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INTRODUCTION

' 'N the theory of the electronic structure of atoms,
~ - molecules, and solid state, the exchange and
correlation phenomena play a fundamental role in
studying cohesive and elastic properties or electric and
magnetic behavior. Conventionally it seems as if the
exchange effects would be of particular importance in
ferromagnetic and antiferromagnetic materials and the
correlation effects in conductors and semiconductors,
but actually the two phenomena are closely coupled
together in all electronic systems.

EXCHANGE IN TWO-ELECTRON SYSTEMS

This implies that for J&0, one has 'E&'E and a
parallel spin alignment in the ground state, (tg,
ferromagnetism); whereas for J(0, one has 'E(~E
and an antiparallel spin alignment in the ground state
(g4, antiferromagnetism). The definition allows us to
derive the Dirac-van Vleck vector-model formula in
an exact way. In the relation

E=—', ('E+'E) ——',~ ('E—'E), (2)
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The exchange integral J was introduced by
Heisenberg, ' but since this concept has been strongly
criticized by several authors and particularly by Slater, '
we start by a redehnition of this important quantity.
Let us consider a two-electron system (1V=2) having
a spin-free basic Hamiltonian leading to two basic
states having either singlet or triplet character cor-
responding to 5=0 and S= 1, respectively. For
convenience we may fix our attention on the lowest
state of each type. Denoting their energies by 'E and
'E, respectively, we define the "exchange integral" J by
the relation

1(iE 3E)

~+2si s2 (3)

has the eigenvalues S(S+1)—1 or —1 for S=O and
+1 for S=1, i.e. , the numbers defined above by the
symbol x. Substituting the operator (3) for the symbol
~ in (2), one obtains an operator

Epp EP—2$1' S2J&

which has the correct eigenfunctions with respect
to the spin and the correct energy values. Here
ED=4('E+3'E) is the average energy of all possible
spin states taken with their weights. This is an exact
form of the vector-model formula, independent of any
assumptions about correlation, nonorthogonality, polar
states, relativistic effects, etc. It is true that the
derivation has an almost trivial character, but this
makes it particularly convenient as a basis for further
research.

Let us now discuss the detailed form of the exchange
integral J. Since the permutation F12 commutes with
the basic Hamiltonian II.~, it is a constant of motion.
Any trial function 4 =4 (1,2) of the space coordinates
r1 and r2 consists of two components:

4 (1,2) =-', L4(1,2)+4 (2,1)]+&2I4 (1,2) —4 (2,1)], (5)

of which the first is symmetric and the second anti-
symmetric in the space coordinates. The two com-
ponents are orthogonal and non-interacting with
respect to H and, by considering the possible spin
functions and the antisymmetry requirement for the
total wave function, it is easily seen that the erst
corresponds to the singlet state and the second to the
triplet state. After normalizing the components, one
obtains easily the corresponding energies

80

(~l&l~&+(~l»i4&

1+(4IFI4&

(4 faf4) —(4laF f4)3E—
1—(4'IF

I
4'&

(6)

K= —1 gives E='E and «= +1 gives E= 'E. Measuring
the spin in units of h, one has S= si+s2 and further

S'= 2+2si. s2,

which operator has the eigenvalues S(5+1). This
implies that the operator
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where 8=Pb2 and (I I C )= 1. Substituting these
expressions into the definition of J, we get anally the
exchange integral

FIG. 1. Diatomic molecule with two overlapping atomic orbi-
tals a and b and internuclear distance R.

This quantity is invariant under a change of zero-point
of the energy, so that J'=J for H'=H+ob If C. is a
mixture of the two exact space eigenfunctions involved,
the expression for J is exact also. The formula is also
a convenient starting point for discussing approximate
theories. Only if from the very beginning 4 is either
symmetric or antisymmetric, there is not enough
information available about the other state, and the
formula for J breaks down.

Let us now consider the model in which the two
electrons occupy two normalized orbitals a and b, so
that

C (1,2) = a(1)b(2).

Introducing the overlap integral S b,
——J'a*(1)b(1)dv~,

one obtains &I I PIC &=
I
S b I' and further

&ablHIba) —Is.bl'&ablHI ab&
J=--

1—Is.,l'

which is the corresponding approximation for the
exchange integral. Since the overlap integral S,b causes
some mathematical difficulties, there has been an
almost universal tendency in the literature to neglect
this quantity and to consider &ablHlba) as a proper
approximation of J. This is by no means justified.

For a two-electron system, the basic Hamiltonian
may be written in the form

alignment and ferromagnetism on the basis of the
Heitler-London-Heisenberg model, if overlap is neglec-
ted, since the exchange integral cannot change its
sign. The use of strictly orthogonalized orbitals is
convenient for many purposes, ' ' but the use of the
simple product form 4=a(1)b(2) leads then to a
situation where the triplet state always has a lower
energy than the singlet state and, for a two-atomic
system, the latter state can further never be bonding. '
In order to use orthogonalized orbitals properly, one
must therefore consider also contributions from "polar
states" of the form a(1)a(2) and b(1)b(2) which will

inAuence the energy of the singlet but not of the triplet.
The general expression for the exchange integral J

associated with two overlapping orbitals a and b

contains the operator Hb T,+V, and ——hence also the
kinetic energy. Let us now consider a system consisting
of two atoms having each ore valemce etectrom (Fig. 1).
The internuclear distance is denoted by R, and the
core potentials by V, and Vb. Let us further assume
that a and b are solutions of the approximate
Schrodinger equations for the free atoms:

LTq+ V,q]a(1) = c,a(1), I Tq+ Vbqjb (1)= ebb(1). (13)

Noting that V= V,+Vb, and using these relations, one
obtains the expression:

g2

+ ab —ba —IS.~I' (alv»la&+&blv. ~lb&
~&2

+(ub —ab)
~12

t1—ls.,l'j (14)

g2

a*(1)b*(2) I V,g+ Vg2+—b(1)a(2)dvgbgv2
~12

g2

Hop Ho+Hb+H2+H», (10) J— (al v»lb)sb, +(bl v»la)s
where the constant Bo represents the internuclear
Coulomb repulsion or vanishes for a single atom,
H;= T;+V; is the sum of the kinetic energy T; and
the potential energy V; in the nuclear framework of
electron i (i=1 or 2), and Hb2=e'/rb2. This leads to
the exchange integral

~= I:&alH, lb&S,.y &b IH, I
a&S.,+&ab I "/r„l ba&

—Is.bl'{&alH~I a&+&blH~lb&

+&abl "/~»lab&))/L1 —IS ~l'3 (11)

If overlap is neglected (S,&=0) one gets directly

g2

J= ab —bu = e2

~12

a*(1)b(1) .a(2)b*(2)
dS]d52q

—
I
S,b,

I

' a*(1)b*(2) V»+ V~2+—

and, since this is the "self-potential" of an electronic
cloud having the density ea*(1)b(1) it is definitely
positive:

J&0, when S b=0. (12)

This implies that one cannot develop a theory of spin

&«(1)b(2)d»d» I:1—ls.~l'j (1~)

3 R. LandshoG, Z. Physik 102, 201 (1936).
4 G. H. Wannier, Phys. Rev. 52, 191 (1937).

P. O. Lowdin, Arkiv Mat. Astron. Fysik 35A, 9 (1947);
J. Chem. Phys. 18, 365 (1950); Advances in Phys. 5, 1 (1956).

J. C. Slater, J. Chem. Phys. 19, 220 (1951).
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For hydrogen-like atoms, one has V,i= e'Z—,/r&, and
Vss e'—Zq/rsvp, where Z, and Zq are the atomic
numbers or the "effective" nuclear charges, respectively.
All terms in the numerator of J are actually of the
same order as ~S s~'. It is therefore not justified to
neglect any term in comparison to the other. Never-
theless, in the last expression, one has often in the
literature neglected the second term because of the
factor ~S,q~' and the expression

Z Zb 8
a*(1)b*(2) —e'——es—+—

~la ~2b ~12

Xb(1)ri(2)dr, d», (16)

is known as the "Heisenberg exchange integral. "
Personally the author feels that the use of this formula
is just as unjustified as the use of the expression
J=(ab~e'/r»~ba). For a two-electron system, there
are no difficulties whatsoever to include the overlap
properly, and the exchange integral is then given
correctly by formula (15).One should observe, however,
that the two atoms involved are actually deformed in
forming a molecule, and that one must scale the two
valence orbitals a and b to satisfy the virial theorem. '
Since one cannot use (13), the exchange integral is
then given by the basic formulas (9) or (11). The
author believes it would be worthwhile to reexamine

- the entire exchange problem from this point of view.

EXCHANGE IN MANY-ELECTRON SYSTEMS

For the two-electron case, we have proven that the
vector-model formula (4) can be given an exact
derivation which is valid even if correlation, non-
orthogonality eGects, relativistic corrections, etc. are
included. Conventionally, '' one has generalized the
approach to many-electron systems by building the
spin discussions on a Hamiltonian of the form

integral J:
nei

E.,=Es—2J g s,"s;.
i&j

Following Kramers, " the method has to a large extent
been used also to discuss superexchange. "

The weak point in these generalizations of the vector
model to many-electron systems is undoubtedly that
so far all derivations are based on the assumption of
orthogonality between the basic orbitals. The simple
case of X=2 shows that, in the case u and 5 were
orthogonal, one could neither discuss ferromagnetism
nor covalent bonding. The remedy is to use overlapping
basic orbitals or to include polar states, ""but the
fundamental Hamiltonian (17) will then also contain
terms related to higher exchange. The same result is
obtained by generalizing our trivial derivation for
Ã= 2 to a many-electron system. This important
problem is definitely worth a great deal of research in
the future. "

CORRELATION PROBLEM

In addition to exchange, another phenomenon is of
fundamental importance in many-electron theory,
namely the interelectronic correlation. Because of their
mutual coulomb repulsion, two electrons try always
to avoid each other to keep the energy as low as possible
which leads to a certain "correlation" between their
motions. In this connection, there is actually an
increase in the kinetic energy of the two electrons
because of the more complicated motions they have to
perform, but this is compensated by a still larger
decrease in the coulomb repulsion energy; the balance
is regulated by the virial theorem, (T)= —rs(V).

The mutual behavior of two electrons is conveniently
described by the second-order density matrix":

I'(xi xs
~
xixs) =

~

@ (xi xs xs' ' 'x+)
l 2

E.,=Es—2 Q J;;s;.s;,i' X+(xixsxs. x~)dxs . de. (19)

The diagonal element I'(xixs
~
xixs) gives the probabilitywhere there will be one more term if there is an outer

magnetic field present. The formalism has been partic-
ularly utilized in Bethe's spin-wave model, " in which
only exchange between nearest neighbors (nei) is
considered under the assumption of a constant exchange

"H. A. Kramers, Physica 1, 182 (1934)."P. W. Anderson, Phys. Rev. 79, 350 (1950); J. Yamashita,
J. Phys. Soc. Japan 9, 339 (1954); S. V. Tyablikov, Fiz. Metal i
Metalloved 4, 193 (1956);G. W. Pratt, Phys. Rev. 106, 53 (1957);
J. Kondo, Progr. Theoret. Phys. (Kyoto) 18, 541 (1957); J.
Yamashita and J. Kondo, Phys. Rev. 109, 730 (1958); P. W.
Anderson, ibid 115, 2 (19.59); J. Kanamori, J. Phys. Chem.
Solids 10, 87 (1959); F. KeBer and T. Oguchi, Phys. Rev. 115,
1428 (1959); J. Kondo, Progr. Theoret. Phys. (Kyoto) 22, 41,
819 (1959);S. Koide, K. P. Sinha, and Y. Tanabe, Progr. Theoret.
Phys. (Kyoto) 22, 647 (1959); S. Rodriguez, Phys. Rev. 116,
1474 (1959);T. Oguchi, ibid 117, 117 (1960.); and others.

"R.Serber, J. Chem. Phys. 2, 697 (1934); Phys. Rev. 45, 461
(1934).

~4 W. J. Carr, Jr., Phys. Rev. 92, 28 (1953).
For some recent developments, see R. K. Nesbet, Ann. Phys.

4, 87 (1958);J. S. Smart, J. Phys. Chem. Solids ll, 97 (1959)."P.O. Lowdin, Phys. Rev. 97, 1474 (1955).

r See e.g., P. O. Lowdin, J. Mol. Spectroscopy 3, 46 (1959).
s P. A. M. Dirac, Proc. Roy. Soc. (London) A123, 714 (1929);

Quantum Mechanics (Oxford University Press, London, 1935),
2nd ed. , Chap. X.

J.H. Van Vleck, Theory of Electric and M'agnetic SuscePtibilities
(Oxford University Press, London 1932); Phys. Rev. 45, 405
(1934).

's H. Bethe, Z. Physik 71, 205 (1931);L. Hulthen, Arkiv Mat.
Astron. Fysik 26A, 11 (1938); P. W. Anderson, Phys. Rev. 86,
694 (1952); R. Kuho, ibid. 87, 568 (1952); F. J. Dyson, ibid 102, .
1217 (1956); J. van Kranendonk and J. H. Van Vleck, Revs.
Modern Phys. 30, 1 (1958); F. Bopp and K. Werner, Z. Physik
151, 10 (1958);and others.
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density to find an electron pair in the points xi= (rt, l t)
and x 2= (r2, t'2) in configuration space; here t t, and f2
are the spin coordinates. Because of the Coulomb
repulsion, each electron should be surrounded by a
"Coulomb hole" with respect to all other electrons, i.e.,
r(xtxs~ xix2) should be small when ri2 ——

~
ri —r2~ tends

to zero.
In the independent-particle model based on a wave

function in the form of a Hartree product, the Coulomb
correlation is entirely neglected so the approximation
is subject to a large correlation error. The situation is
somewhat changed by the introduction of the Pauli
principle and the antisymmetry requirement. The
wave function is now approximated by a Slater deter-
minant and since I'(xt'x2'~xtx&) is antisymmetric in
each set of its indices, the density I'(xix2~ xix2) vanishes
to the second order when x~=x2, i.e., when r12 ——0 and
f't t 2

——For .parallel spin coordinates, the antisymmetry
requirement leads then to the occurrence of a "Fermi
hole" which to a certain extent replaces the "Coulomb
hole. " In the Hartree-Fock scheme, the essential part
of the correlation error is hence associated with electron
pairs having antiparallel spins.

The corretafioe energy is not a physical quantity but
the measure of the energy error due to the neglect of
correlation in a certain approximation. One is partic-
ularly interested in the correlation error in the Hartree-
Fock (HF) scheme corresponding to the band theory
in solid-state physics, and it seems convenient to use
the definition:

Correlation energy= E, „,—EHF, (20)

'7 E. Wigner, Phys. Rev. 46, 1002 (1934); Trans. Faraday Soc.
34, 678 (1938); F. Seitz, 3fodern Theory of Solids (MeGraw-Hill
Book Company, Inc. , New York, 1940) p. 698; J. C. Slater,
Revs. Modern Phys. 25, 199 (1953); E. P. Wohlfarth, ibid. 211
(1953); D. Pines, Solid State Phys. 1, 368 (1955)."J.Linderberg and H, Shull, J.Mol. Spectroscopy 4, 30 (1960).

where E,„„fis the true eigenvalue for the Hamiltonian
under consideration. '~

For the H2 molecule, the correlation energy is —1.06
ev corresponding to errors of +1.06 ev in the kinetic
energy and —2.12 ev in the potential energy. Since
1 ev= 23.07 kcal/mole, these quantities are appreciable
even from a chemical point of view. For the series of
He-like ions, the correlation energy is approximately
constant —1.2 ev, varying from —1.142 for He to
—1.197 for C4+. For Be, the correlation energy is
—2.4 ev but, for the series of Be-like ions, it seems to
vary linearly with Z depending on the degeneracy of
the 2s and 2p orbitals. " For the ¹like ions, it is
probably fairly constant of the order of magnitude
—11 ev."For the alkali metals I i, Na, and K, signer

"A. Froman, Phys. Rev. 112, 870 (1958).
has given the values —1.89, —1.73, and —1.58 ev,
respectively.

In forming energy differences, there is sometimes a
balance between the correlation errors which leads to

TABLE I. Hartree scheme vs Hartree-Fock scheme

Scheme

Hartree bad
Hartree-Fock good

bad
bad

Remark

balance
out of balance

g„,„=,(H++H. *-)y-', (H„+H„), (21)

where H 2 is the expectation value of the H
Hamiltonian with respect to u(1)u(2). Actual calcula-

tions give EHF,„=—0.715 atomic units instead of —1,
showing an enormous correlation error of —0.285

atomic units = —7.74 ev for R= ~.
In this approach, the total wave function permits

apparently electrons of different spins to accumulate

on the same atom and give rise to negative and positive

"D. Pines, Les electrons dans les metaux (Proceedings 10th
Solvay Conference 1954, Brussels 1955), p. 9.

' J. C. Slater, Phys. Rev. 35, 509 (1930);82, 538 (1951).
"J.H. Van Vleck and A, Sherman, Revs. Modern Phys, 7, I&7

(1935).

surprisingly good results. This happens e.g., in treating
the cohesive energy and elastic constants of the alkali

halides, but not for the alkali metals. Table I shows

also that in the Hartree-Fock scheme there is a re-

markable unbalance between the treatments of parallel

and antiparallel spins, which is not favorable for a
theory of magnetic behavior. ' ' It has been remarked

that it may therefore be easier to formulate a good
semi-empirical theory of ferromagnetism in the Hartree
scheme than in the Hartree-Fock approximation. In
order to restore the balance, one has apparently to
include the correlation effects for pairs having

antiparallel spins.
The band theory or molecular-orbital method is not

convenient for a treatment of magnetic properties
from another point of view since the theory may give

a good description of the system when the atoms are

in their equilibrium positions, whereas it breaks down

completely and has a wrong asymptotic behavior for
separated atoms in the antiparallel case."" The
situation may be illustrated by considering an H&

molecule consisting of two hydrogen atoms u and b at
the internuclear distance E. In the HF scheme, the

wave function for the singlet has a space part of the
form q (1)p(2), where p is a molecular orbital. Because

of the symmety of the molecule, one can write

q=(u, +ub)(2+25. b) ', where S,b= Ju,ubdv In the.

conventional MO-I.CAO theory, the function is

approximated by a 1s orbital, but better results may
be obtained by also including higher orbitals and

varying the coefficients. The total wave function for
the singlet is such that, for separated atoms, there is

a 50% chance that the molecule will dissociate into

H and H+, and a 50% chance that it will dissociate

into two H atoms, and the total energy is given by
the expression
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HF (BAND THEORY)
ARTIFICIAL CROSSING POINT

CURVE FOR t$ -STATE

FIG. 2. Comparison between energy curves for the states having
parallel a,nd antiparallel spins.

ions with higher energy than the ordinary dissociation
products. This is a typical "correlation error" associated
with the independent-particle model since, in nature,
the strong Coulomb repulsion between the electrons
prevents the formation of negative ions with too
many electrons.

On the other hand, for the triplet state, the Pauli
principle will prevent the formation of negative ions,
and the energy will approach the correct value for
E=~. The general shape of the energy curves is
indicated in Fig. 2. Since the t4 curve has a wrong
asymptotic behavior for R= ~, there will always be
an artificial crossing point with the fg curve which
may lead to wrong conclusions about the general
magnetic properties of the system. This may prevent
a theory of ferromagnetism from being developed
within the framework of ordinary band theory. '

In discussing the infiuence of the correlation error,
it is also illustrative to look at the curve (Fig. 3) for the
correlation energy of the H2 molecule as a function of R.
This curve differs greatly in character from the one
obtained in the plasma-model" " in which the nuclear
positive charge is smeared out to a uniform background.
Since there are no discrete nuclei, there will be no
excessive negative ions, and the correlation energy is
simply considered as a function of the average electron
density going to zero at the low density limit. This
picture may be useful for discussing certain properties
of a metal but, in general, it is an oversimplification
of the actual problem.

BAND THEORY VERSUS VALENCE BOND METHOD

From our discussion, it is clear that neither band
theory nor valence bond method will ultimately solve
the difficulties in molecular and solid-state theory.
The collective electron theory for ferromagnetism""
has been successful from many points of view, but it
is essentially based on band theory and is therefore
subject to the difficulties connected with the wrong
asymptotic behavior. ' Band theory is particularly
advantageous in connection with problems concerning
conductivity, but even here there are difFiculties in
connection with crystals like Nio which are good

'3 For a review, see E. C. Stoner, Repts. Progr. Phys. 11, 43
(1948);J. phys. radium 12, 372 (1951)."E.P Wohlfarth, .Revs. Modern Phys. 25, 211 (1953).

-Ecorr

eV

l. 14 1.O6
I
I

I

R

BLOCH FUNCTIONS (MO-LCAO) 8.494 ev
7 ~ 737 ev

Iy HF
I/
tI

I
I

I
I

/
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(COULSON-FISCHER 1949)

FIG. 3. Correlation energy of hydrogen molecule as a function of
internuclear distance R.

In solid-state theory, the overlap problem is of
particular importance, since the inclusion of the overlap
integrals in the expectation values of the fundamental
physical quantities leads to di~erg&zg numerators and
denominators. ' In the theory of ferromagnetism, this
led also to a "nonorthogonality catastrophe, ""which
has only been partly removed. ""Today it is clear
that there is no "catastrophe. " All expectation values
are definitely unique and finite, even if their explicit
form is not yet fully known. "A great deal of research

"N. F. Mott, Proc. Phys. Soc. (London) A62, 416 (1949)."S.Schubin and S. Wonssowsky, Proc. Roy. Soc. (London)
A145, 159 (1934); Phys. Z. Sowjetunion 7, 292 (1935); 10, 348
(1936);S. Wonssowsky, Fortschr. Physik 1, 239 (1954)."L. Pauling, Proc. Roy. Soc. (London) A196, 343 (1949);
Physica 15, 23 (1949};C. A. Coulson, Proc. Intern. Conf. Theoret.
Phys. , Kyoto and Tokyo, Japan 629, (1953).

2' J. C. Slater, Phys. Rev. BS, 509 (1930}."D. R. Inglis, Phys. Rev. 46, 135 (1934).
~ j'. H. Van Vleck, Phys. Rev. 49, 232 (1936).
3' Y. Mizuno and T. Izuyama, Progr. Theoret. Phys. (Kyoto)

22, 344 (1959).

insulators having incompletely filled bands. " Since
band theory is further subject to a large correlation
error, one has to use a great deal of caution in practically
all applications.

The valence-bond method or the Heitler-London-
Heisenberg scheme has perhaps a more favorable
starting point, since a great deal of correlation seems
to be automatically included. Among other things, the
method leads to a correct asymptotic behavior for
separated atoms, which is essential for any theory of
magnetic properties. Most theories for ferromagnetism
and antiferromagnetism have so far been based on
Dirac's vector model, where the basic Hamiltonian is
derived under the assumption that all orbitals are
strictly orthogonal. This assumption seems unfortu-
nately to prevent a correct treatment of bonding or
magnetism, unless polar states are included, which is
seldom the case. Also in the theory of conductivity,
the polar states are quite essential. " Even more
thorough treatments of the cohesive properties of
solids have been given along these lines. "The problem
of including overlap or polar states is by no means
fully solved.
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remains hence 'to be done in connection with this
problem.

with D. For the expectation value of the energy, one
obtains

COMBINATION OF BAND THEORY AND
VALENCE BOND METHOD

s~s P' —k (k+1)j
(2S+l)O

LS(S+1)—k(k+1))
(22)

which fulfills the relation O'=O. A detailed theory for
such projection operators has been developed. " If the
Slater determinant is denoted by D, the wave function
('s+"0 in our generalized Hartree-Fock scheme is
hence defined by the formula

(2s+1)@—(2s+1)OD (23)

From many points of view, it seems desirable to
combine the obvious advantages of the band theory
and the valence bond method, and this can be done by
generalizing the former to include a certain amount of
correlation.

The large correlation errors in the conventional
Hartree-Fock approximation mentioned previously
depends essentially on the fact that pairs of electrons
of opposite spins are forced together in doubly filled
orbitals. This pairing goes back partly to the classical
formulation of the Pauli principle, partly to the fact
that this procedure permits a simple construction of
Slater determinants as pure spin states. One can
therefore remove part of the defects coming from
correlation by /etting electrons with different spies occupy
different orbitals in space, so that they can get a chance
to avoid each other. For a detailed description of this
idea, the author refers to some recent papers in
reference 32.

It is clear that, if one permits "different orbitals for
different spins, " the corresponding Slater determinants
will no longer be pure spin functions but mixtures of
components associated with different spins. In the new
scheme, the total wave function witt be approximated by
the component of the Stater determinant which has the

spin desired. The component of multiplicity (2S+1) is
selected by a "projection operator" of the form

f@*H.P(dx) J'D*H.,OD(dx)
(H.,).„=

J'~*+(dx) J'DeOD(dx)

P;z cose P +——sing

f,zz= cose lt —sing. f;",
(25)

which are semilocalized so that electrons with opposite
spins get a possibility to avoid each other. We note
that the orbitals of type I and II are overlapping for
the same j value, J'f;zf, zzdv=cos20, but otherwise
orthogonal. As an example, we will consider the six
orbitals connected with the benzene problem (See
Fig. 4). Only a single parameter 0 is involved, and one
obtains the following special cases of orbitals:

8=0, bonding Bloch orbitals
(ordinary band theory)

0=45', purely alternant orbitals
g=90', antibonding Bloch orbitals

(upper half of the band).

where one has used the turnover rule and the relation
O'=O. The variation principle b(H)=0 leads to the
best possible density matrices p~ and p or to the
corresponding best spin-orbitals. "The simple applica-
tions carried out so far show that about 85'Po of the
total correlation error can be removed in this way.

For a solid-state system, the solution of the extended
Hartree-Fock equations is a very complicated problem,
and one has probably to be satisfied with approximate
solutions for quite some time. The alter@ant molecular-
Orbit'ul me/hod" is an approximate device for evaluating
p+ and p or the corresponding orbitals in a molecular
or solid-state system of alternant character. The method
is based on the fact that, by using a single parameter 0,
a suitable linear combination of a bonding orbital f, ,
and a corresponding anti-bonding orbital P;" one can
construct basic orbitals

If the basic spin-orbitals fz, ps, , ltsj in D are
subject to a linear transformation, the wave function
+ will be changed only by a constant. Since the pro-
jection will affect only the spin functions, it is clear
that + will depend only on the two space-density
matrices p~(rz, rs) and p (rz, rs) which are associated

jn

j"=+2
Conventional
nFermi surface"

antibonding

V V V
onding

j=0

s2 P. O. Lowdin, Nikko Symp. Mol. Phys. (Maruzen, Tokyo)
13 (1954); Phys. Rev. 97, 1509 (1955); Proc. 10th Solvay
Conference, 71 (1955); Advances in Phys. 5, 1 (1956); Advances
in Chem. Phys. 2, 207 (1959).

+ P. O. Lowdin, Phys. Rev. 97, 1509 (1955); Proc. Paris
Symposium Molecular Quantum Mechanics, 23 (1958);Technical
Note 12, Uppsala Quantum Chemistry Group, Uppsala, Sweden
(1958); H. McIntosh, Technical Note 19, Uppsala Quantum
Chemistry Group (1958).

j' = 0

N=6 Alternant molecular orbitals

Fio. 4. Ordinary and alternant molecular orbitals for the
benzene molecule.

'4 P. O. Lowdin, Ann. Acad. Reg. Sci. Upsaliensis 2, 127 (1958).
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TAN.E II. Schematic survey of different approaches to solid-state theory.

Property

Cohesive and elastic properties

Sand theory

Large energy correlation
error; wrong asymptotic
behavior of energy for
separated atoms.

Valence bond theory

Large energy error at
equilibrium, but correct
asymptotic behavior for
separated atoms.

Combined approach:
"different bands for

different spins"

Small energy error at
equilibrium; correct
asymptotic behavior for
separated atoms.

Conductivity Concept of conduction
band simple and strik-
ing, but remarkable
exceptions (NiO).

Complicated approach
with polar states of
main importance.

Seems to offer a favorable
starting point for
research.

Magnetic properties
(ferromagnetism and
antiferromagnetisrn).

Basis for collective elec-
tron theory; unbalanced
treatment of parallel
and antiparallel spins;
artificial crossing point
of energy curves.

Most treatment based of
Dirac vector model
oversimplified, since
nonorthogonality
neglected. Necessity to
take overlap or polar
state into account.

Balanced treatment of
parallel and antiparallel
spins; no artificial
crossing point of energy
curves. Seems to offer
a good starting point
for future research.

Main advantage Offers a simple and visual
physical picture of
electronic structure of
a solid. No nonortho-
gonality problem
involved.

Offers a simple chemical
picture of a solid
connected with valence
concept. Includes auto-
matically certain
correlation effects.

Offers a simple and visual
physical picture of a
solid. Includes still a
large amount of
correlation effects.

Main disadvantage Insufhcient as basic
theory, because of
neglect of correlation
effects.

"Nonorthogonality
catastrophe"-necessity
to include overlap or
polar states. Approxi-
mate linear dependencies
between basic orbitals.

Nonorthogonality of
"orbital pairs" requires
a careful mathematical
study.

The electrons are permitted to avoid each other by
assigning n spin to orbitals of type I and P spin to
orbitals of type II. The best value of 0 is then deter-
mined by minimizing the energy given by formula (24).
In the benzene case, Itoh and Yoshizumi35 obtained
0=23' and a removal of 85% of the previously known
correlation error.

Of particular importance is the asymptotic behavior
for separated atoms, in which case 0 approaches 45'
and one obtains purely alternant orbitals which give a
description of the system closely analogous to the
valence bond method. For 0=45', orbitals of type I
and II are strictly orthogonal, and formula (24) takes
the simple form

(H.,),„= D*EID(dx)

25(5+1)—1V e'
jI,kII —kII,jI), (27)E' && rg2

"T. Itoh and H. Yoshizumi, J. Phys. Soc. Japan 10, 201
(1955); J. Chem. Phys. 23, 412 (1955); Busseiron Kenkyu No.
83, 13 (1955).

where the latter term goes to zero for separated atoms.
Since there is no accumulation of negative ions, the
energy curve gets a correct asymptotic behavior.
Hence the approach gives a generalization of band
theory, "different bands for different spins, " which
has taken over one of the main advantages of valence
bond theory of particular importance for treating
magnetic properties. Applications to the linear chain
and conjugated systems are in progress in Uppsala
(Pauncz, de Heer, and Lowdin), and after a treatment
of free electrons in a box, applications to the alkali
metals are planned. In connection with the explanation
of the alternating spin densities in odd alternant
hydrocarbon radicals, the approach has recently proven
to be quite successful. '" Apparently the idea has also
influenced Anderson's new theory of superexchange. "

The concept itself will influence the theory of
conductors and semiconductors and the treatment of
cohesive, elastic, and magnetic properties. It provides
a simple one-parameter method for dealing with at
least the main part of the correlation effects. It seems
hence to be a very promising starting point for intensi-
fied research on the basic problems of solid-state

' R. Lefebvre, H. H. Dearman, and H. M. McConnell, J. Chem.
Phys. 32, 176 (1960).

37 P. W. Anderson, Phys. Rev. 115, 2 (1959).



EXCHANGE, CORRELATION, AND SP I N EFFECTS

theory, particularly since the general idea of using
"diGerent orbitals for different spins" is by no means
limited to alternant systems.

Jt'tote added in, proof: A numerical investigation oi
the direct exchange of 3d electrons based on the
Heisenberg exchange integral has been reported by
R. Stuart and W. Marshall, Phys. Rev. 120, 353 (196O).
A similar investigation based on the more exact

de6nition of the exchange integral presented here has
been carried out by A. J. Freeman and R. E. Watson
Theory of Direct Exchange ie Ferromagnetism (available
in preprint; to be published).

The two papers on the application of the alternant
molecular orbital method to the linear chain by Pauncz,
de Heer, and LOwdin has now been accepted for
publication in J. Chem. Phys.

REVIEWS OF MODERN PHYSICS VOLUME 34, NUM BER 1 JANUARY, 1962

'. .'. ieory oI: .V. :agnetic .. roj&erties oI: .V. .o..ecu. .es wit. x
. . ar1ljcu. .ar .~ mj&. crasis on t.xe . ;. .yc rogen .V. .o..ecu. .e

H. F. HAMEKA

Departmemt of Chemistry, The Johns Hophims University, Baltimore, Maryland

I. INTRODUCTION

&~IJRING the last decade a considerable amount of
work has been reported on the calculation of

molecular diamagnetic susceptibilities and of proton
shielding constants. Although there is not much
resemblance between these two quantities from an
experimental point of view, their calculations show

many points of similarity and it is therefore profitable
to consider the theories of both phenomena simul-

taneously. The theoretical value of a molecular dia-
magnetic susceptibility x may be derived from a study
of the interaction between the electronic motion in the
molecule and a homogeneous magnetic field H, whereas
a theoretical determination of a proton shielding
constant cr involves a calculation of the interaction
between the electronic motion, a homogeneous mag-
netic field H, and an infinitesimally small magnetic
dipole p at the position of the proton. Widely diferent
methods for calculating these interaction terms have
been suggested. The present paper gives a critical
evaluation of the various approaches and investigates
whether there are any connections between them. In
particular we wish to discuss a few questions that are
connected with calculations of x and 0 from gauge
invariant atomic orbitals that were either overlooked
or not satisfactorily answered in previous work.

A necessary condition that has to be imposed on
calculations of molecular magnetic properties is that
they lead to correct, or at least reliable, numerical
results. Therefore it is necessary to study not only the
general theory but also the numerical applications.
However, we do not wish to obscure the main points
of the argument by many tedious numerical calculations,

*Research supported by a grant from the U. S. Army Re-
search Office (Durham) to The Johns Hopkins University.

so that we will take the hydrogen molecule as a basis
of our discussion. This follows the customary trend in
the calculations where each method is usually tested by
applying it to the hydrogen molecule and extended to
more complicated systems only after a satisfactory
result has been obtained for the simple case. At least
a qualitative discussion of the question as to whether
each calculation for hydrogen can easily be extended
to larger molecules is included in this paper.

We discuss the theory of diamagnetic susceptibilities
first. This has the same basic problems as are en-
countered in calculations of 0- but lacks some additional
complications.

The various theories on diamagnetic susceptibilities
and magnetic shielding constants are often subdivided
into three sets, namely (1) those that are derived by
means of perturbation theory, (2) those that are based
on applications of Ritz' variational principle, and (3)
those that make use of additional experimental in-
formation connected with the rotational magnetism
of the molecule. It is shown that a distinction between
the first two sets is artificial because all results may be
derived from variational methods.

First we give a general survey of the various varia-
tional methods, next we investigate some questions that
are connected with calculations from gauge invariant
atomic orbitals, and after that we discuss the connection
between diamagnetic susceptibilities and rotational
magnetism.

II VARIATIONAL METHODS

We are interested in finding the lowest eigenvalue
I'0' of the equation

KopC =EC,


