
REPRESENTATIONS OF ROTATION GROUP

ously analytic in 0 and that its modulus exp

(—z C'(0)e) is uniformly bounded by the integrable
function exp (—i~z B'e). For imaginary 8, C is
Hermitian and positive definite [see (A4a)], and in
this case the equation h. (C(9)) = [det C(e)] ' has
already been established. By analyticity it remains
valid throughout the strip ~g,

~

& z, in particular for
C(1) = B.

Corollary.

I(A) = exp (e Az)dp. (e) = [det (1 —2)] '
(A5)

if 1 —A. has a positive definite Hermitian part, in
particular if 3 has suKciently small matrix elements.
In fact, by the definition of dp„(e) [see (1.5)], I(A)
= A.(l —A).

(b) Iet

M(B,a, b) = m
'

exp g(B,c,bi;&,g)d'&d'rt (A6)

g = —5 B& —~ B~ + D(~,i,n) + D(&,&,~) («a)
Here, $ and rl are points inC&, B is a 3 && 3 matrix,
c,b are constant vectors in C3, and D is a determinant
as in Sec. 3f. As before, we proceed in three steps.
(1) If B = 1, this is the integral in (3.23a), and for
sufficiently small a,,b, M(l, a,b) = (1 —a 6) ', by
(3.23b). (2) If B is positive definite Hermitian, M
is absolutely convergent for su%ciently small c,b

(for example, a, Ba & det B, and 6 Bb & det B).
A.s before, set 8 = 8*8, let 0 = det 8, andintroduce
new variables g' = 8$, g' = 8g. Set also a' = 8c and
b' = 8b Th. en

n Bn = v'. n'

D(o, ,),rt) = 0 'D(o,',p, rt') = D(n",&',rI')

D(b, ),rl) = 0 'D(b', f', rt') = D(b",$',rt'),

where a" = a. 'a', 6" = 0. 'b'. Thus,

g(B,a,bi;$, rt) = g(l, a",b";$',q') .

The Sacobian corresponding to (A3a) is now (oa) '.
Hence M(B,a, b) = (oo.) ' M(l, a",b") = [Oo(1
—g" g") '] = (vo —a' V) '. Now ~a = detB, and
a' 6' = a Bb. Therefore

M(B,a,b) = (detB —a Bb) '. (A7)

(3) If B is no longer Hermitian, but has a positive
definite Hermitian part, we may again show by
analytic continuation that (A.7) remains valid.

The integral to be evaluated in 4c is

N(H, u, v) = exp g(II,u, v;&,rt)dys(&)dp, (rl) .

Since dp3(g) F3(g) introduces the factor exp (—g p
—g q) it follows that N(H, u, )v= M(1+ II,u, v),
and hence

N(H, u, v) = [det (1+H) —u v —u Hv] '. (A8)
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l. INTRODUCTION

~ROM the very beginning of quantum mechanics,
the notion of the position of a particle has been

much discussed. In the nonrelativistic case, the proof
of the equivalence of matrix and wave mechanics,
the discovery of the uncertainty relations, and the
development of the statistical interpretation of the
theory led to an understanding which, within the

* Dedicated to Eugene Wigner on his sixtieth birthday.

inevitable limitations of the nonrelativistic theory,
may be regarded as completely satisfactory.

Historically, confusion reigned in the relativistic
case, because situations requiring a description in
terms of many particles were squeezed into a for-
malism built to describe a single particle. I have in
mind the difhculties with wave functions for a single
particle which seem to yield nonzero probability for
finding it in a state of negative energy. Soon attention
shifted to the problems of the quantum theory of
fields and the question of the status of position
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operators for relativistic particles was left without a
clear resolution. That does not mean that papers
were not written on the subject, but that those
papers had completely diferent objectives in mind:
They permitted the particles in question to be in
nonphysical (negative energy) states or they studied
operators which could not serve as position observa-

ble' since their three components did not commute.
In the opinion of the present author, the decisive

clarification of the relativistic case occurs in a paper
of Newton and Wigner. ' These authors show that,
if the notion of localized state satisfies certain nearly
inevitable requirements, for a single free particle it
is uniquely determined by the transformation law
of the wave function under inhomogeneous Lorentz
transformations. The resulting position observables
turn out, in the case of spin--„ to be identical with
the Foldy-Wouthuysen "mean position" operators. '
An analogous investigation for the case of Galilean
relativity was carried out by Inonii and Wigner. '

The essential result of Newton and Wigner is that
for single particles a notion of localizability and a
corresponding position observable are uniquely de-
termined by relativistic kinematics when they exist
at all. Whether, in fact, the position of such a particle
is observable in the sense of the quantum theory of
measurement is, of course, a much deeper problem;
that probably can only be decided within the context
of a specific consequent dynamical theory of parti-
cles. All investigations of localizability for relativistic
particles up to now, including the present one, must
be regarded as preliminary from this point of view:
They construct position observables consistent with
a given transformation law. It remains to construct
complete dynamical theories consistent with a given
transformation law and then to investigate whether
the position observables are indeed observable with
the apparatus that the dynamical theories them-
selves predict.

In Newton and Wigner's formulation, the set Sa
of states localized at a point a of the three-dimen-

~ T. D. Newton and E. P. Wigner, Revs. Modern Phys. 21,
400 (1949).

s L. Foldy and S. Wouthuysen, Phys. Rev. 78, 29 (1950).
This paper was widely read because of its exceptional clarity.
The mean position operators themselves were discussed before
by A. Papapetrou, Acad. Athens 14, 540 (1989); R. Becker,
Gott. Nach. p. 39 (1945);and M. H. L. Pryce, Proc. Roy. Soc.
(London) A150, 166 (1985); A195, 62 (1948). For further
references and discussion see A. S. Wightman and S. Schweber,
Phys. Rev. 98, 812 (1955).

E. Inonu and E. Wigner, Nuovo cimento 9, 705 (1952).
The main point of this paper is that laws of transformation
of the states of a particle under the inhomogeneous Galilei
group other than those in the ordinary Schrodinger mechanics
are inconsistent with localizability.

sional space at a given time, must satisfy the follow-

ing axioms:
(a) Sa is a linear manifold;

(b) Ss is invariant under rotations about a, re-
jections in a, and time inversions;

(c) 8~ is orthogonal to all its space translates;
(d) certain regularity conditions.
The solutions of (a). . . (d) for elementary systems,

i.e., for systems whose states transform according to
an irreducible representation of the inhomogeneous
Lorentz group, turn out to be continuum wave func-
tions when they exist at all, i.e., according to the
usual definitions of Hilbert space, there is no mani-
fold 8~. However, it is physically and mathematically
clear that Newton and Wigner's formulation ought,
to be regarded as the limiting case of a notion of
localizability in a region.

In the present paper, I propose a reformulation of
the physical ideas of (a). . . (d) in terms of a notion
of localizability in a region. When the ideas are so
formulated, one sees that the existence and unique-
ness of a notion of localizability for a physical system
are properties which depend only on the transforma-
tion law of the system under the Euclidean group,
i.e., the group of all space translations and rotations.
The analysis of localizability in the Lorentz and
Galilei invariant cases is then just a matter of dis-
cussing what representations of the Euclidean group
can arise there. To obtain uniqueness, one must add
invariance under time inversion and an analogy of
Newton and Wigner's regularity assumption. As
would be expected, all the results obtained earlier in
the old formulation come out. One can ask what is
the point of the present extended footnote to Newton
and Wigner's paper. First, it seems worthwhile to me
to have a mathematically rigorous proof of the
fundamental result of Newton and Wigner that a
single photon is not localizable. Second, the work of
Newton and Wigner can be regarded as a contribu--
tion to the general problem of determining what
physical characteristics of a quantum mechanical
system are consistent with a given relativistic
transformation law. In this connection, it is inter-
esting to regard the axioms I. . . V below for localiza-
bility in a region as a very special case of the notion.
of particle observables for a quantum theory. Else-
where4 I gave a set of axioms for the notion of a
particle interpretation which yield I. . . V when
sperialized to the case of a single particle. One of the
main reasons for giving full mathematical detail in

4 See, les problemes mctkematiques de lu theoric quantigue
des champs, (CNRS, Paris, 1959), especially pages 86—88.
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the present simple case is in preparation for the prob-
lem of determining particle interpretations.

It turns out that the natural mathematical tool for
the analysis of localizability as understood here is the
theory of imprimitive representations of the Euclid-
ean group. The notion of imprimitivity was intro-
duced for finite groups early in the history of group
theory. It was generalized to the case of a large class
of topological groups by Mackey. ' From a mathe-
matical point of view, the present paper merely
writes out Mackey's theory in detail for the case of
the Euclidean group. However, I decided to make
the exposition as self-contained as possible, and to
incorporate certain elegant ideas of Loomis in the
proofs. ' The purpose of this expository account is to
make it possible for the reader to understand how
the mathematical arguments go for the Euclidean
group without having to work through the general
case, however character building that experience
might be.

2. MATHEMATICAL FORMULATION OF THE AXIOMS

AND PRELIMINARY HEURISTIC DISCUSSION

The axioms are formulated in terms of projection
operators E(8), where 8 is some subset of Euclidean
space at a given time. The E(8) are supposed to be
observables. They must be projection operators be-
cause they are supposed to describe a property of the
system, the property of being localized in S. That
is, if C is a vector in a separable Hilbert space, 3'.,
describing a state in which the system lies in 8, then
E(S)C = C. If the system does not lie in 8 then
E(8)C = 0. E(8) can therefore only have proper
values one or zero and, as an observable, must be
self-adjoint. Thus, it is a projection operator.

The axioms are:
I. For every Borel set, S, of three-dimensional
Euclidean space, R', there is a projection operator
E(S) whose expectation value is the probability of
finding the system in S.

II. E(8 t1 8 ) = E(8 )E(8 ).
5 G. W. Mackey, Proc. Natl. Acad. Sci. U.S. 35, 537 (1949);

Ann. Math. 55, 101 (1952); 58, 193 (1953); A.cta Math. 99,
265 (1958). That Mackey's theory applies to localisability in
quantum mechanics was independently realized by Mackey
himself. I thank Professor Mackey for correspondence on the
subject. Mackey s treatment is summarized in his Golloquium
Lectures to the American Mathematical Society, Stillwater,
Oklahoma Aug. 29—Sept. 1, 1961. It is a part of a coherent
axiomatic treatment of quantum mechanics given in his un-
published Harvard lectures 1960—61. ~

s L. H. Loomis, Duke Math. J. 2'7, 569 (1960).
~ For a general discussion of observables describing a

property see J. von Neumann, 3fathematica/ Foundations of
Quantum mechanics (Princeton University Press, Princeton,
New Jersey, 1955), pp. 247—254.

III. E(8, u 8,) = E(8,) + E(8.) —E(Si t1 Ss).

If 8;,i = I, 2, are disjoint Borel sets then

E(U 8,) = g,=, E(8,).

IV. E(R ) = l.
V'. E(R8+ a) = U(a, B)E(S)U(a,R) ',

where RS + a is the set obtained from S by carrying
out the rotation 8 followed by the translation a, and
U(a,R) is the unitary operator whose application
yields the wave function rotated by 8' and translated
by a.

The notation 8~ g Ss and Sr U Ss is used to
indicate the common part and union, respectively,
of the sets 8& and S2. U S; is the union of the
sets S;.

The physical significance of these axioms is as
follows.

The Borel sets form the smallest family of sets
which includes cubes and is closed under the opera™
tions of forming complements and denumerable
unions. One might try to replace the Borel sets by
all sets obtained by forming complements and finite
unions starting from cubes and require III only for
finite sums. However, it can be shown that any such

E(S) could be extended to one defined on the Borel
sets and satisfying III as it stands. (See Appendix I
for further discussion of this point. ) In fact, E(8)
can be extended even further to all Lebesgue measur-
able sets, but this extension will not be needed here. '

II states that a system which is in both S& and S2
is in 8& p 8&. It is immediately clear from II that
E(S,)E(8,) = E(Ss)E(Si).

III states that the set of states of the system for
which it is localized in Sr U Ss is the closed linear
manifold spanned by the states localized in S& and
those localized in 82.

IV says that the system has probability one of
being somewhere.

V' says that if 4 is a state in which the system is
localized in 8, then U(a, B)C is a state in which the
system is localized in BS+ a.

I venture to say that any notion of localizability
in three-dimensional space which does not satisfyI. . . V' will represent a radical departure from
present physical ideas.

The E(8) define a set of commuting coordinate

8 An argument that the Lebesgue measurable sets form a
physically natural class is contained in J. von Neumann, Ann.
Math. 33, 595 (1932).
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operators q1,q2, qs which form a vector in 3-space. In
fact)

write A&a2. This will be done throughout the follow-
ing. Thus, V' is replaced by

(2.1)

where E({x;~( Xj) is the projection operator for
the set {x;~( Xj of all points of three-space whose
ith coordinates satisfy x; ~( X. Of course, (2.1) has
to be interpreted as meaning that the Stieltjes
integral

holds for all 4 and all 4' on which q; can be defined.
Thus, any set of E(8) uniquely determines a position
operator q. Conversely, one can regard the require-
ment that the E(8) exist as a precise way of stating
that q exists and its components are simultaneously
observable. A notion of localizability for which

[g;,q, ] W 0 does not fall under the above scheme if,
indeed, such a notion makes sense at all.

Axiom V' has been stated in terms of the unitary
operators U(a, R). It is well known that without loss
of physical generality these can be assumed to form
a representation up to a + sign, ' i.e.,

Ax ~A* = (R(wA)x) ~

Here ~ stands for the Pauli matrices

0
0

0
0

0
0

The multiplication law of 83 is

{aAl }{a2 A2} {al + Ala2 A1A2}

Here, for brevity, instead of writing B(A&)a2 we

9 The argument (originally due to K. P. Wigner) is outlined
in Dispersion Relations and ELementary ParticLes (John Wiley
4 Sons, Inc. , 1961), pp. 176-181.

The argument (originally due to E. P. Wigner for the
rotation group and Poincare group) is given for the Euclidean
group in V. Bargrnann, Ann. Math 59, 1 (1954.1.

U(a~, B~)U(a, ,B,)
= ~(ai,Ri;a282) U(ai + Bia2 81+2)

where co = ~ l. It is more convenient, from a
mathematical point of view, to deal with a true
representation for which ~ = + 1. It is also well

known that this can be arranged by passing to the
two-sheeted covering group of the Euclidean group
83."It may be defined as the set of pairs a, 2, where
a is again a three-dimensional translation vector and
A is a 2 &( 2 unitary matrix of determinant one. The
matrices & A determine the same rotation given by

V. U(a, A)E(8)U(a A) ' = E(AS+ a) for all Borel
sets S of R', and all {a,A } g 8s. Here AS+ a is
the set obtained from 8 by the transformation
{a,A } and {a,A } —+ U(a, A) is the representation of
83 belonging to the physical system in question.

In the terminology of Mackey, I. . . V state that
the set of operators {E(8)} are a system of imprimi,

toity for the representation U(a, A) of 8& with base
R'. In order to see the present problem in the context
of Mackey's general theory, recall that he considers
a topological group g and two continuous realiza-
tions of 6, one a representation by homeomorphisms
of a topological space M: x ~ h(g)x (homeomor-
phism means one-to-one mapping continuous both
ways) and the other a unitary representation of 6
in a Hilbert space 3C: g ~ U(g). Then a system of
imprimitivity with base 3I is a family of projection
operators in BC which satisfy I, II, III, IV with the
sets 8 interpreted as Borel sets of 3f, and, in addi-
tion, the appropriate modification of V:

U(g)E(S)U(g)
' = E(h(g)8) .

A representation U(g) which has at least one system
of imprimitivity (with respect to 3f) is said to be
imprimitive (with respect to 3f). A system of im-
primitivity is tran8i4tive if the group of homeomor-
phisms g ~ h(g) is, i.e., if each point x is carried into
every other by a suitable h.

In the case of a transitive system of imprimitivity,
the space 3II can be replaced by a coset space as
follows. I et 6, be the subgroup of all g g 6 such that
h(g)x = z. Notice that if h, (g,)x = y = h(g, )x then
h(g, 'g&)x = x, so g&g = g& where g E' G.. The set of
all elements of the form g2g, g g 6, is denoted g&6,
and called the left coset of G. belonging to g2. Thus,
each left coset corresponds to a point of 3f, distinct
cosets corresponding to distinct points, and by a
mere change of names M can be replaced by the
space of left cosets, usually denoted 6/6, . In the more
general case of a nontransitive system the space 2'
will split into orbits and the points of an orbit can
be labeled by the points of 6/G, where x is any point
of the orbit.

In the problem of localizability considered here,
the system of imprimitivity is transitive but for
momentum observables and particle observables, in
general, the system of imprimitivity is not transitive.

Mackey's theory shows that the transitive system
of imprimitivity and its associated representation
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(T' '4) (X1,X2) = 4 (12x, + (1 —12)X2, (~ —1)x1

+ (2 —u)X2)

{E(8),U(g) } —+ {VE(S)V ', VU(g) V

In this standard form the VU(g) V ' becomes a so-
called induced representation associated with a is unitary and satisfies
unitary representation of G. where x is some fixed
point of M. Two pairs {E1(8),U1(g)} and {E2(8),
U2(g) } are unitary equivalent:

y{a) oP y {a)-1 X(a)

Then V is given by

can be brought into a standard form by a suitably To obtain V, one may note first that the operator
chosen unitary transformation, V: T" defined by

E, (8) = VE, (8)V ', U1 (g) = VU2 (g) V ',
if and only if the unitary representations of G. are
equivalent.

Detailed proofs of these assertions of Mackey's
theory for the special case of 83 will be offered in the
following sections. For the moment, the results will

be taken for granted and used to discuss the unique-
ness of E(8) for given U(g). Clearly, for U(g) given
the only unitary transformations, V, which can give
new VE(S)V-' & E(8) are ones which commute
with the given U(g) but not with the E(8).

That this possibility is actually realized in simple
physical examples can be seen by considering a com-
pound system of two free spinless Schrodinger parti-
cles with wave function f(x, ,x2). Let the correspond-
ing representation of the Euclidean group be U(a, R):

p(xl X2) —& (U(a,R)f) (x1,X2)

= P(R '(x, —a),R '(x, —a)) .

V = T(P)T( )

Clearly, the kind of nonuniqueness appearing in this
example may be expected to be absent only when one
is dealing with a single particle. Theorem 4 obtained
below gives a precise criterion for uniqueness and a
parametrization of the possible answers when more
than one exists.

The uniqueness of the notion of localizability for
given representation of the Euclidean group has
been discussed assuming Mackey's theory. Now I
attempt to give an intuitive idea of the circumstances
in which a notion of localizability exists.

Since a,ll the E(8) commute, diagonalize them.
Then the state vectors are represented by quantities
4 (x) defined on space and with a number of compo-
nents which may vary with X. [In fact, these 4(x)
for x = a are just Newton and signer's linear mani-
fold 8 .] In this realization the scalar product of
two vectors 4 and%' is

De6ne the operators X' ' by

X' ' = nx + (1 —12.)x

where n is any real number, and by definition

(Xl 4 ) (y1,y2) = y14 (y1,y2)

(x2 4 ) (yl y2) = y.4 (y1,y2)

Then, for each n, X( ' defines a possible position
operator (the spectral representation of X,' ', j= 1,
2, 3 yields the projections appearing in (2.1), and
the general E(8) can be found from these). In par-
ticular, X(" = xp and X") = xp, are possible posi-
tion operators.

Now there exists a unitary operator, V, which
commutes with the representation of the Euclidean
group

[V,U(a, R)] = 0

and carries X( ) into X{@

VX(~)V ~ = X(P)

(4,e) = dx(4 (x),11 (x)),

where the scalar product appearing under the
integral sign is in the components of 4(x) and @(x)
for fixed X. The operators E(8) take the form

(E(S)4)(x) = x&(x)4(x),

where x2(x) = 1 if x g 8, 0 if x f 8. From the
transformation law of E(8) it is plausible that by a
suitable choice of basis it can be arranged that

(U(a, 1)4) (x) = 4 (x —a) .

From this equation, it follows that the number of
components of 4(x) is the same for all X. It is also
plausible that by a suitable choice of basis the
transformation law under rotation can be made to
look the same for each x:

(U(O,A)4)(x) = X)(A)4(A 'x),

where 5)(A) acts on the components of 4'(A 'x) at
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each point. Once these results are accepted, one can
pass by Fourier transform to momentum space
amplitudes. There one has

(CP) = dp(C(p)P(p)) . (2.3)

The canonical form (2.2) is to be compared with

(U(a,A)C)(p) = e
' 'X)(A)C(A p) (2.2)

with the scalar product

quence of this simple kinematical fact."For spin-0,
(iii) is satisfied and so the phonon is localizable. "
It is an oddity that the same is not true for signer's
particles of infinite spin, " as will be seen in Sec. 5,
even though in that case each angular momentum
along p appears just once.

There is one paradox to which the preceding dis-
cussion might appear to give rise. Suppose one
describes a photon by a real-valued three-component
field B(x) satisfying

where

(U(a,A)C)(p) = e
' 'Q(p, A)C(A p), (2.4)

Q(p, A)Q(A 'pP) = Q(p, A&),

divB = 0, (2 5)
defines a scalar product (this is a rect Hilbert space)
by

and the scalar product is

(CP) = &~(p)(C(p)P(p))

a form which will be derived in Sec. 3.
The comparison shows:
(i) When the representation is in the canonical

form (2.4) the measure dp(p) on momentum space is
just Lebesgue measure dp.

(ii) The dimension of the vectors C(p) is the same
for all p.

(iii) The operators Q(p, A) are of the form 5)(A),
where A —+ $(A) is a representation of the unitary
unimodular group.

Intuitively (i) and (ii) are accounted for because,
if one makes any state whose x dependence is a
8 function one gets all momenta. Thus, one would
expect to have the same number of linearly inde-
pendent states for each p. (iii) is essentially a conse-
quence of the rotational invariance of the states
localized at a point.

All three restrictions are nontrivial if applied to an
arbitrary representation of 83. However, as will be
seen in Secs. 5 and 6, (i) and (ii) are always satisfied
in any relativistic theory (provided one leaves out
the vacuum state). (iii) excludes a very important
physical system, the single photon. One can see this
immediately by looking at the Q(p, A) for those A
which leave p invariant. Such Q's have two eigen-
vectors corresponding to right-circularly and left-
circularly polarized photons having angular mo-
mentum along p, ~ 5, respectively. On the other
hand, in $(A) one cannot have states with angular
momentum ~ h, along p without also having states
with zero component of angular momentum along p.
The nonlocalizability of the photon (and all other
particles of spin &~

—', and mass zero) is a, conse-

(B,)B,) = B&(x) Bs(x)dx,

and a representation of the Euclidean group

(U(a,B)B)(x) = RB(B '(x —a)) .
Attempt to define projection operators by the equa-
tion

(E(S)B)(x) = xs(x)B(x) .

%hy does not this describe the photon as a localiza-
ble system? The answer is that the E(8) carry vectors
satisfying the condition (2.5) into vectors which do
not satisfy it, so E(8) is not a well-defined operator
in the manifold of states and the x in B(x) has noth-
ing to do with localizability.

The notion of localizability discussed here is con-
cerned with states localized in space at a given time.
It is natural to inquire whether there exists a corre-
sponding property in space-time. Then the E(8)
would satisfy

U(g„h)E(S)U(a, A)
' = E(h8+ a),

where 8 is a Borel set of space-time and Ia,AI is an.

inhomogeneous Lorentz transformation of space-
time translation, a, and homogeneous Lorentz trans-
formation, A. However, a requirement analogous to
(i) follows from Mackey's theory: Ail four-momenta
must occur in the theory. This is in Bat violation of
the physical requirement that there be a lowest

II That the photon was nonlocalizable was stated and be-
lieved long before reference 1 was written. See, for example,
L. Landau and R. Peierls Z. Physik 62, 188 (1980); 69, 56
(1981); especially p. 67 of the latter. While the arguments
given could possibly be regarded as plausible, they do not make
clear what is the heart of the problem.

'~ If the neutrino had turned out to possess states of both
helicities, i.e., states with components + ~h of the component
of angular momentum along p, then it too would be localizable.
A neutrino of definite helicity is not localizable.

i8 E. P. Wigner, Ann. Ms, th. 40, 149 (1989); Z. Physik 124,
665 (1947-8).
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energy state. Thus, a sensible notion of localizability of the three-dimensional translation group Zs is
in space-time does not exist. unitary equivalent to one of the following form:

3. RECAPITULATION OF THE UNITARY

REPRESENTATIONS OF 83 THE UNIVERSAL

COVERING GROUP OF THE EUCLIDEAN GROUP

In this section a canonical form of the representa-
tions of G3 will be derived in which the translation
subgroup is diagonalized.

Any continuous unitary representation of 88

{a,A} ~ U(a, A) gives rise to a continuous unitary
representation of the translation group &8'. a
—+ U(a, l). The first step in the analysis is to de-
scribe all such representations. By a unitary trans-
formation the U(a, l) are to be diagonalized, i.e.,
brought into the form

(U(a1)C')(y) = e "C'(p) (81)
(The minus sign in the exponent is a matter of con-
vention; it is adopted to conform with custom in
quantum mechanics. )

For this purpose, the notion of direct integral of
Hilbert spaces and representations is needed. It will

be described briefiy in the present special context. "
Let p, be a positive measure on three-dimensional

(momentum) space Z,*.For each point p of Z,*, let
there be given a Hilbert space BCo whose dimension

i (p) is a p-measurable function of p. Then the direct
integral of the Xp with respect to p is a Hilbert space
denoted gati(o)Xs whose elements are functions
defined on Xs, with values satisfying C(p) g BC'.

Furthermore, the elements must satisfy (C»(p), C»(y))
is a y-measurable function of y for any two

(8 2)

[here (C,(p), C,(p)) is the scalar product in BC,], and

(U(a)C)(p) = e "'C(y)

where C is an element of a direct integral,
fg"dtt(p)BCo, over Zf with measure p and multi-

plicity function v(y) = dim /Co.

A bounded operator, 8, which commutes with the
operators of the representation can be written in the
form

(B~)(y) = B(y)~(y),
where B(p) is a bounded operator in 3Co and such

that for all C'i and Cs g fg"dp(p)Xo,

(&,(p), B(y) C'&(y)) is measurable in p.

Two such representations a -+ U& (a) and a
—+ U&(a), with measures p, and p, and multiplicity
functions v&(p) and v&(p), respectively, are unitary
equivalent if and only if

(1) pi —=ti2, i.e., p& and ti& give zero measure for
the same sets of Zf.

(2) t g(y) = t (y) except, perhaps, in a set of ttl

measure zero.

For a sketch of a proof of Theorem 1, the reader
is referred to Appendix II, and the references quoted
there.

The measures p, and multiplicity functions v

appearing in a general representation of the transla-
tion group are completely arbitrary. Those which

can appear in a representation of Zs obtained by
restriction from a representation of 88 are quite
special. This comes about because a~ U(Aa, l)
defines a representation of Zs which is unitary
equivalent to a ~ U(a, l) as a consequence of

4 p, 4 p dp p Q (I) . (8.8) U(O, A)U(a, l)U(O, A. )
' = U(Aa, l) .

The scalar product in f@"dt's(p)Ko is defined by

(~,c ) = dt (y)(c (y), c (p)) (8.4)

With this notation, the following theorem holds.

V'heorem 2. Every continuous unitary representation

&4 For a full account of the notion of direct integral see J.
Dixmier, les algebres d'operateurs dans l'espace IIilbertien
(Gauthier-Villars, Paris, 1957). The theory gives a precise
mathematical meaning to the Dirac formalism of "represen-
tations" in quantum mechanics. See P. A. M. Dirac, The
Principles of Quantum mechanics (Oxford University Press,
New York, 1947), 3rd ed. , Chap. III.

Now when U(a, l) is brought into the diagonal form

(8.1) by an appropriate unitary transformation, the
representation a —+ U(Aa, l) takes the form

(U(Aa, 1)c)(y) = e '" '"'C'(y)

and this in turn can be brought into the standard
form by the unitary transformation

(WC)(y) = C(Ay)

which yields

(WU(Aa, l)W ')(WC'))(p) = e
' '(Wc')(y)

and carries the direct integral fg'dp(p)Kx



852 A. 8. W I 6 H T M A N

P = PA (35) Q(A)T(A)Q(B)T(B) = Q(AB)T(AB),
p(p) = p(Ap) for all p except possibly on a set of tu which yields
measure zero. (3.6)

Q(p, A)Q(A 'p, B) = Q(p, AB)

for each A and B and almost all y.
At this point a measure-theoretic technicality

arises. It is possible a priori, that the set of measure
zero on which (3.10) does not hold could depend on
A and B in such a way that when one took the union
over all such sets one would get a set of measure
greater than zero. Actually, one can show that one
can alter Q(p, A) on a set of measure zero in p so
that Q(A) is unaffected, but (3.10) holds for all

p,A,B and Q(p, A) is measurable in both variables.
This argument is deferred to Appendix IV, because
of its technical character. The result will be assumed
in what follows.

The representation has now been reduced to the
standard form

Now in Appendix 2, it is shown that the only
measures on P,* satisfying (3.5) are equivalent to
ones of the form

~.~(p) + dp(lpl)d~(p) (3 7')

where pc &~ 0, da)(p) is the area on the sphere of
radius lpl and dp is a measure on the positive real
axis. Since, if p =—

p&, the unitary mapping

i/2

(Il C), (p) = C(p)
dp)(p)

carries the direct integral g'dtu(p) Xp into
Jg"dp&(p)Xp, one may for convenience choose tu in
the form (3.7)."Later on tu will be taken in this form
but for the moment a general p satisfying (3.5) will
be carried along. Furthermore since any two Hilbert
space of the same dimension can be mapped on one
another by unitary transformation, there is no loss
in generality in taking K& ——K&p for all A.

The next task is to put the operators U(O, A) in
standard form. They will be written as a product
U(O, A) = Q(A)T(A) where T(A) is de6ned by

(U(a,A)C)(p) = c "'Q(pA)

To understand the physical meaning of the Q(p, A)
it is helpful to consider some elementary examples.
For a single free particle in Schrodinger theory, the
wave function may be taken as a complex-valued
function of p, the scalar product is

(T(A)C')(p) = C(A 'p)
@(p)

(Here the convention Xp = X~p has made it possible
to equate vectors from two different Hilbert spaces. )
It is easy to verify that T(A) is unitary, with an
adjoint given by

(cp) = f&v c(u)"+0) (3.12)

and the representation of the Euclidean group is

f f*,dtu(p)X&p where d)u&(p) = dp(Ap). The unitary Since Q(A) is unitary Q(p, A) must be unitary for
equivalence criterion given in Theorem 1 then almost all p. Furthermore, the group multiplication
implies law implies

(T(A)*c)(p) = c(Ap) " ' . (3.8)
d~(p)-

An elementary computation shows that

T(A)U(a, l)T(A) ' = U(Aa, l),
so U(O, A) and T(A) satisfy the same commutation
relation with U(a, l). Therefore Q(A) commutes with
U(a, l). Thus, by Theorem 1, Q(A) can be written
in the form

(Q(A)c)(p) = Q(p, A)C(p)

~~ We here use the Radon-Nikodym theorem which asserts
that if two measures p1 and p2 are equivalent, i.e., take the
value zero for the same sets, then there exists a positive
measurable function p(p) such that dp&(p) = p(p)dps(p).
p(p) is customarily denoted (dp)/dp2)(p). See, for example, P.
IL Halmos, 3feasure Theory (D. Van Nostrand Company, Inc. ,
Princeton, New Jersey, 1950), p. 128.

(U(aA)C')(p) = c "'C'(A p) (313)
Thus, for a single free particle of spin zero Q(p, A)
= l. On the other hand, for a single free particle of
spin-s (Pauli theory), C has two components, the
integrand in the formula (3.4) for the scalar product
1s

and the transformation law (3.11) becomes

(U(a,A)C ) (p) = c
' 'AC (A 'p) .

Here, evidently Q(p, A) = A and describes the
transformation properties of the spin degree of
freedom. In this case Q(p, A) is independent of p. To
get an example in which Q(p, A) cannot be brought
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by unitary transformation of U(a, A) to a form
independent of p one can consider the case of a single
photon described in Sec. 5. [One of the results of
section 4 is that for a localizable system Q(p, A) can
always be chosen independent of p.] Clearly, in all
these examples the Q(P,A) gives the transformation
law of the internal degrees of freedom of the system
under rotations.

A detailed analysis of the consequences of the
multiplication law of the Q's, Eq. (8.10), will be
undertaken shortly. For the moment, only the fact
that for those A. which satisfy Ap = p, (8.10)
implies

Q(p, A)Q(p, B) = Q(p, AB) (8 14)

is needed. Such A form a group called the little group
of p, and (8.14) means that A. —+ Q(p, A) defines a
continuous unitary representation of the little group
of p. (Again see A.ppendix IV for a proof that every
measurable unitary representation is continuous. )
Evidently, when y = 0 the little group of p is the
group of all A, i.e., the unitary unimodular group
itself. On the other hand, when p / 0, the little
group is the two sheeted covering group of the group
of rotations around a fixed axis. It is therefore
isomorphic to the multiplicative group of the com-
plex numbers e"~', 0 ~( 0 & 4~.

The problem of determining when two representa-
tions of 83 are unitary equivalent can now be reduced
to a related problem for their Q(p, A). For, if ]a,A }~ U&(a,A) and ]a,A } —& U&(a,A) are equivalent
representations, Theorem 1 implies p&

——p2 and
v& = v& almost everywhere. Thus, by a unitary
transformation one can bring U, (a,A) into a form
where Ui(a, l) = U2(a, 1). Then U& and U2 differ
only in their Q(p, A). If

U&(a,A) = VU2(a, A)V ', (8.15)

where V is a unitary operator, then, applying
Theorem j., one finds that V is of the form

(8.16)

and (8.15) reduces to

Q (p,A) = V(p)Q (p,A)V(A 'p) ' (8»)
If p rather than A-'p occurred in the last factor, this
would describe unitary equivalence of Q&(p, A) and

Q2(p, A). When A belongs to the little group of p,
A-'p = y and that is indeed the case.

Again at this point a measure-theoretic technicality
arises. Equation (8.17) holds for almost all p, for
each A. Again the reader is referred to Appendix IV
for a proof that there is a Axed set of measure zero

in ~p~ such that for all other p and all A, (8.17) holds.
Next, it will be shown that, if there exists a V(p)

for a single y which satisfies

Q (p,A) = V(p)Q (p,A)V(p)* (8 18)

for all A in the little group of p, then V(q) can be
~~t~~d~d to all q with Iql = Ipl so that (8.17) hold~.
(The statement holds trivially for p = 0 so p N 0 is
assumed. ) Solved for V(A 'p), (8.17) reads

V(A 'p) = Q (p,A) 'V(p)Q (p,A) (8»)
This will be consistent as a definition of V at A-'p
only if the right-hand side is constant on right cosets
of the little group of y, i.e., only if A&' = A2'A&'
with A& in the little group of p implies that the
right-hand side of (8.19) takes the same value for
A = A1and A2.

Q (p,A ) 'V(p) Q (p,A )
= tQi(p, A.) Q (A. p,A )] ~(p)

X [Q.(P,A~)Q. (AS'P, A2)]

Ql (pyA2) IQl(pyA3) V(P)Q2(P)A3)]Q2(P)A2)
= Q (p,A ) 'V(p) Q (p,A ) .

This defines V(q) for all q with tq~
= ~pt. Next, it

has to be verified that V so defined satisfies

Suppose that q = B 'p. Then, the right-hand side
of (8.20) is

I:Q (p,B) 'V(p)Q (p,B)]Q (B 'p, A)

~ ~Q. (p,») 'V(p) Q. (p,»)]-'
= Q (p,B) 'Q (p,BA) = Q (q,A),

where, in the last step, the identity Qi(P, B) '
= Q, (B-'p,B-') which follows from (8.10), has been
used.

Therefore, a necessary and sufficient condition
that UI be unitary equivalent to U2 is p, 1

——p, 2, v1

= p& almost everywhere and the representations of
the little groups A —+ Q, (p,A), A. —+ Q2(p, A) be
unitary equivalent for almost all ~p~ and at least one

p for each ~p~.

Incidentally, in the course of the argument, it has
been established that the little groups for p and q
have unitary equivalent representations if ~p~

= ~q~.

Explicitly, if q = By and Aq = q, then B-'ABy = y
and

Q(q, A) = Q(p, B ')-'Q(p, B-'AB) Q(p, B-') (8»)
The mapping A —+ B 'AB is an isomorphism be-
tween the little groups of q and p and (8.21) displays



the unitary equivalence of the corresponding repre-
sentations.

The classification of the unitary inequivalent
representations of the little groups is well known.
For p = 0, they are labeled by giving an integer-
valued multiplicity function np; for j = 0, + —,',
1,—,', . n0, is the number of times the irreducible
representation of angular momentum j appears. For
p Q 0 the unitary inequivalent representations are
labeled by an integer or + infinity valued function,

n~, m = 0, & -'„~ 1, where n~ is the number
of times the one-dimensional irreducible representa-
tion Q

—&e' " occurs.
All these results are collected in Theorem 2.

Theorem 8. Every continuous unitary representa-
tion of 83, the universal covering group of the
Euclidean group, is unitary equivalent to one of the
following form.

Let K& be a family of Hilbert spaces, one for each

y E Z,* identical for all y with the same lyl. Let

dp(lyl)d~(y)x O+ xp

where dp is a non-negative measure on the positive
real axis, such that t(p) = dim Xo is measurable,
and d&c(y) is the measure on the unit sphere of the
vectors y/lpl, invariant under rotations. Xp, the
contribution from p = 0, may or may not occur.

The representation is defined by

(U(a,A)C)(P) = e "'Q(P,A)~(A 'P) (322)

and almost all lyl

Any Euclidean invariant theory has a manifold
of states whose transformation law is unitary equiva-
lent to one of this form. It is to be expected (and may
be seen in detail from the discussion of Secs. 6 and 7)
that the imposition of requirements of relativistic
invariance will eliminate some of these representa-
tions.

Up to this point, the only assumption that has
been made about the quantum mechanical system
under consideration is its invariance under the
Euclidean group. Now the operation of time in-
version I& will be adjoined. It is well known that I&

has to be represented by an antiunitary operator,
U(I,), whose square is cc(I ) = & 1, and that by
suitable choice of phase it can be arranged that"

U(I, )U(a,A)U(I, )
' = U(a, A)

U(a, A)U(I, ) = U(Ia, A}I,)
U(Ia, ,A, }I,)U(Ia, ,A. }I,)

= (p(I,)U(Ia„A }I,Ia„A }I,)
U(Ia&,A&}I,)U(Ia&,A, }) = U({a,,A, }I,(a, ,A, }) .

Notice that if &c(I,) = —1, this is a representation
only up to a sign.

To get a standard form for U(I,) when U(a, A)
is in the form (3.12), a,n extension of Theorem 1 to
the case of antiunitary operators is needed. It will

be assumed here. The result is

where Q(P,A) is a unitary operator in Xo satisfying

Q(p, l) = 1 and

Q(p, A)Q(A 'p, &) = Q(p, A&)

(U(I )4)(p) = Q(p, I )4(—y)*,
with the Q unitary operators satisfying

Q(P, I )Q( —P,I )* = (I )

(3.23)

for all A, B.
Two representations U& and U& are unitary equiva-

lent if and only if
(1) pi = pp, i.e., the measures pi and pp have the

same null sets as measures on the positive real axis.
(2) Xp either occurs or not in both representations
(3) i &(p) = t&(y) for almost all p.
(4) the representations of the little groups whose

elements are all A such that Ap = p given by

Q(p I ) Q( —P,A)* = Q(P,A)Q(A 'P, I ) .

The full analysis of these equations yields a proof
that two representations including time inversion
are unitary equivalent if and only if their measures
p, are equivalent, they have the same multiplicity
functions, and their representations of the little
group extended by time inversion:

M See K. P. Wigner, Group Theory and Its App/ication to
the Quantum Mechanics of Atomic Spectra (Academic Press
Inc. , 1959), Chap. 26.orallm = 0, ~ ~, ~1, . -

Q (p,A) A Q (P,A) Q(p, A) Ay = y

are unitary equivalent, for almost all lyl. I, —+ Q(P, I,)K
The conditions (2), (3), and (4) are satisfied if the

are equivalent for at least one y and almost all lyl.multiplicity functions of the representations of the
little groups satisfy
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Here K stands for complex conjugation. Only a spe-
cial case will be considered here, namely, that in
which Q(p, A) = X&(A) where A —+ X)(A) is a continu-
ous unitary representation of the unimodular group.
As will be shown in the next section, for localizable
systems this can always be arranged. A second spe-
cialization will be made. Only time inversion trans-
formation laws for which

Q(p, I ) = &(r') (8.24)

will be considered. This amounts to considering the
case of ordinary type. " Time inversion invariance
will be used only to get Theorem 4 on the unique-
ness of the position observables.

(b) C (Ab, AB) = X) (A )C (b,B)

(c) )fC(a,A)[['«&

(4 1)

Notice that (b) implies

(C (a,A),+(a,A)) = (C (Ba,BA),%'(Ba,BA))

so the integral in (c) is independent of A. Clearly,
any linear combination of functions satisfying (a),

~~ See reference 16, especially pp. 343—344.

4. REPRESENTATIONS OF 88 WHICH POSSESS A

TRANSITIVE SYSTEM OF IMPRIMITIVITY5

The discussion of this section is in three parts.
First, Mackey's standard form of an imprimitive
representation is given and shown to be equivalent,
in the special case at hand, to a simpler form which
will be more convenient for present purposes. Second,
for a given imprimitive representation a unitary
transformation is found which brings it into Mackey's
form. Third, the unitary transformations which
commute with an imprimitive representation U(a, A)
but not with its system of imprimitivity E(8) are
parametrized. This yields a parametrization of the
nonuniqueness in the definition of a position opera-
tor.

Suppose there is given a continuous unitary
representation A —+ X)(A) of the 2 )( 2 unitary
unimodular group in a Hilbert space BC($). Then
the representation of Ss induced by $(A) is denoted
U and constructed as follows. Consider functions
C(a,A) which are defined on Ss, whose values lie
in 3C(X)), and which satisfy

(a) (C (a,A),x) is a measurable function of (a,A I,
for every x g BC($). [The indicated scalar product
is in BC($).j

(b), (c) also satisfies (a), (b), (c) so these functions
form a vector space. If a scalar product of C and @
is defined

(C,e) = da(C (a,A) e(a,A))

the vector space becomes a Hilbert space X', ."The
representation U is defined in K by

(U(a,A) C) (b,B) = C (1 + Ba,BA) . (4.2)

This representation possesses a transitive system of
imprimitivity defined by

(E(8)C)(a,A) = x.(a)C(aA)
defined for Borel sets 8 of Z& where, as usual, xs is
the characteristic function of 8: xs(a) = 1 if a
Q 8, 0 if a g 8. It is easy to verify using (4.2) that
the E(8) transform correctly under U(a,A), i.e.,
satisfy V.

Because of the smooth fashion in which A acts
on R this representation can be put in a simpler form.
If, for the moment, attention is restricted to con-
tinuous functions C(a,A), Eq. (4.1) can be used to
write

C (a,A) = X) (A) C (A 'a, 1) (4.8)

which expresses C(a,A) for general values of A in
terms of its value for A = 1. Conversely, given any
continuous function C (a) with values in X($), one
can define a continuous C(a,A) by (4.8) and it will

then satisfy (4.1). The scalar product of two such

C(a) and +(a), fda(C (a),+(a)) is 'equal to that of
the corresponding C(a,A),+(a,A) so the one to one
correspondence can be extended by continuity to a
unitary mapping between the Hilbert space 3C and
the Hilbert space of the measurable square integrable
C(a).

The representation (4.2) determines a correspond-
ing representation on the C (a) given by

&(B)(U(a,A) C) (B 'b)

= &(BA)C((BA) '(b+ Ba))
or

(U(a,A)C)(b) = n(A)C(A '(b+ a)) .

Now this looks just like the standard form of
Euclidean transformation appearing in Schrodinger

«8 The details of the proof involve identifying functions
which dier only on a set of measure zero and establishing
that the space is closed. For a proof which is easily adapted to
the present circumstances see M. H. Stone, Linear 7.'ranefor
nations in Hitbert Space (American Mathematical Society,
Providence, Rhode Island, 1932), pp. 23—82.
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theory except that there one has —a instead of a on
the right-hand side. That just means that one uses as
representative of the fun. ction C( —b) instead of
C (b). This will be done from this point on. Thus, in
the present context, Mackey's form of the imprimi-
tive representation induced by X) may be taken as

since | is a group. The positivity of the quadratic
form then implies that the determinant of its matrix
is positive, i.e.,

l~(g)l & ~(c) .
Any unitary representation of G, g~ U(g), yields

examples of positive definite functions"

v(g) = (C', U(g)c')
(4 5)

because, in this case,
(E(8)c)(b) = x.(b)+(b)

(U(a,A)C')(b) = 5)(A)C'(A (b —a)) (44)

with the scalar product

(c,e) = db(C(b), e(b)) . (4.6)

Clearly, taking n = I, one gets

q (e) ) 0 .

For n = 2,

(I I'+
I I')~(c) + * .v(g 'g )

+ Cl2 Ay@(g2 gz) )~ 0 .

(4 7)

From the reality of the left-hand side one concludes

q (g-, 'g, ) = p(g g, )* which is equivalent to

p(g ') =q(g)* all g&G, (4 8)

~9 See reference 6. One of the main virtues of Loomis' treat-
ment is that it applies to nonseparable Hilbert spaces. Since
separability is assumed here this advantage will not be ap-
parent.

Now, the second step of the argument is under-
taken; it is to be shown that for each pair consisting
of a continuous unitary representation Ia,A I
—+ U(a, A) and a system of imprimitivity E(8), there
exists a unitary operator V such that VU(a, A) V '
and VE(8) V ' are of the form (4.4) and (4.5), re-
spectively. Available to show this are several lines of
argument, not one of them trivial. Here the elegant
proof of Loomis" will be written out for the present
simple case.

The erst step in the argument is to express the
problem in terms of certain complex-valued functions
dered on the group. This is quite analogous to the
study of general unitary representations in terms of
positive definite functions on the group. To motivate
Loomis' method, a brief sketch will first be given of
the relation of positive definite functions and repre-
sentations.

A function q defined on a group 6 is positive

definite if for each n = 1,2, and all complex
numbers o., n„and g, g„P G

Z '* ~(g 'g) = IIZ 'U(g')cll'& 0.
If the representation is continuous then &p(g) is con-
tinuous.

Conversely, given a continuous positive de6nite
function one can construct a continuous representa-
tion of O'. Let r, s be complex-valued functions on 6
which are diferent from zero only at a finite number
of points. (Such functions form a vector space. )
Introduce the form

Z r(g) v(g '&)sV) (4 9)
g, Agg

(r,s) is sesqui-linear, i.e.,

(r,sf+ 82) = (r,s, ) + (r,s2), (r,n8) = n(r, s) (4.10)

(r,a) = (a,r)

by virtue of (4.8), and

(4.11)

0 Positive definite functions were used in the proofs of the
celebrated theorems of Bochner and Oelfand-Raikov for
Abelian and locally-compact groups, respectively. A system-
atic account of their properties is found in R. Godement, Trans.
Am. Math. Soc. 63, 1 (1948).

(r,r) & 0. (4.12)

Now it may happen that there are some r for which

(rr) = 0.
If so, it is easy to see that they form a linear subspace
and the components orthogonal to this linear sub-
space form a vector space on which (r,s) again
satisfies (4.10), (4.11), and (4.12) but, in addition,
(r,r) = 0 implies r = 0. This space may or may not
be complete. If not, complete it and get a Hilbert
space H„. To get a continuous representation of G in

H„, define, first on functions with only a finite num-
ber of values different from zero,

(U(g)r)P) = r(g '&) (413)
with the inverse U(g-').

So defined U(g) leaves the scalar product invariant

(U(g)r, U(g)s) = Q, , & r(g 'h)*q(k 'k)s(g 'k)

= g r(h')*p((gh') '(gk'))3(k') = (r, s)
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so the subspace of those r for which (r,r) = 0 is left
invariant by U(g). Therefore, so is its orthogonal
complement. Because U(g) is therefore defined and
continuous on a dense subset of H„ it can be extended
by continuity to be a unitary operator in H„. Clearly,
on the original functions

U(g )U(g ) = U(g g ),
so by continuity, g

—+ U(g) defines a representation.
To prove U(g) is continuous in g, consider

ll(Ug) —U(g'))rll' = II(U(g 'g') —1)rll'
= 2I (r,r) —Re (U(g 'g')r, r)] .

Clearly, this equation implies that it suKces to
verify (U(g)r, r) is continuous in. g at g = e for all
r g H„. For r of the special kind appearing in (4.9),
which only take values different from zero at a finite
Iiumber of points the continuity is easy to verify:

(U(g)rr) = Z.»(g 'l)*~(l 'l)r(l)
= Q, , i, r(h)*q (gh) 'k)r(lc),

which clearly converges to (r,r) as g
—& e because q&

is continuous and there is only a finite number of
terms in the sum. For a general r, there always exists
an e of the above form so that Ilr —el I

& e/8. By
the above argument a neighborhood of e can be
found so that II U(g)s —ell & e/8. Then

IIU(g)r —rll & IIU(g)r —U(g)ell + IIU{g)e —ell

+ lie —rll

which completes the proof that g U(g) is a continuous
unitary representation of G.

Actually, if the continuous positive definite func-
tion from which one starts is of the form (C,V(g) C),
the representation constructed by the above process
will be closely related to V itself. For, if the subspace
(of the Hilbert space 3C in which p lies) spanned by
vectors of the form V(g)C is denoted K, the con-
structed representation as unitary equivalent to the
restriction of V to K. The required unitary equiva-
lence is obtained by making g r(g) V(g) correspond
to r, for r differing from zero only at a finite number
of points. Equation (4.9) is just arranged to make
scalar products correspond. Clearly (U(g)r) corre-
sponds to V(g) P r(h) V(h) C. The correspondence
can be extended by continuity to yield the required
unitary equivalence.

A representation V for which there is a vector C

such that the V(g) C span the representation space
is called cyclic and C is then a cyclic vector. Note that
the function which is one at g = e and zero elsewhere

is a cyclic vector for the representation defined above.
Thus, what has been established in the preceding
paragraphs is that all cyclic representations are
unitary equivalent to those of the form (4.9) and
(4.18). Since any representation can be written as a
direct sum of cyclic representations, it suKces for
many purposes to study cyclic representations.

In the present case, there is a system of imprimi-
tivity E(8) in addition to the group representation
U(g) so one has to consider cyclic vectors and repre-
sentations of E(8) and U(g) together. This suggests
studying the function (E(8)C,U(g)C) = qe(g) and
using it to construct a pair unitary equivalent to
IE(8),U(g) ) and in Mackey's form.

Now return to the special ease of 83. When the
representation and system of imprimitivity is in
Mackey's form (4.4) and (4.5), the function p&(a,A)
is

( A) = db((E(8)c')(b) (U( A)c)(b))

db(C (b),n(A) C (A '(b —a))) (4.14)

The next task is to show that qr~(a, A) has a form
closely related to this for any representation and
transitive system of imprimitivity.

Before the discussion can begin a preliminary re-
mark is necessary. Extensive use is going to be made
of the part of the Radon-Nikodym theorem which
says that if, for two measures p, and y, , p, (8) = 0
implies p&(8) = 0, then there exists a measurable
function p(x) such that F2(x) = p(x)dp&(x). To make
these applications it is essential to know that E(8)
= 0 for all Borel sets 8 of Lebesgue measure zero.
To obtain this result, it is convenient to use the fact
that the E(S) possess a separating vector, i.e., a vector
I such that E(8)C = 0 implies E(8) = 0. Although
this is a standard result" a proof will be outlined.
Choose an arbitrary unit vector C», and let K& be
the subspace spanned by the E(S)C». Choose a unit
vector 4, orthogonal to X, and let K2 be the sub-
space spanned by the E(8)C». Continuing in this
way one gets a family of orthogonal subspaces such
that 3'. is the direct sum of the X; and I „ is a cyclic
unit vector for X;. Take as separating vector C
= g„2-"C.. Clearly, if E(T)4 = 0 then E(T)C„= 0
for all i Conseque. ntly, E(T) yields zero when
applied to a dense set of vectors, the linear combina-
tions of the E(8)C;. It is therefore zero and C is a
separating vector. Note first that if E(8) = 0, then
E(AS+ a) = U(a, A)E(S)U(a, A)-' = 0. Thus if C

2~ See reference 14, p. 20.
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LOCALIZABILITY IX QUANTUM MECHANICS

in the subspaee spanned by the U(f) C into a dense
set of vectors in the Hilbert space spanned by the
functions of r: (U(f) C) (r) and preserves scalar prod-
ucts it can be extended by continuity to become a
unitary transformation V.

All this discussion is collected in Theorem 3.

Then the form

((U(f)C)(r), (U(g)C)(r)) = dbdB dcdC

&& f(b + r,B)*g(c+r,C)g([b,B] '[c,C], —8 'b)

X n(-8 'b) (4.21)

is suggested as the scalar product appearing in the
integrand of (4.14).

With these definitions, one has

(E(S)U(f)C,U(a, A)U(g)C) = dr

X ((U(f) C) (r),W(a, A) (U(f) C)) (r)),
where W(a, A) is the operator defined by (W(a,A)C)(b) = $(A)C(A. '(b —a)) (4.26)

Theorem 8. Let [a,A ] ~ U(a, A) be a continuous
unitary representation of 83 with a transitive system
of imprimitivity, E(8), based on R. Then there
exists a unitary transformation V, such that
VU(a, A)V ' = W(a, A) and VE(8)V '= I'-(8), re-

(4 22) speetively, given by

f(b+ r,B) & f(A—'b+ A '(r —a),A '8) .

Notice that if linear transformation $(A) is defined

by the correspondence

f(b + r,B) ~ f(A 'b + r,A '8) .

Then W may be written

(4.23)

imply

(E(8)U(f)C,U(f)C) & 0

(W(a A)U(f)C)(r) = K)(A)(U(f)C)(A '(r —a))
so that W is precisely of the form (4.4). It is obvious

(by a simple change of variable) that $(A) leaves the
scalar product (4.21) invariant

Now it has to be verified that (4.21) does indeed
define a scalar product. First note that it is linear in

g and conjugate linear in f Furtherm. ore, because
(4.20) holds for every Borel set 8,

(E(8)U(f)C' U(9)C') = [(E(8)U(g)C'U(f)C')I

(~(8)C')(b) = x.(b)C'(b) . (4.27)

Here A ~ X)(A) is a continuous unitary representa-
tion of the 2 )& 2 unitary unimodular group in a sep-
arable Hilbert space X and the C (b) are functions on
R' with values in X which are measurable in the sense
that for all pairs of such functions (C (b),@(b)) is a
measurable function of b. In symbols

dbms~ with 3'.y = X .

The remaining task of this section is to examine
the arbitrariness in the definition of the position
observable. For this purpose, one can bring the pair
[E(8),U(a, A)] into the form (4.26) and (4.27), and
then determine all unitary operators which commute
with U(a, A) but not with E(S). It is convenient for
this purpose to rewrite (4.26) in momentum space

(U(a, A)C)(p) = e "'&(A)C'(A 'p) .

If 8 is a unitary operator such that [B,U(a, l)] = 0,
Theorem 1 shows that 8 can be written in the form

((U(f)C) (r), (U(g) C) (r))
= [((U(g) C') (r) (U(f) C') (r))]* (4.24)

(BC)(p) = 8(p)C(p)

where 8(p) is a unitary operator in Rp ——X. The
commutativity with U(O, A) then implies

((U(f)C')(r) (U(f)C)(r)) & o

for almost all r. However, since f and g are continuous
and of compact, support the integral appearing in r
is continuous in r Therefore . (4.24) and (4.25) hold
for all r. Now, just as in the case of (4.12), one can
introduce components of vectors orthogonal to the
subspaee for which (4.25) is an equality, and com-
plete the resulting space to get a Hilbert space X
the same for each r. A ~ X)(A) is then a continuous
unitary representation in X.Since the correspondence
U(f)C ~ (U(f)C)(r) carries a dense set of vectors

8(o)X)(A) = X)(A)8(A 'o) (4 28)

for almost all y.
This equation can be discussed along lines familiar

from Sec. 3 and Appendix IV. For those A which
satisfy Ap = p, i.e., for A in the little group of p,
(4.28) reduces to

8(p)&(A) = &(A)8(p) . (4.29)

The set of all 8(p) satisfying this equation is easy
to compute. Supposing them known one gets the
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general solution of (4.28) by using it as a definition: Here

B(y) = n(A...) 'B(q)x (A...) . (4.30)
Here the 3&+p satisfy Ag+pjp =

Q and parametrize
the cosets of the little group of q. By virtue of (4.29)
at q any parametrization yields the same B(p). An
argument just like that following equation (3.20)
shows that the B(p) defined for a fixed q/~q~ and all

p by (4.30) satisfies (4.28).
To obtain a,ll solutions of (4.29), one can decom-

pose A ) $(A) into irreducible representations of
the 2 P 2 unitary unimodular group, and these in
turn into irreducible representations of the little
group

j=0)1/2)1 ~ ~ ~

m=-j, —7 —1,~ ~ ~ 7

im(j)
e

Thus A —+ X)(A) restricted to the little group of y
is unitary equivalent to

with
gn. e'"' (4.31)

n,.= gn, .
g' —

t ~nl

Here the summation over j is over integers if m is
integral au.d half-odd integers if m is half an odd
integer.

The B(y) corresponding to a given set {n },m = 0,
~ —,', ~ 1 is a direct sum of unitary operators
actiu. g in the subspaces of vectors with a definite
value of m, and any such defines a possible B(p).
The number of real parameters free in an arbitrary
n„X n„unitary matrix is n' so that B(p) contains
P„n2 arbitrary real parameters, each of which could
be a, function of ~p~.

Collecting the information acquired in the preced-
ing discussion one has Theorem 4.

Theorem $. If E(8) is a system of imprimitivity
for the unitary representation Ia,AI —+ U(a, A. ) of
8, in the standard form (4.26), (4.27), then all other
systems of imprimitivity consistent with U are given
by

F(8) = BE(8)B ',
where B is a uriitary operator given by

(Bc') (p) = &(A.-.) 'B(q)&(A.-.)@(y) (4 32)

so that

(F(8)e)(p) = n(A, ,) 'B(q) 'n(A, ,)

x()) = [& ) "f"x '(».)~

and B(q) is a solution of

I:B(q),&(A)1 = o

for all A satisfying Aq = q.

(U(~ )@)(y) = &( )C'( —y)*

The requirement that B commute with U(I)) then
forces

&( ')B(-y) = B(p)&(.') (4.34)

which is

In the discussion up to this point, symmetry under
time inversion and any analog of the regularity
assumption of Newton and signer have been
ignored. This is natural in the case of Theorem 3
because the canonical form of a transitive system of
imprimitivity can be obtained without the use of
these additional assumptions. However, for Theorem
4, they are of decisive importance. Even in this case
X)(A) one dimensional, (4.33) would give a wide
variety of distinct position observable (B(q)) is then
a complex-valued function of the form B(q)
= e'"&~'~&,q real. In this case, the effect of the assump-
tion of time inversion invariance is to force B to be
real, a,nd therefore to be equal to +1. However, it
could be +1 for some ~p~ and —1 for others without
violating either Euclidean or time inversion in-
variance. It is here that Newton and signer's
assumption of regularity has the effect of making
B a constant and F(8) = E(8). They require (in a
Lorentz invaria, nt theory) that the infinitesimal
I.orentz transformation operators be applicable to
localized states in the sense that if C„is a sequence of
vectors which converge to a state localized at a point
a as n ~ ~ then»m--. Il~"C'-ll/ll~. ll & "
Since Mo;, i = 1,2,3 are essentially differentiation op-
erators this forces continuity on the momentum space
representation of Newton and signer's localized
(continuum) state. An analogous requirement in the
present formulation has an analogous consequence.
The details are as follows.

According to (3.14), the transformation law of
states under time inversion is of the form

X n(A. ..)c(r) . (4.33)

X (2
'" .(p — )«~(A...) 'B(q) ' S(r )S(A pc- —))) B(q)50 (Agw —)))

= X)(A, ,) 'B(q)n(A, ,)X)(r')
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ol uslIlg

X)(A) = $(r ) X)(A)D(r ),
n(A, yA,

' p)n(r')B(q)
= B(q)$(A, ,A, ',)n(~') . (4.35)

For suitably chosen p the factors in X) cancel and one
gets

x &+ pq — pxq.
ipllql Ipllql

This is well defined for all p W —q.
Then

. (p X q)
Aqy yA jy -p

Itiseasyto choosepso that (p X q/fp/]q/ ~)r' = I;
then (4.36) follows. However p is chosen provided

q is along the 3 axis (q X p/~q~ ~p~) ~r' leaves q in-
variant. This proves the second statement. ]

A comparison of these statements with the discus-
sion just before Theorem 4 shows that the effect of
time inversion invariance on the arbitrariness of
B(q) is to reduce the number of arbitrary real
parameters from gn'„ to gn (n,„—I) each of
which could be on a function of ~q~. It is clear that
the position observable will be nonunique as long as
$(A) is not irreducible. If $(A) is irreducible and the
elements of the little group have X)(A) reduced to
diagonal form B(q) is diagonal with diagonal ele-
ments which are real functions of ~q~ of square I; the
position observable is still not unique. However,
unless B(q) is the constant matrix &I, the formula
(4.33) will yield discontinuous functions of p. [Take
a compact set 8, then the integral in (4;33) is dif-
ferentiable, so discontinuities in the function outside
the integral are discontinuities of (F(8)C) (p).] Such
discontinuities will appear at any value of g where

B(~q~) jumps so B(~q~) must be constant in ~q~. It
must be a constant multiple of the identity if it is

B(q) = B(q), (4.36)

provided that q is not along the 2 axis as will be
assumed. The remaining condition on B(q) says that,
it, commutes with all $(Aq&-pAq~-p 2r'). This will be
no further restriction since we may for convenience
choose q along the 3-axis and then every such trans-
formation is an element of the little group of q, and

B(q) already commutes with them. [To see this it
is convenient to choose a particular form for the
c4.p~ g .

to be differentiable at y = —q. In summary, we
have Theorem 5.

Theorem O'. In a Euclidean invariant system with
time inversion symmetry the possible observables
F(8) which describe localization are given by (4.33)
with B(q) a real unitary operator.

If localized states are differentiable in y and 9
—+ X)(A) is an irreducible representation of the 2 X 2
unitary unimodular group then B(p) is a constant
multiple of the identity and F(8) = E(8).Converse-
ly, if the F(8) are unique A ~ X)(A) must be irre-
ducible and localized states differentiable.

In the following in Theorems 6 and. 7, the regu-
larity and time inversion invariance requirements
assumed in Theorem 5 will always be taken for
granted.

ln

(~(a,A)C') (P) = ~"'Q(P,A)@'(A 'p)

3C = dp p3C„

with

dp(p) = po~(p)dp+ dp+(m)dQ-+(p)

+ dp (m)dQ„(p)

+ dp(im)dQ;„(p),

dQ ~(p) = d p/[m'+ p']'~' being the invariant' meas-
ure on the hyperboloids p' = m', y' &~ 0, respectively.
dQ;„(p) is the invariant measure on the hyperboloid
p' = —m'. Q(p, A) is unitary and satisfies

Q(p A) Q(A 'p B) = Q(p, AB)

For the subrepresentations with m' ) 0, Q(p, A) can
be chosen in the form

Q (p,A ) = Q (A„~gA A g *„~~) (5.1)

where A, = (m, 0,0,0) and A,+~ is given by

A, , = [2(q' + m)m]
' '[ml + q], q = q' + q. ~

and A —+ g(A) is a continuous unitary representa-

5. REPRESENTATIONS OF G3 WHICH ARE
RESTRICTIONS OF REPRESENTATIONS OF THE
COVERING GROUP OF THE INHOMOGENEOUS

LORENTZ GROUP

It is well known that every continuous unitary
representation of the covering group of the Poincare
group is unitary equivalent to one of the form
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tion of the unitary unimodular group. For m = 0,
the Q(p, A) are a direct sum of two parts, the first of
which contains all the finite spin constituents while

the second contains all infinite spin constituents. For
both of these (5.1) again holds but k is some standard
light-like vector, say (1,0,0,1), and A, +s is a parame-
trization of the cosets of the little group of k. That
little group is isomorphic to the two-sheeted covering
group of the Euclidean group of the plane and
A —+ Q(A) is a continuous unitary representation of
it. For the finite spin part this representation is trivial
for the "translations" while for the infinite spin part
it is not. The subspace of the mass zero representa-
tions can be written as a direct integral over two-
dimensional space

do (=)x,„-„. , p' = 0,

with the scalar product

where

d~(=-) = ao8(=-)d=- + d~i(l=-l)dp

with = = -, + i-. = ~=-~e'" and

(Q(k,A)C)(k, ) = exp (i t)Q, (k, ,A)C(k, e
'

)

for

A = [1 + —', t(e, + ie, ) ~]

&& [cos 0/2 —i sin (0/2) (k/k') ~]

with e', = 1 = e,', e1 e& ——0 = e&.k = e& k, t = t1

+ it&. Here Q&(k, O,A) may be expressed in terms of a
representation Q& of the above A leaving k fixed.

Q& (k,O,A) = Gi[cos 0/2 —s sni (0/2) (k/k ) ~]

Q&(k =- A), - & 0 may be expressed in terms of a
representation Q of the two element groups A = & 1,
which is the subgroup of those unitary unimodular A.

which leave k and some, say 1 Axed:

Q, (k=-A) = e(A-. -„.,AA. .-. -. ,)
where A is a transformation of the form cos 0/2 —i
sin (0/2) (k/k') ~ carrying & into

The representations of imaginary mass and null
four-momentum (apart from the identity represen-
tation) will be ignored here as being irrelevant to the
transformation properties of physical systems.

Clearly, when {a,A} is restricted to lie in 8s, the
subrepresentation which comes from mass 0 is in
precisely the form (2.2) and Theorems 4 and 5 apply
directly. For the case of mass zero and = 0, the

system is localizable if the representation of the little
group A —+Q&(k, O,A) is the restriction of a repre-
sentation of the unitary unimodular group. This
happens for the spin-zero case but for no other ir-
reducible representation. For the case of mass zero
and - / 0, the representation of the little group is a
direct integral over irreducible representations which
are determined by the value of

~ ~
and the represen-

tation of the little group of the little group, A = ~1.
The representatives of the state vectors, C(k, ) can
be expanded in Fourier series on the circle
= const. This corresponds to a decomposition into
irreducible representations of the subgroup of the
unitary unimodular group that leaves k fixed. In case
the little group of the little group is trivially repre-
sented, each integer angular momentum along k
appears exactly once. In case it is nontrivially repre-
sented, each half odd integer angular momentum
along lr appears twice. Such representations ca,n
never be the restriction of a representation of the
full unimodular group. Thus elementary systems
with A 0 are never localizable. Reducible systems
are localizable only if each representation

~ ~

ap-
pears with infinite multiplicity or not at all.

Theo~em 6'. Lorentz invariant systems of m' ) 0
are always localizable. Their position observables
are unique if the systems are elementary, i.e., their
representations are irreducible.

For m = 0, the only localizable elementary system
has spin zero. For a reducible system to be localizable
it is necessary and sufhcient that each irreducible
representation of infinite spin appear with zero or
in'. nite multiplicity, and the finite spin parts con-
tribute states of angular momentum along a Axed

direction whose multiplicities coincide with those of
the restriction of a representation of the unimodular

group.
The identity representation for which p = 0 can

not appear in the transformation law of any localiza-
ble system.

0. REPRESENTATIONS OF 83 ARISING

IN GALILEI-INVARIANT SYSTEMS

Unlike the case of Lorentz invariance where all
representations up to a factor are physica, lly equiva-
lent to representations of the covering group, Galilei
invariance leads to factors which cannot be got rid of
by passing to the covering group. However, as Barg-
mann showed, "one can regard them as true repre-

s3 V. Bargmann, Ann. Math. 59, 1 (1954), especially pp.
38-43.
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sentations of a certain extension of the covering
group of the Galilei group. The first task of this sec-
tion is to express this statement in explicit formulas
and summarize the classification of the representa-
tions.

The Galilei transformations will be denoted (Q,F)
or in more detail (r,a,v,R) where (O,F) = (0,0,v,R)
(a, l) = (r,a,0,1) and

direct integral over the character group whose ele-
ments are exp i[q8 + 5 '(Er —p a)]. The states are
then functions C (q,p) labeled by integers q and a real
four-component p = (E/A, p/A). The scalar product is

(,a) t +r
x+a

(vR) t

8 is a rotation of the three space of the
multiplication law is

(U(exp i8, Q, 1)4) (q,p)

= exp i[q8+ h, '(ET —p a)]C(q,p) .
x. The group The action of I' on the subgroup (exp 28,r,a, 1) is

(Tl al Vl Rl) (T2 R2 V2 R2)

(Tl + T21 al + vl'721 vl + Rlv21 R1R2)

The covering group is obtained by replacing Jtl by
A, a 2 &( 2 unitary matrix of determinant 1, just as
in (2.1). For simplicity, IQ,F} will be written for the
group elements in this case also.

Bargmann showed that by physically inessential
changes of phase, one could bring all the factors into
the following form:

pl(a Fl Q2 F2) = exp i( I3/IO)

X (v, A, a, + -', vlr2) .

Here M/h is a constant of the dimensions
time/[length]', which has arbitrarily been written
as a ratio in order that its interpretation shall come
out automatically when applied to Schrodinger
theory (5 is Planck's constant divided by 22T).

Furthermore, Bargmann pointed out that every
representation up to a factor with this factor arises
from a representation of the group whose elements
are (exp i8,Q, F) 0 ( 8 ( 22r and whose multiplica-
tion law is

(1,0, F) (exp i8,a, l) (1,0, F)

= (exp i[8 + (3I/h) (v A. a + 2 v r)], I'a, l) .

It induces a corresponding transformation of the
characters

q ~ q E ~ E —p v + -,'q3IV'

p —+ A '(p —q3IV) .

From this, it follows that

@(q,E,p) = de(q, E + v Ap + —3IIv', Ap + q3IIv).

To yield a representation of the form (6.1), dp, must
be a product of 8,1 with a measure in (E,p) above,
dlI(E, p), satisfying

dl (E,p) =—dl (E+ v Ap+ v', Ap+ mv) .

This in turn implies that dv is equivalent to a measure
constant on parabolas

d~(E, p) = dp(E )d& .(p)

where dX11.(p) is the measure dp on the parabola

(exp l81 al Fl) ~ (exp i82 Q2 F2)

= (exp i[8, + 8, + (M/h, ) (v, R, a, + -,'v', r2)],

al + I'la2, I",I', )

E=Ep+ P
23f

via the formula

U(exp i8,Q, I') = e' U(a, F) .

and dp(Ep) is a measure on the real axis describing

the spectrum of rest energy of the system. Again just
in the case of the Euclidean group, there is a canoni-

(6 1)
cal form

U(exp i8,a, F)C)(Ep,p) = exp (i8)

X exp [( /"i)( E—r p a)]Q(Epp F)

X C'(Ep, A '(p —3IIv))

Q(EplplV11A1)Q(EplA1 (p —3IVI)1V21A2)

Q (Ep p Vl + A1V2 A1A2)

For the case 3II = 0, this refinement is unnecessary.
That case will be discussed later.

Now the elements of the group of the (exp i8,a,F)
which are of the form (exp i8,a, l) form a, normal sub-

group and the group is the semi-direct product of where
this Abelian normal subgroup and the subgroup of
the (&,O, F) . Just as in the case of the Euclidean group
one diagonalizes the Abelian subgroup in terms of a

(6.2)

(6.3)
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and the scalar product is but the measure p now satisfies

'(C'P) = dp(E. ) d&. (p)(C'(E y)P(E p)) .

The little group of a vector q consists of all (v,A) of
the form (3I-'(q —Aq), A) and is isomorphic to the
unitary unimodular group.

The Q's can be brought into the canonical form

Q(EO p v A) = Q(EO 0 p/llI 1) Q(Ep O, O~A)

X Q(E„O,A '(v —p/M, l) (6.4)

where

A ~e(A) = Q(E.,O,O,A)

is a continuous unitary representation of the group
of unitary unimodular matrices. Evidently, (6.4)
just describes a superposition of Schrodinger parti-
cles of mass 3I, and various rest energies (described
by Eo), and spins (described by the irreducible con-
stituents of q).

It is clear that the representation of 83 that is
obtained from (6.4)

(U(a,A)C(y)) = e
' '0(A)C(A 'p)

with the scalar product

(CP) = dy(C (y)P(y))

(C(y)P(y)) = dp(E )(C(E,y),q'(E, y)) .

Thus for 3II & 0, the situation is essentially identical
with that in the Iorentz invariant case. There is
always a position operator and the arbitrariness in
it is that associated with the representation of the
unimodular group which describes the transforma-
tion properties of the system under rotations in the
rest system.

For 3I ( 0, localizability still makes sense but
such representations are rejected on the physical
ground that the kinetic energy of a particle is nega-
tive.

For representations with 3I = 0, the preceding
argument has to be reexamined. There is no need to
introduce 0 as in (6.1).The diagonalization of U(u, l)
leads to

(U(0 1)C') (E p) = exp l.~(E —y a)/&j C'(E y)

with a scalar product

dp(E, p) —= dp, (E+ v A y,Ap)

and this implies that dp is equivalent to

d(u(p)dp(~p~)dE + gob(p)dEdp,

where d~(p) is the area on the sphere of radius ~pt.
(The fact that the energy spectrum of the system
runs to —~, makes these representations of dubious
physical interest, but does not exclude their being
localizable. ) The full transformation law is of the
form

(U(a, r)c) (E,p) = exp lz(E —p.a)/"tQ(E, p, r)
X 4(E —v p,A 'y)

where Q(E,p, r) satisfies

Q(E,p, v&,A&) Q(E —v, p,Ai 'y, v2, A2)

= Q(E,p, v& + A,v„A,A, ) .

The little group of p, p W 0 consists of all (aa,A) such
thatAp = p and v p = 0. Thisisagroupisomorphic
to the two-sheeted covering group of the Euclidean
group of the plane. For p = 0, the little group is the
full unitary unimodular group. There can be no
contribution of this latter kind in any localizable
system because the criterion (i) of Sec. 2 is not satis-
fied so only the former case will be considered. There,
the criterion (i) forces dp(~p~) to be equivalent to
~p~ d~p~. From this, it is clear that no irreducible rep-
resentation is localizable because an irreducible rep-
resentation has dpi concentrated on an orbit ~p~

const
The general Q(E,p, v,A) is expressed in terms of

the representation of the little group of the vector
(O,q), where ~p~

= ~q~, in the following way:

Q(E,p, r) = Q(o,q, r((E,p) ~ (o,q))
'

X Q(0,q, r((E,p) (O,q)) 'rr((r '(E,p)) (O,q))

X Q(0,q, r((r '(E,p) (O,q))) .

Here r((E,p) +—
(O,q)) is a Galilei transformation

which carries (O,q) into (E,p), so

r((E,p) (O,q)) 'rr((r '(E,p)) (O,q))
belongs to the little group of (O,q).

The same procedure can be applied to analyze the
representation (v,A) —+ Q(0,q, v,A), v q = 0, Aq = q,
of the little group of (O,q) as was applied to 83 itself.
One diagonalizes the "translations" v. Then the

(CP) = dp(E, y)(C(E,y)P(E,y)) 24 This result agrees with that of Inonu and Wigner, reference 8.
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representation takes the form

Q(O, q, v, A. )C)(q,») = e'"'
Q&(q, »,A)C(q, A '») .

Here n is a two-component vector in the plane
perpendicular to q which labels the characters of the
"translation" subgroup. The scalar product is

(c (q) q'(q)) = d ( ) (c (q, ),q (q, )),
where the measure o is equivalent to one of the form

d~(») = ~.S(»)d»+ d~, (~»~)d&, », + i» = ~»~~"".

The little group of the little group is the little group
itself if n = 0, while it is the two-element group:
A = ~1 if » & 0. In the former case A —+ Q&(q, O,A)
is any continuous unitary representation of the little
group of q. In the latter case, &1~ Q, (q, », & 1) is
any unitary representation of the 2-element group
and the Qi of general argument is expressed in terms
of the elements of the little group by

Q, (q, »,A) = [Qi(q, »O,A, ')] '

Q~ (q)»0)Anon AAA 'nun —) Ql (q)»0)AA —xnano )

The irreducible representations of the little group
of the little group have either o-0 & 0, do-& ——0 or o-0

= o, d~~(l»l) = ~(l»l —a)dl»l, «»ome a» The
corresponding Q& are one dimensional.

In the case oo ) 0, Q&(q, O,A) is just Q(O, q,v,A) for
v q = 0 Ag = q, so the system will be localizable if
A —+ Q(0,q, O,A) for Aq = q defines a representation
which is a restriction of a representation of the full
unimodular group. In the case ~»~ 4 0, Q&(q, », & 1)
= +1 yields a Q(O, q, O,A), Aq = q which contains
each integer angular momentum along q just once,
so it is not localizable. A necessary condition for
localizability is that the representation Q&(g, », ~ 1)
= +1 have zero or infinite multiplicity. The ir-
reducible representation Q&(q, », ~ 1) = ~l yields
a Q(0,q, O,A), Aq = q which contains each half-odd
integer angular momentum along q just once so it is
not localizable. A necessary condition for localiza-
bility is that Q&(q, », & 1) = &1 appear with zero
or infinite multiplicity.

A.ll this is summarized in Theorem 7.

Theorem 7. Every Galilei invariant system with
M & 0 is localizable.

For M = 0, no elementary system is localizable
because such a system has momentum satisfying ~p~

= const. Systems with 3I = 0 and a reducible repre-
sentation of the Galilei group are localizable if and
only lf:

(a). The measure on momentum space is equiva-
lent to Lebesgue measure;

(b). The subrepresentation of the little group of
(O,q) for which the pure Galilei transformations I
= (v, l) are trivially represented is, for almost all

~q~, the restriction to the group of A. such that Aq
= q of a fixed representation of the 2 )& 2 unitary
unimodular group;

(c). The subrepresentation of the little group of
(O,q) for which the pure Galilei transformations are
non-trivially represented contains each irreducible
with multiplicity zero or infinity, the same for almost
all /qf.
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APPENDIX I. FINITE ADDITIVITY ON FINITE
UNIONS OF CUBES

In connection with axioms I, II, III, it was re-
marked that it might appear more natural from a
physical point of view to weaken the axioms so that
the existence of the observable E(8) is required only
for 8 a finite union of cubes, and finite additivity is
required:

E(81 U 82) = E(Si) + E(82) if Sx n $2 = 0

instead of the complete or 0-additivity described
in III.

In this Appendix, it is shown that such a weaken-
ing of the axioms is only apparent because any E(8)
satisfying the weakened axioms can be extended
uniquely so as to satisfy I, II, III, as they stand.

Consider the family A of all sets of R' which are
finite unions of half-open intervals. By a half-open
interval is meant a set [a,b) of the form

[y; a& & y& & b„ a2 ~& y2 ( b2, a8 ~( y& & ba},

that is, the set of all y satisfying the listed inequali-
ties. By assumption, the cases a; = —~ and 6;
= + ~ are also included; in the former case, the
equality sign in a, ~& y, should be ignored. A is re-
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ferred to as an algebra of sets because it is closed
under the operations of taking the complement of a
Set and taking the union of a finite number of sets.
A. 0- algebra of sets is one closed under complemen-
tation and denumerable unions. A projection-valued

finitely addi-tive measure on A is a function, E, with
values which are projections in a Hilbert space 3',
de6ned for all sets of A and satisfying II, and

E(81 U 8 ) E(81) + E(82) E(81 ti 82)

fol' any 8&, Ss Q A.
A projection-vaLued finitely additive measure that
satisfls in addltlon

If I' is real valued it is said to be positively monotonic
if LB[a,b) &~ 0 for all [a,b)." If the values of F are
commuting projections the analogous requirement
is that dr[a, b) be a projection for all intervals [a,b).
Notice that if E(8) is any finitely additive projection
valued measure de6ned on A, it yields such an F
from t,he definition

F(x] xs xe) = E(Iy;y, & x&,ys & xs, ys & xe}) . (Al)

Conversely, the following theorem holds.
Theorem Al. Let F be a positively monotonic

function defined on R' with values which are com-
mutative projections. Suppose

E(US,) = QE(8, )

for any sequence of S; g A,i = 1,2, . such that
8; A 8; = 0, i W j and US; Q A is called completely

additive or a additive. The precise statement of the
result of this Appendix is

Theorem A5. Any finitely-additive projection-
valued measure on A which satis6es

E(8+ a) = U(a)E(8)U(a)
'

for some continuous unitary representation of the
translation group a —+ U(a) is necessarily completely
additive on A. It then possesses a unique completely
additive extension to the 0. algebra of all Borel sets
on R'.

Variants of the last statement of the theorem are
quite standard in various contexts in measure theory,
so it will not be proved here. (In Halmos' book,
reference 15, p. 54, the theorem is stated: "If p, is a
0 finite measure on a ring R, then there is a unique
measure tt on the a. ring, 8(jt,'), generated by R such
that for E in R, tt (E) = p, (E); the measure tt is
o- Rnite. " The assumptions of the present Appendix
are more general in that one has a projection-valued
measure rather than a real-valued measure, but
otherwise everything is more special: The ring of sets,
R, is an algebra because the whole space is in R, the
measure is finite rather than only a finite. ) The 6rst
part of the theorem is a consequence of the following
chain of four theorems. The argument is a straight-
forward generalization of one due to Hewitt. "

If I' is any function on R' whose values can be
added and subtracted and [a,b) is an interval, de6ne

hr [a,b) = F(bg, bs, be) —F(ci,,b„b,) —F(b„e,,b, )

F(bl b2 cte) + F(ttl ct2 be) + F(til b2 tt3)

+ F(bg, as Q3) F(Q1 G2 tie) .

25 E. Hewitt, Mat. Tidsskrift (19518),pp. Sl—94.

F( ~,x„x—.) = F(x„—~,xs)

= F(x„x„— ) = 0. (A2)

Then there exists a finitely additive projection
valued measure E on A satisfying (A.l).

The proof is completely elementary and will be
omitted.

Now consider the increasing sequence of projec-
tions

F(xg —1/Lc, xe —1/1c) Lc = 1,2,

It converges to a proj ection F (x&, xe) -which

may or inay not be F(x&, x,).
Example. Consider the function E, defined on A

which is the projection E / 0 for a set 8 if there is
an interval of the form Iy;t& —c ~( y& & t„t2 —c

~& ys ( ts, ts —s ~& ys ( ts} which lies in 8 and zero
otherwise. It is easy to see that E~ is a finitely addi-
tive projection valued measure on A. It is not com-

pletely additive because the interval Iy;t& —1 ~& y,
& tl t2 1 ~( ys & ts, ts —1 ~( ye & te} can be
written as a denumerable union of intervals for which
the coordinates y; lie in intervals where nght-hand
end points are less than t;. For each such interval
E,(8) = 0 but for the union Ec(8) = E. Clearly,
the F corresponding to E. does not satisfy F(t, te)
= F (t, te).

If for each x g R', F(x) = F (x), then the phe-
nomenon occurring in the example cannot happen
and the projection valued measure defined by I' is
a additive on A.

Theorem A8. Every projection valued positively
monotonic function F on R' which satisfies (A2) and

lim F(xr —1/Lc, . xe —1/Lt) = F(x„x,) . (A3)

26 A detailed discussion of positively monotonic functions
is given in, E. J. McShane, Integration (Princeton University
Press, Princeton, New Jersey, 1947), pp. 242—274.



LOCALIZABILITY IN QUANTUM MECHANICS

defines a projection valued measure E on A which is
o a,dditive.

Proof. Since each element of A is a finite union of
disjoint intervals and E is finitely additive according
to Theorem A2, it sufEces to consider the case of a
denumerable union of sets in A whose union is an
interval. But such a union defines a monotonically
increasing sequence of projections which converges
to the projection belonging to the interval by virtue
of (A3). Therefore E is completely additive.

A. finitely-additive projection-valued measure E
is called purely finitely additive if there is no nontrivial
0- additive projection-valued measure which is zero
on every set 8 for which E(8) = 0. (It is not diflicult
to see that the example E~ is purely finitely additive. )

Theorem A8. Every 6nitely additive projection
valued measure on A is the sum of a purely finitely
additive part and a 0- additive part. This decomposi-
tion is unique.

Proof The dif.ference F(x) —F (x) is a, projection,
and two such, corresponding to distinct points x are
orthogonal. Because the Hilbert space is separable,
there can be at most a denumerable set of points x
where F(x) —F (x) N 0; call them t"'. let E~&»(8)
be the projection-valued measure given in the
example above with E = F(t"&) —F (t"&). Then

E(8) —g.E,( &(8)

defines a finitely-additive projection-valued measure
whose F satisfies (A3) for all points x and so by
Theorem A2 is 0- additive. Thus

E(8) = Q. E,(&(8) yE"'(8)
defines a decomposition into a purely finitely additive
part and a 0. additive part. For the case in which

E(8) is purely finitely additive, E&'&(8) = 0 because
otherwise E"&(8) would be a 0 additive projection-
valued measure vanishing whenever L&'(8) does in
contradiction with the definition of a purely Q.nitely-
additive measure. This shows that the purely finitely-
additive part of any E is uniquely determined by
the discontinuities of the corresponding F.

Now note that if E(8) is quasi-invariant under
translations in the sense that E(8 + a) = 0 if and
only if E(8) = 0, then the same applies to the purely
finitely-additive part, E"& (8), of E(8) and the
o- additive part of 8. [E(8) is surely quasi-invariant
if there exists a representation a —& U(a) of the transla-
tion group such that E(8 + a) = U(a)E(8) U(a) ']
Furthermore, if E"' has a nonzero discontinuity
F"&(x) —F "&(x) at x = t, it must also have a
nonzero discontinuity at x = t + a. This statement
is in conflict with the denumerability of the points

of discontinuity unless F"' = 0. Thus, there are no
nontrivial purely finitely-additive projection valued
measures quasi-invariant under translations.

Theorem Ag. Every finitely additive projection
valued measure on A which is quasi-invariant under
translations is 0 additive.

Prom Theorem A4 and the result already cited
that 0 additive projection-valued measures on A
have unique extensions to the Borel sets of R',
Theorem A5 follows.

While the results of this Appendix make it clear
that the assumptions of I to V can be weakened
without impairing the results of the paper, it should

be noted that the particular weakened assumptions
used have been chosen primarily for reasons of
mathematical elegance. A deeper physical analysis
would ask whether the existence of some kind of
approximate position measurement implied the exist-
ence of precise position measurements in the sense
of I to V.

APPENDIX IL SKETCH OF THE DERIVATION OF

THE CONTINUOUS UNITARY REPRESENTATIONS

OF THE TRANSLATION GROUP

The result of Theorem 1 which describes all unitary
representations of the translation groups has been
used in physics since the beginning of quantum
mechanics, but explicit mathematical statements and

proofs of it are relatively recent. The purpose of
this Appendix is to outline some of the ideas involved
in the proofs.

The translation group of n-dimensional real
Euclidean space R" will here be denoted Z with
elements a. (The whole machinery works in the same

way for any dimension n so the assumption n = 3 is

dropped. ) The derivation of Theorem I can be
divided into three parts:

(I) Determination of the character group Z* of Z,
(2) Derivation of the spectral representation

e "'dF(p),

(3) Spectral multiplicity theory for the projection
valued measure F on Z*.
These stages actually reAect the historical develop-
ment of the theorem and I will follow them here at
least in part.

A character of Z is a one-dimensional continuous
unitary representation of P, i.e., a, complex-valued
continuous function x of modulus one, which

satisfies

x(a+b) = x(a)x(b) .
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It is well known that any such x is of the form x„,
where

for self-adjoint operators II = f"„pdF(p) so (A6)
can be written

x, (a) = exp —i(p a) and p a = p'a'.
j 1

o(a) = Je '"zr(n) . (A7)

[The argument goes as follows. From (A4), x(0) = 1
and x(a) can be written

x(a) = x(a'0, . 0)x(0,~'0, . o) x(0o tt")

where x(0 a' ) is a character of the one-dimen-
sional translation group of a'. Thus the problem is
reduced to ending all characters for the translation
group of the real line. By introducing i ln x = f one
reduces the problem to that of ending all real con-
tinuous f(a) defined mod 27r such that

f(~) + f(L) = f(~+ f) mod 2~

x., (a)x..(a) = x.,".(a)

and, if the usual topology of Euclidean space is
introduced for the p's, the group operations are con-
tinuous. The set of all characters (or equivalently the
set of all p's) is denoted Z* and called the character
group of Z'".

The step (2) alone can be regarded as a decompo-
sition of an arbitrary continuous unitary represen-
tation into irreducibles. This operation is familiar in
quantum mechanics for the one dimensional transla-
tion group as Stone's theorem: Any one-parameter
continuous unitary group is of the form

U(a) = exp —iaII, (A6)

where H is self-adjoint. Then by the spectral theorem

27 This construction of the character group can be carried
out for an arbitrary locally compact Abelian group. See, for
example, L. Pontrjagin, TopologicaL Groups (Princeton Uni-
versity Press, Princeton, New Jersey, 1939), Chap. V.

To complete the proof it is convenient to specify
f(a) completely instead of mod 2x. Because x is con-
tinuous, a unique speci6cation is obtained in some
neighborhood of a = 0 by requiring f(0) = 0 and

f(a) continuous in the neighborhood. From (A5), one
then derives qf(q 'c) = f(c) for any c in the neighbor-
hood and any integer q. Thus, again using (A5),
f((p/q)c) = (p/q)f(c) for any rational number p/q
& 1. The continuity of f then implies f(yc) = yf(c)
for every real number &1, i.e., f(y) = yf(c)/c for y
in the neighborhood. Finally, using (A5) again, one
gets f(y) = yf(c)/c mod 2z for all y. Q.E.D.]

The characters clearly form a group under multipli-
cation

Here F defines a projection valued measure via
F(8) = JsdF(p). The extension of (A7) to arbitrary
Abelian groups was carried out by a number of
authors. " Since the step from the one-dimensional
to n-dimensional translation group is easy, and excel-
lent textbook accounts of Stone's theorem are
available, "no more details of (2) will be given here.

The problem of determining when two represen-
tations are unitary equivalent is reduced by the
SNAG theorem to the corresponding problem for
their I"s. A solution of this problem is provided by
(3), the theory of spectral multiplicity. It shows that
the unitary equivalence class of an F can be charac-
terized by two objects, a measure class on g* and a
multiplicity function on Z*, which described, re-
spectively (and roughly), tell which irreducible
representations of Z occur in a —+ U(a) and how
often. This theory is to the theory of (2) what the
Hellinger-Hahn theory of a self-adjoint operator" is
to the spectral resolution of a self-adjoint operator.

There are available nearly as many approaches to
the theory of spectral multiplicity as there are
authors who have written on the subject. One may
make a direct analysis of the commutative algebra
of projections. "This leads to a decomposition of the
Hilbert space into orthogonal subspaces X',; on which
the projections are uniformly j-dimensional. That
means that X, is a direct sum of j subspaces X', . R'.
such that the projections E take of the form

E(Ci, C, ) = (EiCi, E;C,)
and on XI', the EI, are uniformly one dimensional.
Finally, a uniformly one-dimensional algebra of
projections is one which is maximal Abelian, i.e.,
any projection which comn1utes with all the given
projections is one of them. It is shown that a uni-

zs Stone's original paper is Ann. Math. 33, 648 (1982). The
extension to any locally compact Abelian group is contained
in M. Naumark, Izvest. Akad. Nauk U.S.S.R. '7, 287 (1948);
W. Ambrose, Duke Math. J. 11, 589 (1944); R. Godement,
Compt. rend. 218, 901 (1944). It is sometimes referred to as
the SNAG theorem.

29 See for example F. Riesz and B.Sz.-Nagy, Lemons d'anaLyse
fonctioneLLe (Budapest, 1958), p. 877.

30 See M. H. Stone, Linear Transformations in Hilbert Space
(American Mathematical Society, Providence, Rhode Island,
1932), Chap. VII.

sr See, for example, H. Nakano, Ann. Math. 42, 657 (1941);
I. E. Segal, Memoirs Am. Math Soc. 9 (1951)., Secs. I and II;
P. R. Halmos, Introduction to HiLbert Space and the Theory of
Spectral Multiplicity (Chelsea Publishing Company, New
York, 1951).
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&~ 0 for f &~ 0, f g 6. That p is bounded mes, ns

sup ~tu(f)) (, where ~f~
= sup ~f(x)~ .

lyl &I XERa

The relation between the functional p, and the corre-
sponding measure p is simply

r (f) = f(x)dp(x)

Since the measure is uniquely determined by the
functional, to verify the equality of two measures it
sufFices to verify the equality of the corresponding
functionals. '4

Now, for an invariant measure

~(o = &sl(sf) = ~( (sf)&s),

because the approximating sums to the integral

f (Rf)(x)dR converge uniformly in x, and p(f) is
continuous for uniform convergence of its argument.
But f(x) —+ f (Rf) (x)dR = f f(Rx)dR maps the con-
tinuous functions of compact support on R' onto the
continuous functions of compact support on 0
~( ~x~ ( ~ and convergence in 6(Rs) implies con-
vergence in 6([0,~)). Thus, the functional p re-
garded as defined on 8([0,~ )) defines a finite measure
on the non-negative real axis. Splitting it into a con-
tribution with support at 0, and the rest, one has
just the p() and dp of (AS). In fact, (AS) is just an
explicit form in terms of measure of

~(f) = ~( sos)

APPENDIX IV. SOME MEASURE-THEORETIC
NICETIES CONNECTED WITH EQS. (3.10) AND (3.17)

This Appendix is devoted to some fine points which
arise in the otherwise elementary derivation of
Sec. 3.

Recall that Theorem 1 states that if

[Q(A), U(a, l)] = 0,
then Q(A) is of the form

(Q(A)c)(p) = Q(p, A)C(p),
where for each unitary unimodular A, Q(P,A) is
measurable in y in the sense that for each 4'I,+2
g se, (e, (p), Q(P,A) es(p)) is p measurable. The first
step in the argument is to prove that Q(P,A) can, if

s4 See, for example, P. R. Halmos, Measure Theory (D. van
Nostrand Company, Inc. , Princeton, New Jersey, 1950), pp.
243—9.

necessary, be altered on a set of p-measure zero so
that it becomes measurable in both variables relative
to the measure p )& n, where n is the invariant
measure on the 2 &( 2 unitary unimodular group.

Let C, ,j = 1,2 be a complete orthonormal
set in BC. Then it suKces to treat the functions
(C, (p), Q(P,A. )Ck(p)) separately because the general
case then follows by the expansions

% = g a, C', , +s = g b, C, , and

(+ (p), Q(p, A)+ (p)) = Z a*, l '
j,k=1

X (+, (p), Q(p, A)c»(p)) .

An ugly little lemma is necessary.
Iemm(r. Let f(P,A) be a complex-valued function

on R' )& G which is p, measurable and p, essentially
bounded on R' for each A g 6, the 2 && 2 unitary
unimodular group. Suppose f f(P,A)xe(p)dp(p) is n
measurable on G for each p measurable subset E of
R' of finite measure. Here, n-measurability on G is
with respect to t'he invariant measure dA.

Then there exists a function, g, p )& o. measurable
on R' )& G, and such that for a certain p-measurable
subset Ã of R' of zero measure

f(P,A) = g(P,A) for all A E 6 and p f E.
This lemma is a special case of Lemma 3.1 of ref-

erence 33, and will not be proved here.
The lemma shows that by a suitable redefinition

of Q(P, A) which does not affect the corresponding op-
erator Q(A), one can have Q(p, A),p )& A measurable.

The next step in the argument is to show that in the
equation

Z (~ (P), Q(PA)C (P))(~ (P),Q(A 'P,B)c-(p))
= (C (p), Q(P,AB) ~ (p)) (Alo)

which holds for each A,B g G and p g R' such that
P Q Ar) (A,B),A 'P fE Xs(A,B) where X, and Are are
y-measurable sets of p,-measure zero, the right- and
left-hand sides are p, )& o. g n measurable on R' g }~G

)& G. Because a Borel-measurable function of a Borel-
measurable function is Borel measurable, it su%ces to
prove that the rnappings T) . fp, A,BI —& f p,AB} and
Ts'. fp, A,B} —+ [A 'p, B}are Borel-measurable func-
tloIls.

Now Tl and T2 are continuous, and a set F which is
p g n measurable in R' g G divers from a Borel set
by a subset of a Borel set of zero p, )( n measure. "

Furthermore, a continuous function has the prop-
erty that the antecedent of any Borel set of its range

35 See reference 15, pp. 55—56.
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is a Borel set of its domain. Thus to prove the
p, &( o. g 0. measurability of T1 and T2, it suKces to
show that for any Borel set F of R' )& 6 of zero
p X n measure T, '(F) and T, '(F) have zero y X ~
)& o. measure. Consider T2, the proof for T& being
similar.

Let F~ denote {A;{p,A] C F]. Clearly, {p,AB]
g F if and only if AB g F~ (or A g F~B-') for some
p. Now

& X (F) = 0 = d~(p)dAx„(A) = dp(p) (F,)

This imphes u(F~) = 0 for p almost all p. By the in-
variance of a, n(F~B ') = 0 for each B and ii almost
all p. Because {p,A,B] g T, '(F) if and only if
A g Fi,B ' for some p and B,

(p X n X n)(Tg'F) = d(y X n X n)(p, A, B)

X xr, —&z) (p,A,B)

d(ii X n)(p, B)n(F,B ') = 0.

The preceding argument shows that (A.10) is a re-
lation between p, &( o. X n measurable functions,
which, for Axed A,B can fail to hold only on a set of
y's of p-measure zero. However, the union of these
null sets as A and B run over 6 could, a priori, be a
set of measure greater than zero. That this is, in fact,
not the case is seen as follows. Since the set of
{p,A,B] where (A10) fails is of (ii X n X n)-measure
zero its section for y and 8 fixed is of n measure zero.
But, as A runs over a set of o. measure zero, A-'y runs
over a set of ii measure zero. [Here the equivalence of
ii to a measure of the form (AS) is being used. ] Thus,
the set of 2-'y where

Q(A 'p, B) = Q(p, A) 'Q(p, AB) (A»)

fails, y and 8 being fixed, is a set of p, measure zero.
By redefining Q(A 'p, B) at those A 'p by (All), one
obtains a new family of Q(q, B) measurable in {q,B],
which still yield the old Q(B) but for which (A11) [or
equivalently (A.10)] is always valid. This completes
the justification of the statement just after Eq. (3.10).

A second measure theoretic point arises in connec-
tion with Kq. (3.14). Using the Q(p, A) whose exist-
ence has just been established, one gets a measurable
but, c priori, not necessarily continuous unitary rep-
resentation of the little group. In fact, every measur-
able unitary representation of any locally compact
group 6 is continuous, as will now be shown by a well-
known argument which has not yet crept into the
text books.

Because

ll(U(*) —U4))4 II' = il(U(~ '*) —»Cll'
= 2(4,4) —2 Re (U(y 'x)4, 4)

the strong continuity of U(x), i.e., the requirement
that for each 4 g K andy g 6 the first of these ex-
pressions be small when x is close to y, is implied by
the weak continuity of U(x) at the identity, i.e., the
requirement that for each 4,+ Q K, (4', U(x)%) is
close to (4, %') for x close to the identity. The con-
tinuity of (4,U(x) 4) at the identity for all 4, + is
implied by the continuity of (x, U(x) x) for all x as one
sees by considering x = 4 + 4', 4 + i +,4, %' in turn,
and taking appropriate linear combinations. Because
U(x) is unitary, it suffices to verify the weak con-
tinuity for the elements of any dense set of vectors in

K, say 4;. To see this one can look at the identity

(4, (U(x) —l)4) = (4 —4„(U(x) —1)4)
+ (4., (U(*) —1)(4 —4'))
+ (4", (U(*) —1)4")

which yields the estimate

(4, (U(x) —1)4) & 2IIC II IIC' —4"II

+ 2II4';ll IIC' —4'. ll + I(4",(U(x) —»4")
I

The first two terms on the right-hand side can be
made small by appropriate choice of C; C; having
been chosen, the last term can be made s~all by an
appropriate choice of x according to the assumed con-
tinuity of (4 „U(x)4 ~) .

Since U(x) is measurable and unitary (C, U(x) 4) is
a bounded measurable function for each C. Thus, for
each continuous function of compact support, &p, it
makes sense to talk about

(4', U(~) 4) = v (*)d*(4' U(*)4')

and if q „ is defined by q „(x) =
q (y-'x),

I
(4' (U(~.) —U(~) )4')

I
&

(A12)

Here dx is the left invariant integral on |. The right-
hand side of this inequality is small for y suKciently
close to the identity. Now BC is a direct sum of sub-

spaces in which there is a vector C such that vectors
of the form U(y) 4 are dense, &p being continuous and

of compact support so to prove U(x) continuous it
suffices to verify that (U(y)C, U(x)U(y) 4) is con-
tinuous for any such q and 4. But

(U(~)4', U(x)U(~)4') = (U(v)4', U(~*)4')
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so that the required continuity follows from (A12)
and the proof is complete.

Finally, there is the matter of sets of measure zero
in the criterion for unitary equivalence (8.17).Solved
for U(A-'p) it reads

V(~ 'p) = Q (p,~) 'V(p)Q (p,&).

By an argument just like that used in the first few
paragraphs of this Appendix, one concludes that both

sides of this equality are (p X u) measurable func-
tions of p and A and the set on which the equality
fails is of p, g n measure zero. It then follows that, for
Axed p, the set of A on which it fails is of n measure
zero. That in turn implies that the set of A-'p for
which it fails is of p measure zero. Picking one p from
each orbit and altering V(p) on the corresponding set
of measure zero one gets a new family V(p) which is
also measurable and yields the same V but for which
(3.17) always holds.


