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I. INTRODUCTION AND SUMMARY

W NE of the contributions of Professor E. P.
Wigner to the development of modern physics

was the determination of the coeKcients' associated
with the Clebsch-Gordan series for the unitary
unimodular group in two dimensions (SUs). Because
of the homomorphism of the SU, group onto the
rotation group, these Wigner coeKcients have been
of particular importance in atomic and nuclear
spectroscopy.

In this paper we determine a class of Wigner
coeKcients for the three-dimensional unitary uni-
modular group (SUs). The representations of the
unitary group in three dimensions U3 are character-
ized' by a partition [h,4hs]. The representations of
the 8Us group are characterized by the differences

[h~ —Its, Its —hs] of these numbers, ' that is to say,
by a Young diagram of two rows. The Wigner co-
eKcients that we intend to determine are those
associated with the Clebsch-Gordan development of
the Kronecker product of two irreducible representa-
tions, expressed diagrammatically in Fig. 1. This is
not the most general Eronecker product, as the
representation [It&'] has only one row. The restriction
allows, by the rules of decomposition of products of
irreducible representations, ' each representation
[hihslts] to occur only once, i.e., the Kronecker
product of [h,'h,'] and [h," ] is simply reducible. '
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F16. 1. Clebsch-
Gordan develop-
ment of a classof
Kronecker prod-
ucts of irreduc-
ible representations
of SU3.
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At this point the reader could well ask if the SUs
group corresponds to symmetries of any problem of
physical importance, as otherwise the present paper
would be of purely mathematical significance.

The author would like to point out three problems
of interest in physics, in which the 8U3 group plays
a fundamental role.

I.1 Collective Motions in Nuclei

Since the revival of the nuclear shell model by
Goeppert-Mayer and Jensen' and others, it was
quite apparent that some nuclear properties, for
example, the large quadrupole moments of some
nuclei, could not be explained by this model, at least
in its simple original form. This led Bohr and Mottel-
son' and others to propose the collective model in
which the individual particles in the shell picture
interact with the vibrations of the liquid drop. It
was shown by Elliott' that the essential features of
the collective model could be reproduced within the
shell model framework if one considered the particles
as moving in a harmonic oscillator potential and
interacting through a quadrupole-quadrupole (Q')
force. This last problem is invariant under the SUs
group of transformations, and this invariance was
used by Bargmann and Moshinsky" to obtain the
operators of a complete set of integrals of motion for
it, as well as the eigenvalues of these operators. There
remained the problem of the eigenfunctions and it is
precisely for their construction that the Wigner co-
effmients associated with Clebsch-Gordan develop-
ment of Fig. 1 are of use.

If we are permitted an analogy, we could think of
the nuclear shell model problem as an island we want
to occupy. To do this we must establish a beachhead,
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COLLECTIVE

EACH HEAD

Fro. 2. Approaches to the
nuclear shell-model problem.

general discussions of symmetries associated with

simple groups" have been given.
In all models with 8U3 symmetry one needs to

construct wave functions that are a basis for ir-
reducible representations of the 8U3 group, in which
the 8U, subgroup, associated with the good quantum
number of isospin, is explicitly reduced. The %igner
coefFicients necessary for the construction of these
wave functions are obtained in this paper and their
application to elementary particles is briefly dis-

cussed in Sec. VI.

and the usual one has been the independent-particle
beachhead, i.e., an exact solution, with the necessary
symmetry, for the independent particles from which
we could proceed by perturbation or variational
methods, to the interior of the island as illustrated
in Fig. 2.

The development of this and previous" papers
allows us to establish a collective beachhead in
which we start with an exact solution of a problem
where the Q' interaction is included. With the help
of this collective wave function we could proceed to
the interior of the island, again with the help of
perturbation or variational techniques as illustrated
in Fig. 2.

I.2 Elementary Particles

In the last few years there has been a great deal
of interest in a possible symmetry of the strong inter-
actions of elementary particles associated with the
8U3 group. The first efforts in this direction were
due to Ikeda et aL' and others, who assumed the
Sakata model in which the proton, neutron, and A.

particles are taken as fundamental, and the others
are formed from them and their antiparticles. The
symmetry with respect to SUs then comes as a
direct extension of the symmetry with respect to
8U2 associated with the isospin concept as applied
to proton and neutron. This symmetry would allow
the classification of hyperons and mesons in terms of
irreducible representations of the SU3 group, from
which selection rules and reaction rates could be
obtained.

Other models with SUs symmetry have been pro-
posed by Gell-Mann, " Ne'eman, " etc. , and even

9 M. Ikeda, S. Ogawa, and Y. Ohnuki, Progr. Theoret. Phys.
(Kyoto) 2&, 715 (1969);23, 1078 (1960);Suppl. Progr. Theoret.
Phys. (Kyoto) No. 19, 44 (1961).

M M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
u Y. Ne'eman, Nuclear Phys. 26, 222 (1961).

I.3 The Fractional Parentage
CoeS.cients in the p Shell

The fractional parentage coeScients in a shell of
angular momentum l are closely related to the Wig-
ner coeKcients of the unitary unimodular group in
2l + 1 dimensions, when we consider the Clebsch-
Gordan development in which the representation
[)'ti' h&~+&] is reduced to a single block, i.e., to [1].
For l = 1, this would mean that the Wigner co-
eKeient associated with the development of Pig. 1
when hi' ——1 will be connected with the fractional
parentage coeKcients of the p shell. These coeKcients
are well known, "but the procedure used in this paper
to derive them could, in principle, be generalized to
other shells for which fractional parentage coeKcients
are, not yet available.

We shall start in Sec. II of this paper with the
derivation of the polynomial expressions which are
basis for the irreducible representation of the SUs
group in which the SU& subgroup is explicitly re-
duced (SUs Q SU& chain). As in previous papers, "'
these polynomials will be given in terms of creation
operators of a three-dimensional harmonic oscillator.
The polynomials that are a basis for an irreducible
representation of SUs in which Bs is explicitly re-
duced' (SU, Q Bs chain) are also discussed.

In Sec. III we define and determine the Wigner
coefficient in the SUs Q SU, chain and in Sec. IV
we determine the coeKcients that relate the basis
for the representation of the SU& Q SUs chain with
the one for the SUs Q 8& chain.

In Secs. V, VI, and VII we discuss, respectively,
the applications of the signer coefficients to collec-
tive motions, elementary particles, and fractional
parentage eoeKeients.

The explicit expression for the signer coeKcient
in the SUs Q SUs chain is given in (3.25) and the

+ R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. %. Lee,
Revs. Modern Phys. 34, 1 (1962).

~3 H. A. Jahn and H. van Wieringen, Proc. Roy. Soc.
(London) A209, 502 (1951).
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coeKcient for going from the SUs Q SU& chain to
the SUs Q Bs chain is given in (4.18). The algebraic
expressions for these coeKcients are rather compli-
cated and so a program is being developed by T. A.
Brody for their eventual tabulation. Another ap-
proach to the tabulation of the Wigner coeKcients
(8.25) is being considered by H. V. McIntosh and I.
Renero who are developing a symbolic program for
an electronic computer that would evaluate directly
the scalar product (8.28) from which (8.25) was de-
rived.

(—1)"6, (2.1)

II. POLYNOMIAL BASIS FOR THE
IRREDUCIBLE REPRESENTATIONS OF U8.

It is well known" that the basis for the irreducible
representations of unitary groups of a given dimen-
sion can be expressed in terms of homogeneous
polynomials in the components of vectors in a space
of the same dimension. For the basis of the represen-
tations of Ua we could then take homogeneous
polynomials in the components of n three-dimen-
sional vectors. It is very convenient to think of these
vectors as creation operators" c„,,s = 1, ,n as-
sociated with particles in a three-dimensional har-
monic oscillator with the components m = 1,0,1 of
the vectors" being spherical rather than Cartesian,
so that the metric' is

From this commutation relation we conclude that
when applied to the polynomials (2.8) the annihila-
tion operator could be interpreted as the differential
operator

a . = (ci/cia', ) . (2.6)
From (2.5) or (2.6) we see that under the substitution
(2.4), a", transforms as

a", —+ Q„(U )
"„a",, (2 7)

where Ut is the transposed conjugate of the matrix
U.

We now designate"" by ~0) the ground state for
our system of particles in the harmonic oscillator, and
with its help we can define the scalar product
(P,P') of two polynomials of the type (2.8) as

(P,P') —= (OiP+P'i0), (2.8)
where P+ is obtained by repla, cing all a+, by a"., and
we use the commutation relation (2.5) to evaluate
(2.8). This definition of the scalar product will be
very convenient to discuss orthogonality relations
between polynomials, as well as to normalize them.

Once we have both a+, and a"„we can define the
following operators":

operators c,we shall associate annihilation operators
c", satisfying the commutation relation

(2.5)

and the raising and lowering of indices follows the
rule m ~ + m

m = ~ +ms+ e) (2 9)

(2 2)

If we now consider the family of linearly independ-
ent homogeneous polynomials of a given degree in
the c,,

1

Css' = Q GmsC s' . (2.10)

From (2.5) we obtain the following commutation
relations for these operators":

P(C ) P(Ggl QQ1 Qf[ ' ' ' Gg )

it is clear that under the substitution
I+ ~Tm

+ms ~ Z m' um +m's )

(2 8)

(2.4)

[6,6 " ] = 6 8 "—6 " 8, (211)

[g s Q Ir sir] —Q Ilia 11 r C iz rj lie (2 12)

[6.",C,.] = 0. (2.18)
where U is a three-dimensional unitary matrix, the
polynomials (2.8) would be a basis for a generally
reducible representation of U8.

Before restricting the polynomials (2.8) further,
so that they constitute a basis for irreducible repre-
sentations of U3, we shall introduce the following
definitions and notations. " First, with the creation

M. Hamermesh, reference 4, Chap. X.
I5 In what follows the negative of a number index will be

indicated with a bar above, e.g. , —1 = 1.
rs M. Moshiusky, Nuclear Phys. 31, 884 (1962).

Because of the commutation rules (2.11) we shall
refer' to 6 ' as the operators associated with the
infinitesimal unitary transformations in three dimen-
sions. The operators C„ that annihilate one quantum
in particle s' and create one in particle 8, will be re-
ferred to as transfer operators. It is clear from (2.4)
and (2.7) that the transfer operators remain in-
variant under unitary transformations affecting the
creation and annihilation operators. When applying
functions of the operators (2.9) and (2.10) to poly-
nomials P of the type (2.8), we shall always think of
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6 ",C... as first-order partial differential operators
in the variables a+„according to the rule (2.6).

%e can now further characterize the homogeneous
polynomials P of (2.3) by making them satisfy the
equations

C., 'P = 0, s ( s'; C.,P = h,P. (2.14)

As the |.... are invariant under U3, the polynomial
solutions of (2.14) would still be solutions after we
carry out the substitution (2.4) and so the linearly
independent polynomial solutions of (2.14) form a
basis for a representation of U3. It has been shown"
that (2.14) implies that only the first three of the
h, are diferent from zero with h1 )~ h2 )~ h3 O~ 0, and
the sum of the 14

not, in general, orthonormal scalar products of the
type (2.8). To obtain unitary representations, we
further characterize the polynomials in terms of
Hermitian operators built up from the 6, which,
because of (2.13), commute with the C„.and so can
be applied simultaneously with (2.14). These Her-
mitian operators can be constructed in several ways
in accordance with the subgroups of U& in which we
are interested. In the elementary-particle problem
we are concerned with a two-dimensional unitary
subgroup U2 of Ua, i.e., in the U, g U2, chain, while
in the collective motion problem we are interested in
the three-dimensional rotation subgroup g3, i.e., in
the U3 Q 83 chain. We shall discuss the two cases
separately.

h —= h& + h2+ ha, (2.15) II.1 Polynomial Basis for the U3 2 U, Chain

is equal to the degree of the polynomial. The most
general solution of (2.14) then depends only on the
creation operators of three particles and to write it
we first introduce the notation"

/ /fss s
~10],

ams~ ~mm = amsam s am sams
/ /f

// //amsam s am s (2.16)

where repeated indices are summed over 1, 0, and 1
and e is a completely antisymmetric tensor,
i.e., P' = 1, e'" = —1, etc. The solution of (2.14)
then has the form"

Let us consider the subgroup U2 of U3 associated
with matrices of the form

fU,' 0 UI)
~ O 1 O

( U ,'0 U,
'-i . (2.19)

The operators associated with the

infinitesimal

unitary transformations for this subgroup will be
61', 61', 61', 81', and from them we could form the
Hermitian linear combinations

T, —= -', (e,'+ e-, '), T. =— i ', (e—,' —-e-,'),
Ts = -', (e&' —e-,'), (2.20)

K—= 8& +ci (2.21)
(2»)

where Z is an arbitrary polynomial in the variables
indicated, subject to the condition that after multi-
plying by the first part of (2.17) no negative powers
of the a+, remain, i.e., P should be a polynomial in
the a+,.

The family of linearly independent polynomials
(2.17) forms a basis for a representation of U,
characterized by the partition [h,h,h, ]. If we restrict
ourselves to the 8U~ group for which det

~

I
U"„'

~ ~

= 1, the factor (6'„'r') ' in (2.17) will be an invariant
under 8U&, so that by eliminating it from (2.17) we
have a set of polynomials that form a basis for a
representation of SU3 characterized by the partition

[~,,~2], ~, = h, —h„ag = h, —ha . (2.18)
The representations of U3 and SU3, whose basis

we have obtained, are not unitary representations"
as the linearly independent polynomials (2.17) have

~& E. P. Wigner, reference 1, p. 74.

n

H—= Ci +60 +6) = QC, . (2.25)

From (2.11), and (2.12), H clearly commutes with
all t ",C„..

From the commutation rules (2.11) we obtain

[T&,T2] = iT& and cycl. , [T;,K] = 0, i = 1,2,3.
(2.22)

Clearly we could then use the three commuting
operators K, T&, and

T' = T,'+ T,'+ T,', (2.23)

to characterize further the polynomial solutions of
(2.14). Instead of K we shall use an operator 8
defined as

8 =—K —-', (e,'+ e.'+ e-,') = —e.'+ ', H, -
(2.24)

where II is the operator that gives the degree h of
the polynomial, i.e.,
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For reasons to be discussed in Sec. VI, the opera-
tora T; will be referred to as the Cartesian com-
ponents of isospin and the operator S as the reduced
strangeness. As these operators can be constructed
from linear combinations of the operators
6 —-',IIb„",they are associated' with the infinitesi-
mal transformations of a subgroup of the unitary uni-
modular group SU, rather than with those of a
subgroup of Uo.

The polynomial solutions of (2.14) can now be
further specified by the equations

T P = t(t + 1)P, T P = rP, (2.26 a,b)

(2.26 e)

From the commutation rules (2.22) of the T;, we
see that v- = t, t —1, . , —t, and 2t is restricted
to non-negative integer values. The operator 60',
when applied to polynomials of the form (2.8), will

give the degree of the ao, in this polynomial, and so
from (2.24) 8o. will be an integer congruent modulo
8 with the degree Ih of the polynomial.

Equations (2.14) and (2.26) determine the poly-
nomial I' up to an arbitrary multiplicative constant.
%e shall show this first for the case 7. = t for which

(2.26) is equivalent to

(T, + iTo)P =—8t'P = 0, ToP = tP, SP = oP.
(2.27 a,b,c)

Equation (2.27 a) applied to (2.17) implies that

Z (»/~ — ) = (~ ) ' '(~ )
* '(~ -) '

X [&Z/cj(&-'/&')] = 0, (2.28)

which means that Z is independent of (6-,'/6,'). The
most general form of (2.17) becomes then

where the b&„are arbitrary constants. If we now im-
pose the conditions (2.27 b, e) on (2.29), we see that
l,p are restricted to the values

t = h, —-', tlat
——', o. —t &~ 0, (2.80 a)

p = —h,, + —;6+—', ~ —t &~0, (2.80b)

where as /, p are non-negative integers, 2t must be
congruent modulo 2 with (-,'h, + o). Defining

fo —= h, , —h, —t = —h,, + -', Il + —', o + t &~ 0,
(2.80 c)

n —= h. —h. —p = h, —-,'Il —-', ~ + t & 0,
(2.80 d)

I

Pit&K~otrtr ~ g PK~K&olr t r Stt t r, lrtr(Uttt )I Io'tr
(2.84)

The S's in (2.84) are then a unitary representa-
tion of SUo characterized by the partition [ttttto]. The
representation is irreducible, as we can prove that
the only matrix 3'..t.. ..t, commuting with all the
X)'s is a multiple of b., 6«. 5„., i.e., by making use of
Sehur's lemma. The proof will be omitted as it ean
be derived straightforwardly by first considering a
matrix M that commutes with all X)'s corresponding
to a unitary unimodular transformation of the type
(2.19), then by further restricting the 3I to commute
with the X)'s associated with a transformation

/exp (—in) 0 0
exp (i2n) 0

0 exp (—in) ~, (2.85)

and finally by restricting the 3' to commute with
the X)'s associated with a three-dimensional rotation
83.

is G. Racah, Phys. H,ev. 62, 488 (1942).

we see that the polynomial characterized by the
partition [htho4] and by a, t, r = t, has the form

Ph~h, h~r t t & (&t) (t to) (&to) (t gati) (t-ttot)
'

t (2 81)

where 6 is an arbitrary constant that can be given
the value (A18) of Appendix A, so as to normalize
the polynomial in the senses of (2.8).

The polynomial P for an arbitrary r can now be
written

P...,...„= [(t + r)!]' '[(t —r)I(2t)!J
' '

X (Gt') ' 'Ph, h, h, t (2 82)

as from the commutation rules (2.11), P, h h „,be-
haves as a Racah tensor" of order t and projection T

with respect to the operators (2.20) of isospin and it,

reduces to (2.81) when r = t.
Two polynomials I'&,I„f„ t, that diGer in at least

one of the values of gt7 have a zero scalar product as
the operators (2.26) are Hermitian. As the constant
b in (2.81) is chosen so that the polynomials are
normalized, it is clear then that these provide a basis
for a unitary representation of U8.

The polynomial (2.82) ean also be written as

Ph~ h hz trr tt(+101) 'Ptt, tt, ott tr (&tttt&ttt) t (2 88)

where ttt, tto are the differences (2.18). As b, ", , is in-
variant under the SU3 group, it follows that the
polynomials P.,„,o„, constitute a basis for a repre-
sentation of SUo, i.e., under the substitution (2.4)
with det ~~U„" ~~

= 1, the polynomials transform as
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+(~) (~o) () (~ )

(2.36a)30 =—hmod3,
where for h1 —h3 —X even

2t =— —,
' h+ 0 mod 2, 2.36b

The family of polynomials P3, 3,3.-3.0 1, (6',M) we can write the polynomial as
for all values of o-, t consistent with the inequalities
(2.30), with the fact that

(2.43)

and for v = t, - ., —t, forms a basis for an ir-
reducible representation of SU3 characterized by
[h1 —h3, h3 —h3]. From these polynomials we are
going to derive the Wigner coeKcients of the 8U3
group. We shall use the fact that any polynomial
function B(C...) of the C... in which the a", are
interpreted as the differential operators (2.6), when

applied to our family of polynomials, will transform
them into another family of polynomials which will

continue to be a basis for an irreducible representa-
tion of SU3 of the type (2.34), since the C„.are in-
variant under SU3.

II.2 Polynomial Basis for the U3 2 R3 Chain

The operators associated with the infinitesimal
three-dimensional rotations will be the components
of the angular momentum vector and in spherical
notation (m = 1,0,1) they are given by

Z. = —g g ~ „„-a'",a", , (2.n)
mm' s

where e is the completely antisymmetric tensor.
From (2.2) and (2.9) we then obtain

+1 (60 + +1 )1+0 (81 81 ) 2731

z-, = (e.'+ e-,') . (2.38)

The Casimir operator" of the 83 group will be

Z' = g. (—1)"z.-Z ., (2.39)

and we could use the Hermitian operators Z', Z0 to
further characterize the polynomials (2.14), i.e. ,

P would satisfy

2 P = X(X + 1)P, 20P = PP . (2.40)

As in the previous subsection we could restrict our
discussion of the Eq. (2.40) to the case when p = X,

for which (2.40) is equivalent to

21P = 0, 20P = XP . (2.41)

The polynomials that are solutions of (2.14) and
(2.41) were obtained in a previous paper. '" Intro-
ducing the notation

8 = g„(—1)"5 6, w+ ——g„(—1)"61 6
v = —,

' g „(—1) "6'„' 6"„„, (2.42)

G. Racah, group Theory and Spectroscopy [Notes of
lectures at the Institute of Advanced Study (Princeton, New
Jersey, 1951)],pp, 44, 45.

0 «& 2q «& h2 —h3, h2 —h3 —X «& 2g «& AI —ha —X.

(2.44b)
For hI —h3 —X odd,

y = 1, $ = —h3 + h3 + X, g = h3 —h3 —1,
(2.44c)

0 «& 2q «& h2 —h3 —1,
h3 —h3 —X ~( 2q ~( h1 —h3 —X —1. (2.44d)

The polynomial P for an arbitrary p can now be
written as

The family of polynomials PA, , 3,A,, 3,0 g1, (5 + )
obtained from (2.45) after removing the factor
(5101)"', will form a basis for an irreducible represen-
tation of 8U3 characterized by the partition [h, —h3,

h3 —h3j but with the rows of the representation
being labeled by g) p instead of the o-tr of the previous
subsection. In Sec. IV we shall obtain the coefFicients
relating the basis (2.46) to the basis (2.32), which we
need for the explicit construction of the wave func-
tions associated with the collective motions.

The polynomials (2.45) form a basis for a non-
unitary irreducible representation as the index g is
not associated with any Hermitian operator. In
reference 8 we showed, however, that it was possible
to use a Hermitian operator 0, which was essentially
the quadrupole moment of the particles, to determine
up to an arbitrary constant the solution of (2.14) and
(2.41). If the polynomials P are then subject to the
additional condition

QP = MP ) (2.46)

they would form a basis for a unitary representation
of 8U3 whose rows would be ~X@. In reference 8 we

gave the explicit procedure for determining the
coefIicients n," in the development

p ~ o)
h3. h hso)Xy ~& gPh3. hzhaQ~p ) (2.47)

y = 0, $ = —h3 + h3 + X, g = h3 —h3,

(2.44a)

and g is an integer restricted by the inequalities
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and so we could also connect the unitary representa-
tions whose rows are ~Xp with those whose rows are
otv.

combinations will have the form

III. DETERMINATION OF THE WIGNER
COEFFICIENTS OF THE SU3 GROUP

FOR THE SU3 ~ SU2 CHAIN

In subsection II.1 we obtained the polynomials
in the creation operators a+, that are a basis for the
irreducible representations of SU~ in the 8U3 2 SUB
chain. We shall now consider the product of two
polynomials of this type, one associated with the
partition [hiA:,'] and the other with the partition
[h,"]and develop this product in terms of polynomials
associated with the partitions [h&h2k, ] according to
the rules of decomposition of products of irreducible
representations. ' The coefFicients in this development
are the class of Wigner coefFicients for SU3 mentioned
in the introduction.

The polynomials for the partition [h&A2] will be
denoted as

X Ph, h, Or t r (+m)+m)ph, oar r r (+m)

(3 4)

where (~) is a Wigner eoeKcient for the SU2 group.
Clearly the II's are eigenpolynomials of T', Ta with
eigenvalues t(t+ 1), r, respectively, and of 8 with
eigenvalue 0 = 0' + 0", as 8 is an additive operator.
The index 0." is suppressed in II, as from (3.3) it is
not independent of the others.

In what follows we shall deal only with the de-
velopment of the II's, since the products of the
polynomials on the right-hand side of (3.4) could be
expressed in terms of the II's by making use of the
orthogonality properties of the Wigner coe%cients
of the SU2 group.

From the Eqs. (2.14), satisfied by the polynomial

(3.1), and from (3.2) we have"

Chill = hiII, C2211 = h2II, C&211 = 0 (3.5a,b, c)
1 2

h. , Or t r (+my+m) (3.1) C II = A,"II. (3.5d)

and they have the form (2.32) with A, ih,'Oa. 't'r' re-
placing A,Ih2h8o-t7. For the polynomial associated
with the partition [I4"], we can again use (2.32)
denoting the particle by index s = 3 to distinguish
it from the indices 1,2 appearing in (3.1), and so the
normalized polynomials becomes

(3.2)

For the partition [h&'] the eigenvalue 0" is not
independent of hl', t", as applying the operator S of
(2.24) to (3.2) we obtain

(3.3)

If we now consider the set of products of the poly-
nomials (8.1), (3.2), we see that they provide a basis
for a generally reducible representation of SU3. We
want to develop these products in terms of poly-
nomials that would be basis for irreducible repre-
sentations of SU3. Yo do this we erst notice that in
the SU3 Q SU2 chain the rows of the irreducible
representations are characterized by the indices
o-tr associated with the Hermitian operators S,T', T3.
It is convenient therefore to choose linear combina-
tions of the products of (3.1) and (3.2) that are
eigenpolynomials of these operators. These linear

The operators C.,(s = 1,2,3) in (3.5) are Hermitian,
but C» is not, as from (2.10) C» ——C». We would
like to rewrite the Eqs. (3.5) in a form in which only
Hermitian operators appear, and for this purpose
we define the pseudospin vector' F whose spherical
components F (m = 1,0,1) are

F, = —(I/+2)C, 2, Fo ———', (C» —C-),
F , = (1j+2)C„-. (3.6)

From the commutation rules (2.12) we immediately
see that the Cartesian components of F satisfy the
commutation rul. es of angular momentum and so the
operator

F = Q„(—1) F„F== C21Ci2 + —', (C» —C-)
X [-', (C» —C22) + 1], (3.7)

commutes with all F„. Equations (3.5) are now

equivalent to

F II = f'(f'+ 1)1I,
F,rl = f'II, where f' = -', (hi —4), (3.8a,b)

(C„+C„)11= (h', + h. ')ll, C..rr = h", II, (3.8c,d)

where aB the operators are Hermitian.
To obtain the Wigner coefficients for the terms in

the Clebsch-Gordon development, we must determine

20 We shall suppress the indices in the II, I' etc., in all
equations where no misunderstanding can occur.
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the set of polynomials that are a basis for an ir-
reducible representation of U3 characterized by the
partition [A&A2A&] and at the same time eigenpoly-
nomials of the operators (8.8) with the same eigen-
values as II. This can be achieved by applying
polynomial functions B(C„)in the operators C„.to
the P's of (2.82), as we have shown in subsection
Il.l that this would give a new set of polynomials
that are a basis for the same representation [A&A24]

of U3. For the polynomials BI' the equivalence be-
tween the degrees of the creation operators in
particles 1,2,3 and the partition numbers A, I,A2, h3

will no longer hold and so we could look for 8's such
that (8.8) would be satisfied.

To determine the operator B(C„) we make use
of the theory of Racah tensors, "which applies to
the pseudospin as it obeys the commutation rules of
angular momentum. First we define the polynomial

" [u" —")!u"+ ")!]''
gf —v gf +v (3.11)

with f" = —,'(A& —A&).

From the commutation relations (2.12) we have

[F- +""]= [f"(f" + I)]' '

x (f"lv"ml f'v'+ m)w'„-+„, (8.12)

and so W'„- is a Racah tensor of order f" and pro-
jection p".

We construct now the polynomial

= Z I(f f"'vlf'f')IV'"V'. I
I/

v

+(Ces )Fh, h, h, rr tr )

where B(C...) is the operator

~(C"') = Z ((f"f lfv 'fv')( —I)'
II

v v

(3.13)

x I:(f"—"')!(f"+ ")!]''[(f+ )!]''
x [(f—.)!(2f)!]"cl, " c.', '" cl, "I.

(3.14)

V'. —= [(f + v)!] [(f —v)!(2f)'.] C'i Ph, h, h,.~, ,

(8 9)

where f = —,'(A& —A2).

If we apply the operator F„[which from (2.6) can
be thought of as a dif'ferential operator in the a+.]
to the polynomial Vf, we obtain

F„V„=[f(f+ I)]' '
(flvml fv + m)V„,„, (8.10)

and so Vf is clearly a Racah tensor" of order f and
projection v. Second, we define the operator

1 9

B(C.. ) = e Q (A&
—A, —n)![n!(A, —A', —n)!] '

I
gh, -hi —nphn —h~

31 32 21

where e is given by

(8.16)

e = [(A'h —A2 + I)!(A, —Al)!]' '
[(A, —A2 + I)!

x (A2 A2)!(A& —A2)!(A& —A2)I] . (8.17)

Using the commutation relations (2.12) we can
write 8 in the form

g(C„') = eC2y Q I (A&
—A2 —n)t

X [ t(A, —A,'— ) t]-'C.";-" —
C.";-"-."

X C; '
I + e Q. I (A, —A. —a)!

X (A, —A2+ n)[a!(A, —Ah —n)!] '

x c.";-" —"c.";-" "-'c;
I .

Now taking this form of the 8 in (8.18) and intro-
ducing the corresponding 6' in the scalar product
(8.15), we see that the first summand in (8.18) gives
no contribution to the scalar product as the operator
C» can be passed to the right-hand side of (3.15) as
Cl2 and from (8.5c) Ci211 = 0. For the second sum-

» E. P. Wigner, reference 1, p. 115.
22 E. P. signer, reference 1, p. 192.

Clearly from the procedure of construction (P is an
eigenpolynomial of F',Fo with eigenvalues f'(f' + 1),f'
and its degree in the creation operators of particles
1,2,8 is hl, h2, h1', respectively, so that 5' is an eigen-
polynomial of the operators (3.8) with the same
eigenvalues as II. Two polynomials 6' that differ in
any of their indices are orthogonal. This is obvious
for the indices hl, A2, hl', O-, t, r as they are eigenvalues
of the Hermitian operators Ci&, C22, C», S,T', T3, re-
spectively. For the indices hl, h2, h3 it is proved in
Appendix B.

The Wigner coeScients we are looking for are
given by the scalar product

hl
(dtfh~hghag t t) Ilr t t,et t)

= (A,'A.'~'t', A', 't")A, A,A„~t), (8.15)

where d is the normalization coefBcient of the (P's

given by (8.9) of Appendix B, and we have taken
7 = t on both sides of the scalar product as both 6'

and II are part of a basis for an irreducible represen-
tation of the SU, group associated with isospin, and
so their scalar product is independent" of v.

To evaluate the scalar product (8.15), we first
notice that from the explicit expression22 of
(f"fv"vlf'f') and the definitions of f",f,f', we could
write B(C„.) of (8.14) as
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mand in (8.18) we could once again make the same
type of development and continuing the process we
finally obtain

(hlhso t (hi t )hlh2hspo't) = de j (Ay A2)

X (h, , —h, ', + 1)![(h,—h,')!(h', —h', + 1)!] ']
x (c."", " c."; " P,n), (8.19)

where II is given by (8.4), P symbolizes

PA|, jighmg It (+mi +my +m) i

and we have made use of the identity"
I

(hi —hq —n)'I(hq h2 + o.)1

cx-0 ir!(h, —g —o)1

(h, —h,')!(h', —h, )!(h, —h,' + 1)!
(h, —h,')!(hl —h,' + 1)! (8.20)

Again, making use of the explicit expression" for
(t,'t"r'r" itt) we could write the II in (8.19) as

2t

II = g Z I (2t' —P) I(—I)'[PI(t" —t + t' —P) I]
'

X [(~-')'P'](~')' " ' "(&')"' "
x (&'-)' (8.21)

where P' stands for Ph h 0 t't (&', &' ), and g is

g = I[(2t+ 1)I(t"+ t' —t)!]' '

X [(t" + t'+ t + 1)!(—t" + t'+ t)!

X (t" —t'+ t)1(2t')!( "—2t")'] ' '] (8 22)

Using the commutation rules (2.11) we could, by a
similar analysis to (8.18), express II as sum of two
terms, in which the first contains the operator 61'
applied to a polynomial. The contribution of the
first term to the scalar product is zero as |'1' can pass
to the left-hand side as 6&' and as this commutes
with C„,we get 61'P = 0 as v- = t for P. The second
term can again be developed in the same way and
continuing this procedure and making use of an
identity similar to (8.20), we obtain, after sub-
stituting for P,P their explicit expression (2.81),
that

(h,'h,'o't', h', 't")h, h,h, ,«) = bb'deg (h,
' —h, )1(h, —h,'+ 1)!(—t" + t'+ t)!(t" + t'+ t + 1)!

(h, —A, ,')!(h', —hl + 1)!(t"+ t' —t)1(2t + 1)!
X (~ ' ' ~-' ' (~ ) (~ ) (~ ) (~ -) (~ .-) ', (~ ) (~.) (~ ) (~ -) (~ ) (~ )

' (~-)

(8.28)

In (8.28) b, b' are the normalization coefFicients for
P,P' obtained in (A18), k, l,n, p are given by (2.80)
and k', l', n', p' are

k' = —', h( —-', h2+ —', o.'+ t', (8.24a)

23 E. Netto, Lebrbucb der Combinatori7c (Chelsea Publishing
Company, New York), pp. 250, 251.

l' = —; hl —-', h,' ——', o' —t', (8.24:b)

;hl y —; h!————;o'+ t', (8.24c)

p' = -,'h', y -,'h.' + -,'o' —t', (8.24d)

where from (2.86) 8o' is congruent modulo 8 with
(hr + hs) and 2t' is congruent modulo 2 with [o'
+ s(K+ hs)].

The evaluation of the scalar product in (8.28) is sketched in Appendix C, and from the discussion
given there and the explicit forms for b,b,d, e, g, we obtain for the Wigner coefficient of the SUs group
in the SU's Q SU2 chain, the expression

(hlhso t )hi t )hlh2h (Tt) si(hl h2) ~ (hl A2 + 1) ~ (hl hl) ~ (h2 A2) ~

(h( —ht + 1)I(hi —h2)!

( t" y t' + t)!(t"—+ t' —t)!(t" —t' + t)!(t"+ t' y t + 1)!(hl' —2t")! ' '
(2t')!(2t + 1)!

(h,'—h. g 1)!(h,' —h. )! (h, —h,.+ 2)!(h,.—h, + 1)!h.!
(h, —hs + 1)!(h2 —hs)! (hg + 2)1(hs + 1)!

(k + n + 1)!(k+ l + 1)!n!pl (k' + n' + 1)!(k' + V + 1)In'!p'!
(p + k + n + 1)!(n+ k + l + 1)Ik!l! (p' + k' + n' + 1)!(n' + k' + l' + 1)!k'!VI

X Z Z Z f(—1) ' '"' '"'""(h2 —h2 —u+ v)!(hs+ u —v)!
t's uv ah
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X (ho —p + u —v)!(p —u + v)!(a + 5)!(hi —t' —r —s —a —5)!(P + r + a)'!(s + ti)!

X [r!(h, —h', —r —s)!s!(t"+ t' —t —s)!(h,"—2t" —r)!(h, —h,' —u)!u!

X (n —ho + ho + u)!(p —u)!(h, —v)!v!(ho —h', —h", + 2t" —u + v + r)

X (h, —t" —t' + t + u —v + s)!(n' —a)!a!(p' —b)!6!(p' —p + u —v + a)!(p —p' —u + v + b)!] ']

(8.25)

where the summations extend over all values of the
variables for which the factorials in the denominator
are not infinite.

Note added in proof The p. resent derivation of a
particular class of Wigner coefficients for 8U, could
be extended straightforwardly to general Wigner
coeKcients of unitary groups of arbitrary dimension
if the above proofs are modified at two points.

(1) The fact that the polynomials (2.17) form a
basis for an irreducible representation of 8U3 can be
proved, instead of by Schur's lemma, by Racah's
theorem (reference 19, p. 87) concerning the unique-
ness of the highest-weight polynomials in an irre-
ducible representation of semi-simple Lie groups.
Highest weight would mean in this case that poly-
nomials of the type (2.17) satisfy

6 P = h'P 8 "P = 0, m ) m'. (8.26a, b)

It is easily seen that conditions (8.26b) imply that
the Z in (2.17) is a constant and so there is only one
polynomial of the type (2.17) of highest weight, with

IV. COEFFICIENTS RELATING THE POLYNOMIALS

IN THE CHAIN SU3 & R3 WITH THOSE IN THE
CHAIN SU3 & SU2

In this section we will obtain the coeKcients for
the expansion of the polynomial P&,i,&.,iq of (2.48)
in terms of the polynomials P&,&,&,.„of (2.82). These
coeflicients will be needed in the next section for the
determination of the collective wave function.

We first notice from (2.88) that 2o ——2Fo and
therefore in our expansion we can restrict ourselves
to r = i~A. Furthermore (6'io"-,)"' appears both in
(2.82) and (2.48) so we could eliminate it. Using the
notation (2.18), the coeflicients we are interested in
are given by the scalar product

(P ii 0 X/2 P K ooXj ) —(irt(~1K2) gk) ~ (4.1)
The polynomial I'„,„,0.t&p2 is defined in terms of

the operator (6&') ' "i' acting on the polynomial
P„„,o of (2.81). Passing this operator to the right-
hand factor of the scalar product (4.1), our co-
eKcient becomes

(2) The polynomial function B(C„.) in (8.16)
could be derived in a more general fashion by erst
remarking that because of (2.14) B could, without
loss of generality, be written as

From the commutation relations

[&ii&i ] = 0i [«i &i ] = 2&i i (4 8)

we see that the right-hand factor of the scalar
product in (4.2) is a polynomial associated with the
partition [~i~o] and of angular momentum 2t, we can
write therefore

B(&„)= QA„s.&oi&oso&:i . (8.28)

Now applying Eqs. (8.5 a,b, c) to BP, we immediately
obtain

(&i ) P...,o, i), = QAoq P...,o, '. i.i. (4.4)

(8.27) (irt(~i~. )P~) = [(t + 2 ~)!]' ' [(t —
2 &)!(2t)!] '"

X (P...,o.«, (ei') ' " 'P.„.o,gi) . (4.2)

y = hi —hi —n, P = ho —h,'+ a, (8.29)

so that the coefFicient in (8.28) could be written as
A . Equation (8.5d), applied to BP, will then lead
to a recurrence relation for A which gives precisely
(8.16).

Applying the operator (6&')' "~' to the polynomial
(2.48) and keeping in mind that

1 1 1 12 11 ~1 ~1 ~10 +1

6, 's = —2(AI)', 6, 'v = —2(AIo)', (4.5)

we easily obtain

(4.6a)
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where

e = K1 lf KI —A is eVen,

e = g1 —lifz1 —) isodd. (4 6b)

where p takes only even values if )(& —2t is even and
in that case

Instead of using the form (2.43) for the poly-
nomial P„,„,&,.&,2„we notice from (2.42) that v can
be expressed as '"

v = (6&) [(5(o) s —Mq-] .

2P
(4.9a)

and p takes only odd values if ~1 —2t is odd and in
that case

Expanding vq in (2.43) and grouping terms, we
can write

Eq' (!
( 1)(q&q)-q &q

P 1 1
p

(4.9b)

Pq, q, qq 2 t2 t (+q. )

LIE ( ")"- '-"-"' 'I (48)
Substituting (4.8) and (4.4) in the scalar product

(4.2), we obtain

( t( ")8) = Z, Z [(t+ l ~)!]' ' [(t —l ~)'(2t)'] ' '~".'"""'Elb
p

x ((~ ) (a ) (a ) (~ -)",(a )
' (a )

' " ' ' ') . (4 1o)

%e can now exchange the order of the summation in

p and q', make use of the identity"
Q, [(c —(!')!V'!(b—c + g')!(c —q')!] '

= (a + b)![(a+ b —c)!a!b!c!]' (4»)

and expand the powers of s,m+ on the right-hand side and of 610 611 on the left-hand side, to obtain 6nally

(at(K1K2)(lA) = [(t + —', X)!]' ' [(t ——,
' X)!(2t)!] ' '

(—2)
' " 'b g, E,' I[-', ()(& —X —p)]!/[2 ()(& —2t —p)]!I

+1 Jr+n+p —v —m +1 l+v +1 m +2 v+x +2 n —v + — + —~+2 t+a+p ~1 K~ —2 t-2a —p +1 a +12 g~ —p + 12 p

(4.12)

The scalar product in (4.12) can be evaluated and one t! +t),„that allows us toeliminatethe(). index
using Eq. (C6) of Appendix C. There appear some in the summation. The explicit expression for our
Eronecker deltas that are automatically satisfled, coeflicient becomes then

(t+ -'X)! (l + n g1)!(k+ l+ 1)!n!p!
(t —-,') )!(2t)! (p+ A;+ n+ 1)!(ny A:+ l + 1)!l!l!

1/2

( 2)
t-(x/q)+v

X Q (E',[-', ()(, —X —p)]!p!(((q —P)!(v+ q(.)!(2t + p —v —q()!(l + v)!
pvm p

X [2 (n —v)!v!(p —~)!(2 ~& —t —
2 p —p + P)!(p —P)!(p —P)!(~q —n —P + v)!(—p + m. + P)!]

(4.13)

where E; takes the same values as in (4.9) and the
summation is extended to all non-negative values of
the variables for which the factorials in the de-
nominator are not infinite.

V. COLLECTIVE WAVE FUNCTIONS

In reference 7 we showed that long-range correla-
tions between particles, when acting within a shell
of the harmonic oscillator, could be represented by
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the quadrupole-quadrupole interaction

Q' = I' —-,'H' —-', Z', (5.1)

of the type (3.2) in which A", = vs. From (5.4), (5.7),
and the Wigner coeffirient (3.25), we construct the
wave function

where H, Z2 are given by (2.25) and (2.39), respec-
tively, and j'. is the Casimir operator for the three-
dimensional unitary group and is deGned by '"

(5.2)

As the collective motions'" are associated with these
long-range correlations, we could describe them by
the Hamiltonian'

~P)V2P3)A 1A2)A1A2A3)lrtr)

—= [(f'+ P') t]' ' [(f' —P') {(2f')l]
'"

X C21 Q {(A)A2a t )vst )Alhshs)ot)

X Q (t't'r r' ~tr)P3', 3', o.' ', '(&,& )T'r'

X P„...",-,"(~'„)] lo), (5.8)

se = H —(Q'/~),
where

(5.3)
where 8 is an arbitrary constant.

In reference 8 we obtained the integrals of motion,
and the corresponding eigenvalues, associated with
the Hamiltonian 3C. In this section we shall indicate
how we can use the coefficients (3.25) and (4.13) to
determine the eigenfunctions. %e shall discuss, in
detail, the eigenfunctions for a system of three
particles and then indicate how the analysis can be
generalized to n particles.

Let us assume that, in the absence of the Q' inter-
action, the three particles are in energy levels of the
harmonic oscillator characterized by the quantum
numbers vl, v&, v3. These quantum numbers will not
be changed by the interaction since the operator
Q', being a function of t' "', will commute with the
operators t „(s = 1,2,3) that give the degrees
vl, v2, v3 of the polynomials in particles 1,2,3.

We start by considering a polynomial in the crea-
tion operators 6'„,6' of particles 1,2 of the form

[(f'+ ')r]' '
I:(f' —')I(2f')1] ' '

1 I

X C21 P3, '3, '3 ')' '(&,& ), (5 4)
where P is given by (3.1) and

f' = -,'(Al —A2), v' = —,
' (v, —v,),

with hl, h2 restricted by the relation

(5.5)

kl +A2 Vl +V2 ~ (5 &)

From the discussion in Sec. II.l, the polynomials
(5.4) clearly constitute a basis for an irreducible
representation of 8U3 characterized by the partition
[A',62']. Furthermore, the polynomial (5.4) is of degree
vl in 4' and of degree v2in 6'.

With the third particle we associate a polynomial

Pvveev 1 ) (Av1) (5.7)

24 B. R. Mottelson in Proceedhngs of the International Con-
ference on Nuclear Structure, Kingston, Canada, edited by D.
A. Bromley and E. W. Vogt (University of Toronto Press,
Toronto, Ontario, 1960), p. 525—540.

Al+A2+As=vl+P2+V3)o —tr+a
a" = 2(t" ——', vs), (5.9a,b, c)

y = Al + A'2 + As + 2(A) —As) . (5.10)

While this result is of a general group-theoretical
nature" it can also be seen from the fact that by
construction (5.8) will be equal to (3.13) if in the Ill
of (3.14) we replace the projection f' by p'. As the 1"

is a function of t'„"' it commutes with P(C„.) and
it can be applied directly to a polynomial of the form
(2.32), which was shown previously'" to be an
eigenpolynomial of I' with the eigenvalue (5.10).
While (5.8) is an eigenfunction of I' and II, it is not
an eigenfunction of 22 or Q'. To construct eigenfunc-
tions of ZP and Q' we use (4.13) and the 42,

" of (2.47)
to de6ne

~vlvsvs, A)A2', A)A2A3, 4oxl1) = Q Q
q tr, t

X {n",()rt(A) —As, ks —As) gal)

X
~

l 2 P3 PA1PA)2)AlA263))rt 2 X) . (5.11)
The set of eigenfunctions (5.11), together with those
obtained from them by applying powers of ZI as
in (2.45), still form a basis for an irreducible repre-
sentation of Us characterized by [A)A263] but now
the rows are labeled by coA.p, . The wave function
(5.11) is then an eigenfunction of the Hamiltonian
3C for the case of three particles, and from its con-
struction it is also an eigenfunction of the integrals
of motion of 3C that were obtained in reference 8.

To construct the collective wave functions for n
particles, we start with a set of polynomials of n —1
particles that is a basis for an irreducible representa-

with the last relation coming from (3.3).
The set of eigenfunctions (5.8) associated with

o-, t, r form a basis for an irreducible representation
of tf3 characterized by [A)A2A3]. They will therefore
be eigenfunctions of the Casimir operator I' with
eigenvalues"
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tion of 8U3 characterized by [h&k2] and is labeled

by the rows o't'r'. We then take for the nth particle
a polynomial of the type (5.7) of degree v. in 6".
The construction of the eigenfunction for n particles
then follows exactly the same steps (5.8), (5.11).

Once we obtain the eigenfunetions of 3C, we could
give them any desired symmetry properties, e.g. ,
we could antisymmetrize them if the spin part of
the wave functions corresponds to all spins up. It
is possible, though, to start by characterizing the
wave function by a given representation of the
permutation group, "and then requiring it to be an
eigenfunction of X. This procedure will be discussed
elsewhere.

VI. APPLICATION TO ELEMENTARY PARTICLES

We shall limit the discussion in this section to the
8U3 symmetry theory of the Sakata model as given
by Ikeda et a/. ' The operators a+, of the previous
sections can now be thought of as creation operators
of particles s = 1, . ,n, where these particles can
be found in three states, proton for m = 1, h. for
m, = 0, and neutron for m = 1. Clearly, the isospin
is then associated with a unitary transformation of
the proton-neutron states of the form (2.19), and
so its components are given by the operators (2.20).
The baryonic number operator is given by the H of
{2.25), since on applying it to states in which each
particle appears once, its eigenvalue h equals the
number of particles. The strangeness operator is

(6.1)

as it gives zero when applied to neutron or proton
states and 1 for a A state. If we denote by 5 the
eigenvalue of (6.1), i.e., the strangeness quantum
number, then it is related to the 0. of (2.24) and
(2.26c) by

i.e., if we translate the base line of the partitions" as
illustrated in Fig. 8, for this would affect the repre-
sentation of Ua but not of 8U&. Therefore, for any
set of integers h1 &~ h2 &~ A3, the values of 5, t are
restricted by

-,'(h, —A, —h. —e) —t & 0,
—', (h, + h, —h. + e) —t & 0,
—', (h, —h, + h. y e) y t & 0,
-,'(—h, + h, —h. —e) + t & 0, (6.4a)

II
m m

transforms as
(6 5)

with 2t being congruent modulo 2 to (h + g). From
the integers h&, h2, 63 in (6.4a) we can form the positive
integers ~, &~ ~2 &~ 0 of (2.18) and the integer h

of (2.15). The first two characterize the irreducible
representation of 8U, whose rows are labeled by
5,t and r = t —t, and the last h is the baryonic
number which now can take negative as well as
positive values. Combining Eqs. {6.4a) by pairs we
obtain the following bounds for 5 and t

—hg ~& 5 ~& —hs, 0 ~& t ~&
—', (hg —hg) . (6.4b)

With the help of the Wigner coefficient (8.25)
we could now construct the polynomial functions in
a+., of erst order in each particle, that would be a
basis for an irreducible representation of UB. Again
we are restricted to creation operators and so at first
sight it would seem that we could construct the wave
functions of hypernuclei associated with representa-
tions of UB, but not of the other hyperons or mesons
for which annihilation operators are also needed. To
avoid this restriction we notice that under the unitary
unimodular transformation (2.4) of a+„ the vector

5 =0' —3k' (6.2)

and from (2.86a), 6 is an integer. Finally, the charge
operator is clearly 81' as it gives 3. when applied to a
proton state and zero for a neutron or A state; from
(2.20) and (2.25) we have the well-known relation'

(6.8)

The strangeness 5 and isospin t associated with
a given representation [h&h2h3] of Ua are obtained
from (2.80) if we use (6.2). The relations (2.80) hold
for positive h's as only creation operators are in-
volved. Yet as these relations depend on the differ-
ences A, 1

—h8, 62 —h3 it is clear that they would
still hold if we subtract an integer from all the h's,

(6.6)

and therefore it has the transformation properties

Fre. 3. Different represen-
tation of U3 are given by the
three integers corresponding
to the lengths from the verti-
cal base line to the short
lines. When we change the
base line, we change the
representation of Us but not
of SU3, which depends only
on the differences of these
integers.

25 I am indebted to Professor G. Racah for this remark.
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(2.7) of the annihilation operator c",. We can now
write the polynomials associated with a basis for a
representation [AIh,'] of SU0 in the form

where we suppressed the particle index 8 = 1 in
c+„„and used (2.2) and (6.5). The exponents k', l', n', p'
are given by (3.24) and it is trivial to see that under
the substitution

h1 ~ h1', h0 —+ h1 —h0, O.' —+ —O.', t' —+ t', (6.8)
the exponents k', l' are interchanged with n', p'.
Therefore a representation which in the particle
picture is denoted by (61h0,0't'r'), in the antiparticle
or hole picture must be denoted by {h1A1 —ht,
—o't'r'} and vice versa.

The results of the previous paragraph justify the
use of the Wigner coefficients (3.25) for the con-
struction, in terms of particles as well as antiparticles,
of wave functions that are a basis for irreducible
representations of U0. For example, in the particle
picture (11,0.'t, '1.'), where from (2.80) 0', t' are re-
stricted to a-' = 3pt 0 and 0 3,t 2) corre-
sponds in the antiparticle picture to {10,—a't'1'}.
If we want then to construct a basis for a representa-
tion of U3 from an antiparticle and a particle we
would need the coefficients

(11~V,lt")h, h.k.,~t), (6.9)
where [h1h0h0] is restricted to [21] or [ill]. More
generally, we could construct the wave function for
a system of n particles by starting with a wave
function for n —1 of them in the particle or anti-
particle picture, depending on whether the n'th is
a particle or an antiparticle, and combining the
products of the wave functions with the coeKcients
(3.25).

VII. FRACTIONAL PARENTAGE COEFFICIENTS
IN THE ~ SHELL

In Sec. III we obtained the Wigner coefficients for
the SU3 group when the rows of the representation
are labeled by o-t7-. Clearly we could have carried out
a similar analysis when the rows are labeled by
orhp, in which case the signer coeKcients associated
with the development of Fig. 1 could be denoted by

(hl40Ã, hl'X" }h, l'i04, 0 X), (7.1)
where co" is not indicated as for the single-row repre-
sentation it is not independent of' h&', X". The co-
efficient (7.1) could be obtained from (3.25) if we
made use of (2.47) and (4.13) to transform the rows
o.tr into co) p.

The fractional parentage coe%cients in the p shell
are clearly given by (7.1) when we take Ii1' ——1,
X" = 1. These fractional parentage coeKcients are
well known, " and so the present analysis provides
only a different procedure for their derivation. It is
interesting to note though that the analysis of Sec.
III can be generalized to unitary groups in 2t + 1
dimensions as the explicit expression for the poly-
nomials that are a basis for an irreducible representa-
tion [h1 521+1] of U21pl has already been obtained. "
The analysis developed in this paper could then, in
principle, be generalized to derive the fractional
parentage coefBcients in a shell of angular momentum
l, or for that matter, in a mixture of shells.

APPENDIX A

Normalization CoefBcients of the Polynomial P.

In this Appendix we determine the normalization
coefficient 5 of the polynomial (2.31). Denoting
by Po the polynomial

(Al)
where k, l,n, p are given by (2.30), we see that 5 ' is
given by

5 = (Po,P0) = (OiPPP0}0) . (A2)

In the determination of (A2) we shall use through-
out the fact (2.6), so that the adjoint operator of 6'„
can be interpreted as a differential operator, i.e.,

= (8/86„') .

From (Al), (A2) we obtain

(P01PO) (0~ (+101 ) Pkln0{ +101 P0 }}0) 1 (A4)

where 6,",-',
+ can be written as

with

~12+ ~1+~2+ ~ 1+~2+
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To evaluate the curly bracket in (A4) we notice that the normalization coefficient as

827

+1 (+101) hs (+101) +10 and cycl . (A7)

From (A7) and (A6) we obtain

'I +101 (+101) Polio} = [ }

(hg —hs + 2)!(hs —hs + 1)!
(h, + 2)!(h, + 1)!h,!

(k+ n+ 1)!
g)!(p + k + n + 1)!

where

= h. g a„' a'„'[(S'„~„' —S„' a.')P,], (A8)

(+1sT) Pslrg& ~

(k+ L+ 1)!
n! (n + k + L + 1)!k!L!

APPENDIX 3

(A18)

and so

} = hs(C» + 8)(C22+ 2)P 1

= (hg + 2)(ho+ l)hsP g, {A.10)

(Po Po) (hl + 2) (hs + 1)hs(P i,P i) . (All)

U'sing the commutation rules (2.5) and the definitions
(2.10), as well as Eqs. (2.14), we obtain

Orthonormalization of the Polynomials 6'

In this Appendix we determine the normalization
coefficient d of the polynomial (P of (8.18), and we
prove that two polynomials (P differing in any of the
indices hg, hs, hs al'e orthogonal.

Denoting by (Ph " the polynomial

O"" = e-'Z(C. .)P,

(P„P.) = [(h, + 2)1(h, + 1)Ih, !] [(h, —h, + 2) I

X (hs —hs + 1)I] (Psi.„,Ps&„„) . (A12) (82)

Repeating this process for P &, etc. , we obtain where e is given by (8.17), P by (8.16) and P is a
finally shorthand notation for the polynomial (2.82), we

see that d-' is given by

We can now write

(Psi.„,P„„„)= (P,i„„ i,ai",'P...„) . (-A18)

As (Ph " satisfies the equation

{88)

Using (A6) and (A8) we easily see that

&ii I (&ir) Psi.o} = p(p+ k + n+ 1)Psi.. i .

(A14)

Substituting in (A.18) and repeating the process p
times, we obtain finally

(P -.P:) = [pI(p+ k+ n+ 1)I]

X [(k + n + 1) '.] {Pi.s, oPsot)

(A15)

The scalar product on the right-hand side of (A15)
can be evaluated in a similar way by making use of

a', ,"P„„,= n(n + k + L + l)P. . . . , (A16)

and so we obtain

(Ps( o Ps( o) = [n!(n + k + L + 1)!]

X [(k + L + 1)I] (Psioo, Pstoo)

= n! (n + k + L + 1)![(k + L + 1)!] 'k!LI, (A17)

where from (A8) the last scalar product gives (k!L!).
Combining all of the previous results we obtain

we shall use the form (8.18) of B to reduce (82)
to the form

d
' = e'[(h', —h, )!(h, —h', + 1)!][(h,—h,')!

X {h', —h'. +1)I]-' (C.";-" C.";-" P,~"'" )

(84)

To evaluate (84) we pass one of the Csi to the
right-hand side as C», and notice that from the
definition (Bl), the commutation relations (2.12),
and Eqs. (2.14) we obtain

C,.o"'" = (h, ', —h. +2)o"'""' . (85)

Substituting (85) in (84) and repeating the analy-
sis h& —hl times, we see that the scalar product in
(84) reduces to

(h, , —h, g 1)![(h', —h. y 1)!] '(C.";-" P, a
"'"*

)

(86)
Now from the definition (81) we see that

o"'" = {h, —h, )!C."; "*P. {87)
Substituting (87) in (86) and again making use of
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the commutation rules (2.12) and of (2.14), we obtain of 68„and as
for the scalar product in (86) 0136„=6„) (Cl)
{A, —A,,)I(A, —A,')!(A, —A8)![(A2' —A8)!] '. (88)

Combining all of the previous results, we obtain
for the normalization coeKcient

d = [(A', —A8 + 1)!(A2 —A8)!]

X [(A,, —A. + 1)!(A, —A.)!] ' '. (89)
We now consider two polynomials (P"' ",6'" " de-

fined by (Bl) where the first is characterized by the
indices A„A2, A8 for the polynomial P of (2.82) while

the second is characterized by the indices hl, h2, h3.

Without loss of generality we can assume hl &~ hl.
By a reasoning entirely similar to the one that takes
us from (82) to (86), we prove that the scalar product

(810)
is proportional to

(C."; "' P, e '"' ), (Bll)
where g"'"* has still the general form (8.13) as
A1 ~( A1 ~ From (2.12) we see that C12 and C82 com-
mute and so we could use the form (3.18) of (P"'"

to reduce (Bll) to

I (C,"; ' P,C,"; "'C,"*, "' P), (812)
where P,P are given by (2.82) with indices A1A2A8

and hlh2h3, respectively. As
I l

[C18,C82 ] = (A2 —A2) C82 C12 1 (818)
we see that I = 0 if hl & h1. For hl ——hl, we could
again use (2.12) to prove that I = 0 if A2 W A2.

Finally as

Al+A2+ A8 Al+ A2+ Al A1+ A2+ A8

(814)
we conclude that (P" "',P" "* are orthogonal if they
dier in any of the indices hl h2 h3.

APPENDIX C

Evaluation of Scalar Product in (3.23)

The evaluation of the scalar product (8.28), which
is necessary for the determination of the Wigner
coefFicient (8.25), is a long but essentially straight-
forward process. Here we shall indicate only a few
basic steps.

First we pass the operator C3&
" on the left-

hand side of (8.28) to the right as C188-" . Then we
notice that t. 13 will act only on products of powers

we get on the right-hand side of (3.28) linear combi-
nation of terms of the same type as those already
present plus a factor of the form (6,')' .

On the left-hand side of (8.23), C882-"' acts only on
the product (6,"0)"(6'1)", and as

12 13
C32~1 = ~1, m = 0, 1, (C2)

we get on the left-hand side of (8.23) linear combi-
nations of terms of the same type plus factors of the
«rm (6,108)'(61181)'. Now developing 6,10218 as

123 1 —1 12 13 12 13
6101 (+1) (+10+11 +11+10) (C3)

we see that the scalar product in (8.28) becomes a
linear combination of scalar products of the form

(~') (~')' (~'-)' (~':)" (~"-)' (~')' (~:)' (~'-.)"),
(C4)

where from (8.8) we must have the degrees of all
particles the same on both sides, so that among other
relations we get

f' + g' + A' = e + f . (C5)

To determine (C4) we pass the terms 68„ from the
right- to the left-hand side, and notice that in (C4)

(C6 )
is equivalent to

~-»' ', (', ) f' '1'u'. ) "'1'.
~

''1~'-~'"',
g

(C6b)

where use was made of (A8) and (C5). The scalar
product (C4) then becomes proportional to

((~')"'"-' (~')"' ' (~'-.)' " (~':)'(~"-)',
(~')' (~')' (~'-) ' (~")' (~"-)'

) r»)
We develop the ~,'o, ~,",— on the right-hand side

of (C7) in terms of 10'„,LP„. Now passing the powers
of 6' to the left-hand side, and using a formula
analogous to (C6), the scalar product (C7) is reduced
to one in which we have only powers of 6' on both
sides, which can be immediately evaluated using
(A3).

In this way the scalar product (3.28) can be
evaluated and the explicit expression appears in
(8.25).


