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&HE present paper contains hardly any new result
and can claim only a methodological interest. In

a recent article' I studied a family of Hilbert spaces
5:„,whose elements are entire analytic functions of n
complex variables. The methods developed there
appear appropriate for a fairly effortless treatment
of the representation theory of the rotation group,
and this paper is offered in the hope that it may sug-
gest further applications of these methods. (Here,
and in the following, the term "rotation group"
actually refers to the group 0 of unitary unimodular
transformations of a two-dimensional vector space,
the spin space of quantum mechanics. It is this group
that is basic for the quantum mechanical applica-
tions. )

The application of the function spaces $„ to the
study of the rotation group is related to the long
known fact that its irreducible representations may
be obtained by considering homogeneous polynomials
in two complex variables. (All these polynomials are
elements of g&, and may thus be treated simultane-
ously. ) This fact has been used, in one form or
another, in almost every treatment of the represen-
tation theory of the rotation group. It has been most
systematically exploited by Kramers and his school, '
who have applied the concepts and the methods of
the theory of binary invariants. Van der Waerden
also used it very effectively in his book' —for ex-
ample, in the derivation of the vector coupling
coeKcients.

It was shown by signer —in his profound investi-
gation of simply reducible groups4 —that remarkably
many properties of the 3-j symbols, 6-j symbols, etc.
and of their interrelations are shared by all simply
reducible groups, and are not confined to the rotation
group. By contrast, the present paper is restricted to

& V. Bargmann, Comm. Pure Appl. Math. 14, 187 (1961).
Hereafter quoted as (H).

2 For a survey of these methods see H. C. Brinkmann,
Applications of Spinor Invariants in Atomic Physics (Inter-
science Publishers, Inc. , New York, 1956).

3 B. L. van der Waerden, Die gruppentheoretische Methode
in der Qu nten aech, mik u(nVerlag julius Springer, Berlin,
Germany, 1932).

4 An excellent exposition of this investigation is given by
W. T. Sharp, "Racah Algebra and the Contraction of Groups. "
CRT—985 (DECL—1098) Atomic Energy of Canada Ltd
Chalk River, Ontario, 1960 (unpublished).

the rotation group. Naturally, this restriction per-
mits simplifications and short cuts. In addition, we
know from H,egge's intriguing discovery of unsus-
pected symmetries of the 3-j and the 6-j symbols'
that there are important relations which do no longer
hold for all simply reducible groups. While the
following analysis does not lead to a deeper under-
standing of the Regge symmetries it yields, at least,
a fairly transparent formulation and derivation of
the symmetries.

Ten years ago Schwinger published a highly in-
genious treatment of the rotation group based on a
certain operator method. ' In a strict mathematical
sense, the Hilbert space method of the present paper
is isomorphic to Schwinger's operator method. (For
a detailed comparison see Sec. 2e below. ) The gener-
ating functions for the 3-j and the 6-j symbols, in
particular, are due to Schwinger.

There are, however, characteristic differences in
our approach. (I) Schwinger introduces certain
operators ur (and their adjoints) for which the com-
mut, ation rules of the annihilation and creation
operators of boson fields are postulated. All other
objects to be studied are defined in terms of the c~,
including the orthonormal vector basis of the Hilbert
space on which the operators ct act. In the present
paper, however, the Hilbert space is a priori given
as a function space, and the standard methods of
analysis s,re available at each step. (2) Schwinger is
primarily concerned with angular momenta —in
group theoretical terms: with infinitesimal rotations—and he constructs the representations from their
infinitesimal generators, while in the present paper
the representations are directly defined on the func-
tion space 5:.

The present paper may be read without any
knowledge of the content of the paper (H) of refer-
ence 1.To the extent that they are needed the results
of (H) are reproduced in Sec. 1. Sections 2 through 4
deal with the rotation group. The representation
theory of the rotation group is developed from its
beginning —for the convenience of the reader, for the

s T. Regge, Nuovo cimento 10, 544 (1958); 11, 116 (1959)-
6 J. Schwinger, "On Angular Momentum, " U.S. Atomic

Energy Commission, NYO —8071, 1952 (unpublished).
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sake of logical coherence, and also in order to show
that those definitions and constructions which appear
natural in the framework of the function space g are,
at the same time, useful and relevant from a group
theoretical point of view. The decomposition of the
direct product and the 3-j symbols are treated in
Sec. 3, the 6-j symbols in Sec. 4.—No loss in gener-
ality is caused by the fact that the representations
are constructed on g, because the main results —for
example, the properties of the 3-j and the 6-j symbols—depend only on the representations and not on the
vector space on which the representations are
realized.

Remarks on the notation. I adopt the definitions and
the notation of Wigner's book, ' with a few exceptions.
(1) Complex conjugation is indicated by a bar (a is
the conjugate of n). (2) The (Hermitian) adjoint of
an operator or a matrix A is denoted by A". (3) The
transpose of a matrix A is denoted by 'A, and A' s
determinant by det A. (4) The product of a vector
f by a scalar X will be written either Xf or fP,, which-
ever appears more convenient.

i. THE HILBERT SPACE Qn

a. Introductory remarks. The elements of g. are
entire analytic functions f(z), where z = (z&,z&, z„)
is a point of the n-dimensional complex Euclidean
space C„. Every entire f(z) may be expanded in an
everywhere converging power series

f(z) = Q ~a, ~, . a.zi'z2' z.'" . (l.l)
hi, ~ ~ ~ i hn

b .Definition of the Hilbert space P„. The inner
product of two elements f,f' of P„ is

(ff') = f(z)f'(z)dp. (z) (1.4)

where

dIJ,.(z) = s "exp (—z z) gsdxidye,
(z~ = x~+ iye) . (1.4a)

Here and in the following all integrals are extended
over the whole space C„.

The definition (1.4) is meant to imply that an
entire function f(z) belongs to Q„ if and only if

(ff) = If(z)l'dp. (z) ( " . (1.4b)

n

d"z = Zydx, dy, .
k=I

(1.5a)

In order to express the inner product of f and f' in
the expansion coeKcients of their power series, we
first compute (zi"l,zi"'i). Introducing polar coordi-
nates, z, = r,e'e", we have (z'"' z "'!) = a&, o&2 ce

1
exp (i(hl —h.)y, )dy,r 0

ha+h I+' —"a'+~
~k

[The norm of f is IIfII = (f,f)'~' ]Se.parating the
Gaussian in (1.4a) we shall occasionally write

dp,.(z) = p„(z)d"z, p„(z) = s- "exp (—z z), (1.5)

It will be convenient to use the following shorthand
notation. vVe set It follows that ~k ——bh, ,h.,h&! Hence

h = (hi, ,h.)
for an ordered set of non-negative integers h;, and
h = 0 if all h; = 0. We write nh for the coefficient
a»„and denote the power products in (1.1) by

I
Qt]

For two functions of g.,f(z) = gaizi"l and f'(z)
= ga'&zi"l, one now readily obtains

[h] h, h, h„
81 Z2 ' ' 'Z (ff') = Z. l~!]~.al. (1.7)

so that the power series (1.1) takes the form

f(z) = Z. ~.z'"'.

We shall also use the abbreviations

Ihl = h, , + h, + . + h„, Ihl] = h, !h,! h„!.(1.3)

The elements of the n-dimensional space C„will be
called points or vectors (synonymously); ab.

,a,b& is the sc=alar product of a and b In.
particular, a a = P~Ia&I'.

& E. P. Wigner, Group Theory (Academic Press Inc. , New
York, 1959).

In particular,

(ff) = Z~ I~!]I~.l' (1 8)
This last equation may be interpreted as follows.

For an entire function f(z) either both sides are
infinite —in which case f does not belong to 5'.—or
both have the same finite value.

The orthonormal set u~ A.ccording to. (1.6), the
simplest orthonormal set in Q„ is given by

.= z'"'yIh!]'", (1.9)
and Fq. (1.8) expresses its completeness.

The subspaces Q, . I et g, be the set of all homo-
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geneous polynomials in g. of order 8. It is spanned
by those nb for which Ihl = h& + + h„= s. Q,
and Q.. are clearly orthogonal if s N s', and

e 0 1 2 (1.10)

is a decomposition into mutually orthogonal sub-
spaces. It will be useful to introduce

Ct; = $2, , (j = 0,—;,1, ) . (1.10a)

An element f of g„belongs to Q. if and only if

(1.10b)

for every constant ), or alternatively if and only if
Euler's equation

then, by the integral definition (1.4b), f belongs to
g„. (The constant y & 1 must not be omitted!)

d. Product decomposition of 5'„. To every decompo-
sition of n into the sum of two positive integers,
n = n'+ n", corresponds a decomposition of
into the direct product

(1.14)

Set z' = (z, , . . . ,z„,) and z" = (z„„,. . . ,z„). If
f'( z) and f"(z") belong to Q„' and g„", respectively,
the product f(z) = f'( z) f"(z") belongs to Q.. Fur-
thermore, dp„(z) = dp„.(z') dy„"(z") by (1.4a), and
for the inner product of f with g(z) = g'(z') g"(z")
one obtains

QbZb(&f/»b) = 8 f (1.10c) (f,v) = (f',a')(f" a"),
is satisfied.

c. The principal vectors e.. Define for every c in C„
the function e. by

e.(z) = exp (a.z) . (1»)
It is clear that e. belongs to 5'.. Its power series is

(1.1la)

exp (a z)f(z)dy„(z) = f(a) . (1.12a)

The existence of these "principal vectors" e. is a
characteristic feature of Q„. It is seen that they play
here a role similar to that of the b functions h(q —a)
in the standard Hilbert space of quantum mechanics,
but unlike the 5 functions they are elements of Hil-
bert space.

Applying (1.12) to f = e, we have

(e.,eb) = eb(~) = exp (5 c) (1.13)

and hence (e.,e.) = exp (a a).
By Schwarz's inequality we conclude from (1.12)

that

If(z)I & Ilfll lle*ll & llfll exp (-'z z) ( 113a)

It follows therefore from (1.7) that for any f in Q„

(1.12)

or, in integral form

the two factors (f',g') and (f",g") being taken on
5: ~ and 5:„".The orthonormal functions ub as well
as the principal vectors e. are decomposed accord-
ingly.

Similarly one can form products of subspaces of
g.. and 5.", for example,

Q. ,"= Q', g Q'.", R,", = G.", g G, "," (1.14a)

[see (1.10) and (1.10a)], which contains all poly-
nomials homogeneous in z' of order s' and in z" of
order s".The functions f in Q..."are characterized by

f(P'z', X"z") = X" X"' f(z', z")

for any complex constants X',X".
e. Operators on g.. We turn now to a brief review

of some operators which occur in the following.
(n) The operators zb and db. Here db stands for the

differential operator Bj»b Since .the elements f of
5'. are analytic, zbf and dbf are always defined as
analytic functions, but they do not necessarily
belong to g„.We shall apply, however, the operators
z& and dJ, only to polynomials, so that no difFiculties
arise.

The d&, z& evidently satisfy the commutation rules

[zb, z,] = 0, [db, db] = 0, [db, zb] = bb& . (1.15)

Furthermore, zb and db are adjoint [with respect to
the inner product (1.4)],

(1.15a)

Conversely, if an entire function f(z) satisfies the
inequality

i.e., for any f,g in g„,

(z f,q) = (fÃO) (1.16)
lf(z)l & c exp (-', yz z) (1.13b)

where c and y are positive constants and y ( ].,

whenever zbf and dbg are in Q„. For simplicity, set
k = 1. Write, for any h = (h&,h,,, . . .,h„), h' = (1
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+ a„I„.,@). n f = p z(l and g = gp, z(hl,

we have

TUTU TUU ~ (1.17a)

If U = 1, then T = 1 (identity), so that Tu
TU ~

In addition TU is unitcry. Introducing the varia-
bles z' = 'Uz in the integral (1.4) one finds that

(Tuf»ug) = (f g) (l.18)

because the measure d1h„(z) is invariant under unitary
transformations of the z.

It follows that the T form a unitcry representction
of the n-dimensional unitary group, and also of any
of its subgroups.

The representation is decomposed because any
subspace Q, is clearly carried into itself [apply, for
example, the criterion (1.10b)]. In the case n = 2
this will provide the basis for our discussion of the
rotation group.

(y) The conjugation K. The last operator to be
considered is the conjugation K, which is defined as
follows. Let g = Kf, then

g(z) = f(z), (1.19)

where the bar, as before, denotes complex conjuga-
tion. For f = P n zl lwhe hfind

g(z) = Q —z'"', (1.19a)

i.e., the power series with complex conjugate co-
efFicients.

zlf Q o'hz ) dig —Q (1 + A 1)ph z
p

( f, ) = Z. [I "] P",
(f d g) = Z. (1 + ~ )[&!]-.p',
which proves (1.16) because (1+ hh)[h!] = [6'!].

It follows from (1.15) and (1.15a) that the opera-
tors dI„zI, satisfy the de6ning relations for the an-
nihilation and creation operators of boson fields. '

(p) The unitary transformctions T&. For every
unitary transformation U on C„we define an operator
T& on g„by'

(Tuf)(z) = f( «) (1.17)

where 'U is the transpose of the matrix U. TU is
clearly a linear operator (i.e., linear in f), and for
two unitary transformations U, U'

We note the following properties of K:
(1) K is cnfilincar, i.e.,

K(fi+ fz) = Kf, + Kfz, K(Xf) = XKf

for any complex constant X.

(2) K' = 1

(3) (Kf,Kf') = (f',f) = (f,f'),
i.e., K is antiunitary. [(3) follows from either defini-
tion of the inner product, (1.4) or (1.6).]

A. function f may be called real if Kf = f (so that
its power series has real coe%cients). Thus z(h' and
u&, are real.

With the help of K we may also define the complex
conjugate of a linear operator A on 5:„by setting

A = KAK. (1.20)

A itself is Enecr since K appears an even number of
times in the definition (1.20). If B = A, then B = A.
Let

Auh = gh' uh'ch'h,

where c&.I, are the matrix elements of A in the system
u&. Then, since Ku& ——M&„

Auh ——K(Auh) = Qh uh ch h. (1.21)

Thus, A's matrix elements are complex conjugate
to those of A.

App/icction to TU. If U is the matrix complex
conjugate to U,

TU TU ~ (1.22)

Proof Let, g = T&.f and set, successively, f& = Kf, fz
= Tuf, , g = Kf, By defin.ition, g(z) = fz(z), fz(z)
=f ('«) =f (g), and, finally, f (W) =f(V) = f('Uz)
Hence h(z) = f('Uz), Q.E.D.

2. THE REPRESENTATIONS X)i

G. The group 11.We start with a brief review of the
group 11 of unimodular unitary transformations in
two dimensions and its connection with the rotation
group.

The vectors in Cz will be denoted by l, with
components l &,i &. (In dealing with several vectors l,
we shall often denote their components by p, if instead
of l'i, l z in order to avoid a profusion of indices. ) The
(Hermitian) inner product of two vectors f,l' is

s l. E. Segal has used a generalization of P„ to Q„ for a
comprehensive study of the canonical operators of quantum
field theory, where infinitely many dh, zh occur. (Lectures at
the Summer Seminar on Applied Mathematics, 1960, Boulder,
Colorado, unpublished. )

9 This diO'ers somewhat from the corresponding definition
in (H} (reference 1},Eq. (3.4},p. 205.

1 1 2 2 ~

Denoting the Hermitian Pauli spin matrices by

O1 = 02 = . 03 = 21
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we write

b&v& + b2v2 + bsv3 ——b v ; b = (b, ,b2, b, )

for a three-vector b with real or complex components.
Every 2 &( 2 matrix 8 may be expressed in the form

imaginary. Setting b&&
——a„b = ia—, we find that U

belongs to 11 if and only if

U = ao —ia o, det U = ao + a' = 1, (2.6)

ao, a real. In matrix form

B=bo 1+1 v (2.la) U
cK P~~ ao has

y5I —ia, +a2
—'Lal —a2

a&& + ias
with uniquely determined bo,b.

The algebraic properties of the spin matrices are
summarized in

t
ok a &!s ~

Hence, for any B written in the form (2.1a),

(2.4c)

B' B = (bp + b'o')(bp —b'o) = (bo —b ) '1

det 8 = bo —6', 6' = b b . (2.4d)

The group G. A matrix U belongs to 0 if and only
if 'U U = 1, and det U = l. In view of (2.4b) these
conditions may be replaced by

(a o)(b o) + (b o.)(a o) = 2(a.b)l
(a o) (b.o) —(b.v)(a.a) = 2i(a X b) o. (2.2)

for any two vectors a,b, where a X b denotes the
vector product.

In the following, the matrix

(o
—I)

will play an important role. (It is the basic matrix e

of the spinor calculus. ) We note that

I' = —1 'F I'=1, detI'= 1,
(2.3a)

where "det" denotes the determinant.
For every 2 &( 2 matrix 8 we define the a8soH ate

matrix B.by

a. = rar-' (2.4)

If B = (, ~), then B. = (' s '). (The elements of
B.are the minors of B.) It follows that

('B). = '(B.) (B '). = (B.) ' (BC). = B. C.
(2.4a)

B 'B. = 'B B. = (det B) 1. (2.4b)

Since for the spin matrices v&
——1, det v~ ———1, we

obtain from (2.4b)

r' o = U(r a)U ', (2.7)

so that Rv,Rv, = Rv, v, and R v = Rv. Using (2.2)
one obtains by straightforward computation

r' = Rvr = (a& —a')r + 2(a r)a + 2ao(a X r),
(2.7a)

the well known expression of a rotation in terms of
Euler's homogeneous parameters. Specifically,

ao ——cos (-,' @), a = sin (-', p)n, (n n = 1), (2.7b)

where n is the axis and p the angle of the rotation Rv.
To the one-parametric subgroup of rotations

about the axis n corresponds the subgroup

U(Q) = cos (-', f) —i sin (-', p)n v

= exp [—-', iy(n o) 1 (2.7c)
of

b. The repre8entations O'. It is now easy to obtain
some of the basic results concerning the representa-
tions I)' of 11.

On the Hilbert space 5& of analytic functions

f(t) (we write now t instead of s) the operators Tv,

(Tvf)(t) = f('U'f) (2.8)

provide a unitary representation of the group 11, as
was shown in Sec. le.

The subspace C,; = Q2, of homogeneous poly-
nomials of order 2j—where 2j = 0,1,2, ~ ~ —is in-
variant under the transformations Tv, and S' is the
representation of Q defined by the restriction of Tv
to G, Since different G,, have different dimensions,
the various representations S' are clearly inequiva-

tent.
According to the first section —see Eq. (1.9)—G.;

is spanned by the 2j + 1 orthonormal functions

fbi 2/(s!A!)'" = g"r!'/(s!X!)' ') (~+!~:=2j) (2.9)

5=a, y = —P, nu+PP = l. (2.6a)

Connection!oith the rotation group. Every U in ll
defines a rotation r' = R&r by

U. = rUr ' = U; det U = 1. (2.5)

Let U = bo + b v&11. Then U* = 6, + b o=U-'. .

By (2.4d), U ' =
b&&

—b o.. Hence b, is real, and b

or, withm= j j —1, ~ ~,—j,
v-' = &""n' "/((~+ m) '(j —m) ')'", (s —!i = 2m)

(2.9a)
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If U is given by (2.6a), then so that, for example

M3v„= mv
j j

The matrix elements X)'" (U) are defined by

in accordance with (2.10b).
Lastly,

j —imp j
TUv = e v (2.10b)

c. Infinitesimal transformations. Consider the one-
parametric subgroup (2.7c), and the corresponding
transformations TU(~~. The infinitesimal generator
of TU~@~ may then be defined by

(n™)f= '(d/d&) Tv(~)fl~

One obtains from (2.8) the expression

(2.11)

where (n a) s are the matrix elements of n 0. Hence

n. M = n,M„+ n, 3II, + n, 3II,

M. =
2 Z-, s l-(~~)-wads ds = ~/~l s (2 12)

The operators M~ transform each G.; into itself. [If
f is a homogeneous polynomial of order 2j, so is
3II&f, by (2.1la).] Furthermore, they are self-adjoint.
This may be inferred from the fact that —i(n M)
is an infinitesimal unitary operator, or from the
explicit expression (2.12) because o„ is a Hermitian
matrix, and (l ds)* = l sd, by (1.15a).

For the commutator of n M and n'. M one readily
obtains

[n M, n' M] = ~~ g, s l [n o, n' o].sds.
= (i/2) Zl. ((n X n') ). d

= i(n X n') M

where (2.2) ha, s been used. Thus

Tvv' = Q„v„' n„'" (U), n'„" (U) = (v'„,T,v'),
(2.10a)

and their explicit form may be deduced from (2.10).
For rotations about the z-axis, U(@) = cos (-,'g)

—i sin (-', $)o.3, so that, in (2.6a), n = e '»',
=e'~" P=v=o, and

M' = +3II~ ——3IIB+ M3

+ (M, —iM, ) (M, + iM, )

(l ldl + l 2d2) + g (fldl + l 2d2)

= N(N+ 1),
where

N = 2 (l d + l.d. )

On $2, ,Nf =jf [see (1.10c)],hence 3''f =j (j + 1)f.

Remark. Two questions have not yet been con-
sidered, (1) the irreducibility, (2) the completeness
of the representations constructed so far. (1) To
prove the irreducibility of X)' it suKces to show that
every linear operator A defined on Q,; which com-
mutes with all TU is necessarily of the form A = n 1.
If A commutes with all TU, it also commutes with
all M& [by (2.11)], and a standard computation,
using (2.13), showsthat thisindeedimpliesA = n 1.
(2) The completeness is a much deeper problem, and
it is doubtful whether the existing proofs by integral
methods (Wigner, reference 7, p. 166) or by dif-
ferential (Lie group) methods (Waerden, refer-
ence 3, Sec. 17) can be essentially simplified.
In any event, the particular method of this paper
does not seem to contribute anything to this prob-
lem.

d. Comp/ex conjugation. A.t the end of the first
section we saw that TU = TU. Since the transition
to T~ implies also the transition to the comp/ex
conjugate matrix elements in the system v„', we have

X)'(U) = S'(U) . (2.14)

It follows from the unitarity of the matrices S' that

x) (U*) = n (U ) = (n (U)) = (n (U))*
and hence

S'('U) = 50'(U*) = (x)'(U))* = '5)'(U) . (2.14a)
[M,M.] = i3II, [M,M.] = iM, ,

[M3,M~] = i3II,

From (2.12),

The matrix I' introduced in (2.3) belongs to the
(2.12a) group 11. Therefore the relation 1'UI' ' = U implies

that TU ——Tz TUTi-', in particular"

My + 2M2 l yd2 y My ZM2 $2dj y

M3 = —', (lid' —l.d, ), (2.13)

X)'(U) = O'S'(U)(C') '; O' = X)'(I') . (2.15)

On&i(2, D'& (U) = U, and Ci' = r



REPRESENTATIONS OF ROTATION GROUP 835

Wm = Ti'Vmp (2.16)

we obtain a new orthonormal system for which

Tvm' = Q„ iv' X)'" (U) .

In fact,

TUm = TVTr Vm = Tr TUVm

(2.16a)

= Tr (g„v„' X)'" (U)) = g„w„' X)„'" (U)

For any function fQ ), set Tr 'f = g. Then g(f)
f('r-'f) = f(rf), i.e.,

Thus,

g(|,f.) = f( f., l- —)

M„' = (—1)""v'„.

(2.16b)

(2.16c)

Now Z-'v-"(C') - = Z-'C-'-'v-"

The relations 'F = —F = I'-', I" = —1 imply

C'= (-1) 'C'= (C') ', (C')'= (-1)",(2» )

because S'(—1) = (—1)".
Setting

phism of the two methods is established. One may
say that the function space g with its operators
d, f is a realization of Schwinger's more abstractly
defined system.

3. THE DECOMPOSITION OF THE DIRECT
PRODUCT AND THE 3-g SYMBOLS

In terms of the quantum-mechanical vector addi-
tion model the decomposition of the direct product
Sj' Q" answers the question how two angular
momenta j&,jp combine to a third one, j = j& + j&.

The details of the answer are contained in the vector
coupling coeKcients. Setting jp ———j' one may,
alternatively, ask under what conditions j, + j,
+ jp ——0. This latter problem leads to Wigner's 3-j
symbols, and its greater symmetry (in ji,jp, jp) is the
cause for the greater symmetry of the 3-j symbols.

a. Preliminary remarks on representation theory.
%e recall the following facts. Let V be a family of
unitary operators defined on the unitary vector
space 8, and let e&,ep, ~ ~ ~,e and f&,fp, ~ ~,f„be two
sets of vectors in 8 which transform under V as
follows:

Vm = ~m' Wm'Cm'm (2.16d) V-e'= Ze;p, '(); V-f. = Zf. -(). (3.1)
j=l s=l

(where 'C' = (C')-' has been used). Hence

C' = (—1)'+"8„,„=(-1)' "8, (2.16e)

e. Comparison neith Schivinger's method. Schwinger
starts with the introduction of operators a which
correspond to the d, f introduced above:

I:(j+m)!(j —m)!)'" '

which, by (2.17), corresponds to

j+m j—m

[('+ )'(~ — )'1'"
i.e., to v„'. In addition, the action of the operators a
on the P,„is precisely the same as the action of the
cooresponding d, t on the v„', so that the isomor-

a+~de, a-~dp, a+~ l&, a ~ f'p. (2.17)

For them he postulates the commutation rules

(1.15) as well as the adjointness (1.15a). In terms of
the operators a he next defines the operators J~
corresponding to the 3IIp of (2.12) above, as well as
the orthonormal system of vectors which span the
Hilbert space on which the a operate. The basic
vector is fp which corresponds to vPp——1 used here,
since a+fp ——a fp ——0 (or Bfp/Bl y

= Bpp/Bfp = 0),
and p(jm) is defined by

(e;,f,) = 0, for alii, r. (3.2)

(2) If p = a (hence m = n), (e;,f,) = P;, = M;„. This
holds in particular for f; = e;, so that

(e' e ) = ~~'' lle~lI' = Ilepll' = = lie„ll' = X.
(3.2a)

b. The product representation X)" X)". Our treat-
ment of the direct products X)" g X)" is based on
the decomposition of 5. discussed in Sec. ld, spe-
cifically the decomposition of 5,. Set t' = (&,,q, ),
f'" = (p, ,q,) and let 5:,' and g,"be the Hilbert spaces

(The case m = n, f; = e; is not excluded!) The
matrices p, ;(a) and 0,„(n) are assumed unitary and
irreducible.

Consider the inner products

P;, = (e;,f,)
By the unitarity of V we obtain from (3.1)

P' = (V-e'V-f) = Z, .p'(~)P.~-(~)
In matrix form P = p*(n)Pa(a), and since p is
U.nit ary) .( )~ = ~.( ) .

Schur's lemma now implies the following:

(1) If p and o are ineguivatent, then P = 0, i.e.,
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s jl+ml jl mi j j2™j2™2
'g1 42

(K3(&&„r X3 X3

[K& 'IK2 Ig& tg, 1]
'

(8.4)
K +) = 2j, K —X = 2m, (n = 1,2) . (8.4a)

C.;; is invariant under T&', and T[[&' restricted
to V;, provides the product representation s"
g X)".

It is clear how this is generalized to the product
of more than two spaces, for example

5'2' g,'", the Hilbert space of analytic functions
f(f',f",f'") The subs. pace R, , ; = D,' D," Q,,'"
= Q., ; 3G.,'" is spanned by

of analytic functions f(g') and f(f'") respectively.
Then g4 ——Q', 18} g," is a Hilbert space of analytic
functions fQ', f") or f(z) where z = (z&,z~,za, z4)
= 4 ,~ ,r.,~.)

For any U in 0 the operators T~ and TV are
defined on Q,

' and g,", respectively, by Eq. (2.8).
For a function f(f', f'") in P, we set correspondingly

(T'"f) (~',f") = f('Uf', '«") (8 8)

As shown in sec. le the operators TU" form a unitary
representation of Q, and furthermore

TU = Tv8 Tz', (8.8a)

for if fQ', f") = f&(l')f, Q"), then T&&}f = (T&&f,)
(TV2) ~

It follows from (8.8) that the infinitesimal transfor-
mations corresponding to TU" are

3'~ ' = 3/I~ + 3II&,', (l[ = 1,2,8) (8.8b)

where 3II», and 3&I", are formed according to (2.12)
for f' and l ", respectively. All M'& commute with all

The subspace&, „=G.,', [8IG,,", of P4 (see (1.14))
is spanned by the (2, + 1)(2, + 1) orthonormal
functions

23

TP'P' = Q PI,'S,"."(U),

Consider the function

m = j.,j8 —l,

(8.7)

~ = Z- 0-'w-"(f'")

in G.,„,,„where w" (f'") = g ~ C„",„. [»'.Q'") (see
(2.16d)). As a sum of orthonormal functions, a W 0.
Since

g, w„"S""(U),

T[."a = g (T."'y")(T'."w')

„,„P'„'w'„'n""(U) n'*" (U)

Q», 3 $&3 W, b&33 = 6 . (8.7a)

Thus, c is invariant under TU", and 3I&[3'a =(3II&,

+ 3I&", + 3II&")a = 0 (which is equivalent to saying
that I)" X)" S" contains the identical repre-
sentation). This is the precise mathematical content,
of the remarks at the beginning of this section.

Conversely, let h be a function of unit norm in
G.;,;,;, such that

T(."I = e.
As the w„" (f"') spank', "', li has an expansion

(8.8)

De6ning

(T'"f)(f',&",l-'") = f('Ul-', 'Ul-", 'Ul'"), (8 6)
we have for the representation T~[' of 0

T"' = T"' [8 T'," = T' T" [8 T'.", (8.6a)

the infinitesimal transformations are 3f&"' = MI',

+ M&l' + 3&I&", and T&&' restricted to the invariant
subspace C},;; yields the representation 5)" 8 X)"

X)".
c. The decomposition of X)" &3 K)". Suppose the

representation X)" is contained in X)" S", i.e.,
there are 2j3 + 1 orthonormal functions P„" in
V;„, such that

A, =g xw." (8.8a)

)K ) ) 3&X&3& &&X33 X3

fK, IK, [K, y, P„ lw„]

([»} [X]

([K!]P!])'" '

where p = (t„p2 $8) g (g& 7fgpJ3) K

= (X&,4,4), and

(8.5)

(K&&K2&K8)& X

with uniquely determined x in', ;, . Now, by (8.7a),

T[~"A, = g. (T~["x„)(T',"w.")
= Z- f Z-' (T~"x-')&-'""(U)I w-" .

Since T~'~e = X,

+X =2j, K —X =2m, (a=1,2,8).
(8.5a)

and hence

TI& x = Q x &'*"(U)
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By (8.2a), (x,)f ) = X8 . Thus, lt is a sum of
orthogonal functions, and since it was assumed
normalized II+II' = Z llx II' = (2js + 1))(, = 1
Thus

(8.8b)

are orthonormal functions in Gj, which transform
under X)".

d. The functions F8, H3, and the 8-j symbols The.

invariant functions b in G. j. [see (8.8)] may be
constructed as follows. "Since the U are unimodular,
the three determinants

transform under S"provided that j3 ——j1 + j2 —k3

for an integral k, & 0, and js &
Ij1 —jsl, as follows

from (8.10b). Since the P belonging to different js
are orthogonal to each other [by (8.2)] we thus obtain
altogether n = (2j, + 1)(2js + 1) orthonormal func-
tions in Vj j . As n is the dimension of &j j . the
decomposition of X)" 13 S" is thus completed.

The 3-j symbols. Hk may be expanded in the
products (8.5):

f)1 $22)3 532)2 1 ~2 $82)1 $1218 1 ()3 = $(rj2 —$22)1

(8.12)

(8.9)

are invariant under TU', and so is every monomial
in 8,

~k~ ~ks ~ks ~
[k]

F8
t [ ~]

k (k1 k2 k3) (8 9a)

where I[, are any non-negative integers and the
factorials in the denominator are included for con-
venience. [Depending on the circumstances we shall

indicate the variables on which Fk depends by writing
either F8($,2f) or F,(l',f",t'"')].

F, belongs to &j j. , i.e., it is homogeneous in
l', l", l"' of the orders 2j1, 2j2, 2js if and only if

and the expansion coeffjcients are the 8-j symbols. "
The invariance relation TU IIk = IIk is equivalent

to the equations

~j,m, (p)~j,m, (p)~j, m, (p) j21 j82 j88

iji x IJ u ff s Jl J2 $3

m1 ffIl2 fg3

21 22 23

Using the relations v'„' = g w„" C„"„, we have

2 03
~

jx (gl) js
(t ll) la (f. III)

m~ ms ms $1 J2 ~3
(8.13)

k, +k3 ——2j, , k, +k, =2j, , k, +k, =2j, (8.10)

or equivalently

k = J —2j (o. = 1,2,8); J = j1+j2+ j3 (3.10a)

(m, m, j,
) ~&,. (m, m, g)

&j( j. m3 „"*"j1 j. j3

1)j +m m1 m2 ms

$1 g2 g3
(8.18a)

k1 =&2+&3 —&11

4 = j1+j.—j3

Note that

4 = j3 + j1 —j. ,

(8.10b)

Hence, by (8.8a) and (8.8b),

2-". = (2j. + 1)' ' Z (
' ' '

) U.", (('') ~-".((")

k1+k2+k3 = J. (3.10c)

As will be shown below [see (3.24)], I I F3I I' =
(J+1)!/[k!].The corresponding normalized b, is

therefore

H8 = ~(i j i3)F8; ~(j) j2j3) = ([k!]/(J+1)!)''
(8.11)

where 6 is the so-called "quantum mechanical
triangle coefFicient. "

Corresponding to every Hs there are 2js + 1

orthonormal functions 1!"„inVj j [see (8.8b)] which

11 We follow B. L. van der Waerden's derivation (reference
3, p. 69).

This last equation relates the vector coupling (V-C)
coefficients to the 8-j symbols. [In standard form the
V-C coefficients differ from those of (8.14) by the
factor (—1)",see Wigner, (2 Eq. (24.16), p. 294.]

For later use we add here a few remarks. (1) If in

(8.12) or (3.18), F8 is substituted for H8, the co-

+ The position of the indices m in (3.12) corresponds to
Wigner s general de6nition of co- and contravariant indices
(reference 7, pp. 292—296). Since, however, the fully contra-
variant and the fully covariant 3-j symbols are numerically
equal [reference 7, Eq. (24.18a), p. 295] the coefficients in
(3.12) are the same as the more familiar ones with the position
of j and m reversed. We have also written the matrix elements
of D& in accordance with Wigner's rules, but we follow Wigner
in writing v&', u!', etc., irrespective of their transformation
properties.
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efficients will be divided by A(jl, j2,j2), and we shall
write

To compute f2„], we simply apply the binomial
theorem to the powers of 8 . let

mlm2m, (J+ I)! mlm, m,
l

[Q I] jl j2 js

(3.15a)
and similarly for the 3-j symbol in (3.13a). (2) By
(2.16) and (2.16b), w/ (f) = v„'(I'f). Consequently,
if in (3.13), H& is evaluated for f', f", I' 'f"', there
appears on the right-hand side w„" (I' 'f'")

Then= v„'*(f'") If .a similar transformation is carried
out on f", one obtains

(bn. )"'(—bn. )"
, 4-, ,

)
1 ~ p+q =k PI fgI1

(bn )"'(-& n2)"
I I~2. p +q =k P2 V2

(Bn2)"' (—baal)"
~3 ~ pa+qa =kakt P3 V3

( I )
Qx+'l2+t/s

p 'p Ip 'q 'q 'q '
(3.19)

F (f/ P lf// p lf///) g l 22 22

,m, m $1 m2 m3 E

&& v ', (f )v '. (f )v .(f )

(3.15b)

(
ml g2 g3 j +m +j +m ml m2 m3

m2 m3 J' pi g2 g3 )

(3.15c)

e. Computation of the 3-j symbols We int. roduce
two closely related sets of coefficients f, h by setting

F.h, ~) = Z .f".~"" '

p[&] [M

2 ($/2]) P 2//X

([ [][ [])I /2

3 I /2

(g I)] f f

(3.16a)

(3.16b)

(3.16c)

In view of (3.5), comparison of (3.12) and (3.16b)
shows that

mI m2 m3

22.'

k =J —2j, K =j+m
X„=j —m (n=1,2,3).

(3.17)

(3.17a)

Kl+ K2+ K2 ——)]/+ 4+ Xs ——kl + &2+ ks ——J .

(3.1S)
This condition corresponds to ml + m2 + m2 = 0.

Although the nine integers k, ~, X may seem
highly redundant they are better suited to expressing
the full symmetry of the 3-j symbols than are the
customary j and m. (A similar situation prevails in
the case of the 6-j symbols as will be seen in the next
section. )

Equations (3.15) deffne the coeKcients f and h

for all k, K, X, but since [by (3.9)] F, is homogeneous
of order k, + &2+ Ics in the f as well as the 2], f
and h vanish unless

= hL = " '
)

L. 319b'

f The generati. ng function 4 and the symmetries

of the 3-j symbol The gene. rating function of the 3-j
symbols is defined by'4

C'(r, k,n) = Z. r ~.(f,n) = Zf".
[2]([//] []q (3.20a)

l2 G. Raeah, Phys. Rev. 62, 488 (1942), Eq. (16). See also
A. R. Edmonds, Angular 3IIomentum in Quantum 3EIechanic3
(Princeton University Press, Princeton, New Jersey, 1957),
Eq. (8.6.11).

I4 This corresponds to the function defined by Schwinger
(reference 6) in Eq. (8.42).

The summation extends over all non-negative
integers p, g which satisfy the conditions sum-
marized in the following matrix equation:

(ql + Pl q2+ P2 q2+ P2)
L =— Kl K2 K3 ]l q2+ p3 q3+ pl ql+ p2

&q. +p, q, +p, +q, &

(3.19a)

Equation (3.19) reduces to a simple sum, because all

p, q may be expressed by any one of them. Iet
g3 = z. Then py = K2 —8, p2 = XI —8, p3 = I] 3 —8;
ql kl K2 + 8 q2 Ic2 Xl + e, and the sum
extends over those e for which all p and q are non-
negative. (This is Racah s expression. ") If /[2 is the
minimum of the entries of L the sum has p, + 1
terms.

In I the elements of each row as well as the ele-
ments of each column add up to J, [see (3.17a) and
(3.18)]. In Q all row sums and column sums are
equal by definition, the common value being

Z -'=l(P- + q-)
Finally, one may write f& instead of f,„]„and simi-

larly hr, . Denoting L's matrix elements by l,„(where
i denotes the row and n the column), (3.16) and.

(3.17) may be summarized by
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where r = (ri, rs, rs) is a triple of complex variables.
It will be useful to arrange the nine variables r, $, »

ln a matrix

= exp (det ) (8.21)

TI T2 T8

D(r, &,r&) = det - = &~ &s 4
gl Q2 $8

(3.21a)

The elementary symmetries of the determinant D
now yield corresponding symmetries of the co-
efficients f and h."We combine the following facts.

(a) For any 8 X 8 ma, trix A, let P (A) be the matrix
obtained by some fixed permutation of A's elements

(such as the transposition of two rows or two
columns, etc.). Then"

T1 T2 T3

w 1 2 3

r)g fjs r)s

in analogy to L. It follows at once from (3.9) that

C'(rA~) = C'(-"") = exp (Zr-~-) = exp (D(r &~))
a=1

[The equations for the coefficients f, which follow
immediately from the above analysis, imply those
for the coefficients h because neither the numerator
nor the denominator of the normalization constant
in (3.19b) is affected by the operations P in (8.22).]

The operations listed under I and II generate the
symmetry group of 72 elements discovered by Regge.
Previously, only the following more evident sym-
metry operations had been noticed: (1) Permutation
of the columns of L, i.e., simultaneous permutation
of j and m . (2) Transposition of the second and.
third row in I, i.e., changing the sign of all m .

g. Tice norm of F&. As follows from (1.13b), for
fixed r the generating function C, —= 4'(r, $,r)) is an
element of P& as long as the r are small enough.
(The precise condition, which is g'= & I

r I' ( 1, need
not concern us. ) The inner product of two such
functions C, and C,' (taken on 5't&) is then, by (8.20a)

(8.28)

In the computation of the inner product according
to (1.4) we may separate the $ and the rl integrations,
so that

4(P( )) = g f~(r'&r' '$' 'g'

(P) S«exp I:
—D(r, k, n)) = C"(,&~) =—C"(=) . (C„C, ) = exp D(r, ),r)) exp D(r', ),rl)dljs(r))

Evidently X @.(&) (8.28a)

C'(=-) = C(—,(,~) = Z (—1) f"'"&'"&~'"

because kr + ks + ks = J.
By comparing coeKcients we conclude therefore

(a) If det [P(Z)] = det g, then C(P(")) = C(g)
and hence fr &r, &

= fr,

(b) If det [P(.)] = —det Z, then C(P(Z)) = C"(Z),
hence fr&r, &

——(—1) fr..
This leads to the Anal result:
First case: If P is (1) an even permutation. of rows,

(2) an even permutation of columns, (3) the inter-
change of rows and columns then

fp(r& = fr, aud hp(r& = Ar, . (8.22) r

Second case: If P is (1) an odd permutation of
rows, (2) an odd permutation of columns then

In ordinary vector notation D(r, g, rl) = (r X g). r&.

Thus the inner integral is of the form (1.18) (if r) is
identified with e), with

a=r X$, b=r'Xg,
and it has the value exp (l& a), where

!' = (
' -)r &)

—(.' &) (.— r) = l A&,

3 denoting the matrix with elements

a.p
= (r' r)b.p

—r„'rp.

Hence, (C„C,') is a Iaplacian integral of the form

(C„C,') = exp (& AP)d&a (P)

and, by Kq. (A5) in the Appendix,
J J

f~&r& = (—1) fr. and ltr«& = (—1) l&r, . (8.22)rr
(@ @ ) [d t (1 A))-1 (1 g)

—2 (323b)

is This proof is essentially the same as Regge's [reference
5(a)1.

Consider a power series in n variables x„g(xq,xs, . . . ,x )

=—g(x „x„.. . ,x „) for some permutation (r~,rs, . . .p.~) of
the integers 1,2, . . . ,n. Then 6'(x&,xs, . . . ,x~)
)& y;~, ;~, . . .;~„xt';x';. . .x„'n. In our case the variables 7)$)Q
correspond to the x„and fL to the coeKcients y;,;, . . .;„.

Expanding in a power series one obtains

(C' C' ') = Z (& + 1)(r r')"
p=0

(IkI + 1)',ln, rl'&

[k!)
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where ~k~ = k, + k2+ k3. Comparison with (8.28) which ave of course known. We mention two ex-
yields amples.

(&kFk') = 0 ifA, "&A;
(~ + 1)t/~kt~

(8.24)

as announced in Sec. 8d.
h. Becnr8ion relations. For the derivatives of 4 one

finds

BC/&2 I = ($2/3 $321'2) C I BC/8/1 (f22 3 It312) C I

BC /Bgl ——(r2$3 —r3$2) C

and six more equations obtained by cyclic permuta-
tions. If the expansion (8.20b) is inserted numerous
relations between the coeKcients f result, most of

BC/Brl ——($2g3 —$3g2) C leads to

(2) 7 3 8cl/82. 2 + $3 Bc'/8&2 + q3 8c/Bg2 ——0 leads to

k2fkkk (1 + II2)f ~kI, ksI+-, ~31+, gsI

+ (1 + X2)f k, l, k, +I,-~ X,+l, k~ —I

Upon insertion of the normalization constant and
"translation" into the (j,m)-notation one obtains
the following two formulas for 3-j symbols.

Ifkkk fk, —I ~ ~ ~ K~ —I ~ ~ ~ X, —I fk, -l ~ ~ ~ 3,—I ~ ~ X~-IA;

(On the right-hand side only those indices are
marked which differ from the corresponding ones
of the left-hand terms. )

-((j.-~.)(j.+ .)~'" ' '; ',
ml m2+ 2 m3 —

2

ml m2+ -, m3 —
2

4. RACAH COEFFICIENTS

This section deals with the Racah coefficients (in
the form of Wigner's 6-j symbols). The main ob-
jective is the construction and analysis of a generat-
ing function, and its application to a discussion of
the symmetries of the Racah coefFicients.

a. Formal preliminaries. In terms of 3-j symbols
the 6-j symbol is defined as follows.

In the sequel different subscripts in an equation con-
taining j p or k p denote different integers taken
from the sequence 0,1,2,3. Thus the perimeter of the
ath triangle (with vertices Vp, V„V3) is

J- =i~&+i 3+ik~. (48)
In accordance with (8.10a) and (8.10b), we set

k, II
= J —2jl,k

= jIP+ jkII —j,k (u W P) . (4.4)

j23 j31 j12
j01 j02 j03

(ml m', m,') (I„m, I„)
~akm a

m1 m2 jQ3 jQ1 m2 m3

The twelve k y depend on the ordered pairs (Ik.,p)
while in the definition of j p the order is irrelevant;
I2 refers to the triangle, P to the vertex opposite j,k.

The inverse relation is

(The summation of the m„and m' extends over all
values compatible with the associated j.)

The notation introduced here is meant to empha-
size the tetrahedral symmetry of the 6-j symbol. It
alludes to a tetrahedron with vertices V (I3
= 0,1,2,8) and edges j p. The four 8-j symbols in
(4.1) correspond, respectively, to the triangles op-
posite VQ, V1, V2, V3. We define

irk =
2 (k-v+ k-3) (4 5)

k., + k 3 = kP, + kP3.

Further useful relations are

k.II + k., + k.k = J

(4.6)

(4.7)

Since j~~ belongs to the two triangles opposite V and
Vp, we have also j,3 = —,

'
(ktI~ + kI33), so that the k

satisfy the compatibility conditions

j p
—= jp (a W P;Ix,P = 0, 1,2,8) . (4 2) k tI

—kp ——k, tI
—kk = J.—Jp. (4.7a)
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The (triangle) conditions on the j 3 to lead to non-
vanishing 8-j symbols in (4.1) are simply: k 3 are
non-negotk e integers. "

Any set of twelve numbers k 3 (n&P) which
satisfy the compatibility conditions (4.6) will be
called "tetrahedraL. " Given such a tetrahedral set.
If j» is defined by (4.5) then j» = j», and the
relations (4.4) hold.

The ordered pairs np are conveniently arranged
in four triads T defined as follows:

T contains the three pairs with first eLement 12 . (4.8)
We shall also need the four "transposed" triads

T*contains the three pairs with, second eLement n . (4.8a)

Lastly we introduce three tetrads 8",:

W, :(01,10,23,32), W:(02,20,31,13),
W3. (03,30,12,21) . (4.8b)

In the functions FI, connected with the four 3-j
symbols in (4.1) the numbers k 3 appear in the order
which corresponds to the order of the j~~ by Eq.
(4.4). Thus we have in succession

{kol k02 k03}(klo k13 k12) (k23 k20 k21) (k32 k31 k30) (4.9)

It is seen that the four triples correspond to the
four triads T . Moreover, the first, second, and third
element in each triple corresponds, respectively, to
WI, W2, 8'8.

Let o. ~ x be a permutation of the four
integers 0,1,2,3 (which may be interpreted as a
permutation of the four vertices V of the tetra-
hedron), and define

(4.10)

Then Kqs. (4.4) to (4.6) remain valid. The triads
are permuted accordingly (T —+ T, T* -+ T* )
while the tetrads are subject to a permutation m' of
three integers, which depends on tr (W; ~ W ';).

b. The generating function R(r). The 6-j symbol
(4.1) is a function r(k), where k represents the k e.
If we replace, on the right-hand side of (4.1), the
3-j symbols ( ) by the corresponding symbols ( )&

[see (3.15a)], i.e. , if we divide by all four triangle
coefficient, we obtain a function s(k) such that

The function R(r) may be expressed as an integral
over the product of four generating functions C [see
(3.20a)], which are related to the 8-j symbols in
(4.1). To this end we introduce six pairs of complex
variables 1 = ($,q ) and 8 = ($'„rl') (n = 1,2,3)
corresponding, respectively, to the summation
indices m„and m' in (4.1).Then

R(r) = C"C' C"C"di 3(&',n')@0(k,n) (4 13)

Cp = 1 2 8
C'{rol,roo, r03,0 ,9 ,8 ) ,

C( lrotirotirI220 tL 1 IL )

C2 = C'(r23, roo,r21, I'L, I'8, l ),
C. = C ( „,.„r..;L', 'I P, 'rS') . (4.13a)

[The variables r e in the four functions C correspond
to the four triples (4.9), to an upper index m in
(4.1) corresponds l, to a lower index m corresponds
'I' P as an argument of C, similarly for the m'. Note
that 'I' L' = (tl, —

p ).]
The proof for the integral representation (4.13) is

straightforward, but writing it out in full would
lead to rather unmanageable equations. It will

suffice to consider the contribution of the L' integra-
tion to (4.13). Cto and 4» are free of L', so that only
C2 and C» need be considered. Now

t 1 t 2 3„;„;r.; F, . .„(rl-, rg, l ),
k23 tk20 tk2i

I t 2 t 8r32'r3'1'roo'F8„, 3„,3„(L, I'L, I'g ) .
k32, k3~, &30

The problem is further simplified by studying the
contribution of just one F chosen from 4» and one
F from C, . By (3.15b), since tl' = I' ',

,„('rP', 're', L.') =
p, , p, , tt, PI P2 $8 J'

X v'„, (L )v', , (0 )v'„.(L'),

So far r(k) and s(k) are defined for "tetrahedral"
sets 0 e. In allother cases we set r(k) = s{k) = 0.

In terms of 12 complex variables r e(a & P) we
now define the generating function of the 6-j symbols
by

(4.12)

where 2j1 = kto + k», 2j2 = k23 + k», 2j3 = k23

(4 11) + k211. Similarly,

I7 These conditions are, however, insuKcient to insure the
existence of a tetrahedron with edges j p. %e deal here with
the combinatorial rather than with the metric properties of a
tetrahedron.

F,„.„,„(L-', 'rL-', 'Ie') = g
viv2v3 1 V2 V8

&& tt.'(L )tt. :(L )ti..*(0 )
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with 2tl = kso + ksl, 2ls = k32 + k30 2ls = k32 + ksl. be calculated. We have

If one multiplies the two functions F and integrates
over f', one finds, due to the orthonormality of the
v'„: (1) The result is zero if jl 0 tl. (2) If jl ——tl, i.e.,

k20 + ksl k30 + k31(= 2jol)

the result is

/01/2 Ps P ts 4
pa 8 p332pz87J appp2$3EJ01&2 ~3E

X v", (g ) v .'(f' ) v.:(1 ) v. :(g )

Continuing, step by step, with the remaining varia-
bles, one obtains, in analogy to (4.14), the remaining
five compatibility relations (4.6), which shows that
only the tetrahedral sets k p give a nonvanishing
contribution, and in addition it is seen that the
contribution of a tetrahedral set is precisely the 6-j
symbol divided by the four triangle coefFicients, i.e.,
s(k), as it should be.

The computation of B(T) carried out below gives
a simple result, "viz. ,

a=p

Cp = 7 10T2p7 3p Ql —TOIT31T21 ~2 T32T02T12

C8 = 728T13T03 (4.15a)

D, + D, + Ds ——g (cg„' + d Tl') —E
~~1

Cl T12$2 Tl sris 1 C2 T23$3 Tsl'gl

C3 Ts1pl Tss'gs

dl = T12'gs + T18$3 1

ds Tslltl + T32$2

ds T23gs +'T21$1

E —Tlo ($8/2 + Tlsgs) + T20 ($1/3 + 2)lr)8)

+ T30 ($2/1 + 2)2gl)

First step: Integration over g'»'. By (1.12a),

Tp 1

f= Cl

dl

702 703

C2 C3 —E .
d2 d3

Inserting c and d one obtains

f = g u 5 + g v 8 —$ H$ —
Tt Hrt, (4 16)

a 1 a 1

where 8 are the determinants in (3.9),
+1 T02T18T32 )
Vl = T08T12T28 )

+2 7 03T21T13 ) +3 T01T82T21

V2 —7 01T287 31 V3 7 02T31T12

and H is the matrix

exp (c (' + d r)') exp (Do —E)d133($',2t') = exp f,

~l T01T10T23T32 )

~3 T08T30T12T21

62 T02T20T13T31 )

(4.15b)

Ql

7 027 187 31

7 p3T12T21

710

T20

TO IT23T32

(4.16a)

and a straightforward computation gives the ex-
pression (4.15).

d. Symmetries of the 6'-j symbols. It is useful to
arrange k p and 7.

p in matrix form

Tp 1

pl

Ql

Tlp T13 T12

—ts

T02 T03

$2 $s
lr 1

'92 '93

If the T are sufficiently small (for example,
~T et & 2 for all a,p), the integral (4.13) converges

the a being defined in 4.15a .
Second step: Integration over P» By (As) o. f theabsolutely, the operations carried out below are

A.ppendixlegitimate, and the power series (4.12) may be
obtained from a term-by-term integration.

C. Computation of B(T). By (3.2]), the integrand "Pf &0(~») = ~d t ( + +)
in (4.13) has the form exp (Dll + Dl + Ds + D3),
where

T23 T20 T21

'gl 'g2 b
—$2 1)s

T32 T31 7 30

D3 $1 'g2 98

nl —h —b

&8 Apart from the notation this coincides with Schwinger's
Eq. (4.18) in reference 6.

The cyclic symmetry of the exponent p'=0D in
the indices 1,2,3 greatly reduces the work in this
computation. In fact, only a few terms need actually

klp k2p k8p

kpl k31 k21

k32 k02 k12

, k23 k13 kp3,

Tlp T20 T30

3 Tp 1 T31 7 2]

T32 7p2 T12

~ T23 T13 T03 J (4.17)

such that the rows correspond to the four transposed
triads T*, and the columns to the three tetrads
Wl, Ws, Ws. In the generating function (4.15), o
is the product of the elements in the o,th row, and bi
the product of the elements in the ith column of 3.
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By (4.7), J is the sum of all k belonging to the
triad F . Similarly, we may introduce Z* as the sum
of all k belonging to the transposed triad T*, and to;

as the sum of all k belonging to the tetrad W;.
(Equivalently, J* is the sum of the elements in the
ath row, and w; the sum of the elements in the ith
column of X.) Clearly,

e. Exp2icit expression for the 6' jsymboL. Expanding
8 = 6 ' in a power series one obtains

CO 3 3 g

~ = Z(—1)*(z+1) Za-+ Z

= Z (-1)'(~+1)'(Il „, II.', »
va ~z

where v, co; run independently over all non-negative2 J' = Z J' = ZM' = IXI = 2 k p (4.17a) integers, ands = g v~+ g; o);. This leads to
a 0 a 0 1 a,P

For a tetrahedral X, by (4.7a), ,(X) g (—1)'(e+1)t
P0!P, !P2!P3!(g,!~2kg3!

(4.18)

J* —J = gp(kp —kp) = gp(Jp —J), The summation extends over all non-negative
integers which satisfy the matrix equation

Z.* = [Xi —3J. .

In analogy to (3.20) we write

~(~) = Z«(X) II- prPP. .

(4.17b)
k10 k20 k30 I V0

k01 k31 k21 ~1

k32 k02 k12 ~2

k23 k13 k03, V3

+ &o) vo + c)2 vo + 4os

+4O1 Vl + O)2 Vl + 4O3 = K
+ 4OI P2 + 4O2 Vs + O)3

+ 4O1 V3 + 4O2 Ps + 4O3&

(4.19)

If we denote, as in 3f, by P(3) and P(X) the matrices
obtained from 5 and X, respectively, by a fixed
permutation of their elements, then

k p
——vp+ o); (n,P) g W';.

The 6-j symbol is then given by

(4.19a)

Consequently, if B(P(3)) = B(3), then s(P(X))
= s(X) for allX.

This remark yields the Regge group of symmetry

operations In fact, 8 . is invariant (1) under any
permutation of the rows (this permutes the a and
leaves the b; invariant), (2) under a,ny permutation
of the columns (this permutes the b;, but leaves the
a invariant) .

Note that the J are permuted by the erst type
and left unchanged by the second type of operations,
as follows from (4.17b). Hence the normalization
factor in (4.11) is unaffected by all these operations,
and what we proved for s(X) holds also for r(X),
i.e., for the 6-j symbols. [For any permutation of
the k, the corresponding transformation of the j m.ay
be derived from (4.4) and (4.5).]

The symmetry operations listed above generate
the group S4 X Ss (the direct product of the sym-
metric groups S4 and Ss) of order 24 6 = 144. Its
elements are the products of permutations x of the
rows and 0-, say, of the columns of X, which may be
chosen independently of each other. The previously
known symmetry operations are the transformations
(4.10), induced by a permutation of the vertices
of the tetrahedron, where 0- is no longer independent
of m, but equals x'.

~ ~ ~

~

~

~ ~ ~ TT
s(X) (4.19b)II (J + 1)'

[see (4.11)], the j and k being related by Eqs. (4.4)
and (4.5).

Apart from its immediate application to the ex-
pression (4.18) the equation X = X (where we as-
sume k, v, oo to be non-negative integers) is of interest
as a parametrization of tetrahedrct X. It is not difFicult

to show that X is tetrahedral if and only if it satisfies

(4.19) for some Ot. Furthermore, for a given X the
equation X = K has ))4 + 1 solutions, where 14 is the
value of X's smallest element, and hence (4.18) has

p + 1 terms.
Action of the symmetry operations. Let P be an

element of the Regge group characterized by the
permutations sr and c. If X = X, then P(X) = K',
the parameters of X' being given by v' = v, co,'

COsr .
Racah's formuLa "To obtain . Racah's famous

expression for s(X) we have merely to express v and
c); by e. From (4.19) and (4.7a), k o

—k1) ——vo

= J„—J0. Furthermore,

vo + J'o = vo + ko1 + kos + kos = g vo +
a=0

13 H,acah, reference 13, Eq. (86.) Edmonds, reference 13, Eq.
(6.3.7).
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[by (4.19)], hence,

Prit = 8 Jrx . (4.20)

APPENDIX. EVALUATION OF
SOME LAPLACIAN INTEGRALS

The first row in (4.19) yields 0); = k;0 —)'0, i.e.,

0); = t; —z, t; = k;p+ Jp. (4.20a)

In terms of the j,

(a) Let

A(B) =. )r
"

exp ( sB—z)d"z (Al)

tl j02 + j03 + j12 + jl3

t2 j03 + jpl + j23 + j21

t3 —jpl + jQ2 + j31 + j» . (4.20b)

8 is an n )& n (complex) matrix with elements b&),

so that
n

k) l=l

Inserting v and 0); in (4.18) one obtains Racah s
formula

The integral extends over all of C„, and d"z =
1 d$3 dy3 (88 = X3 + Zy3).

Every B has a unique decomposition B = B'
+ iB", with Hermitian 8' and 8", and we call 8'
the IIermitian part of B.

If 8 is positive de)nite the integral in (Al) con-
verges absolutely, and

,(X) g (—1)*(~+ 1) t

II. ( - J.) II. «. — )

the summation to be extended over those z for which
all v and o)i & 0.

It is readily shown that 4t, = w; + ~xi. Hence the
H,egge operations are also described by J' = J
t! = t., [see (4.17a)].

Remark. Schwinger has also computed the gener-
ating function for the 9-j symbol [reference 6, Eq.
(4.37)]. This does not reveal any new symmetries-
at least none to be obtained by a permutation of the
relevant quantities k p.

f Recurs.ion reLations. Let 0 s be the differential
operator r, s 8/er s Then 0. sG = q s, where g s
= os + l); if (lx,p) 3 W, . Hence

A(8) = (det8) '. (A2)

Proof We proc. eed in three steps. (1) If 8 = 1,
then A = l. [This is (1.6) for li, = li' = 0],(2) If
8" = 0 and 8 is positive definite there exists a non-
singular matrix S such that

B=88. (A3)

Introducing new variables z' = Sz (and z' = Sz)
we obtain z Bz = z'. z', which proves the absolute
convergence of the integral. Setting z3 ——x3 + iy,' we
find for the Sacobian of the transformationQpR= —2g pG'

and g,g0 pB = g pQ, ~B, which leads to recursion
relations for the s(k). As an example consider g32001R

gplf132R Now g32 o2 + 61 gpl Ql + l)1 so that
= (det S detS) ' = (detB) '

(A3a)
a200)R = a)Q32R + bl(032 —Apl)R .

From the power series for R we obtain

kpls(k) = (k32 + 1)s(' 'k02 + llk12 + l,k32

Hence, A(B) = (det 8) ' A(l), Q.E.D. (3) Consider
now 8 = 8'+iB" with positive definite 8' and
arbitrary B". The modulus of the integrand is:

exp (—s 8'z), which establishes absolute conver-
gence.

Introduce a complex parameter 8 = 81 + i82, and.
set C(e) = 8' + ieB", so that

+ 1 ' 'kill 1 k21 1 k31 1 ''')
+ (k32 + 1 kpl)s(' ' k02 + llk12

C'(8) = 8' —828", C"(8) = 818" (A4a)

For small 8,, C'(8) is close to 8' so that, for a suitable
constant ~,

r C'(e). ) -'r 8" if ie, i ( ~ .

We now restrict 8 to the strip ~82
~
( )l, and show that

h.(C(e)) is analytic in e. For this it is sufficient to
observe that the integrand exp (—z. C(e)z) is obvi-

+ (k32+ 1 —kpl)[kplk23]'
'

$23 + 2 QQ31 2 j)2X ~ ~

201 202 203 2

+ 11' ' 'kQ1 l)klp llk23 ll ' ' ')
where again on the right-hand side only those k are C(0) = 8', C(1) = B.
marked which differ from the corresPonding ones on C(e) has the decompos, t;on C (8) + iC (8) w;th
the left-hand side. For the 6-j symbols one finds

[(J2 + 1)kll, (k„+ 1) (k12 + 1)]' '
$01 $02 $03

1
= [(Jl + 2)k2)k31(k32 + 1)]'"

jp 1 ~2 j02 + 2 j03
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ously analytic in 0 and that its modulus exp

(—z C'(0)e) is uniformly bounded by the integrable
function exp (—i~z B'e). For imaginary 8, C is
Hermitian and positive definite [see (A4a)], and in
this case the equation h. (C(9)) = [det C(e)] ' has
already been established. By analyticity it remains
valid throughout the strip ~g,

~

& z, in particular for
C(1) = B.

Corollary.

I(A) = exp (e Az)dp. (e) = [det (1 —2)] '
(A5)

if 1 —A. has a positive definite Hermitian part, in
particular if 3 has suKciently small matrix elements.
In fact, by the definition of dp„(e) [see (1.5)], I(A)
= A.(l —A).

(b) Iet

M(B,a, b) = m
'

exp g(B,c,bi;&,g)d'&d'rt (A6)

g = —5 B& —~ B~ + D(~,i,n) + D(&,&,~) («a)
Here, $ and rl are points inC&, B is a 3 && 3 matrix,
c,b are constant vectors in C3, and D is a determinant
as in Sec. 3f. As before, we proceed in three steps.
(1) If B = 1, this is the integral in (3.23a), and for
sufficiently small a,,b, M(l, a,b) = (1 —a 6) ', by
(3.23b). (2) If B is positive definite Hermitian, M
is absolutely convergent for su%ciently small c,b

(for example, a, Ba & det B, and 6 Bb & det B).
A.s before, set 8 = 8*8, let 0 = det 8, andintroduce
new variables g' = 8$, g' = 8g. Set also a' = 8c and
b' = 8b Th. en

n Bn = v'. n'

D(o, ,),rt) = 0 'D(o,',p, rt') = D(n",&',rI')

D(b, ),rl) = 0 'D(b', f', rt') = D(b",$',rt'),

where a" = a. 'a', 6" = 0. 'b'. Thus,

g(B,a,bi;$, rt) = g(l, a",b";$',q') .

The Sacobian corresponding to (A3a) is now (oa) '.
Hence M(B,a, b) = (oo.) ' M(l, a",b") = [Oo(1
—g" g") '] = (vo —a' V) '. Now ~a = detB, and
a' 6' = a Bb. Therefore

M(B,a,b) = (detB —a Bb) '. (A7)

(3) If B is no longer Hermitian, but has a positive
definite Hermitian part, we may again show by
analytic continuation that (A.7) remains valid.

The integral to be evaluated in 4c is

N(H, u, v) = exp g(II,u, v;&,rt)dys(&)dp, (rl) .

Since dp3(g) F3(g) introduces the factor exp (—g p
—g q) it follows that N(H, u, )v= M(1+ II,u, v),
and hence

N(H, u, v) = [det (1+H) —u v —u Hv] '. (A8)
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l. INTRODUCTION

~ROM the very beginning of quantum mechanics,
the notion of the position of a particle has been

much discussed. In the nonrelativistic case, the proof
of the equivalence of matrix and wave mechanics,
the discovery of the uncertainty relations, and the
development of the statistical interpretation of the
theory led to an understanding which, within the

* Dedicated to Eugene Wigner on his sixtieth birthday.

inevitable limitations of the nonrelativistic theory,
may be regarded as completely satisfactory.

Historically, confusion reigned in the relativistic
case, because situations requiring a description in
terms of many particles were squeezed into a for-
malism built to describe a single particle. I have in
mind the difhculties with wave functions for a single
particle which seem to yield nonzero probability for
finding it in a state of negative energy. Soon attention
shifted to the problems of the quantum theory of
fields and the question of the status of position


