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HE present paper contains hardly any new result

and can claim only a methodological interest. In
a recent article' I studied a family of Hilbert spaces
&=, Whose elements are entire analytic functions of n
complex variables. The methods developed there
appear appropriate for a fairly effortless treatment
of the representation theory of the rotation group,
and this paper is offered in the hope that it may sug-
gest further applications of these methods. (Here,
and in the following, the term “rotation group”
actually refers to the group 1 of unitary unimodular
transformations of a two-dimensional vector space,
the spin space of quantum mechanies. It is this group
that is basic for the quantum mechanical applica-
tions.)

The application of the function spaces . to the
study of the rotation group is related to the long
known fact that its irreducible representations may
be obtained by considering homogeneous polynomials
in two complex variables. (All these polynomials are
elements of {2, and may thus be treated simultane-
ously.) This fact has been used, in one form or
another, in almost every treatment of the represen-
tation theory of the rotation group. It has been most
systematically exploited by Kramers and his school,?
who have applied the concepts and the methods of
the theory of binary invariants. Van der Waerden
also used it very effectively in his book®—for ex-
ample, in the derivation of the vector coupling
coefficients.

It was shown by Wigner—in his profound investi-
gation of simply reducible groups*—that remarkably
many properties of the 3-j symbols, 6-j symbols, ete.
and of their interrelations are shared by all simply
reducible groups, and are not confined to the rotation
group. By contrast, the present paper is restricted to

1V. Bargmann, Comm. Pure Appl. Math. 14, 187 (1961).
Hereafter quoted as (H).

2For a survey of these methods see H. C. Brinkmann,
Applications of Spinor Invariants in Atomic Physics (Inter-
science Publishers, Inc., New York, 1956).

3B. L. van der Waerden, Die gruppentheoretische Methode
in der Quanienmechanik (Verlag Julius Springer, Berlin,
Germany, 1932).

4 An excellent exposition of this investigation is given by
W. T. Sharp, “Racah Algebra and the Contraction of Groups.”
CRT—935 (AECL—1098) Atomic Energy of Canada Ltd.,
Chalk River, Ontario, 1960 (unpublished).

the rotation group. Naturally, this restriction per-
mits simplifications and short cuts. In addition, we
know from Regge’s intriguing discovery of unsus-
pected symmetries of the 3-j and the 6-j symbols®
that there are important relations which do no longer
hold for all simply reducible groups. While the
following analysis does not lead to a deeper under-
standing of the Regge symmetries it yields, at least,
a fairly transparent formulation and derivation of
the symmetries.

Ten years ago Schwinger published a highly in-
genious treatment of the rotation group based on a
certain operator method.® In a strict mathematical
sense, the Hilbert space method of the present paper
is isomorphic to Schwinger’s operator method. (For
a detailed comparison see Sec. 2e below.) The gener-
ating functions for the 3-j and the 6-j symbols, in
particular, are due to Schwinger.

There are, however, characteristic differences in
our approach. (1) Schwinger introduces certain
operators a; (and their adjoints) for which the com-
mutation rules of the annihilation and creation
operators of boson fields are postulated. All other
objects to be studied are defined in terms of the a,
including the orthonormal vector basis of the Hilbert
space on which the operators a; act. In the present
paper, however, the Hilbert space is a prior: given
as a function space, and the standard methods of
analysis are available at each step. (2) Schwinger is
primarily concerned with angular momenta—in
group theoretical terms: with infinitesimal rotations
—and he constructs the representations from their
infinitesimal generators, while in the present paper
the representations are directly defined on the func-
tion space .

The present paper may be read without any
knowledge of the content of the paper (H) of refer-
ence 1. To the extent that they are needed the results
of (H) are reproduced in Sec. 1. Sections 2 through 4
deal with the rotation group. The representation
theory of the rotation group is developed from its
beginning—for the convenience of the reader, for the

5T. Regge, Nuovo cimento 10, 544 (1958); 11, 116 (1959).
6 J. Schwinger, “On Angular Momentum,” U.S. Atomic
Energy Commission, NYO—3071, 1952 (unpublished).
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sake of logical coherence, and also in order to show
that those definitions and constructions which appear
natural in the framework of the function space § are,
at the same time, useful and relevant from a group
theoretical point of view. The decomposition of the
direct product and the 3-j symbols are treated in
Sec. 3, the 6-j symbols in Sec. 4.—No loss in gener-
ality is caused by the fact that the representations
are constructed on , because the main results—for
example, the properties of the 3-j and the 6-j symbols
—depend only on the representations and not on the
vector space on which the representations are
realized.

Remarks on the notation. I adopt the definitions and
the notation of Wigner’s book,” with a few exceptions.
(1) Complex conjugation is indicated by a bar (@ is
the conjugate of «). (2) The (Hermitian) adjoint of
an operator or a matrix 4 is denoted by A*. (3) The
transpose of a matrix A is denoted by 4, and A’s
determinant by det 4. (4) The product of a vector
f by a scalar X will be written either \f or f\, which-
ever appears more convenient.

1. THE HILBERT SPACE §{n

a. Introductory remarks. The elements of . are
entire analytic functions f(z), where z = (21,2, * - ,2.)
is a point of the n-dimensional complex Kuclidean
space C,. Every entire f(2) may be expanded in an
everywhere converging power series

HORS >

1ac e hn

hy ko h,
Olh, b, " * “hnl1 B2 ** <2 .

(1.1)

It will be convenient to use the following shorthand
notation. We set

h = (hly' : ')hn)

for an ordered set of non-negative integers h;, and
h = 0 if all h: = 0. We write oy for the coefficient
an,* + *», and denote the power products in (1.1) by

(2] hy g

k.
2 =2122...znﬂ’

so that the power series (1.1) takes the form
f&) = 2heuc™.

We shall also use the abbreviations

B = hi +ha+---+ hoy [BY] = hlhs!- R0 .(1.3)

The elements of the n-dimensional space C, will be
called points or vectors (synonymously); a-b
= > r_iabe is the scalar product of ¢ and b. In
particular, @-a = > ||

(1.2)

7E. P. Wigner, Group Theory (Academic Press Inc., New
York, 1959).
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b. Definition of the Hulbert space .. The inner
product of two elements f,f’ of §, is

G = [F@r@dne, @4
where
dua(2) = 7" exp (—z-2) | 1s dzsdys,
(Zk = x5 + iyk) . (1.43)

Here and in the following all integrals are extended
over the whole space C,.

The definition (1.4) is meant to imply that an
entire function f(2) belongs to §. if and only if

6D = [ e < = .

[The norm of f is [|f]| = (f,f)*/2.] Separating the
Gaussian in (1.4a) we shall occasionally write

dpn(2) = pu(2)d’z

kIl dxidys .

In order to express the inner product of f and f’ in
the expansion coefficients of their power series, we
first compute (2 2*1). Introducing polar coordi-
nates, z, = re'?*, we have (2, 2")) = wiws- - - w,,

(1.4b)

pn(2) = 7 "exp (—2-2),, (L.5)

d'z = (1.5a)

op = - / exp (i(hh — he)ds)dehs

m™
X /wrZ’“M”‘He_"‘gdn.
0
It follows that we = 6y,.1,h:! Hence

w1y _ 0 S hFER,
("2 )“{[h!],h=h'.

For two functions of §.,f(z) = S and f'(2)
= Y o/32", one now readily obtains

(£ = 2on (W .

(1.6)

(1.7)

In particular,

(h) = 22 [heal” . (1.8)
This last equation may be interpreted as follows.
For an entire function f(z) either both sides are
infinite—in which case f does not belong to {,—or
both have the same finite value.
The orthonormal set u,. According to (1.6), the
simplest orthonormal set in . is given by

Uy = z[h]/[h!]l/z ,

and Eq. (1.8) expresses its completeness.
The subspaces B,. Let P, be the set of all homo-

(1.9)
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geneous polynomials in §, of order s. It is spanned

by those w; for which |[h| = hi 4+ --- + h, = 5. P,

and P, are clearly orthogonal if s ## s, and
Tn=PBo+ P14+ B2+ -

is a decomposition into mutually orthogonal sub-
spaces. It will be useful to introduce

Q:‘:EBZJ’; (j=0)%;1;"')'
An element f of §. belongs to B, if and only if
Fz2) = N7 (2) (1.10b)

for every constant \, or alternatively if and only if
Euler’s equation

2 2:(0f/02) = s-f

(1.10)

(1.10a)

(1.10¢)

is satisfied.
c. The principal vectors e,. Define for every a in C,
the function e, by

e.(z) = exp (@-z2) . (1.11)
It is clear that e, belongs to .. Its power series is

E[h]z[h]

e.(2) = T (1.11a)
It follows therefore from (1.7) that for any f in §,
(ee,f) = 2na™a = f(a), (1.12)

or, in integral form
e @21@ ) = f@) . (L12a)

The existence of these ‘‘principal vectors” e, is a
characteristic feature of §,. It is seen that they play
here a role similar to that of the é functions é(¢ — a)
in the standard Hilbert space of quantum mechanics,
but unlike the § functions they are elements of Hil-
bert space.

Applying (1.12) to f = e, we have

(en,e5) = es(a) = exp (b-a) (1.13)

and hence (e.,e.) = exp (G-a).
By Schwarz’s inequality we conclude from (1.12)
that

If@1 < 1Ifll-lle:l] < 1]l exp (37-2) ( 1.13a)

Conversely, if an entire function f(z) satisfies the
inequality

)| < cexp (32-2)

where ¢ and v are positive constants and v < 1,

(1.13b)
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then, by the integral definition (1.4b), f belongs to
. (The constant ¥ < 1 must not be omitted!)

d. Product decomposition of F,.. To every decompo-
sition of n into the sum of two positive integers,
n =n' 4+ n', corresponds a decomposition of Fa.
into the direct product

Fo= T ® Turr. (1.14)

Set 2/ = (Zl, oo ,Z,,I) and 2" = (zn/+1, oo ,2,,). If
f'(@') and f”"(2'") belong to §. and §.”’, respectively,
the product f(z) = /(&) f"(¢’") belongs to F.. Fur-
thermore, du.(2) = du./(2") du.(2"") by (1.4a), and
for the inner product of f with ¢(z) = ¢'(2") ¢” (&)
one obtains

(£9) = () (F"9")

the two factors (f',¢") and (f",¢"’) being taken on
T and §,.». The orthonormal functions u, as well
as the principal vectors e, are decomposed accord-
ingly.

Similarly one can form products of subspaces of
T and Fnrr, for example,

SBSISII = SB’a/ ® SBQ’//, lejll — Q;r ® g’j’// (1‘143,)

[see (1.10) and (1.10a)], which contains all poly-
nomials homogeneous in 2’ of order s’ and in 2"’ of
order s’’. The functions fin PB,.» are characterized by

FOV2! N2 = A '>\// s’ ’f(z’,z")

for any complex constants A’,)\".

e. Operators on .. We turn now to a brief review
of some operators which occur in the following,.

(&) The operators z;, and di. Here d; stands for the
differential operator 9/dz:. Since the elements f of
T are analytic, zf and dif are always defined as
analytic functions, but they do not necessarily
belong to §.. We shall apply, however, the operators
2w and dx only to polynomials, so that no difficulties
arise.

The dy, z: evidently satisfy the commutation rules

[Zkizl] =0 ) [dk:dl] =0,

Furthermore, 2z, and d. are adjoint [with respect to
the inner product (1.4)],

[dk,Zz] = 01 . (115)

(1.15a)

’r = d;‘;,
i.e., for any f,g in §,,
(Zkf;g) = (f)dkg)

whenever z.f and dig are in §,. For simplicity, set
k = 1. Write, for any h = (hi,hs,- - -,h.), B’ = (1

(1.16)
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+ hiyhoy k). If f =3 ™ and g = 3 gl

we have

af = Dad™, dg = X2 1+ h)sae”,
(af,9) = 220 W@,
(fidig) = 220 (1 + h)[AaB
which proves (1.16) because (1 + hy)[A!] = [A']].

It follows from (1.15) and (1.15a) that the opera-
tors di, 2 satisfy the defining relations for the an-
nihilation and creation operators of boson fields.?

(B) The unitary transformations Ty. For every

unitary transformation U on C, we define an operator
Ty on §,. by®

(Tuf) (2) = f('U2) (1.17)
where ‘U is the transpose of the matrix U. Ty is
clearly a linear operator (i.e., linear in f), and for
two unitary transformations U,U’

TuTU’ = TUU' . (117&)
If U=1, then T =1 (identity), so that Ty

— —1

= T7.
In addition 7 is unitary. Introducing the varia-
bles 2 = tUz in the integral (1.4) one finds that

(Tuf,Tvg) = (f,9) (1.18)

because the measure du,(2) is invariant under unitary
transformations of the z.

It follows that the 7', form a unitary representation
of the n-dimensional unitary group, and also of any
of its subgroups.

The representation is decomposed because any
subspace P, is clearly carried into itself [apply, for
example, the criterion (1.10b)]. In the case n = 2
this will provide the basis for our discussion of the
rotation group.

(v) The conjugation K. The last operator to be
considered is the conjugation K, which is defined as
follows. Let ¢ = K, then

9@ =@, (1.19)
where the bar, as before, denotes complex conjuga-
tion. For f = 3" a2 we find

g(2) = X ae™, (1.19a)
i.e., the power series with complex conjugate co-
efficients.

8 1. E. Segal has used a generalization of §. to ., for a
comprehensive study of the canonical operators of quantum
field theory, where infinitely many di,zx occur. (Lectures at
the Summer Seminar on Applied Mathematics, 1960, Boulder,
Colorado, unpublished.)

9 This differs somewhat from the corresponding definition
in (H) (reference 1), Eq. (3.4), p. 205.

V.BARGMANN

We note the following properties of K:
(1) K is antilinear, i.e.,

K(fi + 1) = Kfi + Kf»,

for any complex constant .
@) K2 =1.
@) KLES) = () = )

i.e., K is antiunitary. [(3) follows from either defini-
tion of the inner product, (1.4) or (1.6).]

A function f may be called real if Kf = f (so that
its power series has real coefficients). Thus 2" and
uy, are real.

With the help of K we may also define the complex
conjugate of a linear operator 4 on §, by setting

K(N) = \Kf

4 = KAK . (1.20)

A itself is linear since K appears an even number of
times in the definition (1.20). If B = 4, then B = 4.
Let

Auy = Zh' Un'Qr'h
where a,, are the matrix elements of A in the system
u. Then, since Ku, = uy,

Aup = K(Aup) = D' un'a@n’s - (1.21)
Thus, A’s matrix elements are complex conjugate
to those of A.
Application to Ty. If U is the matrix complex
conjugate to U,

Ty = Tg. (1.22)

Proof. Let g = Tyf and set, successively, fi = KT, f»
= Tyfi, g = Kf.. By definition, g¢(2) = 1(2), f:(3)
= fi(‘'U?) = fi(y), and, finally, f:(y) = f(@) = f(‘T>).
Hence h(2) = f(*Uz), Q.E.D.

2. THE REPRESENTATIONS 7

a. The group 1. We start with a brief review of the
group 11 of unimodular unitary transformations in
two dimensions and its connection with the rotation
group.

The vectors in C, will be denoted by ¢, with
components {1,{>. (In dealing with several vectors ¢,
we shall often denote their components by &7 instead
of {1,¢2 in order to avoid a profusion of indices.) The
(Hermitian) inner product of two vectors ¢,{’ is

?'ﬁ" = ?15'{ + ?2{5 .
Denoting the Hermitian Pauli spin matrices by

_(o 1) _(0 —i) _(1
=\1 0/ 2T\s o 7 \o

_‘1)) @2.1)
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we write

b = (bl,bz,ba)

for a three-vector b with real or complex components.
Every 2 X 2 matrix B may be expressed in the form

B=bel+bo 2.1a)

with uniquely determined bo,b.
The algebraic properties of the spin matrices are
summarized in

(a-a)(b-g) + (b-o)(a-o) = 2(a-b)l
(a-g)(b-g) — (b-g)(a-0) = 2i(a X b)-o (2.2)

for any two vectors a,b, where a X b denotes the
vector product.

b10'1 + b20'2 + b30'3 = b'0' ;

In the following, the matrix

(0 — 1)
I'= (1 0
will play an important role. (It is the basic matrix e
of the spinor calculus.) We note that

(2.3)

T=-7, I"=-1, T'T'=1, detI' =1,

(2.3a)

where ‘“‘det” denotes the determinant.
For every 2 X 2 matrix B we define the associate
matrix B, by

B, = B (2.4)

If B= (%), then B, = ((5-2). (The elements of
B, are the minors of B.) It follows that

(‘B)e="(Ba), (B)a= (Ba)", (BC)a=B.:Ca,

(2.4a)

B-'B, = '‘B-B, = (det B)-1. (2.4b)

Since for the spin matrices of = 1, det o, = —1, we
obtain from (2.4b)

(‘or)a = —ow . (2.4c)

Hence, for any B written in the form (2.1a),
B-'B, = (bo + b-0)(bo — b-o) = (bg — b°)-1
det B=1by—b", b ="b-b. (2.4d)

The group U. A matrix U belongs to U if and only
if tU-U = 1, and det U = 1. In view of (2.4b) these
conditions may be replaced by

Us=TUT "' =U; detU=1. (2.5)

Let U = by + b-ocell. Then U* = by + b-0 = UL,
By (2.4d), U™ = by — b-o. Hence b, is real, and b
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imaginary. Setting bo = ao, b = —1a, we find that U
belongs to 11 if and only if

U=a —idao, dtU=a+a" =1, (2.6)
a0, a real. In matrix form
U = (aﬁ) _ (ao—iaa —ial—qz)
) —1ia; + a2 ao + a3
d=a, y=—8, aa+pB=1. (2.6a)

Connection with the rotation group. Every U in U
defines a rotation r’ = Ryr by

r'e=Uko)U", 2.7)

so that Ry,Rv, = Ru.w., and R_y = Ry. Using (2.2)
one obtains by straightforward computation

r' = Rur = (a5 — a’)r + 2(a-1)a + 2a0(a X 1),
(2.7a)

the well known expression of a rotation in terms of
Euler’s homogeneous parameters. Specifically,

ao=-cos (3¢), a=sin (3¢)n, (n-n=1), (2.7b)

where n is the axis and ¢ the angle of the rotation Ry.
To the one-parametric subgroup of rotations
about the axis n corresponds the subgroup

U(¢) = cos (3¢) — isin (3 ¢)n-o

=exp[—3%ip(n-0)] 2.7¢)
of .

b. The representations D?. It is now easy to obtain
some of the basic results concerning the representa-
tions D7 of U.

On the Hilbert space . of analytic functions

f(&) (we write now ¢ instead of 2) the operators T'v,

(Tuf)(¥) = £('UY) , (2.8)

provide a unitary representation of the group U, as
was shown in Sec. le.

The subspace Q; = P2; of homogeneous poly-
nomials of order 2j—where 2j = 0,1,2,:-—is n-
variant under the transformations 7'y, and 97 is the
representation of 11 defined by the restriction of Ty
to Q). Since different Q; have different dimensions,
the various representations D7 are clearly inequiva-
lent.

According to the first section—see Eq. (1.9)—Q;
is spanned by the 2 + 1 orthonormal functions

e/ D2 = Y/ G2, (k4 A= 29) (2.9)

or, with m = j,j — 1,-++,—j,
v =&/ LG+ m)G = m)T, (k= N = 2m)
(2.92)
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If U is given by (2.6a), then

Tyt — (of )" (BE + o)™
GG - mn

The matrix elements Di*' (U) are defined by

(2.10)

Tl = 3w v (U), D U) = @i, Twl)
(2.10a)

and their explicit form may be deduced from (2.10).

For rotations about the z-axis, U(¢p) = cos (3¢)
— ¢ sin (3¢)os, so that, in (2.6a), a = ¢/, §
=¢*2 g =~ =0, and

—im$

TUUJm = € Vm

(2.10b)

c. Infinitesimal transformations. Consider the one-
parametric subgroup (2.7¢), and the corresponding
transformations Ty4). The infinitesimal generator
of T'y4y may then be defined by

(m-M)f = i(d/d¢) Tv)fle=o -

One obtains from (2.8) the expression

(2.11)

S )
(@MNE) = 3 3 gulno)s LEL 2110)
@,f1 $s
where (n+0).s are the matrix elements of n-¢. Hence

n‘M = n1]VI1 + nzMz + ?’LsMs
My=1% 2 uptalon)apds, ds = 3/05 (2.12)

The operators M, transform each Q; into itself. [If
f is a homogeneous polynomial of order 2j, so is
M:f, by (2.11a).] Furthermore, they are self-adjoint.
This may be inferred from the fact that —<(n-M)
is an infinitesimal unitary operator, or from the
explicit expression (2.12) because o} is a Hermitian
matrix, and ({odp)* = {pda, by (1.152).

For the commutator of n-M and n’-M one readily
obtains

[n-M, n"-M] = % 3. 5 el o, 0 0lapds

(1/2) 20 ta((@ X 1) -0)apds
=4(n X n')-M

where (2.2) has been used. Thus

[MUMZ} = ’l'Ma, [M2,M3] = 1M1 y
[Ma,Ml] = le .
From (2.12),

(2.12a)

M1 + ZMz = f]dz, M1 - 'LMz = §2dly

M3 = % (§'1d1 - fzdz) y (213)

V.BARGMANN

so that, for example
Ml = mvl,
in accordance with (2.10b).
Lastly,
3
M* = Y Mi=M;+ M,
k=1

+ (M, — M) (M, + iM>)
=1 (tdi + Code)” + 3 (1dy + Code)
NN +1),

where
N =} (fidi + ¢ode) .
On PBo;,Nf = jf [see (1.10¢)], hence M?*f = j(7 + 1)f.

Remark. Two questions have not yet been con-
sidered, (1) the drreducibility, (2) the completeness
of the representations constructed so far. (1) To
prove the irreducibility of ©7 it suffices to show that
every linear operator A defined on Q; which com-
mutes with all Ty is necessarily of the form 4 = «-1.
If A commutes with all T, it also commutes with
all M, [by (2.11)], and a standard computation,
using (2.13), shows that this indeed implies A = «-1.
(2) The completeness is a much deeper problem, and
it is doubtful whether the existing proofs by integral
methods (Wigner, reference 7, p. 166) or by dif-
ferential (Lie group) methods (Waerden, refér-
ence 3, Sec. 17) can be essentially simplified.
In any event, the particular method of this paper
does not seem to contribute anything to this prob-
lem.

d. Complex conjugation. At the end of the first
section we saw that T = Ty. Since the transition
to Ty implies also the transition to the complex
conjugate matrix elements in the system v, we have

o' (0) = 9'(U) .

It follows from the unitarity of the matrices D7 that

(2.14)

DU =D'(UT) = @ U)" = @ (U))*
and hence
D ('V) = (U*) = ®(O)* = 'D'(U) . (2.14a)

The matrix I' introduced in (2.3) belongs to the
group U. Therefore the relation TUT-! = U implies
that Tv = TrTyTr™, in particular'®

D(U) = C'D'(U)(CHT; ¢ =DU(T). (2.15)

100n Qy/e, DY(U) = U,and C12=T.
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The relations ‘I' = —T' = I''!, T? = —1 imply
¢ = (=¥ = ()7, (€)= (-1, (2.15a)
because Di(—1) = (—1)%.
Setting
(2.16)

we obtain a new orthonormal system for which

A iy
wp = Tr v,

Towl, = 3w wioit (U) . (2.16a)

In fact,
Tvw, = TuTr'vh = Tt Twi,
= TP (w viDi (U)) = Tow wivDi™ (U)

For any funection f(¢), set Tr'f = g. Then ¢(¢)
= f(T7¢) = f(T9), Le,

91,82 = f(=&280) (2.16b)
Thus,
wh = (=1)"",. . (2.16¢)
Now  wh = D oh(CHh = 2w Chnvh,

Vn = 2w’ Wn'C'm (2.16d)
(where ‘C7 = (C7)~* has been used). Hence
o = (=16t = (=1) " b . (2.16€)

e. Comparison with Schwinger’s method. Schwinger
starts with the introduction of operators a which
correspond to the d., {« introduced above:

a+‘_)d1, a-—_)dz, (li"—?gﬁ, af——>§‘2.(217)

For them he postulates the commutation rules
(1.15) as well as the adjointness (1.15a). In terms of
the operators a he next defines the operators Ji
corresponding to the M, of (2.12) above, as well as
the orthonormal system of vectors which span the
Hilbert space on which the a operate. The basic
vector is o which corresponds to 3 = 1 used here,
since a, o = ao = 0 (or do/0¢1 = /32 = 0),
and ¢(jm) is defined by

@)™ (@)™
(G + m)(G —m)]
which, by (2.17), corresponds to

G
(G + m)(G—m)]
1.e., to vi,. In addition, the action of the operators a

on the ¢;, is precisely the same as the action of the
cooresponding da, {» on the vi, so that the isomor-

‘/’(Jm) = 73 Yo

1/2'1,
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phism of the two methods is established. One may
say that the function space §§ with its operators
da, o is a realization of Schwinger’s more abstractly
defined system.

3. THE DECOMPOSITION OF THE DIRECT
PRODUCT AND THE 3-; SYMBOLS

In terms of the quantum-mechanical vector addi-
tion model the decomposition of the direct product
D™ @ D* answers the question how two angular
momenta ji,j: combine to a third one, j = j, + j..
The details of the answer are contained in the vector
coupling coefficients. Setting js = —j’ one may,
alternatively, ask under what conditions j; + j.
+ js = 0. This latter problem leads to Wigner’s 3-j
symbols, and its greater symmetry (in ji,js,js) is the
cause for the greater symmetry of the 3-j symbols.

a. Preliminary remarks on representation theory.
We recall the following facts. Let V, be a family of
unitary operators defined on the unitary vector
space B, and let ey,ez, -+ ,en and fi,fa,««+,f. be two
sets of vectors in LB which transform under V, as
follows:

Vaes = 2 eipis(a) 5 Vafs = 2 fou@) . (3.1)
(The case m = n, fi = e; is not excluded!) The
matrices p;i(a) and o,.(a) are assumed wunitary and
wrreductble.

Consider the inner products

Bir = (ei7f')

By the unitarity of V, we obtain from (3.1)

ﬂz‘f = (Vncei;Vafr) = Z]‘,s pii(a)ﬁisasr(a)
In matrix form g = p*(a)Bs(a), and since p is
unitary,
p(a)B = Bo(a) .
Schur’s lemma now implies the following:
(1) If p and o are inequivalent, then g = 0, i.e.,
(e")ff) =0 ) (32)
(2) If p = o (hence m = n), (e:,fr) = Bir = Nosr. This
holds in particular for f; = e;, so that
Heud|” = lles||* =~ =]leal|” = 7.
(3.2a)

b. The product representation D* Q@ D, Our treat-
ment of the direct products D ® D is based on
the decomposition of . discussed in Sec. 1d, spe-
cifically the decomposition of F. Set ¢ = (&1,m1),
¢ = (£,m.) and let F and F4' be the Hilbert spaces

forallz,r.

(ees) = Nosj ;
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of analytic functions f({’) and f({’') respectively.
Then §: = F: ® F4' is a Hilbert space of analytic
functions f({’',¢”") or f(z) where 2z = (21,22,25,24)
= (81)’71;22)712)~

For any U in 1l the operators Ty and Ty are
defined on §; and §i/, respectively, by Eq. (2.8).
For a function f(¢’,{") in s we set correspondingly

(TEN ") = F(Us, Uy . (33)
As shown in Sec. 1e the operators T form a unitary
representation of 11, and furthermore

=Ty ® (3.32)

for if f(¢',¢") = fi€")f2(¢""), then T®f = (Ttf)
(THf2).

It follows from (3.3) that the infinitesimal transfor-
mations corresponding to 7@ are

@~ ML+ My, (k=123 (3.3b)

where M’, and M, are formed according to (2.12)
for ¢’ and ¢/, respectively. All M’ commute with all
M”l-

The subspace Q;;, =Q} ®@Q} of Fa (see (1.14))
is spanned by the (2; 4 1)(2,, 4+ 1) orthonormal
functions

o, (o, (¢7)

Jatmy i=mygiatm, ja—m,
1 1 2 N2

TG+ ml)'(jl — m)!(G2 4+ m2)!(Go — ma)!]"”
TE

~ [aleN G

Ko + Ao = 2Ja, Ko — Aa = 2Me, (o = 1,2).(3.4a)

Q;,;, is invariant under 7% , and T restricted
to £, ;, provides the product representation D™
@ D,

It is clear how this is generalized to the product
of more than two spaces, for example Fs = F-
® §i @ Fs'/, the Hilbert space of analytic functions
f(¢,¢",¢"""). The subspace Q; ; ;, =QJ, ®Q} ® Q}
=£2Q;,;, ®RQ]" is spanned by

o (i, (ol (€1)
— K Es 171‘7]2 773
{Kl!Kz!K;;!)u!AzD\a!}l/z
E[x]ﬂ[k]
(IR

(3.4)

(3.5)

where & = (£1,62,63), 7 = (M1,m2,ms), &k = (kikz,ks), N
= ()\1,)\2,)\3), and

ke + Aa = 2fa, Ka— Ao =2m,, (a=123).

(3.5a)
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Defining

(TPH """ = F(Ug, U, 'Ur) , (3.6)
we have for the representation 7% of 1l

T =T9 @ TY = Twe @ TY @ TY', (3.62)

the infinitesimal transformations are M = M}
+ M 4+ M7, and T restricted to the invariant
subspace Q);,;,;, yields the representation D* ® D’
® 3)]'5.

c. The decomposition of D* @ D*. Suppose the
representation D is contained in D Q D, i.e.,
there are 2j; + 1 orthonormal functions ¢ in
Qj,jz such that

Ty Z‘Pffbhu(U) , M= Jags —

p=—Js

1, -, — Ja
3.7)

Consider the function

a= T piwi @)
in Qj,5.,, where wi(§""") = X Chtnr 05.("") (see
(2.16d)). As a sum of orthonormal functions, a = 0.
Since

T w;;

Z w,’,“iD“"
Zm (T(2)
= D VwIDEH DR (U)

= Zu,v :waia(s,w =a. (3.7a)
Thus, a is invariant under 7%, and MPa = (M;
+ My 4+ Mi")a = 0 (which is equivalent to saying
that D" ® D* @ D* contains the identical repre-
sentation). This is the precise mathematical content
of the remarks at the beginning of this section.

Conversely, let h be a function of unit norm in
;5,7 such that

Il

T(3)

(T4"wi)

II

TPh =h. (3.8)
As the wi (¢""’) spanQ;’/, h has an expansion
b= 2 xmwi (3.82)

with uniquely determined x, inQ; ;,. Now, by (3.7a),
T(S)h — Zm (T(z)Xm) (T{;”w,’n’)
= 2o { 2w (TP %) 007 (U) Jwi
Since T¥h = h,

2w

(TP xn)DE"(U) = Xm
and hence

TP xm =

Zu X,,S)if"(U) .
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By (3.2a), (XmyXm’) = N0mms. Thus, h is a sum of
orthogonal functions, and since it was assumed
normalized, ||h|]2 = Xul|xs||?2 = @5z + DX = 1.
Thus

=2+ 1)""xn (3.8b)

are orthonormal functions in Q) ;, which transform
under D,

d. The functions Fy, Hy, and the 3-j symbols. The
invariant functions k in Q;; ;, [see (3.8)] may be
constructed as follows.!! Since the U are unimodular,
the three determinants

0s = &im2 — Eom
(3.9)

are invariant under 7%, and so is every monomial
in d,,

01 = Eams — Esm2, 02 = Eam — &ums,

818505 o
P = lthd = o = (kake) (3.9)

where k., are any non-negative integers and the
factorials in the denominator are included for con-
venience. [Depending on the circumstances we shall
indicate the variables on which F;, depends by writing
either Fu(&n) or Fu(3',","").]

F, belongs to Q;;;, i.e., it is homogeneous in
e, " of the orders 251, 242, 275 if and only if

kot ks=251, ks+ki=2j2, k4 k=25 (3.10)
or equivalently

ke = J — 2jala=1,23); J =41+ j. +Js (3.10a)
kl =j2 +]3 —j1, kz =j3 +_71 —jz,
ks =j1 +_72 "“j3 .

Note that

(3.10b)

k1 + k2 + k3 =J. (3100)

As will be shown below [see (3.24)], ||F:||*> =
(J +1)Y/[k!. The corresponding normalized h is
therefore

Hi = AGujods)Fr; AGnings) = (R1/(J + )N
(3.11)

where A is the so-called “quantum mechanical
triangle coefficient.”

Corresponding to every H, there are 2j; 41
orthonormal functions ¢ inQ); ;, [see (3.8b)] which

11 We follow B. L. van der Waerden’s derivation (reference
3, p. 69).
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transform under ©® provided that js = ji + j» — ks
for an integral ks > 0, and js > |j1 — jz/, as follows
from (3.10b). Since the ¢ belonging to different js
are orthogonal to each other [by (3.2)] we thus obtain
altogether n = (27 + 1)(2j2 + 1) orthonormal func-
tions in Q; ;. As n is the dimension of Q;;, the
decomposition of D' ® D™ is thus completed.

The 3-j symbols. H, may be expanded in the
products (3.5):

Hom 3 (™) o i o )
ma,ms NJ1 J2 J3
(3.12)

and the expansion coefficients are the 3-j symbols.*?
The invariance relation 7% H, = H, is equivalent
to the equations

> @i i) (44 )

B1lz s J1 J2 Js
_ (ml M2 m3)
Ji Je Js 1
Using the relations v’ = 2om, wiz Ci ,, we have

F[ z : my me j3
(
MyMaMy

) vt @t e 67

j1 jz ms
(3.13)
m1m2j3 ) - s (ml mzﬂ)
(j, jo ms) = 2O G,
= (—1 "**"“(’.”‘ Ma "’,"3> 13
(=1 Qg e (3.13a)

Hence, by (3.8a) and (3.8b),

) ot @i e
(3.14)

B=@h+ DY (m M2 Ja

mym, ].1 jz ms

This last equation relates the vector coupling (V-C)
coefficients to the 3-j symbols. [In standard form the
V-C coefficients differ from those of (3.14) by the
factor (—1)", see Wigner,'2 Eq. (24.16), p. 294.]
For later use we add here a few remarks. (1) If in
(3.12) or (3.13), F, is substituted for H;, the co-

12 The position of the indices m in (3.12) corresponds to
Wigner’s general definition of co- and contravariant indices
(reference 7, pp. 292-296). Since, however, the fully contra-
variant and the fully covariant 3-j symbols are numerically
equal [reference 7, Hq. (24.18a), p. 295] the coefficients in
(3.12) are the same as the more familiar ones with the position
of j and m reversed. We have also written the matrix elements
of D7 in accordance with Wigner’s rules, but we follow Wigner
in writing vj, wj, etec., irrespective of their transformation
properties.
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efficients will be divided by A(j1,j2,/5), and we shall
write

(ml Ma m3> _ <(J + 1)!)1/2 <m1 M m3>
jl jz j3 F N [k'] jl j2 j3 ’
(3.15a)
and similarly for the 3-j symbol in (3.13a). (2) By
(2.16) and (2.16b), wi(¢) = vi(T'¢). Consequently,
if in (3.13), H; is evaluated for ¢/, ¢/, T7'¢"”, there
appears on the right-hand side w,’;:l(l"lg‘”’)
= vf,.’a(gf"’). If a similar transformation is carried
out on {’, one obtains

P 1707 = 3 (m‘” ”

My Mg, My jl mse ms) F

X v, (¢ )0, (" Yo (5

(3.15b)

(’mljz J.s > _ (__1)1'2+m2+i;+m; (ml —Ma ‘-ms)

jl me M3/ r jl jz ja F
(3.15¢)

e. Computation of the 3-j symbols. We introduce
two closely related sets of coefficients f, h by setting

Fulgn) = Den frad™p™ (3.16a)
[k1,_[M]
_ n
Hi(tn) = %\:hkxx ———‘([K!]D\!Dl/z (3.16b)
3 1/2
o (g kalxa!)\a!> (3.16¢)
kkN — (J + 1)| ka)\ B

In view of (3.5), comparison of (3.12) and (3.16b)
shows that

(1w meme) g G.17)
Ji Jz Js

]Ca=J_2ja, Ka=ja+m047

Ae = Ja — Mo (@ = 1,2,3) . (3.17a)

Although the nine integers %k, x, A may seem
highly redundant they are better suited to expressing
the full symmetry of the 3-j symbols than are the
customary 7 and m. (A similar situation prevails in
the case of the 6~ symbols as will be seen in the next
section.)

Equations (3.15) define the coefficients f and A
for all k,x,\, but since [by (3.9)] F; is homogeneous
of order &k, + k» + ks in the £, as well as the 5., f
and A vanish unless

K1+K2+K3=)\1+)\2+>\3=k1+k2+k3:J.
(3.18)
This condition corresponds to m: + ms + ms = 0.
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To compute fun we simply apply the binomial
theorem to the powers of é.. Let

o _ (Eams)™ (—Eam2) "
k1! Py +a; =k, p1!Q1! ’
5" _ (&)™ (—&ims) ™
kzl Py+a, =k, p2!Q2! ’
03° (Em2)" (=&m)™
ka! - p3§=k, p3‘q3Y ’
Then,
—1 2:1t42+4s
for = 2 (=1) (3.19)

D125l a1 gs!

The summation extends over all non-negative
integers p., ¢. which satisfy the conditions sum-
marized in the following matrix equation:

kv ks s 91+p1 g> + P q3+p3
L=\ |=\etp gt+p a+p|=0Q.

A Az s G+ p: 1 t+ps ¢+ @1
(3.19a)

Equation (3.19) reduces to a simple sum, because all
Doy ¢ May be expressed by any one of them. Let
gs==2Thenpi =ke — 2, p2 =N — 2, ps = ks — 2;
Q= Ky — K2+ 2, Q2 =kz—)\1+z, and the sum
extends over those z for which all p and ¢ are non-
negative. (This is Racah’s expression.’?) If u is the
minimum of the entries of L the sum has u+ 1
terms.

In L the elements of each row as well as the ele-
ments of each column add up to J, [see (3.17a) and
(3.18)]. In @ all row sums and column sums are
equal by definition, the common value being
Z 2=1(pa + qa).

Finally, one may write f. instead of fi, and simi-
larly Ar. Denoting L’s matrix elements by /., (where
1 denotes the row and « the column), (3.16) and
(3.17) may be summarized by

my ms M I Ll 2
(jl 7o j33) = hs = (m) fr. (3.19b)

f. The generating function ® and the symmetries
of the 3-7 symbol. The generating function of the 3-j
symbols is defined by**

rkn) = Lur™Fuem) = T fuor Mg
NN
= E LfLT[k]E[K]’I][M, (320&)

13 G. Racah, Phys. Rev. 62, 438 (1942), Eq. (16). See also
A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957),
Eq. (3.6.11).

4 This corresponds to the function defined by Schwinger
(reference 6) in Eq. (3.42).
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where 7 = (71,72,73) is a triple of complex variables.
It will be useful to arrange the nine variables 7, £, 9

in a matrix
T1 T2 T3
E=\& 2 &
N1 N2 M3

in analogy to L. It follows at once from (3.9) that
CI)(T!ém) = (I)(E) €xp (; Taaa) = €exp (D(T,Em))

= exp (det E) (3.21)
T1 T2 T3

D(rtn) =det & = |& & &|.  (3.21a)
N1 M2 M3

The elementary symmetries of the determinant D
now yield corresponding symmetries of the co-
efficients f and h.!> We combine the following facts.

(a) For any 3 X 3 matrix 4, let P(4) be the matrix
obtained by some fixed permutation of 4’s elements
(such as the transposition of two rows or two
columns, ete.). Then'®

®(P(E)) = 2 frar ™
(B) Setexp [—D(r,Em)] = ®'(r,¢n) = ¥'(E) .
Evidently

' (E) = B(—7,Em) = Z (—I)JfLT[k]E[K]n[M

because ky, + k2 + ks = J.
By comparing coefficients we conclude therefore
(a) If det [P(E)] = det E, then ®(P(E)) = ®(=),
and hence frzy = fr.
(b) If det [P(E)] = —det &, then ®(P(E)) = ®'(E),
hence fry = (—1)7fz.
This leads to the final result:
First case: If P is (1) an even permutation of rows,
(2) an even permutation of columns, (3) the inter-
change of rows and columns then

fey = fu

Second case: If P is (1) an odd permutation of
rows, (2) an odd permutation of columns then

aud hpay = bz . (3.22):

fray = (=1)fz and hray = (=1)’hz. (3.22)n

15 This proof is essentially the same as Regge’s [reference

a)l.
16 Consider a power series in n variables @, G(z1,%z,. . ., 2x)
= Ziige . Vigia- - -in®12%. .. xin , and let G'(z1,2e,. . .,%a)
= G(Tr,,Try- - -,Try) for some permutation (wi,me,...,m) of
the integers 1,2,...,m. Then G'(z1,22...,%a) iiyig. - -
X Vimgira- - -imn®322. . .Tin. In our case the variables %9
correspond to the z,, and fr to the coefficients vi,i,. . .in .
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[The equations for the coefficients f, which follow
immediately from the above analysis, imply those
for the coefficients ~ because neither the numerator
nor the denominator of the normalization constant
in (3.19b) is affected by the operations P in (3.22).]

The operations listed under I and IT generate the
symmetry group of 72 elements discovered by Regge.
Previously, only the following more evident sym-
metry operations had been noticed: (1) Permutation
of the columns of L, i.e., simultaneous permutation
of j. and m.. (2) Transposition of the second and
third row in L, i.e., changing the sign of all m,.

g. The norm of Fi. As follows from (1.13b), for
fixed = the generating function ®, = ®(r,£,7) is an
element of {s as long as the 7, are small enough.
(The precise condition, which is > 31| 74| < 1, need
not concern ‘us.) The inner product of two such
functions ®, and ®,” (taken on ) is then, by (3.20a)

(cbnq)r') = Z 7[k]T’[k,] (Fk,FIc') (3.23)
kk’

In the computation of the inner product according
to (1.4) we may separate the £ and the 5 integrations,
so that

(®.,8,) = f[/m exp D(T',Sm)dus(n)]

X dus(£) . (3.23a)

In ordinary vector notation D(r,&n) = (7 X £) 9.
Thus the inner integral is of the form (1.13) (if 7 is
identified with 2), with

a=7rXE, b=1XE,
and it has the value exp (6-a), where
bra = ("7)EE) — (-5 (r§) = E-AE,
A denoting the matrix with elements
Gap = (77:7)0apg — 1075 -

Hence, (®,,®,’) is a Laplacian integral of the form

((I)r:q)r') = /exp (EAE)dﬂs(f)
and, by Eq. (A5) in the Appendix,
(®,,®,) = [det 1 — A)] " = 1 —77)7". (3.23b)

Expanding in a power series one obtains

(2, 2,7)

Z (w4 1)(rr')*

_ (&l + D!
_zk: i P
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where |k| = ki + ks + ks. Comparison with (3.23)
yields

, 0 WK =k
FuFy) = {(J + 1)'/[]0‘] itk =k J = lkl) s
(3.24)

as announced in Sec. 3d.
h. Recursion relations. For the derivatives of ® one
finds

0®/0r1 = (bams — Eama) P,
0%/ = (1263 — T3£2) P

and six more equations obtained by cyclic permuta-
tions. If the expansion (3.20b) is inserted numerous
relations between the coefficients f result, most of

A%/ = (nars — 1a72) @,

1) [0+ 0 =z (8 3 &

mi Mg M3

= [(Je — m2) (fs + ma)]'"” (jl

. R, TR S L ]'1 j'z js
@ (7 =2 +1 -2 (8 2

 1Ge = ma + 1) G — ma) (%

4. RACAH COEFFICIENTS

This section deals with the Racah coefficients (in
the form of Wigner’s 6-j symbols). The main ob-
jective is the construction and analysis of a generat-
ing function, and its application to a discussion of
the symmetries of the Racah coefficients.

a. Formal preliminaries. In terms of 3-j symbols
the 6-7 symbol is defined as follows.

{jzz j31 jm} - Z <m{ mé ma’) <j23 ma jos)
jm joz joa mgam’ jzs j31 j12 m{ joz ms

% (jm jax ma) (mljoz le) (4.1)

7z . ’
my Mz Jos/ \Jo1 M2 M3

(The summation of the m, and m/, extends over all
values compatible with the associated j.)

The notation introduced here is meant to empha~
size the tetrahedral symmetry of the 6-j symbol. It
alludes to a tetrahedron with vertices V, (a
= 0,1,2,3) and edges jug. The four 3-j symbols in
(4.1) correspond, respectively, to the triangles op-
posite Vo, Vl, Vz, Vs. We deﬁne

jaﬂ Ejﬂa (a 7= :8;0‘:6 = 071}2J3) . (42)

) + ([Jo + ma2 + 1) (s + ms)]"? (.71
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which are of course known. We mention two ex-
amples.

1) AD/dr1 = (fams — E3m2)® leads to

klka)\ = fk,—l-.‘x2—1...)\3—1 - fk,—-l-nxa—d--«)\i—l .
(On the right-hand side only those indices are
marked which differ from the corresponding ones
of the left-hand terms.)
(2) T3 6<I>/c9‘rz + Es 6@/352 + UE] a‘I)/aﬂz = 0 leads to
_k2ka7\ = (1 + K2)f-lc2—1,Ic,+1,xz+l,x3-—1-u
+ (1 + kZ)f-kz—l,k3+1,~~-)\,+1,)\;,—1

Upon insertion of the normalization constant and
“translation” into the (j,m)-notation one obtains
the following two formulas for 3-j symbols.

s 1
Je—3

) = [(z + ma) (s — ma)]"”* <Zolzl mz—% j3_%>

m3+%

> 1 . 1
J2—32 .73—5)
my m2+% Mms—3%

. 1 y 1
Je—% ]3+§>
my ’mz—% ’ma“‘%

ﬁ+%>=(x

: 1
Je—3z
m, mz‘f‘% WL3—%

In the sequel different subscripts in an equation con-
taining jug or k.s denote different integers taken
from the sequence 0,1,2,3. Thus the perimeter of the
ath triangle (with vertices Vg, V., V) is

Jo = Joy + o + Jos - (4.3)
In accordance with (3.10a) and (3.10b), we set

kag = Jo — 2fys = Jup + Jog — J» (a5 B) . (4.4)
The twelve kap depend on the ordered pairs (a,8)
while in the definition of j,g the order is irrelevant;
a refers to the triangle, 8 to the vertex opposite 7.
The inverse relation is

jW = % (ka'y + ka&) . (45)

Since 7,5 belongs to the two triangles opposite V., and
Vs, we have also 7, = % (kgy + kgs), s0o that the &
satisfy the compatibility conditions

kay + kas = kgy + kgs . (4.6)

Further useful relations are
kag + kay + kas = Jo, .7
kag — kpa = kys — ksa = Jo — Jg. (4.72)
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The (triangle) conditions on the j, to lead to non-
vanishing 3-j symbols in (4.1) are simply: k.s are
non-negative integers.'”

Any set of twelve numbers k., (7 B) which
satisfy the compatibility conditions (4.6) will be
called “tetrahedral.” Given such a tetrahedral set.
If jys is defined by (4.5) then j,; = jsy, and the
relations (4.4) hold.

The ordered pairs o8 are conveniently arranged
in four triads T, defined as follows:

T« contains the three pairs with first element o . (4.8)

We shall also need the four “transposed” triads
T%:

T% contains the three pairs with second element o . (4.8a)

Lastly we introduce three tetrads W,:

W.:(01,10,23,32) , W»:(02,20,31,13) ,
W3:(03,30,12,21) . (4.8b)

In the functions F; connected with the four 3-j
symbols in (4.1) the numbers kg appear in the order
which corresponds to the order of the j,; by Eq.
(4.4). Thus we have in succession

(]Cm,koz,k%) (k10,k13,k12) (kza,kzo,km) (kaz,kaz,kso) . (4-9)

It is seen that the four triples correspond to the
four triads T'.. Moreover, the first, second, and third
element in each triple corresponds, respectively, to
W, y Wz, Ws.

Let a—m, be a permutation of the four
integers 0,1,2,3 (which may be interpreted as a
permutation of the four vertices V, of the tetra-
hedron), and define

j;B = j’lra,ﬂ'/g kzlxﬂ = k”av”ﬁ (4:.10)

Then Egs. (4.4) to (4.6) remain valid. The triads
are permuted accordingly (' — T, T* — T*.,)
while the tetrads are subject to a permutation 7' of
three integers, which depends on = (W; — W.}).

b. The generating function R(7). The 6-j symbol
(4.1) is a function r(k), where k represents the kepg.
If we replace, on the right-hand side of (4.1), the
3-j symbols () by the corresponding symbols ( )r
[see (3.15a)], i.e., if we divide by all four triangle
coefficients, we obtain a function s(k) such that

Ha.ﬂ kaB!

1/2
r(k) = (m) s(k) . (4.11)

17 These conditions are, however, insufficient to insure the
existence of a tetrahedron with edges jos3. We deal here with
the combinatorial rather than with the metric properties of a
tetrahedron.
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So far r(k) and s(k) are defined for “tetrahedral”
sets kqp. In all other cases we set r(k) = s(k) = 0.
In terms of 12 complex variables 7,g(a7 8) we

now define the generating function of the 6-j symbols
by

R(r) = Zka,a s(k) Ha.ﬂ Tﬁ%ﬂ .

The function R(7) may be expressed as an integral
over the product of four generating functions ® [see
(3.20a)], which are related to the 3-j symbols in
(4.1). To this end we introduce six pairs of complex
variables ¢* = (£q,m.) and 6% = (£m) (a = 1,2,3)
corresponding, respectively, to the summation
indices m, and m/, in (4.1). Then

(4.12)

R(T) = /‘1’0‘1’1‘1’2‘1’3dﬂe(E’m')due(fim); (4~13>

Py = @(701,7'02,703;91,92,93) )
P, = @(710,713,712;Talyfz;trfg) )

P, = @(Tzsﬁzo,‘le;tr?:tTf?,fg) )
@3 = @(732,7_31}7_30;;,1,:11?’tPQ'E) B (4;133)

[The variables 74 in the four functions ® correspond
to the four triples (4.9), to an upper index m, in
(4.1) corresponds ¢, to a lower index m, corresponds
T {* as an argument of ®, similarly for the m.. Note
that ‘T {* = (fla, — £a).]

The proof for the integral representation (4.13) is
straightforward, but writing it out in full would
lead to rather unmanageable equations. It will
suffice to consider the contribution of the {* integra-
tion to (4.13). &, and @, are free of {*, so that only
®, and ®; need be considered. Now

® = 2

kzs ka0, ko

kao ksy K 1 t1402 tyvad
2 e msi T ey, e n (8, T, TO°)

kaa,ks1,kso

T P, b (TS, TE )
P; =
The problem is further simplified by studying the

contribution of just one F chosen from &, and one
F from &®;. By (3.15b), since ‘' = I'?,

Fk“‘k“'k“(trg.—l’trég’gﬁ) = Z <‘71 Iz ”3>F

BasBiz ks VML ,Uzj?»

X i (€ )i (00 (6°)
Where 2_71 = ]Czo + ](721, 2jz = kzs + kzl, 2]3 = k23
+ k2. Similarly,

Fk“.ku,kso(g‘l: trgzi tPB_:;) = Z (Vl l2 l3>F

ViVaVs ll V2 V3

X o () 6°)
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with 2, = k3o + kal, 2l = k32 + kso, 213 = ksz + ka.

If one multiplies the two functions # and integrates
over ¢!, one finds, due to the orthonormality of the
vi: (1) The result is zero if 7: # 1. (2) If 1 = Iy, i.e,,

k2o 4 ka1 = k3o 4+ ka1 (= 2jo1) (4.14)

the result is

jmjz M3 M lz la) }
,‘,,g;z,v,{ %: (I-l szs )F <j01 V2vV3s/ F
X 05:(6%) 02 (%) 02 (%) 0,2(6%) -

Continuing, step by step, with the remaining varia-
bles, one obtains, in analogy to (4.14), the remaining
five compatibility relations (4.6), which shows that
only the tetrahedral sets k.p give a nonvanishing
contribution, and in addition it is seen that the
contribution of a tetrahedral set is precisely the 6-7
symbol divided by the four triangle coefficients, i.e.,
s(k), as it should be.

The computation of R(7) carried out below gives
a simple result,® viz.,

R(r)

Il

G, Gir) =1+ _2 Gu + 2 b. (4.15)

Qo = T10T207T30 , (1 = T01T31T21, QA2 = T32To2T12,

(3 = T23T13T03 (4.153,)
bl = To01T10723732 , bz = T027T207T13731 ,
bs = TosTs0T12T21 - (4:.15b)

If the 7 are sufficiently small (for example,
|7as] < % for all a,8), the integral (4.13) converges
absolutely, the operations carried out below are
legitimate, and the power series (4.12) may be
obtained from a term-by-term integration.

¢. Computation of R(7). By (3.21), the integrand
in (4.13) has the form exp (Do + Di + D: + D),
where

Tor To27o3 T1i0 T13 Ti2

Do = 4 Eé Eé , Dy = & s |,
n M s —E m —&
T23  T20T21 T32  T31 T30
D, = B 7]4 & |, D; = & N2 1—73,
&L —Eom m —& —&

The cyclic symmetry of the exponent > 3_.D, in
the indices 1,2,3 greatly reduces the work in this
computation. In fact, only a few terms need actually

18 Apart from the notation this coincides with Schwinger’s
Eq. (4.18) in reference 6.
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be calculated. We have

3
D, + D; + Ds = ; (Cagx + da"_hi) —E

€1 = 71262 — T13Ms, Co = T2z — T2,

cs = 73181 — 73272

di = Tim2 + 7‘1353 )

ds = Tam + 7'32§2

E = 110(Zak2 + %iam2) + 720(Biks + 7ums)
+ 730Gk + 7am1) .

First step: Integration over £ n'. By (1.12a),

ds = T23M3 + T21§1 ]

/eXP (c-¥ + d-7') exp (Do — E)dus(£',n') = exp f,

To1 To2 To3
f—“—‘ Ci C2 C3
di dz ds

Inserting c. and d, one obtains

—E.

3 3
J= 3 udbe+ 3 v — E-HE = 5-Hy, (416)

a=1
where 8, are the determinants in (3.9),

U1 = To02T13T32 ,
V1 = To3T12T23 ,

U2 = To03T21T13 ,
V2 = To017T23731 ,

U3 = To01T32T21
U3 = To02T31T12

and H is the matrix

a1 —To3T12T21 T20
T30 [¢2] —T01T23T32
—T02T13731 T10 Qas

the a, being defined in (4.15a).
Second step: Integration over £m. By (A8) of the
Appendix

H:

/expfdus(é,n) = [det (1 +H) — u-v — u-Hv]™*,
(4.162)

and a straightforward computation gives the ex-
pression (4.15).

d. Symmetries of the 6-j symbols. It is useful to
arrange k.p and 7,5 in matrix form

[klo k2o kso T10 T20 T30
X = | ko1 ks1 kas 3= | To17s17Ta1
ka2 Koz ks T32 Toz2 T12
ka3 k13 kos T23 T13 To3 (4:-17)

such that the rows correspond to the four transposed
triads 7%, and the columns to the three tetrads
Wi, W, Ws. In the generating function (4.15), a.
is the product of the elements in the ath row, and b;
the product of the elements in the 7th column of 3.
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By (4.7), J. is the sum of all & belonging to the
triad T,. Similarly, we may introduce J% as the sum
of all k belonging to the transposed triad 7%, and w;
as the sum of all & belonging to the tetrad W..
(Equivalently, J¥ is the sum of the elements in the
ath row, and w; the sum of the elements in the :th
column of X.) Clearly,

Dwi = K| = D kes. (4.17a)
. ~
For a tetrahedral X, by (4.7a),

JE — Ja= D (kpa — kag) = 25 (Js — Ja),

or

JE = || — 3J.. (4.17b)

In analogy to (3.20) we write

R(3) = 2k s(%) ITamras™® .

If we denote, as in 3f, by P(3) and P(X) the matrices
obtained from 3 and &, respectively, by a fixed
permutation of their elements, then

R(P(®)) = 2xs(P)) [ Tapras™ .

Consequently, if R(P(3)) = R(3), then s(P(X))
= s(x) for all X.

This remark yields the Regge group of symmetry
operations. In fact, R is invariant (1) under any
permutation of the rows (this permutes the a, and
leaves the b, invariant), (2) under any permutation
of the columns (this permutes the b;, but leaves the
a, invariant).

Note that the J, are permuted by the first type
and left unchanged by the second type of operations,
as follows from (4.17b). Hence the normalization
factor in (4.11) is unaffected by all these operations,
and what we proved for s(X) holds also for r(X),
i.e., for the 6-j symbols. [For any permutation of
the k, the corresponding transformation of the j may
be derived from (4.4) and (4.5).]

The symmetry operations listed above generate
the group S: X S; (the direct product of the sym-
metric groups S: and S;) of order 24.6 = 144. Its
elements are the products of permutations = of the
rows and o, say, of the columns of X, which may be
chosen independently of each other. The previously
known symmetry operations are the transformations
(4.10), induced by a permutation of the vertices
of the tetrahedron, where ¢ is no longer independent
of =, but equals 7’.
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e. Explicit expression for the 6-j symbol. Expanding
R = @2 in a power series one obtains

i.: (=D + 1)(“2;: e + gb)

2=
3 .

b
&

R

> (—1+ o (120 11

Vo @5 A

where »,, @; run independently over all non-negative
integers, and z = Y o va + >_: wi. This leads to

o) = 3 D+ D!

volvi e lvslws lws lws!
The summation extends over all non-negative
integers which satisfy the matrix equation

(4.18)

k1o k2o k30 vo + w1 vo + w2 vo + wa}
X = k01k31k21 = V1+w1u1—|—co2v1+w3 =N
k32 koz klZ V2 + w1 V2 -|'- w2 V2 + w3
ks k13 Kos vs + w1 vs + ws vz + ws
(4.19)
or
kop =vs + i (a,8) €E W (4.19a)

The 6-j symbol is then given by

.23 .31 .12 a, ka ‘ 1/2
{gmamint _ (llaekal 3% cwaom)

[see (4.11)], the j and % being related by Eqgs. (4.4)
and (4.5).

Apart from its immediate application to the ex-
pression (4.18) the equation X = 9 (where we as-
sume k,»,w to be non-negative integers) is of interest
as a parametrization of tetrahedral X. It is not difficult
to show that & is tetrahedral if and only if it satisfies
(4.19) for some 9. Furthermore, for a given X the
equation & = 9 has p + 1 solutions, where u is the
value of X’s smallest element, and hence (4.18) has
u + 1 terms.

Action of the symmetry operations. Let P be an
element of the Regge group characterized by the
permutations = and o. If & = 91, then P(R) = o/,
the parameters of 91 being given by v'a = vr,, wi
= W,

Racah’s formula.'* To obtain Racah’s famous
expression for s(%) we have merely to express », and
w:; by z. From (4.19) and (4.7a), ko — koa = »o
— vg = Jo — Jo. Furthermore,

3 3
vo + Jo = vo + ko1 + koo + kos = Zva—}- Zwi=2
a=0 =t

19 Racah, reference 13, Eq. (36.) Edmonds, reference 13, Eq.
(6.3.7).
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[by (4.19)], hence,

Ve =2 — Ju. (4.20)
The first row in (4.19) yields w; = kio — v, 1.€.,
wi=ti—2, ti=lkio+Jo. (420a)
In terms of the j,
t = Joz + Jos + Jiz + Jus,
te = Jos + Jor + Jas + Ja1
ts = Jou =+ Joz + Jar + Ja2 (4.20b)

Inserting », and w; in (4.18) one obtains Racah’s
formula

(=17 + D!

- Ja)! H.‘ (ti - Z)'

the summation to be extended over those z for which
all », and w; > 0.

It is readily shown that 4¢; = w; + [X|. Hence the
Regge operations are also described by J, = J.,,
th = t,, [see (4.17a)].

Remark. Schwinger has also computed the gener-
ating function for the 9-j symbol [reference 6, Eq.
(4.37)]. This does not reveal any new symmetries—
at least none to be obtained by a permutation of the
relevant quantities k,g.

f. Recursion relations. Let Q.5 be the differential
operator 7.s 9/97ap. Then QugG = gas, Where ga.p
= ag + b; if (a,8) € W,. Hence

Qa,gR = —2ga,3G~3
and ¢,QupR = gapQ,sR, which leads to recursion

relations for the s(k). As an example consider g;2Qo: R
= ngszR. NOVV J32 = Q2 + b1, Jor = Q1 —I" bl, SO that

GZQOIR = angzR 'J[‘ b1 (932 - Qm)R .

From the power series for B we obtain

kois(k) = (kse + 1)s(-+ koo + 1,k12 + 1,ks2
4+ 1, kot — Lkay — Lksy — 1,-- )
+ (ks + 1 — kor)s(++ +koe + 1,k12
+ 1, kot — Lkio — Lkas — 1,--+),
where again on the right-hand side only those &k are

marked which differ from the corresponding ones on
the left-hand side. For the 6-j symbols one finds

s(k) = Zz:H 2

[(Js + 1)kor (Fos + 1) (ks + 1)1 {J J:“J:‘z}
Jo1 Joz Jo3

. 1 . 1 s
_ 9 1/2 {'7.23 + 3 ].31 - 32 .7'12}
[(Jl + )k217€31(k32 + 1)] Jor — % Joz + % Jos
+ (ka2 + 1 — kox) [korksa]"?
X{j23+%jal—%jm }

Jo1 joz Jos — %

V.BARGMANN

APPENDIX. EVALUATION OF
SOME LAPLACIAN INTEGRALS

(a) Let

AB) =7" /exp (—z-Bz)d"z (A1)
B is an n X n (complex) matrix with elements by,
so that

n

z-Bz = Z Zkb“zl
¥, =1
The integral extends over all of C,, and dz =
117 daw dys (2 = @ + iyn).

Every B has a unique decomposition B = B’
+ ¢B”, with Hermitian B’ and B”, and we call B’
the Hermatian part of B.

If B’ is positive definite the integral in (A1) con-
verges absolutely, and

A(B) = (det B) ™. (A2)
Proof. We proceed in three steps. (1) If B =1,
then A = 1. [This is (1.6) for h = 1" = 0] ,(2) If

B’ = 0 and B is positive definite there exists a non-
singular matrix S such that

B = 8*S. (A3)
Introducing new variables 2 = Sz (and 2z’ = Sz)
we obtain z-Bz = #'-2/, which proves the absolute
convergence of the integral. Setting zz = xx + wy: we
find for the Jacobian of the transformation

@1y - TuY1y  yYn) _ . 9\l -1
06ty ) ST (det(? )
3a

Hence, A(B) = (det B)™ A(1), Q.E.D. (3) Consider
now B = B’ + 1B’ with positive definite B’ and
arbitrary B’”’. The modulus of the integrand is
exp (—z-B’z), which establishes absolute conver-
gence.

Introduce a complex parameter 8 = 6, + 0z, and
set C(6) = B’ + 76B", so that

c0)=B, C1)=BEB.
C'(0) has the decomposition C’(8) 4 7C"'(6) with
C'(0) = B — 6.B", C"(9) = 6.B" (Ada)
For small 6;, C’(6) is close to B’ so that, for a suitable
constant «,
2.:C'0)z > $z-B'z if |6 <«.
We now restrict 6 to the strip |6.| < «, and show that

A(C(6)) is analytic in 6. For this it is sufficient to
observe that the integrand exp (—z-C(6)z) is obvi-

*yYn

(A4)
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ously analytic in § and that its modulus exp
(—2-C'(0)2) is uniformly bounded by the integrable
function exp (—3% z-B’z). For imaginary 6, C is
Hermitian and positive definite [see (A4a)], and in
this case the equation A(C(6)) = [det C(6)]™ has
already been established. By analyticity it remains
valid throughout the strip |6:] < &, in particular for
C(1) = B.
Corollary.

I4) = [exp (2-A2)dun(2) = [det (1 — A)]™" (A5)

if 1 — A has a positive definite Hermitian part, in
particular if 4 has sufficiently small matrix elements.
In fact, by the definition of du.(z) [see (1.5)], I(4)
=A(l — A).

(b) Let

M(Bab) = = f exp g(B,a,b;Em)d’Ed™n  (A6)

g = _EBE - ﬁBﬂ + D(E;E)ﬁ) + D(b;g’n) . (AG&)

Here, £ and 7 are points inC;, B is a 3 X 3 matrix,
a,b are constant vectors in Cs, and D is a determinant
as in Sec. 3f. As before, we proceed in three steps.
(1) If B = 1, this is the integral in (3.23a), and for
sufficiently small a,b, M(1,a,b) = (1 — a@-b)2, by
(3.23b). (2) If B is positive definite Hermitian, M
is absolutely convergent for sufficiently small a,b
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(for example, @-Ba < det B, and b-Bb < det B).
As before, set B = 8*8§, let ¢ = det S, and introduce
new variables £ = S£ 9" = Sy. Set also ¢’ = Sa and
b’ = Sb. Then
EBE =, 5 Byp=7"7
D(a;zaﬁ) = E—ID (dl’?/ﬁ,) = D((_l”,-é,,ﬁ/)
D(b)£7’7) = O-_ID(bl’gl,n,) = D(b”}él’n,> )

where o/’ = ¢7%a’, b'' = ¢7*b’. Thus,

g(Bla}b;£77’) = g(17a/,7b,,}'£’)17,) M

The Jacobian corresponding to (A3a) is now (o).
Hence M (B,a,b) = (o5)2 M(l,a”b") = [ez(1
— @ b")? = (67 — @ -b")2 Now o7 = det B, and
@ -b = @-Bb. Therefore

M (B,a,b) = (det B — a-Bb)™*. (A7)

(3) If B is no longer Hermitian, but has a positive
definite Hermitian part, we may again show by
analytic continuation that (A7) remains valid.

The integral to be evaluated in 4c is

N(Hup) = f exp g (H, w0 m)dus (§)dps (n) .

Since dus(£) dus(n) introduces the factor exp (—%-¢
—75-7) it follows that N(H,up) = M(1 + Hap),
and hence

N(H,up) = [det 1 +H) — u-v — u-Hv]™ . (A8)
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1. INTRODUCTION

ROM the very beginning of quantum mechanics,

the notion of the position of a particle has been
much discussed. In the nonrelativistic case, the proof
of the equivalence of matrix and wave mechanics,
the discovery of the uncertainty relations, and the
development of the statistical interpretation of the
theory led to an understanding which, within the

* Dedicated to Eugene Wigner on his sixtieth birthday.

inevitable limitations of the nonrelativistic theory,
may be regarded as completely satisfactory.
Historically, confusion reigned in the relativistic
case, because situations requiring a description in
terms of many particles were squeezed into a for-
malism built to describe a single particle. I have in
mind the difficulties with wave functions for a single
particle which seem to yield nonzero probability for
finding it in a state of negative energy. Soon attention
shifted to the problems of the quantum theory of
fields and the question of the status of position



