —M5)—q(e—e)H(Ms'—M)]. (119)

At this point we are faced with a similar problem to
that involved in evaluating Eq. (67), namely how to
make a reliable estimate for é—e.. Now the situation
is even worse because the terms of the infinite series
of Eq. (65) all had the same sign, whereas this is not
necessarily true for Eq. (117). Consequently we may
argue that from a mathematical viewpoint, Eq. (117)
determines a value & but that from a physical view-
point this is not a meaningful quantity. The only

available procedure to estimate é— ¢ is to use a method
similar to Eqgs. (70)-(72), that is to make use of

(M —My)—q(e1—e) (M5 — M) =0,

t—eo~ (&1—e1)+ (e1— €0),

(120)

where e;—e¢o is the excitation energy from the ground
state to the lowest anti-bonding o state and where &
is defined by

(e1— €)™ Tk [{go| A| dr)(br| Q| B13)
+{go| Al p*)x*| 2| )]
=2 (=€) '[{go] Al 1 ){r |2 110)
+(go| A di*) (x| Q| k)] (121)

We find then that &—e1=06.366 a.u., é—e¢=06.776 a.u.,
and P;=—0.00190.

The total value is o= 1.536510.

This result may be taken as a basis for a calculation
of H,', the rotational magnetic field at the position of
proton a. We calculate ¢/, that is the first term of the
second equation (13) taking the origin of each r; as
proton a:

o= (1+S)_1(11,+213’+110/)0'0 (122)
or ¢’=1.81578¢¢. H,' is then found as the difference
of ¢’ and ¢: H,/=0.27927¢,.

2. Calculations with Wang’s Function

If we substitute Wang’s function as defined by
Eq. (80) into Eq. (35), the calculation of ¢ is very
similar to that of the preceding subsection. We obtain

pHooPr=— (24248273 374 (Ey— Eo)'[{¥+*| (ea—a2) (3Co— Eo) | Go) (¥ | 2| 50(1) 55(2))
(U] (1) (30— Eo) | Go)( Wi | | 55(1)5a(2))+ (T | (ar—a2) (30— Eo) | Go)(W ¥ || 50 (1)55(2))

where

Q' = (BRet/me)r o ro (uyij—pay;).  (125)

Equation (124) may be transformed into

ﬂHO'()P1= —\/?(1+A2)_%I:<Gofa1—aglQg’Sa(l)Sb(Z)
+'s5(1)5a(2))— 2% (Ex—Eo)™?
X{Go| Ar—As | T ){(T 1| Qa'5,(1)55(2)

+'se(1)sa(2)) ], (126)

which may be reduced to

BR? B(M¢—AM ;)
Pi= [(Ma—AMl)——_—} (127)
14-A2 E

—F,

Po= (1421 (I 1+ 12+2A15) (123)
or Py=1.48348.
The contribution P, is given by
F(r| (@1—a) (30— Eo) | Go) (¥ * | | 55(1)54(2))],  (124)
if E—E, is defined by
(E—Eo)_l Zk <Go|A1“‘A2[\I’k>
KXWk | Qe'50(1)55(2)+Q1"s(1)54(2))
="k (Ex—Eo){Go| Ar—As | ¥)
X1 | Qs'sa(1)55(2)+Q 56 (1)54(2)).  (128)

If we make use of the relation
(M 35— AM,)—B(E1—E)(Me— AM5) =0, (129)
where E is defined by

v (Er—E) ™ Tk (Go| Av— A2 W)

X (W5 | Q50 (1)55(2)+ Q55 (1)s54(2)
=3 (Er—E1)Go | Ar— A | T)

X (W] Qo's0(1)s6(2)+21's6(1)54(2)), (130)



MAGNETIC PROPERTIES OF MOLECULES 99

for a calculation of E;—E;, the result is E,—E;
= —4.482 a.u. This is a peculiar value from a physical
point of view, but we argued already that no actual
physical meaning may be attributed to energy values
that are defined by a series as in Eq. (130) unless the
terms of the series all have the same sign, which is
clearly not the case here. Apparently the series on the
left-hand side of Eq. (130) contains terms that have the
same sign as the sum of the series and also terms that
have opposite sign. If every term is divided by the
corresponding energy, as in the right-hand side of Eq.
(130), it is possible that the values of the former terms
are decreased with respect to the latter and if this
effect is large enough E;—E; may become negative.
From this reasoning it should follow that this effect
diminishes if E is replaced by Eo. We therefore suggest
taking B— Eo= (B1— E1)— (E1— Eo¢)= —4.892 a.u. This
supplies a very crude estimate for £— E,, but since both
M;—AM, and M¢—AM; are very small we need not
worry about the approximations in deriving the value
of E— E,. Substitution into Eq. (129) gives P;=0.00132
and o= 1.48480¢,.
In order to determine H,” we first evaluate ¢”:

o' = (14 A1 (I1+2A 5+ T 1), (131)

which yields ¢’=1.79151¢,. Consequently H,  is found
as the difference of ¢’ and o: H,’=0.30671.

3. Calculations with Rosen’s Function

In calculating ¢ from Eq. (35) by substituting
Rosen’s function, as defined by Eq. (96), we encounter
more difficulties than in Subsections 1 and 2 because
various terms that could be omitted there are now
different from zero.

In calculating Py, the first two terms may be taken
together. If we call their sum Py, then

P0,= (Aaa2+Aab2)—1
X{Aua(K i+ K) 28 Ki—2BRES)  (132)

or Py/=1.48371.
In order to calculate the infinite series occurring in
Py, let us observe that

R1,0| Vo) = (24 0a>+2A01%) ¥ (eht/ 2me)b[ (H yat1— H zy1)
X{sa(Duy(2)—so(V)uea(2)} — (Hywa— Hoy2)
X{ua(D)sp(2)—us(1)sa(2)}], (133)
and also that

JCO'IIWO): (2Aaa2+2Aab2)_%(eh/mc) [bral_g(ﬂyxl_#zyl){Sa(1>”b(2)—'sb(1)“a(2)}_brlﬂ_s (ﬂyx2""ﬂxy2)
X{wa(1)55(2) —us(1)5a(2)} +BRrar 7557 (uyo2— poy2)tha(1)u5(2)

Consequently the contribution Py’ of the infinite series
to Py becomes

Py'=—(Ael+Au®)HAE)
X[6*{Aca(Li+Ls)—2A45Ls}
—bBR{AwaNs—AssNs} ], (135)

where the value 0.504 may be substituted for AE
(compare Sec. IV. 3). It follows that Py"’=—0.00272
and that Po=1.48099.

In order to calculate P; we observe that

pHooP1=—3 (Ex— Eo) ™ {{¥x|13Co,1| ¥o)*
XA |7 (a1—az) (3Co— Eo) | Go)+ (¥ x| 13Co,1 | Fo)
X (Wi (r—a) (3¢o— Eo) | Go)*]  (136)

where G, is given by Eq. (83). If we substitute Eq. (134),
it seems profitable to write Py as a sum of two terms,
Py and P¢":
P1,= _bR(Aua2+Aab2)_1
X[{Aaa(N1+N2)""Aab(N3+N4)}
- {Aaa (N5+N6) - Aab(1V7+N8)} (E’— EO)_I:]:
PIH =BR2 (Aaa2+Aab2)—1[(AaaMS_AabM7)
- (AaaMlo—AabMi)) (E”'—EO)—«I:L (137)
where E' and E” are average excitation energies

pertaining to Py’ and Pi”, respectively. In order to
estimate the values of £’ and E" we make use of the

+BRr o1 1o (uy1— py)us(Dua(2) ] (134)

method proposed in Sec. IV.1: First we notice that
{Aca(N1+N2)— A (Ns+Ny)}

- {Aaa(N5+Ns)-Aab(N7+N8)} (EII—EI)—IzO,
(AaaMs_ A111721[7) - (AaaMIO— AabMQ)

X (E/"—E;) =0, (138)
which yields E/— E;=3.5532 a.u. and E,""—E;="7.3679
a.u. It is assumed then that £’ and E"” may be ob-
tained from

E'—Eoz (EII—EI)"“ (El—Eo),

E”““Eoz (Elll—‘El)—i" (El“Eo),
so that E'—FEy=3.963 a.u. and E'—E,=17.778 a.u.
It follows that Py=—0.00209, P,’=—0.00093 and
a=1.477970,.

For a calculation of H,' we first determine ¢':
0',: (Aaa2+Aab2)_1
X (AgaK1+AuKs+2A,3K3).  (140)

o'=1.80908sy and also that

(139)

It follows that
H,/=¢"—0¢=0.33111.

VI. DISCUSSION

In Tables ITI and IV are collected various theoretical
results for x, ./, o, and H,' together with the experi-
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TaBrE III. Theoretical values of magnetic susceptibilities
and rotational magnetic moments.

Wave function

Xz Xz X Il'r’
5.1953 44218 49375 0.1481 Coulson®
5.2775 4.5707 5.0419  0.2576 Wang?
5.1889  4.6072 49950  0.0702 Rosen®
5.21 4.42 495 0.18 CoulsonP
5.48 4.61 5.19 0.21 WangP
cee e 5.1348 0.1902 James-Coolidge®
5.30 0.64 Wangd
een 0.085 Coulson®
I 0.096 Nordsieckf
5.00 0.1068  Experimental

a This paper, GIAO method.

b Obtained by means of a variational procedure where the trial function
contains terms proportional to the magnetic field. See Tillieu and Guy,
references 14 and 15.

¢ A very complete variational calculation with a James-Coolidge type
wave function, expanded in elliptical coordinates and containing the
magnetic field. See Ishiguro and Koide, reference 12.

d The original calculation of Van Vleck and Miss Frank, reference 18,
where the center of the molecule is taken as the origin of the vector potential.

© See reference 27.

f See reference 28.

mental values as far as they are known (all expressed
in terms of xo or ao).

If an attempt is made to classify the merits of the
various methods by comparing their results with the
experimental data, one is hampered by the lack of
accuracy in the experimental values, for example the
reported x values vary between 4.97x, and 5.05xo.
The experimental value of u,” seems to be known with
similar accuracy. An experimental result of ¢ is not
available, but H,' is known to within a few percent.

Considering Table IIT first, we are tempted to
believe that the most reliable value of x is supplied by
the calculation of Ishiguro and Koide!? because a very
accurate wave function was used, but the numerical
results do not seem to justify this idea. This calculation
has also a more essential disadvantage, namely that the
method cannot easily be extended to molecules larger
than hydrogen. A convenient method of calculating x is
the one proposed by Tillieu and Guy.'*!5 The only ob-
jection one might have against their calculation is that
it is hard to estimate which errors are introduced by
employing the variational trial function proportional
to H. The accuracy of the theoretical results seem to be
satisfactory. It seems that the best agreement with the
experimental value is obtained by our present calcu-
lation from Wang’s and Rosen’s functions, but this is
probably fortuitous; considering the approximations in
the wave functions we would not expect the theoretical
results to be more accurate than 19, or 29,. Also, the
result for u,” obtained from Wang’s function differs
considerably from the experimental value.

The results for ¢ and H,” may be discussed in a
similar fashion. The most reliable value of ¢ is probably
the one derived by Ramsay from a semi-empirical
argument. Our results agree satisfactorily with this
value, also the difference between the value of Ishiguro
and Koide and ours is not large.

If we compare the GTAO method for calculating o

H. F. HAMEKA

with Eq. (13) and also with Rebane’s variational prin-
ciple, it is easy to see what the advantages of the GIAO
method are; it constitutes a convenient simple approxi-
mation to Rebane’s Eq. (23). For spherically symmetric
atomic orbitals we have an exact solution of Eq. (23),
and if the atomic orbitals contain angular terms, we
have at least an approximate solution of Eq. (13). In
the latter case it might be possible also to obtain an
exact solution of Eq. (23) but the resulting gauge
factors would be much more complicated and it would
be more difficult to apply the method. The present
GIAO method thus forms a compromise between simple
gauge factors and as accurate as possible a solution of
Eq. (23). A disadvantage is that now we have to
consider the terms Q; and Q,, but it seems that these
terms are smaller than the infinite series in Eq. (13)
and that it is also easier to evaluate them.

From an analogous physical argument, in the case of
angular dependence of the atomic orbitals, the GIAO
method supplies us with a satisfactory but not the best
possible choice of gauge.® Instead of an electron in a 1s
orbital, we consider a harmonic oscillator. Clearly the
best possible choice of origin of the vector potential is
the center of the 1s orbital in the first case and the
equilibrium position of the harmonic oscillator in the
second case. If we add a homogeneous electric field
to the potential function we obtain a new harmonic
oscillator with a displaced equilibrium position; clearly
this new equilibrium position is to be taken as the
origin of the vector potential now. In a similar fashion
one may argue that for an electron occupying an
asymmetric atomic orbital the origin of the vector
potential should not be taken as the nucleus belonging
to the atomic orbital but slightly toward the center of
mass of the electronic charge cloud. However, our
gauge factors still are a good approximation to the best
possible gauge factors and as long as we calculate all
infinite series in Eq. (33) we should still get the correct
result.

The GIAO method is less satisfactory for calculations
of o than for calculations of x, because in general the

TaBLE IV. Theoretical values of ¢ and H, .

4 H/ Wave function

1.5365 0.2793 Coulson®
1.4848 0.3067 Wang?
1.4780 0.3311 Rosen®
1.510 0.315 Nordsieck?

o 0.299 Coulson®

0.276 Wange

.. 0.293 Nordsieck®
1.5526 0.328 James-Coolidged

e 0.315 Experimental

a This paper, GIAO method.

b Ramsay’s semi-empirical determination of ¢, see references 2 and 20.

¢ Das and Bersohn’s calculation, analogous with Tillieu and Guy's
method of computing x, see reference 16.

d See reference 12.

3 The following argument was supplied by D. Polder (private
communication).



MAGNETIC PROPERTIES OF MOLECULES

term that we called 3Co,1|¥o) in Eq. (34) is not zero.
One might attempt to improve the theory by adding
gauge factors containing u to the atomic orbitals, but
we have been unable to find a simple gauge factor that
would make o 1|W¥o) at least approximately zero.
Again, this should not affect the results as long as we
calculate all infinite series in Eq. (35).

The present method would be relatively simple if
it would be permissible to neglect Qi, Qs, and Pi; a
procedure that has been followed in previous work.5:7:34
The results obtained in this fashion for the molecules
H,, N,, and CH, seem to be satisfactory and also from
the present calculations it seems that the contributions
of Q1, Q2, and P to x and o are small for the hydrogen
molecule, but it still remains to be investigated for some
different molecules how large these contributions are
before one may make any predictions as to whether
they may be neglected. It is suspected that in a previous
calculation on the proton magnetic resonance shift
due to hydrogen bonding in ammonia,? the omission of
P; may have had serious consequences and may be
responsible for some unrealistic results that followed
from the theory.

The most unsatisfactory part of the present calcu-
lation is connected with the estimates of the various
average excitation energies in Secs. IV and V. The

3 H. F. Hameka, Physica 25, 626 (1959).
35 H. F. Hameka, Nuovo cimento 11, 382 (1959).
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least we can say in favor of the procedure that was
followed in obtaining these estimates is that it seems to
give reasonable results, that it has some logical founda-
tion, and that it seems more reliable than any alter-
native procedure we could think of.

Let us finally set out to answer the essential question
one may ask : Given an exact ground-state wave function
of a molecule, is it possible to obtain the exact values
of x and o with the GIAO method? The answer would be
yes if we knew the exact values of the average excitation
energies to be substituted, but since this is not the case
we cannot answer in the affirmative. However, it seems
that the deviations that are introduced by this un-
certainty are of the same order of magnitude or smaller
than the approximations in the molecular wave func-
tions that are known at present.
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