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This result is to be compared with the direct dif-
ferentiation of (16):
& = 2on (/B = B) — X\ vilii/ (Bx — E)* .
(B9)
Equating those terms in (B9) and (B8) which de-
pend on the energy in the same way yields
1= (4mR*/B*) 25 viva/ By — E)) (B10)
(v3)’ = Rdyi/dR = (2b — 1)y} + 2CmR*/1’)
X [=7% + 203 — V) Zhvi/ (B — B,
(B11)
BY = RdE,/dR = 2mR*/h*)(V — E)vi. (B12)

The sum rule (B10) appears to be a new one and is
casily verified explicitly for the case of no potential
(V=0b=0).

It is interesting to note that in the one-level
approximation we can use (B11l) to arrive at the
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natural boundary condition numbers. Then (B11)
may be approximated by

()" = (2b — )7 (B13)

because the term proportional to ~3, in (B11), is
small unless y5 is an appreciable fraction of the sum
rule limit. If we now want the total width to be
independent of the matching radius we have

[
T, =0
= 2Py, + 2P.(vi) . (B14)

Using the definition, (58) of the penetrability (B14)
leads at once then to the boundary condition number,
(64), required to make the shift function vanish.

The above derivation of (v})’ and (£}) is not
valid if the boundary condition numbers are energy
dependent. As we noted in the text, the ‘“natural”’
boundary condition numbers are usually only
moderately dependent on the energy: for most
purposes the low-energy limit (the value of b, which
makes S. vanish at zero energy) suffices.
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UGENE Wigner’s sixtieth birthday coincides,
within two weeks, with the twentieth anni-
versary of the first fission chain reaction on De-
cember 2, 1942. Wigner’s influence on the subsequent
development of chain reactors has been extraor-
dinary. There are very few aspects of the current
theory that were not outlined by him nor very few
of the major technological developments of the last
20 years that cannot be traced to his early ideas.
Wigner’s major contributions to chain reactors
occurred in three separate periods: First, from 1940
to 1945, during the last three years of which he was
head of the theoretical group at The University of
Chicago Metallurgical Laboratory; 1946-47, when
he was research director of what is now the Oak
Ridge National Laboratory; and 1952, when he was
a full-time adviser to the Du Pont Company during

*Qperated by Union Carbide Corporation for the U. S.
Atomic Energy Commission.

the design of the Savannah River heavy water
plutonium production reactors.

Chain reactors are heavy engineering devices;
they also require, for their design, a certain theo-
retical and physical sophistication. Wigner’s great
influence on their development, both at the Metal-
lurgical Laboratory and since, can be traced to the
facility with which he could pass back and forth
between engineering and physics—from a discussion
of the probable distribution of energy levels in U?3®
to a critical examination of the blueprints of the
concrete foundations for the Hanford reactors, or
from a group-theoretical argument in transport
theory to the design of aluminum fuel elements!

The full force of Wigner’s skill and energy was
particularly well demonstrated at the Metallurgical
Laboratory during the fall of 1942 in the crucial
arguments that resulted in the decision to concen-
trate on water-cooled, rather than on gas-cooled,
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plutonium production reactors at Hanford. Origi-
nally, the project had planned to cool the plutonium
production reactors with helium. This decision
seemed obvious since only natural uranium was
available; the infinite multiplication factor would
therefore be so close to one that the reactor could
hardly tolerate a coolant which absorbed any neu-
trons, or so it was generally believed at the time.
Wigner was convinced, however, that even with fuel
consisting of natural uranium sheathed in aluminum,
the margin of reactivity was sufficient to allow water
as coolant and that, as large-scale plutonium pro-
ducers, the water-cooled systems were much better
than the gas-cooled. Such a conclusion required an
unusual combination of theoretical insight and
practical engineering judgment. Selling the water-
cooled system to the whole project in the face of its
prior commitment to gas cooling required a forceful-
ness and political skill which one could hardly, a
priori, have associated with the same man who
introduced group theory into quantum mechanics.
That Wigner was able to set the project on this path
probably saved a year in the project timetable, and
possibly, eventually shortened the war by a compara-
ble length of time.

THEORY OF CHAIN REACTORS

In this short review we shall describe the present
status of a few of the parts of the theory and the
technology of chain reactors which are particularly
associated with Wigner’s work. We assume that the
reader is generally familiar with the theory of neutron
chain reactors. We confine our review of theory to
four topics, to each of which Wigner has made major
contributions: the spectrum of the Boltzmann equa-
tion, neutron thermalization, thermal utilization,
and resonance absorption.

The Spectrum of the Boltzmann Equation

The linear Boltzmann equation governs both the
diffusion of neutrons and the transport of radiation.
In the latter context it has been the subject of ex-
tensive study by astrophysicists since the early part
of this century; much additional study has been
given the equation because of its application to the
theory and design of chain reactors. It is therefore
curious that one of the most central questions con-
cerning the linear Boltzmann equation—its spectrum
of eigenvalues and eigenfunctions—was not clarified
until the work of Wigner in 1959, and independently,

1E. P. Wigner, ‘“Mathematical Problems of Nuclear Re-
actor Theory,” in Proceedings of the Eleventh Symposium in
Applied Mathematics (American Mathematical Society, Prov-
idence, Rhode Island, 1959), Vol. 11, p. 89.
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of Case in 1960.2 Case’s considerations were based on
results found by Van Kampen for the collisionless
Boltzmann equation (Vlasov equation) which enters
the theory of plasmas.?

To understand the significance of the results of
Wigner and Case, we consider the simplest example
of the linear Boltzmann equation which describes
the transport of monoenergetic neutrons in plane
geometry, viz,

ay (xa”)

w2 () =§f_l¢(x,u')du'. (1)

Here, ¢(x,u) is the density of collisions per sec at
z of neutrons whose velocities make an angle, cos ™y,
with the x axis. The constant mean free path in the
diffusing medium has been taken as the unit of
length. All secondaries from either scattering or
fission are assumed to be produced isotropically and
at the same energy as the primary. ¢ is the number
of such secondaries produced per collision.

In an infinite medium the translation invariance
of (1) suggests solutions of the form /¢y (u). With
this assumption (1) becomes

+1
c

U= w/Now) =5 | 6. @

We normalize ¢,(u) so that the integral on the right

of (2) is unity. Then if we integrate over u, we obtain

the condition

1 = ¢\ tanh™ (1/)) 3)

on . This equation has just two real roots, == No. It
would appear from this simple procedure that
¢, (1) are all the solutions of the assumed form, but
a hint that this is not so is suggested by the spherical
harmonics solution of (1).

Suppose we set,

Vow) = 3 2

1=0

Yi(@)Pi(u) (4)
where the P; are Legendre polynomials. If we substi-
tute (4) into (1) and use some well-known properties
of the Legendre polynomials, we obtain the infinite
coupled set of equations for the ¢;:

I+1 dl//z+1(x) + l Ay (-’E)
2041 dx 20+ 1 dx

+ (@) = cbo(x)di0 .

(5)

2 K. M. Case, Ann. Phys. 9, 1 (1960).
3 N. G. Van Kampen, Physica 21, 949 (1955).
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Approximations of various orders to this set can
be obtained by setting ¢,(x) = 0 forl > L. Again we
look for solutions of the form ¢,(x) = g:e*/*. In any
odd order L we find 1(L + 1) pairs of oppositely
signed roots & N\ of the following description: one
pair which tends rapidly with increasing L to the
solutions = Ao of (3) and %(L — 1) pairs for which
[A| < 1. To each root A there corresponds an angular
distribution ¢»(u) determined by the coefficients g..
As L — « the spectrum of \’s seems to approach the
two isolated values &= \o and a continuous spectrum
on the interval — 1 < A < 1.

Wigner first pointed out that there were solutions
of (2) corresponding to just such a- continuous
spectrum. These solutions are singular and are
expressible as Schwartz distributions. In fact, one
can deduce from (2)

A
o (k) =%P -

p 4+ {1 — ex tanh™ A} — ),
(6)

where the P denotes the Cauchy principal value and
6 denotes Dirac’s delta function. If A does not lie
on the real axis between — 1 and + 1, the delta
function disappears since — 1 < u < + 1, and the
principal value becomes an ordinary value. In such
a case A can only equal == Ao, the two roots of (3),
and the corresponding ¢, are regular. On the other
hand, for every other value of A on the real axis
there is a singular solution ¢)(u) of the form (6).
(The value of the coefficient of the delta function is
determined by the requirement of normalization.)

About a year after Wigner’s observation, Case,
following a method invented by Van Kampen in
connection with problems of plasma oscillations,
also discovered the continuous spectrum. In addition,
he proved an all-important completeness theorem
whose content is as follows: If — 1 < a < 8 < 1, the
singular solutions ¢,(u) corresponding to that part
of the continuous spectrum o < N < 3 are complete
for functions ¢¥(u) on the interval « < u < B; if
a = —1 and/or 8 = +1, the set ¢r(u), a <N < B,
must be augmented by the regular solution ¢_» ()
and/or the regular solution ¢, (k).

Case’s completeness theorem allows the solution
of (1) with an arbitrary boundary condition on some
plane, say z = 0, to be written as

V(@) = Aspan, (W)e™™ + A ¢, (w)e™
+1

+ ] A& e an (7a)
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$O) = Arbn, () + 462,60 + | A0S WA,
(7b)

In cases where ¥(0,u) is completely specified on the
interval — 1 < u <1, the expansion coefficients
A, A_, and A(\) may be determined by use of
an orthogonality relation proved by Case. From (2)
and the normalization of ¢x(u) to unit integral over
the interval — 1 < u < + 1, Case has shown that

+1
/_1 udr ()on (w)dp = 0, X = N (8a)

+1
c c 1
e = Voo = 38 (55 = %)

(8b)

+1
[ v = Matn = vy, — 1< <1
(8c)
Ny = [(1 — extanh™ ) + —’r—f—ﬁ]. (8d)

As an illustration of these orthonormality rela-
tions, let us calculate the collision density ¢(x,u) due
to a plane, isotropic source 44(z) in an infinite
medium. ¥(z,u) now satisfies (1) with the source
term 18(z) added to the r.h.s. Integration across the
plane x = 0 shows that the angular distribution
there has a discontinuity given by

Y(O4,8) = ¥(0—w) = (2u)7 . ©)
For ¢(x,u) we choose
Y(ap) = Asn, (we™™
- f lA()\)qSA(y)e_’/)‘d)\, >0 (10a)
and
Y(aw) = —A g, (e
- f}a(x)@(p)e-x“dx, £ <0. (10b)

From (9) and (10) it follows that
2u)™ = Aspan, (0) + A dx, (1)

+1

+/ .4 (N (w)dN . (11)

Using the orthogonality relations (8) it is easy to find
As = (2Nou)™ (12a)
AQ) = @Ny) . (12b)
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Thus the desired solution is

—z/\o —z/\
Y(o,m) = % [ $2 g{;zf / m(“)e ],

z/\,

b, (m)e ™

lﬁ(x,p.) = 2 [ No_

Often ¢(0,u) is not specified over the whole range
— 1 < u <1, but rather on some smaller interval
a < u < 8. In such a case the expansion coefficients
cannot be found by use of the orthogonality relations.
An example of such a situation is furnished by Milne’s
problem. Here neutrons enter the half-space 0 <
< o at z = » and leave at x = 0. The collision
density ¢(z,u) we seek then satisfies (1) with the
further conditions

v(Ou) =0 >0 (14a)

‘/’(x}ﬂ) P, (:u)e ) x>1. (I‘Lb)

The general solution satisfying (14b) can be
written

Y(xu) = ¢, (M)Gm\" + A, (#)e_’/)“’

2/

+ [ A0awe (15)
(14a) then gives
o) = A, ) + [ ARG,
0<u<1. ()

The expansion coefficients are thus determined by
the expansion of ¢_, in terms of eigenfunctions with
non-negative N on the interval 0 < u < 1. The
relation (16), when written out more fully using the
explicit form of the ¢,, takes the form of a type of
singular integral equation for A (A) whose solution
has been considered at length by Muskhelishvili.
The analysis required is exacting and too long to
be included here, but Case has considered in detail
the various cases which arise in neutron transport
problems. In particular, he has calculated the im-
portant coefficient A, in Milne’s problem from
which the extrapolation distance can easily be
calculated.

In addition to the two problems mentioned above,
Case also considered in his original paper the more
general problem of a plane collimated source in an
infinite medium and the problem of the albedo of a

4N. I. Muskhelishvili, Singular Integral Equations (P.
Noordhotf N. V., Groningen, Holland, 1953), 2nd ed.
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x>0 (13a)

0 _(]S_)\(}L)G_Z/)\
Ny

~1

ﬁ] z<0. (13b)

half-space to a collimated neutron beam. Two other
workers, Zelazny and Kuszell,> have applied Case’s
method to the problem of two adjacent half-spaces.
These same authors have also generalized the method
for two groups of neutrons and discussed the albedo
of a half-space and the criticality of a slab on this
basis.® Another generalization of Case’s method to
anisotropic scattering has been carried out by Mika’
who solves Milne’s problem and the related problem
of two adjacent half-spaces and also finds the colli-
sion density due to a plane, collimated source any-
where in a half-space, or on the boundary of two
half-spaces. Finally, the continuous spectrum of the
Boltzmann equation in spherical geometry has been
investigated by Kofink.®

The discovery of the continuous spectrum closes
a very embarrassing gap in transport theory. With
the continuous spectrum and Case’s expansion
theorems, problems in transport theory can be
handled much like the problem of the vibrating
string, i.e., by expansion in eigenfunctions. It is too
early to say how many hitherto intractable problems
will be conquered by application of Case’s expansion
theorems. In any case, the method, being so trans-
parent in principle, robs transport theory of some of
its mathematical complexities and ought to have
strong heuristic appeal.

Thermalization of Neutrons

If an ensemble of neutrons is placed in an infinite,
nonabsorbing medium it will after a time reach a
state of thermodynamic equilibrium. In this state the
ensemble will have a Maxwellian distribution of
velocities whose temperature is that of the surround-
ing medium. If the lifetime of the neutrons against
leakage and absorption in a finite, absorbing medium
is long compared to the time required to establish

5R. Zelazny and A. Kuszell, Polish Academy of Sciences,
Institute of Nuclear Research report PAN-219/IX, March
1961 (unpublished).

6§ R. Zelazny and A. Kuszell, Polish Academy of Sciences,
Institute of Nuclear Research report PAN-226/IX, May
1961 (unpublished).

7J. R. Mika, Nuclear Sci. and Eng. 11, 415 (1961).

8 W. Kofmk, Oak Ridge National Laboratory report
ORNI-3216 (November 1961) (unpublished).
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thermodynamic equilibrium, this Maxwellian distri-
bution of velocities will still be an adequate approxi-
mation. Nevertheless, the steady-state distribution
of velocities even in the presence of weak leakage
and absorption will deviate somewhat from the
Maxwellian distribution.

If the mechanism of energy exchange between the
neutrons and the medium is known, the Boltzmann
equation which describes the velocity distribution
function may then be solved explicitly. The first
calculation of this type was carried out by Wigner
and Wilkins.? These authors assumed the surround-
ing medium to be a gas of protons in thermodynamic
equilibrium. The spatial extent of the gas was taken
to be infinite and the entire space dependence of the
problem suppressed. The thermodynamic equilibrium
of the neutrons was perturbed by the presence of a
1/v absorber, and steady-state solutions, asymptotic
to suitably normalized slowing-down spectra, were
sought.

The particular case chosen for study by Wigner
and Wilkins, viz., a gas of protons, is a fortunate one;
for it the integral equation form which Boltzmann’s
equation takes can be reduced to a Ricatti differen-
tial equation and solved numerically with a minimum
of labor. This reduction to a differential equation
cannot be carried out for a gas of atoms of atomic
weight greater than one, but Wilkins'® has shown that
if the gas is composed of very heavy atoms of mass
M, the integral Boltzmann equation may be con-
sistently approximated to terms of order M-! by a
second-order linear differential equation.

Wilkin’s differential equation can be written

22,
i {ET

d’¢
dE?

d¢
ar

+E + d)(E)} = Zuwp(B) (17)

where ¢(F) is the neutron flux per unit energy in-
terval at K, T is the temperature of the heavy gas
times Boltzmann’s constant, and =, and Z, are the
macroscopic absorption and scattering cross sections
of the heavy gas, respectively. Equation (17) has
been studied exhaustively by several authors.* With
the term — DV2¢ added to the r.h.s. to account for
the effects of neutron diffusion, it constitutes a
versatile and popular tool for exploring the spatial

9 E. P. Wigner and J. E. Wilkins, U. S. Atomic Energy
1C(ilmnr;ission declassified report AECD-2275 (1944) (unpub-
ished).

10 J. E. Wilkins, Chicago Metallurgical Laboratory report
CP-2481 (1944) (unpublished).

I H. Hurwitz, Jr., M. S. Nelkin, and G. J. Haetler,
Nuclear Sci. and Eng. 1, 280 (1956); E. R. Cohen, 1bid., 2, 227
(1957); L. De Sobrino and M. Clarke, Jr., tbid. 10, 388 (1961).
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variation of the thermal-neutron spectrum in re-
actors.

Crystal Effects and Chemzical Binding

More realistic calculations of neutron energy
spectra in reactors require knowledge of the differen-
tial cross section d?s/dE dQ in energy and angle in the
thermal range. In this energy range crystal effects
and the effects of chemical binding are important.
For this reason, the state of aggregation of the sur-
rounding medium plays a decisive role, and the study
of neutron thermalization may be able to shed some
light on the properties of solids and liquids.

The study of the scattering of slow neutrons by
chemically bound nueclei is greatly simplified by the
introduction of Fermi’s pseudopotential. According
to Fermi, at low energies the scattering of slow
neutrons by matter can be calculated in the Born
approximation using an interaction potential of the
form

2

Vi) = ;E% draid(r — 1),

(18)
where m; is the reduced mass of the neutron and the
struck nucleus, a; is the scattering length of the
struck nucleus, and r; is its position. The sum runs
over all nuclei present.

Even after introduction of the pseudopotential
approximation, the calculation of d%/dE dQ is a
complicated matter. Many such calculations have
been carried out with varying degrees of approxima-
tion. Five materials of central interest in reactor
design have been treated in these calculations:
graphite, beryllium, ordinary water, heavy water,
and zirconium hydride.

In graphite and beryllium the motions of the indi-
vidual nuclei are represented as superpositions of
quantized simple harmonic oscillations of the crystal
lattice (phonons). If the frequency distribution f(w)
of these phonons is known, then, in principle, d*s/dE
dQ can be calculated. One commonly used frequency
spectrum is that introduced by Debye in the theory
of specific heats of crystals, viz., a quadratic de-
pendence of f(w) on w up to & maximum. The Debye
spectrum has been used by Singwi and Kothari,** by
Bhandari,* and by Nelkin' in studies of Be and BeQ
crystals. More detailed frequency distributions based
on the nature of the crystal lattice and the low-
temperature behavior of its specific heat have been

( 127, 8. Kothari and K. S. Singwi, J. Nuclear Energy 5, 342
1957).

13 R. C. Bhandari, J. Nuclear Energy 6, 104 (1957).

14 M. S. Nelkin, Nuclear Sci. and Eng. 2, 199 (1957).
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Fig. 1. The theoretical slowing-down power of graphite at
300° K plotted as a function of incident neutron energy and
compared with the same quantity for a free gas of carbon a-
toms [results of D. E. Parks quoted by M. S. Nelkin, “Neu-
tron Thermalization,”” in Proceedings of the Eleventh Sympos-
wum i Applied Mathematics (American Mathematical Society,
Providence, Rhode Island, 1959), p. 20].
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used by Schofield and Hassitt'® in a calculation of
d?s/dE d2 in graphite. Their results show quantita-
tively how the crystalline binding of the moderating
nuclei slows the thermalization of neutrons in graph-
ite compared to a gas of carbon atoms. This problem
was first studied in 1942 by Teller and Metropolis'®
who calculated the rate of heat transfer between a
neutron gas at a temperature 7' and a graphite
lattice at 300°K from the curve of specific heat vs
temperature for graphite. Shown in Fig. 1 are the
slowing down powers of the crystal atoms and the
free atoms at 300°K calculated by D. E. Parks using
Schofield and Hassitt’s model. For the higher ener-
gies the gas is the better moderator; therefore, other
things being equal, we expect the thermal-neutron
energy spectrum in the crystal to be harder. This
expectation is borne out by calculations of the
neutron spectrum; shown in Fig. 2, for example, are
typical calculated spectra in a mixture of carbon and
boron atoms.

The modes of crystalline motion in which large
portions of the crystal are coherently excited (‘“‘acous-
tical modes’), such as those described by Debye’s
frequency distribution, are not the only kinds of
motion which may occur. In zirconium hydride, for
example, there is another very important mode of
motion which can be roughly described as follows:
In the lattice of zirconium hydride each proton lies
at the center of a tetrahedron of zirconium atoms.

15 P, Schofield and A. Hassitt, Proceedings of the Second
United Nations International Conference on the Peaceful Uses
of Atomic Energy (United Nations, New York, 1959), Vol. 16,
p- 217; see also A. Sjolander, Arkiv Fysik 14, 315 (1958).

16 . Teller and N. Metropolis, Chicago Metallurgical
Laboratory Report CP-387 (December, 1942) (unpublished).
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F1a. 2. The flux spectra of neutrons thermalized in mix-
tures of crystalline graphite and boron and in a free gas of
carbon atoms and boron; ratio of carbon atoms to boron
= 1890 in both cases [results of D. E. Parks quoted by M. S.
Nelkin, ‘“Neutron Thermalization,” in Proceedings of the
Eleventh Sympostum in Applied Mathematics (American
Mathematical Society, Providence, Rhode Island, 1959), p. 20].

Around this position it is capable of executing simple
harmonic oscillations with discrete energies differing
by hw = 0.13 eV. These “optical” modes of motion
will very strongly influence the thermal-neutron
spectrum of a reactor containing a lot of zirconium
hydride. What happens is this. High-energy neutrons
are slowed down into the kinetic energy range from
zero to hiw with an essentially uniform energy spec-
trum. Once below hw, these neutrons cannot ex-
change energy with the zirconium hydride lattice by
excitation of the optical modes. Thermalization may
proceed by excitation of acoustical modes but this
may be slow compared to the processes of leakage
and absorption. In any assembly with strong absorp-
tion or leakage, therefore, the thermal-neutron
spectrum may depart considerably from a Maxwell
spectrum. This can be clearly seen in the energy
spectra measured by Beyster et al.'” in Fig. 3. The
lower spectrum, corresponding to no leakage and
0.49 barns of 1/» absorber per hydrogen atom, is very
close to what would be calculated for a free gas of
protons and is nearly Maxwellian below about 0.1
eV. The upper curve, corresponding to a relatively
light poisoning of 4.95 b per atom, shows a sharp
break in the vicinity of 0.13 eV which is due to the
strong moderating influence of the first optical level.
The departure from a Maxwellian spectrum in this
case is large; in cases of equal poisoning in water the

17J. R. Beyster, J. L. Wood, W. M. Lopez, and R. B.
Walton, Nuclear Sci. and Eng. 9, 168 (1961).
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F1e. 3. Flux spectra of neutrons thermalized in zirconium
hydride [see reference 17].

spectrum is much less distorted and shows no break
at all.

A fraction of the protons in ZrH given by
exp(— hw/T) will be in the first excited state of
harmonic motion. These protons may be de-excited
by collision with neutrons of energy less than #w,
and the neutrons will have their energy increased by
hw. If the reactor temperature increases, the proton
population of the first excited state of harmonic
motion increases, and by energy transfer to the cold
neutrons depletes their number. This process can be
used to achieve a very high stability against temper-
ature changes; the TRIGA reactor is based on this
principle.

Time Behavior; Diffusion Cooling

Since the early experiments of von Dardel® in
1954, it has been recognized that the study of the
asymptotic time behavior of a pulse of neutrons
injected into a block of material can give important
information on the thermalization process. If the
block of material can be assigned a unique buckling
for thermal neutrons, the asymptotic time behavior
of a pulse can be written as ¢, where the decay
constant A is given by

N =02, + DB* — CB* + - - - . (19)

2, is the macroscopic absorption cross section of the

18 G. F. von Dardel, Trans. Royal Inst. Technol., Stockholm,
Number 75 (1954); see also, Phys. Rev. 94, 1272 (1954).
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F1a. 4. The asymptotic neutron density spectrum at the
center of a (5 cm)-water cube. Full curve: Maxwellian
velocity distribution with moderator temperature [see refer-
ence 20].

block, here taken to vary as 1/v, v being the neutron
velocity, o = (87/xm)*?, B? is the buckling, and
D, is the diffusion constant averaged over a Max-
wellian flux distribution, ET-2 exp(— E/T).

The coefficient C of the B* term is the so-called
“diffusion cooling coefficient.”” The presence of a
B* term in the expression for A was first explained by
von Dardel and SjOstrand.’® They hypothesized a
shift of the asymptotic spectrum in a pulsed block
toward lower energies due to preferential leakage of
high-energy neutrons in a pure Maxwell spectrum.
Recently this spectral shift has been observed directly
by Beckurts® in a small cube of water (see Fig. 4).

Since the diffusion cooling of the Maxwell spec-
trum competes with the upscattering of the colder
neutrons by the moderator, it is to be expected that
C will depend in some way on the energy exchange
process between the neutrons and the moderator.
Nelkin?! has shown by a variational technique that C
is related intimately to the reciprocal of M., the
second moment of the energy exchange kernel

19 G. F. von Dardel and N. G. Sjostrand, Phys. Rev. 96,
1245 (1954).

20 K. H. Beckurts, Nuclear Instr, & Methods 11, 144 (1961).

21 M. S. Nelkin, J. Nuclear Energy 8, 48 (1958).
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Z,(li — E') of neutrons in a Maxwell distribution.
Nelkin’s relation is

_ (B4 %)°20D5

C M, )

(20)

where \..() has been taken proportional to £ and
M, is given by

M, = (T)*| dE / dE'M (E)
0 0

X Z.(E —E)(E — E")?. (21)

In water the experimental data on C are in ex-
cellent mutual agreement and yield a value of about
(4 + 1) X 10* em?/sec;*® Nelkin has calculated a
value of (3 == 1) X 10? em?/sec.?? In crystalline ma-
terials the situation is far less satisfactory—not only
do various reported experimental values of C disa-
gree,?® but the values of A reported by different
experimentalists for the same block of Be differ.
Furthermore, some authors have recently shown that
reported values of A sometimes violate rigorous limits
that can be placed on them.?® De Saussure? hypothe-
sized that some of these discrepancies might have
their origin in a failure to reach an asymptotic time
behavior described by a single exponential in the time
available for observation of the decaying neutron
spectrum. According to him, some of the neutrons
are trapped in the high elastic peaks of the transport
cross section at energies where the inelastic cross
section may be small. In small assemblies, where the
over-all leakage probability is comparable to the
inelastic scattering probability out of the trap, de
Saussure suggests that the instantaneous decay con-
stant may keep decreasing until the last neutron
leaves the assembly. Thus, owing to the finite num-
ber of neutrons in the initial pulse, an asymptotic
spectrum may never be achieved. The trapping of
neutrons in the peaks of the transport cross section
should also influence the asymptotic energy spectrum
in small assemblies, leading to an increased neutron
population in the neighborhood of the peaks. This
can be seen directly from calculations made by Jha,?
whose results are displayed in Fig. 5.

22 M. 8. Nelkin, Phys. Rev. 119, 741 (1960).

2 3. de Saussure, “The Neutron Asymptotic Decay Con-
stant in a Small Crystalline Moderator,” presented at the
Brookhaven Conference on Neutron Thermalization, April
30-May 2, 1962 (unpublished).

24 (3. de Saussure, Nuclear Sci. and Eng. 12, 433 (1962).

( % Sj 8. Jha, J. Nuclear Energy, Pt. A, Reactor Sci. 12, 89
1960).
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F1g. 5. Flux spectrum in cubes of beryllium of different
sizes: A in a 23-cm cube; B in a 35.5-cm cube; C in a 48-cm
cube; D in an infinite assembly [see reference 25].

Thermal Utilization in Lattices

The thermal utilization f of a reactor is defined as
the fraction of all thermal neutrons absorbed which
are absorbed in the fuel. Many calculations of f were
done in the design of the first uranium-graphite
reactors by Eckart, by Fermi and Weil, by Shockley
and Fisk, and by Wigner and Plass. In those early
days the thermal utilization was calculated on the
following simplified basis:

(1) The transport of neutrons was described by
elementary one-velocity diffusion theory, i.e., by the
P, spherical harmonics approximation.

(2) Spectral shifts in the moderator due to com-
petition between thermalization, leakage, and absorp-
tion were ignored.

(3) Thermal-neutron production was taken to be
uniform throughout the moderator and zero in the
uranium.

(4) The actual lattice cell was replaced by a
spherical or cylindrical “Wigner-Seitz”’ cell of equal
volume on whose boundary the normal derivative of
the flux vanishes.

Calculations of f based on approximations (1) to
(4) overestimate its true value by the order of 19,.
The main errors appear to arise (a) from the use of
elementary diffusion theory on the one hand and
(b) from neglect of the spectral shift in the moderator
on the other. Interestingly, the errors from these two
sources have opposite signs, (a) producing an over-
estimate and (b) an underestimate. Since the total
error is positive (a) is the larger of the two sources of
error, although (a) and (b) may be of the same order
of magnitude.
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Wigner and the group at Chicago, and Placzek and
the group at Montreal, were the first to try to im-
prove upon the use of diffusion theory by using the
L =3 and L = 5 spherical harmonics approxima-
tions to the Boltzmann equation. The resulting
calculations are too complicated to be carried out
literally, and numerical methods must be applied.
Many such numerical calculations have been carried
out both by the spherical harmonics method as well
as by other methods, e.g., Carlson’s S, method.?®

While the numerical solution of higher-order ap-
proximations to the Boltzmann equation is a feasible
matter, especially in light of the availability of
electronic computers today, a method combining the
simplicity of elementary diffusion theory with a much
enhanced accuracy is desirable. Such a method has
been found by Amouyal, Benoist, and Horowitz.?”

In the method of these authors a variant of one-
velocity transport theory is used; otherwise, assump-
tions (2) to (4) above are still taken as valid. The
explicit situation they consider is that of a cylindrical
fuel rod of radius a, surrounded by an annular cavity
of thickness ¢ — a centered in a cylindrical Wigner-
Seitz cell of radius b. They then define three im-
portant quantities: Py, the probability that neutrons
of a uniform, isotropic source in the moderator cross
the surface r = ¢; T'y, the probability that neutrons
entering the moderator at the surface r = ¢ do not
cross that surface again; and T, the probability that
neutrons leaving the moderator at r = ¢ are captured
in the fuel. If we denote by J, and J_, respectively,
the neutron currents crossing the surface r = ¢ into
and out of the moderator, and by @ the source
strength of thermal neutrons in the moderator, a
neutron balance over the entire cell then gives

eV’ — &) = Qn(V* — ) (1 — Py)

+ 2we] _To + 2mweJ . Th.  (22)
A neutron balance over the region r < ¢ gives
2wed _To = 2wed - — 2mwed ;. (23)
f is defined by
2_7[,0;]:}_‘9_
f = Q’n‘(()z — cg) . (24)

26 B. G. Carlson, Los Alamos Scientific Laboratory report
LA-1891 (1955) (unpublished); see also B. G. Carlson and
G. 1. Bell, Proceedings of the Second United Nations Inter-
national Conference on the Peaceful Uses of Atomic Emergy
(United Nations, New York, 1959), Vol. 16, p. 535.

21 A. Amouyal, P. Benoist, and J. Horowitz, J. Nuclear
Energy 6, 79 (1957).
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From these three equations it follows that

1 1 1

1, _ 1 1—-To
f TPy

(1 — P+ 1“1) . (25)
Iy

Amouyal et al. now note that the quantities I'; and
T's depend on the angular distributions of the neu-
trons crossing the surface r = ¢ into and out of the
moderator, respectively. In general, these angular
distributions will depend on the fluxes in the two
regions, which are in a sense what is being sought.
Amouyal et al. assume at this point that both of these
angular distributions are the same as the angular
distribution of neutrons escaping uncollided across a
plane from a semi-infinite, homogeneous, isotropic
source, i.e., the angular distribution is proportional
to the cosine of the angle the neutron velocity makes
with the normal.

With this assumption it is possible to relate I'; and
P; by use of the reciprocity theorem of transport
theory?®:

I = %L Zup 1.
Here V, is the volume of the moderator per unit
length, S, is the inner surface of the moderator per
unit length, and Z,. is the macroscopic capture cross
section of the moderator. An analogous relation holds
for Ty, viz.,

(26)

4
To = _go_ EOCPO

where V, is the fuel volume per unit length, Z,. the
fuel capture cross section, and P, the escape (non-
absorption) probability of neutrons from a uniform,
isotropic source in the fuel.

The greatest error in the use of diffusion theory
comes from the fuel region where the dip in the flux
is badly underestimated. In the moderator, on the
other hand, the flux is rather accurately described
by diffusion theory except in a small and unimportant
region near the fuel boundary. Amouyal et al. there-
fore prescribe that the calculation of P, is to be done
with diffusion theory. The boundary condition on the
flux at the cell surface is that its normal derivative
vanishes. At the inner surface of the moderator,
r = ¢, the boundary condition is that the linear
extrapolation distance N be that given by Davison
and Kushneriuk® for the surface of a purely absorb-

(27)

28 K. M. Case, F. de Hoffmann, and G. Placzek, Introduc-
tion to the Theory of Neutron Diffusion (U. S. Government
Printing Office, Washington, D. C., June 1953), Vol. 1.

29 B. Davison and S. A. Kushneriuk, Atomic Energy of
Canada Report M'T-214 (March 30, 1946) (unpublished).
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ing cylindrical hole of radius ¢. That this boundary
condition is correct follows from the fact that P, is
the probability of crossing the surface r = c.

The result for P, is

2 2 -1
P, = [1 + Eb°C + —b——'(—;‘i B3 J (28)

where « is the inverse diffusion length in the modera-

tor and
1f_e (z) 3, ¢ ]
Z[bz_czlog P 4+4W (29)

if kb < 1 as is usual.

Diffusion theory is hopelessly inadequate for
calculating P,. For this purpose Amouyal et al. avail
themselves of a method that depends for its success
on just those circumstances which invalidate diffu-
sion theory, viz., the fact that the fuel region is small
and the fuel strongly absorbing. The method is that
of multiple collisions. In its usual form the calculation
for P, is done by treating the first few collisions
exactly and assuming for the remainder that the
neutron source after the last collision is spatially
uniform. Thus,

C:

1 —Po= (1 —7)PY ++yPP1 — 4)P?®

oty -y PO

N X _ (1)
o IIP0 S0 o)
=1

1 — ~yP"
where v is the fraction of scattering in the fuel,
P® is the probability that neutrons from a uniform,
isotropic source that have had exactly n — 1 col-
lisions will also have an nth collision, and P® has
been taken equal to P® for n > N. For isotropic
scattering it can be shown that P+ > P® g0 that
(30) gives an overestimate of P..

When N = 1, (4) reduces to

1 —pWY
P, = 1———7_Pm

(31)
which is a particularly useful formula since P’ has
been tabulated by Case, Placzek, and de Hoffmann.??
This equation can, moreover, be derived from a varia-
tional solution of the transport equation and is there-
fore expected to be rather accurate. Comparisons of
it with N = 2 calculations done by Amouyal et al.
and exact calculations done by Stuart®® bear this out
for fuel rods of usual diameters.

Amouyal et al. have compared values of f for

30 G. W. Stuart, Nuclear Sci. and Eng. 2, 617 (1957).
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practical lattices with values found by Carlson’s Ss
numerical solution of the Boltzmann equation.
These comparisons show that the method of Amouyal
et al. reduces the error in f due to transport cor-
rections to the order of one-tenth of one percent, as
can be seen from Table L.

TaBrLE I. Typical values of f in a uranium-graphite
cylindrical lattice according to Amouyal et al.?

Diffusion
¢ (cm) theory Ss Amouyal et al.P
1.3 0.8849 0.8683 0.8687
1.6 0.8869 0.8720 0.8718
2.5 0.8901 0.8799 0.8794
3.5 0.8953 0.8877 0.8873

s The parameters of the cell used were: b = 11.9 cm, a = 1.3 e¢m, Zoc
= 0.3230 em™, 2, = 3.118 X 10~*em™?, 2ot = 0.7221 em™, T , = 0.3721
em™t.

b See reference 27.

Resonance Absorption in Lattices

In a pioneering work completed in the second half
of 1941 and first published in the open literature in
19553 Wigner demonstrated the calculation of the
resonance absorption in bulk uranium and uranium
oxide from the scanty data of Fermi and Anderson??
on the parameters of the predominant resonance
lines. So complete were his calculations that they
have served as a model for all succeeding work; in-
deed, the ingenious manner in which he solved the
difficult two-region, energy-dependent problem of
strict transport theory involved in the calculation of
resonance absorption in lattices alone opened the
door to further research. This research has largely
taken the form of more accurate evaluation of ex-
pressions first derived by Professor Wigner and more
accurate accounting for effects mentioned by him.

Wigner’s basic result is an expression for the
effective resonance integral I of an isolated sphere of
absorber in an infinite moderating medium due to
narrow resonances, i.e., resonances whose extent in
lethargy Aw is very much less than £, the logarithmic
energy decrement per collision in the absorbing ma-
terial. His formula for a single resonance and gener-
alized to any shape lump can conveniently be writ-
ten?®?

SLE. P. Wigner, B. Creutz, H. Jupnik, and T. Snyder,
J. Appl. Phys. 26, 260 (1955).

32 H. L. Anderson, Phys. Rev. 80, 499 (1950).

3 See, for example, L. Dresner, Resonance Absorption in
Nuclear Reactors (Pergamon Press, New York, 1960); or
L. W. Nordheim, “The Theory of Resonance Absorption,’”’
Proceedings of the Eleventh Symposium in Applied Mathe-
matics (American Mathematical Society, Providence, Rhode
Island, 1959), Vol. 11, p. 58.
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2. (1)
Au Ec(u)

o] e ]

X [1 — PY(Z)]du, (32)

where N is the atomic density of absorber atoms, w is
the lethargy, andZ,, =, and Z, are the potential
scattering, absorption, and total macroscopic cross
sections of the lump, respectively.

The case of interest to Wigner in 1941 was that of
uranium oxide lumps whose linear dimensions were
relatively large compared with ;' > Z7%. In the
limit of very large dimensions the function P (Z,)
can be well approximated by

1— 8/4vz,

where S/V is the surface-to-volume ratio of the
absorbing lump. Adoption of this expression for P
will then reduce (32) to a formula for the effective
resonance integral in which the first of the two terms
is a constant and the second is proportional to the
surface-to-mass ratio S/M of the lump. The first
term is the effective resonance integral of an infinite
homogeneous medium of the absorber. The values of
both these terms can be calculated from the reso-
nance data by integration.

The two-term formula of Wigner was the subject
of an interesting discussion at the 1955 Geneva
conference. There Gurevich and Pomeranchouk?*
reported work carried out in the U.S.S.R. in 1943
which also led to a two-term formula, this time a con-
stant term and one which was proportional to the
square root of the surface-to-mass ratio of the lump.
The source of the difference was clarified at the con-
ference by Wigner, who noted that the Russian work
took no account at all of neutron moderation by the
absorber. This neglect can only be justified for small
lumps and in this limit Wigner’s more general theory
gives the same results as the restricted theory of
Gurevich and Pomeranchouk. That this is the case
was originally shown by Wigner as follows:

In the limit of large dimensions 1 — P® = (Z )
where [ is an abbreviation for 4V/S; in the limit of
very small dimensions P® = 0. Wigner notes that
by setting P = ZJ(1 + =,]) the integrations in
(32) can be easily carried out for all lump sizes. De-
tailed studies have shown the error produced by
Wigner’s rational approximation to be of the order
of 109, or less.?

3¢ 1. I. Gurevich and I. Y. Pomeranchouk, Proceedings of the
International Conference on the Peaceful Uses of Atomic Energy
(United Nations, New York, 1956), Vol. 5, p. 466.

NI = du
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In the case of what Gurevich and Pomeranchouk
call blockaded resonances, the dependence of I on
S/M is given by

m S 1/2
[1 T <4—> M]

where m and o, are the prorated mass and potential
scattering cross sections, respectively, of the absorber
lump per absorber atom (the molecular mass in the
case of a pure substance). For sufficiently small S/M,
this expression can be written as a linear expression
in S/M ; for large values of S/M, on the other hand,
it is proportional to (S/M)2. The constant term in
the Russian formula comes from unblockaded reso-
nances for which (32) gives the proper, size-inde-
pendent, infinite-dilution limit for 7.

The use of Wigner’s rational approximation for
P® has another important consequence. With it,
(32) can be manipulated into a formal identity with
its first term, save that ¢, = Z,/N must be replaced
by ¢, + (NI)~'. From this fact two very interesting
and highly practical, though approximate, equiva-
lence results may be derived.®® The first of these is
the following: Let us consider lumps containing a
particular absorber and various amounts of other
moderating materials. Then all such lumps with the
same value of o, + (NI) have the same effective
resonance integral 7. The second equivalence result
states that the effective resonance integral for a lump
is the same as that for a homogeneous mixture of
moderator and the same absorber in which the poten-
tial scattering cross section per absorber atom is
o, + (ND)"*. Both of these theorems have been
checked against experiment and agreement is excel-
lent.333%

Not all resonances are narrow with respect to
collisions in their own material, though virtually all
are narrow with respect to collisions in the common
moderators. This was recognized by Wigner, who
chose some simple approximations adequate for the
purpose of estimating resonance absorption in
uranium oxide. The situation inspired later authors
to consider the problem of resonance absorption by
a mixture of an absorber for which ¢ << Au and a
moderator for which £, >> Au. Those considerations
were usually based on the idealization of assuming
¢ = 0, 1.e., assuming the mass of the absorber nucleus
to be infinite. A formula similar in form to (32) can
be derived by an argument rather similar in style to
that originally used by Wigner for narrow resonances,

35 K. Hellstrand, J. Appl. Phys. 28, 1493 (1957); E.
Hellstrand, P. Blomberg, and S. Horner, Nuclear Sci. and
Eng. 8, 497 (1960).



758

where the key point was to divide the neutrons into
two classes, depending on whether their last collisions
were with an absorber atom or with a moderator
atom. This formula is

. Z.(u)Z,
NI —-/M—Ea(u) S du

=2 (u)
+/Mz W) + =

where P, is the escape (nonabsorption) probability
of neutrons from a uniform, isotropic source in the
fuel.

Adler, Hinman, and Nordheim and Spinrad,
Chernick, and Corngold have suggested the use of
(31) for Po. When Wigner’s rational approximation
to P is combined with the flat-flux approximation
(31) to P, (33) is also reduced to a formal identity
with the first term of (32), except in this case o, must
be replaced by o, + (NI)™.

In the actual evaluation of the integrals in (32) and
(33), the broadening of the resonance lines due to the
thermal motion of the absorber nuclei must be taken
into account. In all practical calculations the thermal
motion of the absorber nuclei is described by a Max-
well distribution of velocities. The actual shape of
the resonance line is then a convolution of a Gaussian
function and the natural line shape, sometimes called
the Voigt profile.

In the theory of resonance absorption a variety of
integrals of functions of Voigt’s profile arise. The
first of these integrals to be studied in the years
following Wigner’s original work was the first term
of (32), which is characteristic of absorption in
homogeneous systems as well as in heterogeneous
systems if the rational approximation to P is used.
The tabulation of this integral, first done in 1956,%
made possible the accurate calculation of the temper-
ature variation of cffective resonance integrals. In
1958 Adler, Hinman, and Nordheim?®? tabulated the
second term of (32) for slabs, cylinders, and spheres,
thus avoiding use of the rational approximation for
narrow resonances in heterogeneous media. If scat-
tering by the absorber is neglected, the second term
of (32) and the second term of (33) are formally
identical so that the tabulation of Adler et al. can
also be used to treat wide resonances.

Wigner’s original calculation of the effective reso-
nance integrals of uranium metal and oxide was

Po(Z)du, (33)

36 .. Dresner, Nuclear Sci. and Eng. 1, 68 (1956).

37F. T. Adler, G. W. Hinman, and L. W. Nordheim, Pro-
ceedings of the Second United Nations International Conference
on the Peaceful Uses of Atomic Energy (United Nations, New
York, 1959), Vol. 16, p. 142.
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based on the early resonance data of Fermi and
Anderson. New experiments were reported starting
around 1955, and interest in the recalculation of the
resonance integrals was reawakened. An early at-
tempt was made by Dresner,? who in 1956 calculated
the resonance integrals of uranium and thorium in
homogeneous mixtures in the narrow resonance
approximation including the Doppler effect. In 1958
three calculations of resonance integrals in hetero-
geneous media by Dresner,® by Chernick and
Vernon,* and by Adler, Hinman, and Nordheim?
were published. All three were similar in rationale,
the main feature being the use either of Wigner’s
narrow resonance formula (32) or the infinite mass
absorber formula (33) depending on whether the
energy loss on scattering was large or small compared
with the width of the resonance. In 1960 a similar
calculation was reported by Rothenstein.®® These
four calculations represent the quintessence of Wig-
ner’s method; for, while refined in various regards
(e.g., inclusion of the Doppler effect through exact
evaluation of various integrals involving Voigt’s
profile, avoidance by Adler et al. of the rational ap-
proximation to P®; allowance for the Porter-
Thomas* fluctuation in the neutron widths in
estimating the contribution of unresolved resonances,
inclusion of contributions from p-wave resonances),
they all depend on the use of Wigner’s ingenious
ideas for solving the energy-dependent transport
problem involved in resonance absorption. More-
over, all give quite good agreement with direct
measurements of the effective resonance integrals of
uranium and uranium oxide (agreement in the case
of thorium and thorium oxide is not as good as for
uranium and uranium oxide, but this appears to be
due at least in part to inaccuracies in the resonance
data and the influence of negative energy resonances
on the 1/v contribution).*?

Most of the effective resonance integral in uranium
lumps can be attributed to resonances for which the
choice of the narrow resonance or infinite mass
absorber approximation is unambiguous. Neverthe-
less, there are resonances for which neither extreme
approximation is applicable. To deal with these
intermediate resonances, Nordheim*? has suggested
the following procedure: The resonance is assumed
narrow to moderator collisions. If neutrons make their

38 1,. Dresner, Oak Ridge National Laboratory Report
ORNL-2659 (February 1959) (unpublished).

39 J. Chernick and R. Vernon, Nuclear Sci. and Eng. 4, 649
(19405%%.. Rothenstein, Nuclear Sci. and Eng. 7, 162 (1960).

4 C E. Porter and R. G. Thomas, Phys. Rev. 104, 483

(1956
42 L W. Nordheim, Nuclear Sci. and Eng. 12, 457 (1962).
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last collision in either the moderator or the fuel, the
probability they will make their next collision in the
same region is taken to be the first-collision proba-
bility from a uniform isotropic source in that medium,
P, With these assumptions, the collision density
per unit energy in the lump, F(u), satisfies the equa-
tion

F(u) - 1)(1)[2L(u)] ‘/;ue lpiua) z((’l/;)) du ,

+ {1 — POI=. )]}

TN

where all quantities refer to the lump, a = (4 — 1)2
/(A + 1)?, A being the absorber mass number,
e = In(1/a), and E, corresponds to the zero of
lethargy.

This single integral equation is now integrated
numerically; Nordheim and Kuncir*? have written a
flexible and rapid program for the IBM-7090 for
doing this.

Presented in Table IT are the results of Nordheim’s
calculations of the effective resonance integrals of

TaBrE II. Comparison of Nordheim’s calculated values for
the resonance integrals of U8 and their temperature coeffi-
cients at 300° K with Hellstrand’s empirical formulas.

Uranium metal (density 18.7 g/cm3)

Rod radius (cm) 0.1055 0.211 0.422 0.844 1.69

S/M (cm? g™1) 1.013 0.507 0.254 0.127 0.0634
Calculated Resonance
Integral (barns)? 28.95 21.41 16.01 12.19 9.48
2.95 + 25.8 (S/M )12
(barns)® 28.91 21.28 1595 12.18 9.45
B X 10% 098 075 063 056 0.57

UO; (density 10.2 g/cm3)

Rod radius (e¢m) 0.125 025 050 1.0 2.0

S/M (cm? g1)
Calculated Resonance
Integral (barns)*
4.45 + 26.6 (S/M )2

1.570 0.785 0.393 0.196 0.098

38.23 27.74 21.06 16.32 12.76

(barns)® 37.76 27.95 21.10 16.23 12.79
B8 X 10% 1.26 1.00 0.79 0.67 0.55
Rod radius (cm) 0.4 0.85 1.4
B ?( 102 Calculated® 0.64 0.55

or
U metal® Observedd 0.64 + 0.05 0.55 + 0.05
B8 ;( 102 Calculated® 0.84 0.69 0.63

or
UOge Observedd 0.82 + 0.06 0.69 + 0.05 0.65 + 0.05

a L. W. Nordheim, Nuclear Sci. and Eng. 12, 457 (1962).

b E. Hellstrand, J. Appl. Phys. 28, 1493 (1957). The experimental values
given in the table for uranium metal are 4.5%, higher than in this reference,
as suggested in a private communication from E. Hellstrand to L. Nordheim
noted in reference a.

¢ The temperature dependence of the effective resonance mtegral is repre-
sented by the formula I (7) = 1(300) [1 4+ g (7T1/2 — 17.3)], 1 °K.
(156%) Hellstrand, P. Blomberg, and S. Horner, Nuclear Sci. and an 8, 497
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uranium and uranium oxide rods and, for compari-
son, Hellstrand’s direct measurements.?s By assuming
an entirely reasonable contribution of 1.7 b for
resonances above 30 keV and p-wave resonances,
perfect agreement is achieved, supporting to the
fullest Nordheim’s contention that ‘“the goal of a
reliable method for calculation of resonance integrals
from resonance data has been achieved.”

TECHNOLOGY OF CHAIN REACTORS

Wigner has contributed directly to the develop-
ment of research reactors, of plutonium production
reactors, and of power reactors. Above all, he has
done much to clarify the grand strategy of nuclear
reactor development. We therefore begin our short
summary of reactor technology with an account of
the “philosophy’” of reactor development; special
reactor types with which Wigner has been associated
will be discussed later.

The Motivation for Reactor Development

Perhaps the greatest difficulty in reducing nuclear
reactor technology to large-scale practice is not
technical; it is rather a question of giving a fully con-
vincing motivation for the development. The motiva-
tion is clear for those parts of the technology where
reactors can do something unique. Nuclear power in
a submarine needs no further justification; there is
no other prime mover that can operate for very long
times at high power without a supply of oxygen.

Nuclear reactors for civilian power are a very
different matter. If nuclear electricity had turned
out to be very much cheaper than conventional
electricity, the motivation for the development of
nuclear power would have been straightforward. As
it is, nuclear electricity is, if anything, more expen-
sive than conventional power; moreover, the relative
economics of the two energy sources depends very
strongly on the local situation. Thus, consider the
recently announced 325-MW boiling water reactor to
be built for Pacific Gas and Electric Company at
Bodega Bay, California; this plant represents the
current state of the American art. The estimated
cost of electricity from this reactor is 7.4 mills/kWh
at 609, load factor, and 5.5 mills/kWh at 909, load
factor.** A conventional oil-fired plant of the same
size built at Bodega Bay would produce electricity
at 7.4 mills/kWh at 609, load factor and 5.9
mills/kWh at 909, load factor. According to these
estimates, nuclear power at Bodega Bay is eco-
nomically competitive if the load factor is 609, or

43 Nucleonics 20, 26 (1962).
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higher. The situation is much more complicated than
this, however. In the first place, the cost of fossil fuel
at Bodega Bay, 38¢/10° Btu, is some 12¢/10° Btu
higher than the average cost of fossil fuel in the rest
of the United States; a reduction of 12¢/10° Btu
would reduce the cost of electricity from the oil-fired
plant by more than 1 mill/kWh. Secondly, if the plant
were built in the United Kingdom or in Canada,
where utilities are publicly owned and economic
custom places the fixed charges on capital investment
at 7%, instead of 149, power from the nuclear plant
would be cheaper than from the conventional plant
by about % mill/kWh. Finally, and perhaps most
importantly, the computation of nuclear fuel charges
depends very sensitively upon the cost of U??®
(Bodega Bay uses UO, enriched to 29, in U?%*), the
buy-back price for the plutonium in the spent fuel
elements, the lease-charge for U?*® held up in the
reactor, and the price for reprocessing spent fuel
elements. These prices are set largely by government
fiat; the current prices represent a substantial
government subsidy for the Bodega Bay plant. If,
for example, private utilities had to pay for nuclear
fuel as a normal working capital investment at 129,
rather than lease it at the 439, now prevailing, the
cost of power from Bodega Bay would increase by
about 0.5 mill/kWh. Leasing nuclear fuel from a
privately financed stockpile might reduce the rate
to about 7%, in which case the added cost would
be 0.2 mill/kWh.

The above example illustrates how fragile is the
criterion of economic advantage as a justification for
nuclear power. Even in high-cost conventional fuel
areas, the balance is close; in low-cost areas, con-
ventional systems have a clear-cut advantage of
perhaps 1 mill/kWh over nuclear systems. For this
reason some writers, notably Professor Wigner, have
argued that the primary aim of nuclear energy de-
velopment ought to be to produce electricity eco-
nomically for the much longer period of human
history when we have run out of high-grade fuels,
rather than to make electricity which is marginally
competitive when we have a great abundance of
fossil fuel.

The energy content of the U2 in the really high-
grade uranium ores in the United States (those cost-
ing up to $10/1b of U;0s) is estimated to be 0.2 X 108
Btu; this is very small compared to the estimated
energy content, 12 X 10'® Btu, in the reserves of coal
available in the United States at costs up to 35¢/10°
Btu. In this sense, developing reactors that can
economically burn only the U?®*® in high-grade ura-
nium ores, is not a terribly important task. On the
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other hand, the energy content of the uranium and
thorium in all of the earth’s rocks (at an average
concentration of 10 ppm for thorium, 2.5 ppm for
uranium) is of the same order as the energy content
of the deuterium in the sea—enough to last forever.
As the price of uranium increases from $10/1b to the
price of residual uranium, the amount available in-
creases, possibly as the square of the price per pound.
The development of reactors that can economically
utilize these more expensive ores and therefore pro-
vide an inexhaustible energy source would appear to
be one of mankind’s most important ultimate tasks.

To utilize expensive ores economically, reactors
must burn much more than the original U, For
example, a reactor having a conversion ratio (fissile
atoms produced per fissile atom burned) of 0.98, can
burn 50 times as much U#® as the original U?* it
burns. One can therefore afford burnup charges for
the raw material in such a reactor 50 times as high
as one can pay in a reactor that burns pure U??
There is perhaps 2500 times as much uranium at 50
times the present cost as there is at the present cost.
Hence reactors with a conversion ratio of 0.98 would
increase the economically available energy supply
(insofar as the cost is determined by the burnup
cost) not merely by a factor of 50, but by the product
of factors 50 X 2500 = 1.25 X 10° Thus, in princi-
ple, high-conversion ratio reactors—preferably breed-
ers—increase the economically available supply of
energy not only by the isotopic ratio of U238 to U3
(which is 140) but by the product of 140 and the
much greater ratio (~~107) of the amount of low-grade
ores to the amount of high-grade ore.

This elementary point was realized at the Metal-
lurgical Laboratory; however, in the following dec-
ade, during which the direction of the nuclear energy
enterprise was determined, people lost sight of the
crucial importance of high-conversion ratio reactors.
Breeders were generally believed to increase the
economically retrievable energy by a factor of 140,
not by the much greater factor of 140 X 107. The
rediscovery of this point is largely due to the work
of Harrison Brown; since Brown’s studies, the breeder
reactor has occupied an increasingly important posi-
tion in nuclear technology. :

Assuming that breeders themselves are feasible,
two auxiliary questions must be settled before one
can say with confidence that breeder reactors can
serve as the basis for a truly long-term energy system.
First, can we place reliable upper limits on the cost of
uranium and thorium from low-grade ores; and sec-
ond, do we see ways of permanently and safely dis-
posing of the radioactive wastes? Of the two ques-
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tions, the former is the easier: Work, for example, by
Brown et al.** has shown that thorium plus uranium
can be extracted from Conway granites which have
an average concentration of 56 4= 6 ppm thorium
plus about 10 ppm uranium for costs less than
$80/1b. The amount of thorium in this single deposit
is estimated to be at least 25 million tons and possibly
more.

The waste disposal problem is very much more
complicated, as much as anything, because there is
no one kind of liquid radioactive waste. Reactor
development proceeds along many parallel paths, and
the chemical characteristics of the wastes from one
line may not be very much like the chemical charac-
teristics of the wastes from another line. Two diver-
gent views toward the waste disposal question are
discernible: one school says dilute and disperse, the
other, concentrate and isolate. Among the many
methods based on the dilute and disperse philosophy
we mention two here: hydrofracture in bedded shale
and direct disposal in salt. In the hydrofracture
method,* one pumps, under pressure, a slurry of
grout, containing the radioactivity to be disposed of,
into a steel-cased bore hole which has a lateral open-
ing well below the ground water table—perhaps 1000
feet below the surface. The liquid, being under very
high pressure, intrudes between planes of bedded
rock and forms a solid sheet of concrete perhaps 5
millimeters in thickness and extending over several
acres. Since the sheet is solid, and since no liquid can
get to it, the radioactivity ought to be permanently
immobilized well below the water table. Hydrofrac-
turing experiments to date have behaved fairly well,
though two unexpected difficulties have shown up:
first, the cement set up too quickly and the sheet did
not extend as far as was expected; and second, the
grout encountered a vertical fault plane which it in-
vaded to a height some hundreds of feet above the
level of the rest of the sheet.

Disposal in salt domes is a priori attractive since a
cavity dissolved out by water is impervious; enough
salt dissolves to saturate the solution after which no
more salt dissolves and the water is trapped. Actu-
ally, the disposal of liquid radioactive wastes into
such formations is made much more difficult because
the liquid wastes are very acid; this acid solution in
contact with salt generates gas containing oxygen-
chlorine compounds which are explosive. On the
other hand, salt mines, because of their dryness and

4 M. Gerrard, editor, Oak Ridge National Laboratory Re-
port ORNL-3314 (September 1962) (unpublished).
4 E. G. Struxness, Oak Ridge National Laboratory Report
ORNL-TM-133, ( March 1962) (unpublished).
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isolation, seem to be attractive vaults for permanent
disposal of radioactive materials which are first im-
mobilized. Much of the work on waste disposal is
therefore now centered on finding ways to perma-
nently immobilize the wastes—generally in the form
of a highly calcined oxide or as a glass. Considerable
success has been achieved in calcining liquid wastes
in stainless steel pots*®; these pots, containing solidi-
fied radioactive wastes, would then be stored perma-
nently in unused salt mines.

Power Reactors

In spite of the great ultimate significance of breeder
reactors, most of the power reactor development in
the United States, and indeed in the whole world, is
aimed at the short-range goal of producing nuclear
electricity that is economical where conventional
fuels are expensive or where fixed charges are low.
The main American reactor type, the pressurized-
water reactor and its variant, the boiling-water
reactor, borrows very heavily from the technology
of the Materials Testing Reactor (MTR). The power
plant for the Nautilus is essentially a pressurized
MTR with zirconium replacing aluminum as the fuel
element matrix.

Pressurized-water reactors using highly enriched
uranium have proved to be extremely reliable naval
power plants. However, as central station plants they
run into economic difficulties because highly enriched
uranium is so expensive—$12.00/gram. If U?® is
burned in a pressurized-water reactor that operates
at a thermal efficiency of 259, the burnup cost alone
would be about 2.40 mills/kWh. The total fuel cost
would be perhaps twice this if one takes into account
the cost of refabricating and reprocessing partially
spent fuel elements. These costs are much too high
for central power stations.

On the other hand, the U?®* in natural uranium
costs about $1.50/gram. If natural uranium could be
burned completely in a pressurized-water reactor,
the burnup cost would come to only 0.3 mill/kWh;
even if fabrication and fuel inventory costs are in-
cluded, the fuel cycle cost would remain around 1.5
mills/kWh. At this fuel cycle cost, nuclear power
would in many areas be competitive with conven-
tional sources.

Natural uranium in light water will not sustain a
high-powered chain reaction because of the relatively
large absorption cross section of hydrogen. Thus, in
the pressurized-water systems, one must use uranium
with at least some enrichment. In general, one tries

46 H. W. Godbee and J. T. Roberts, Oak Ridge National
Laboratory Report ORNL-2986 (August 1961) (unpublished).
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to design so as to minimize the enrichment; this not
only reduces the cost of the initial load of U?%, but it
also prolongs the life of the fuel since the lower the
enrichment the greater is the fraction of U?® con-
verted into fissile Pu®*®. Two different schemes for
arranging the enriched fuel are possible: First, highly
enriched U?*-bearing plates, comprising a ‘“seed,”
can be surrounded by a “blanket” of natural or de-
pleted uranium. Plutonium is produced in the blanket
and, as the reactor operates, the power maximum
shifts from the seed into the blanket; this is the
configuration of the Shippingport reactor which is
now operating with its third seed and second blanket.
Second, one can distribute slightly enriched uranium
more or less uniformly throughout the reactor and
allow the plutonium to be produced everywhere, not
just in the blanket. This latter arrangement, being
simpler, is the preferred one for most pressurized-
water reactors aimed at producing economical power.

Since metallic uranium is incompatible with very
hot water, ceramic materials containing uranium are
now used as fuels. The most important of these is
UO:;; it would not be much of an exaggeration to say
that the central technological question in most cur-
rent power reactor development is the behavior of
uranium oxide under the conditions of temperature
and radiation encountered in a chain reactor. Fortu-
nately, it has been found that UO., as long as it is
close to its stoichiometric constitution, sustains long
burnup and high temperature very well. The success
of the UO,-fueled, boiling-water reactor type can be
judged by the previously mentioned cost estimates
for the Bodega Bay reactor.

Power reactor technology aimed at achieving
short-term, economically competitive, central station
power comprises much more than pressurized-water
reactors; there are the heavy-water systems, graph-
ite-sodium systems, organic-cooled and moderated
systems, and most important, the gas-cooled, graph-
ite-moderated systems. Gas-cooled reactors have
been largely ignored in the United States until quite
recently, though they have constituted the primary
path in many foreign countries, especially in Great
Britain and France. The United States’ position can
be traced to the early decision taken at the Metal-
lurgical Laboratory to concentrate on water cooling
rather than on gas cooling. The basis for this original
decision was that -gas-cooled reactors, being low-
power-density devices, are bulkier and require more
uranium than do water-cooled reactors. On the other
hand, since the neutron economy of the gas-cooled
systems is superior, the fuel cycle costs of a gas-cooled
reactor should generally be below those of a water-

L. DRESNER AND A. M. WEINBERG

cooled reactor. The relative advantages of gas cooling
and water cooling therefore depend upon the book-
keeping. Where fixed charges on capital investment
are high, as in the United States, the smaller and
cheaper water systems are advantageous; where fixed
charges are low, as in the United Kingdom, the larger
and more expensive gas-cooled systems with com-
pensating lower fuel costs are attractive.

Even in the United Kingdom, the optimum may
not lie with the low-rated, natural-uranium, expen-
sive-to-build Calder Hall-type reactor (so-called
Magnox stations because the fuel is sheathed in an
Mg-Be alloy called Magnox). By enriching slightly,
one can greatly increase both the fuel rating and
temperature and decrease the size and capital cost
of the reactor. For this reason, the British are now
constructing the AGR (advanced gas-cooled reactor)
which uses 2.59, enriched UO; sheathed in stainless
steel. The fuel is rated at 7.7 kW /kg as compared to
5.9 kW/kg in the most modern Magnox stations
(Sizewell). The estimated capital cost of large
AGR’s is $227/kW as compared with $286/kW for
Sizewell; the power costs in the two cases, however,
are estimated to be 8.9 mills/kWh for AGR, 7
mills/kWh for Sizewell, though the cost for AGR
ought to go down as U?*® becomes cheaper. It is
noteworthy that in the United States, gas cooling
has been revived and a reactor very much like the
AGR is now under construction at Oak Ridge.

The AGR-type reactors use UQO, fuel elements.
Thus, the two dominant lines of power reactor de-
velopment—pressurized water and gas cooling—
which developed quite separately following the
original decision to concentrate on water cooling at
the Metallurgical Laboratory, now converge, at least
as far as their central technical problem, the fuel
element, is concerned. Sintered UO; is the fuel of
choice in both systems.

Power Breeders

We now turn briefly to breeders and near-breeders,
reactors whose development would enable us to tap
the inexhaustible residual uranium and thorium in
the earth’s crust. Breeders are feasible in principle
only if #, the number of neutrons emitted per neutron
absorbed in the fissile nucleus, exceeds 2. At high
energy (~ 1 MeV and above), 5 is comfortably above
2 for both U2 and Pu??*, first because radiative
capture competes poorly with inelastic scattering,
and second because the number of neutrons per
fission increases with energy (about 1/8 neutron per
MeV). At thermal energy, the lowest lying resonance
in U? happens to have a relatively small radiation
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width, in Pu®® a much higher radiation width. As a
result, in U?* 9 at 2200 m/sec is 2.29, in Pu 7 is
2.14. Until the advent of the pulsed Van de Graaff,
there were almost no reliable data on % in the inter-
mediate energy region. Fortunately this region has
now been investigated by Diven and Hopkins*” and
Macklin et al.*® Current values of n in the kilovolt
region are given in Table III. The values of 7 given

TasLe ITI. Fission neutron yield parameters for U283 and
Pu?9., » = number of neutrons per fission; « = o./0y;
7 =r/(1+ a)

U238 Pu23o
E v a 7 v a 7
0.025 eV 2.512 0.0932 2.2964 2.89* 0.349 2.143¢
30 keV 2.51> 0.109¢ 2.26 2.89> 0.343¢ 2.15
175 keV ~ 2.53> 0.098¢ 2.30 291> 0.142¢ 2.55
400 keV  2.56> 0.078° 2.37 2.94> 0.089c 2.70
1 MeV  2.64> 0.030c 2.56 3.02> 0.027¢ 2.94

a D. J. Hughes, Nucleonics 17, 132 (1959).

b Calculated from thermal value and dv/dE = 1/8 MeV~*. See R.B.
Leachman, Phys. Rev. 101, 1005 (1956).

¢ J. C. Hopkins and B. C. Diven, Nuclear Sci. and Eng. 12, 169 (1962).

d R. L. Macklin, G. de Saussure, J. D. Kington, and W. S. Lyon, Nuclear
Sci. and Eng. 8, 210 (1960).

e R. L. Macklin, G. de Saussure, J. D. Kington, and W. S. Lyon, Nuclear
Sci. and Eng. 14, 101 (1962).

in the table serve mainly to reinforce the view held
since the earliest days of the Metallurgical Project
that breeding in the U-Th cycle ought to be possible
at thermal energy and in the U-Pu cycle at high
energy. The U-Th cycle is marginal, compared to
U-Pu, at high energy; neither cycle looks very good
at intermediate energy (~ 30 keV).

Fast Breeders

Most of the world’s work on breeders is centered
on U-Pu fast reactors since 7 is so large under the
conditions prevailing in such a reactor. The first
feasibility studies of the fast breeder were carried out
at the Metallurgical Laboratory by Soodak under
Professor Wigner’s direction.*® The technology has
proved to be so difficult and slow moving that few
innovations not mentioned in this early work have
been tried as yet. Four of the world’s fast breeders—
EBR-1 (1 MW), EBR-II (60 MW), Dounreay (50
MW), Fermi (350 MW)—use liquid-metal cooling
and metallic fuel elements as suggested in Soodak’s
original paper; two others, the Russian BR-5 (5
MW) and the French Rapsodie (10 MW) are fueled
with stainless steel-clad PuOs..

47 J. C. Hopkins and B. C. Diven, Nuclear Sci. and Eng. 12,
169 (1962).

48 R. L. Macklin, G. de Saussure, J. D. Kington, and W. S.
Lyon, Nuclear Sci. and Eng. 8, 210 (1960).

49 H. Soodak, Chicago Metallurgical Laboratory Report
CF-3107 (July 1945) (unpublished).
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Although all of the high-powered fast breeders
have encountered delays (only Dounreay, BR-5, and
EBR-I are operating at power at the time of this
writing, May 1962, and the power of Dounreay is
only 1/5 of its rated 50 MW), there is no reason to
believe that the fast breeders, as reactors, will not
operate satisfactorily. But a breeder must not only
chain react smoothly, it must also lend itself to easy
reprocessing of its partially spent fuel, and this
problem remains formidable. Metallic fuel elements
such as are used in EBR-II (alloy of uranium plus a
mixture of rare earths) can sustain a burnup of
about 19, of all atoms, the exact number depending
on the temperature at which the reactor operates.
Suppose the fuel contains one atom of Pu®* for every
ten atoms of uranium ; then before a gram of Pu?*® has
been completely burned, it must be recycled ten
times. Unless such recycling (including metallurgical
refabrication) can be done at, say, 50¢ to $1.00 per
gram, the additional cost, not to say the loss of fissile
material, associated with all this handling would
make fast breeders uneconomical.

Several ways to improve the situation are being
studied, two of which will be mentioned. On the one
hand, pyrometallurgical methods such as zone refin-
ing are being tried, especially at the EBR-II. Another
approach is the use of oxide fuel elements, first tried
in the Russian BR-5. Mixtures of UO; and PuO, can
withstand burnups of possibly as much as 5%. Thus
in an oxide fast breeder one avoids the difficulty of
frequent and costly recycle. But one must pay dearly
in conversion ratio: First, the presence of the rela-
tively light oxygen degrades the neutron spectrum;
second, the fission products, which absorb neutrons,
are not removed; and third, the oxide, being less
dense than metal, competes with cladding materials
less favorably for neutrons than does the metal.
For all these reasons the breeding ratio in a fully
engineered oxide Pu-U fast breeder is estimated to
be about 0.3 less than in a metal-fueled breeder.*°

Slow Breeders

The slow (or thermal) breeders, based on U-Th,
though they suffer from the handicap of low », ought
to be relatively freer of the recycle problem that be-
devils the fast breeder. In a slow neutron breeder one
is at liberty to dilute the fissile material with a low-
cross-section ceramic, such as graphite, or a liquid,
such as heavy water. In the solid-fueled thermal
breeder the concentration of fissile atoms in the fuel

50 U, S. Atomic Energy Commission Division of Technical
Information, Power Reactor Technology (September 1961),
Vol. 4, p. 84.
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is so low that the initial fuel can be burned completely
without causing serious radiation damage; moreover,
the great dilution of the fissile atoms with innocuous
graphite allows the fuel to be burned at very high
heat ratings (300 kW /kg). This is the basic rationale
for the various graphite, enriched-uranium, gas-
cooled reactors such as the German pebble bed, the
Dragon (Winfrith Heath), and the High Tempera-
ture Gas Reactor (HTGR) (Peach Bottom, Pennsyl-
vania). Reactors of this type were first suggested by
Farrington Daniels at the Metallurgical Laboratory
in 1944 %' and fairly serious work was undertaken on
them in 1946 at the Clinton Laboratories under Pro-
fessor Wigner. The systems did not appear attractive
at that time, largely because U?** was so expensive
then—about $35/gram. Even if the entire initial
load could be burned without reprocessing (as is now
expected at both Dragon and HTGR), the burnup
charge alone—about 5 mills/kWh—was much too
high to be interesting; it was for this reason, funda-
mentally, that the project was dropped in 1947. The
scheme has since been revived because U?*® has be-
come cheaper, and because such systems should have
an over-all conversion ratio approaching unity. How-
ever, the graphite solid-fuel reactors, even using
U232 probably cannot be made into true breeders
with breeding ratio > 1. The main losses are to the
graphite and to the fission products, notably Xe!s,
which presumably remain in a solid fuel element.
The incentive therefore remains for developing a
thermal reactor from which fission products (includ-
ing Xe'??) are continually removed, which allows easy
fuel recycle, and which avoids excessive losses to the
moderator.

The aqueous homogeneous reactor (solution of
U0:804 in D,0) satisfies these conditions; and on
this account it was given much attention by Wigner
and his group at the Metallurgical Laboratory.
Several aqueous homogeneous reactor experiments
have been built, the most elaborate being the HRE-2,
a 5000 kW reactor which operated at Oak Ridge for
a total of 12 082 hours between 1957 and 1961. At
high temperature and high power it was found that
uranium segregated from the HRE-2 solution and
deposited on the wall of the inner tank (which was
made of zirconium). The deposited uranium over-
heated and several holes were melted in the wall of
the tank.

This difficulty of HRE-2 is traceable to the phase
properties of the U0.S04-D,0 system. Uranyl sulfate
becomes less soluble as the temperature increases;

51 Farrington Daniels, Metallurgical Laboratory report
N-1668b (October 1944) (unpublished).
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above about 320°C uranium-containing solids or
heavy liquids separate from solution. Thus one is
faced with an unstable situation; if a wall in contact
with the fissioning solution inadvertently overheats,
uranium tends to deposit, causing further heating
and burnout. In principle, by proper hydrodynamic
design and careful temperature control one ought
to be able to keep all surfaces at a tolerable tempera-
ture. If this can in fact be done, the aqueous homo-
geneous system would be a feasible path to a thermal
breeder.

But the problem is difficult, and for this reason
other liquid uranium systems, in which the uranium
becomes more soluble as the temperature rises, are
being studied. The most thoroughly examined such
system is based on molten fluorides. Mixtures of salts,
such as Li"F-NaF-Zr¥,-UF,-ThF,, melt at about
450°C and remain homogeneous solutions up to
2000°C and beyond. At temperatures of 650°C,
which would be the temperature of a power reactor,
the salts can be held in molybdenum-nickel alloys or
in graphite. Since the salts dissolve thorium as well
as uranium fluorides (or plutonium fluoride, for that
matter), they ought to be useable in breeder systems.
However, to achieve a breeding ratio above one, no
high-cross-section structural material can be toler-
ated inside the reactor. A possible molten salt breeder
reactor might therefore consist of a matrix of bare
graphite through which the salt, containing both
thorium and uranium, would be pumped. The salt
would be in direct contact with the graphite, and the
feasibility of such a system depends upon how
compatible molten fluorides and graphite are under
reactor conditions. Without radiation, there seems
to be little problem; however, in the presence of
radiation, there is evidence that UF, in the salt re-
acts with graphite to form small amounts of CF,. It
is too early to say how serious this reaction is. In any
case plans are well under way to construct a 10 MW
Molten Salt Reactor Experiment at Oak Ridge. If
this experiment is successful, the way to at least one
kind of thermal breeder would seem to be open.

Research Reactors®?

Finally, we make a few remarks about research
reactors, to whose technology Wigner has contributed
so much. Research reactors have become the most
popular pieces of very expensive scientific machinery;
there are in existence about 260 research reactors,
ranging in power from a few watts to 200 megawatts
and in price from $10° to $58 X 10°. Of the world’s

52T, B. Cole and A. M. Weinberg, Ann. Rev. Nuclear Sci.
(to be published).
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research reactors, fully 609, use fuel elements con-
sisting of parallel plates of aluminum containing an
alloy of U?*-Al. The prototype of this fuel element
was originally developed, largely under the direction
of Professor Wigner, for the Materials Testing Re-
actor.

Modern high-powered research reactors fall into
two classes—those moderated with heavy water and
those moderated with light water. The light-water
reactors are simpler than are the heavy water ones,
and are easier to operate at extremely high powers.
The Materials Testing Reactor (MTR), which was
the first of the light-water-moderated research re-
actors, ushered in the era of research reactors of the
10* neutrons/cm?/sec class. The MTR operates at
40 MW ; there are now about a dozen other reactors
which are variants of the MTR and which reach slow
neutron fluxes up to 4 X 10%.

Several reactors are now on the drawing board, or
under construction, that are expected to reach slow
neutron fluxes in excess of 10%. At a slow neutron flux
of, say, 5 X 10%, which is the maximum flux to be
achieved in the projected High Flux Isotope Reactor,
U5 undergoes fission at the rate of 250 kW/g; about
309, of the U?¥ is burned per day. A reactor using
such highly rated solid fuel elements would be shut
down most of the time for changing fuel, assuming
even that one could extract the heat when it is pro-
duced at so prodigious a rate. Thus to achieve
5 X 10" flux one must either refuel continuously by
using a liquid fuel or a complicated on-line reloading
mechanism; or one must separate the region of very
high flux from the region occupied by fuel.

The latter solution to the problem of ultra-high
flux reactors has been adopted in three of the newest
and most advanced research reactors: the Advanced
Testing Reactor (250 MW) to be built in Idaho, the
Soviet S. M. Reactor (50 MW), and the High Flux
Isotope Reactor (100 MW) to be built in Oak Ridge.
In these reactors, the fuel is disposed as an annulus
around a weakly absorbing island, called a ‘“flux-
trap.” Since the lifetime of neutrons in the island
may exceed the lifetime in the fuel-bearing annulus
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by a factor of ten or so, the slow-neutron flux in the
trap can exceed that in the annulus by a correspond-
ing factor. In this way one achieves a local slow-
neutron flux of 5 X 10 while the flux in the fuel
remains well below 10%.

Whether research reactors in the 2 to 5 X 10'® neu-
trons/cm?/sec class are feasible is still a moot point.
Even with an extreme flux trap, parts of the fuel
would be exposed to fluxes of several times 10'. The
fuel would be burned so rapidly as to make a solid-
fueled reactor a doubtful proposition. On the other
hand, quick turnover of fuel is no problem if the fuel
is liquid. Research reactors in the 10 flux class might
well be by-products of successful development of very
high power density liquid-fueled reactors.

SUMMARY

In this short review we have tried to give the
reader a feeling for the pervasiveness of Kugene
Wigner’s contributions both to the underlying theory
and to the engineering development of chain reactors.
The theoretical topics which we chose to discuss—
the spectrum of the Boltzmann equation, neutron
thermalization, thermal utilization, resonance ab-
sorption—exhaust neither the recent significant theo-
retical developments nor Wigner’s contributions
thereto. This is even more the case with respect to
reactor technology ; Wigner has contributed to many
parts of the technology in addition to the ones we
have described. Since chain reactor technology is so
massive and slow moving, it will probably take a
generation to decide on the correctness of the funda-
mental strategy espoused by Professor Wigner—that
the development of the power breeder is the central
technological problem of nuclear energy. Neverthe-
less, those of us who have worked with Professor
Wigner ever since the beginning of the atomic age and
who have always been amazed at his uncanny techni-
cal prescience look forward to the happy occasion of,
say, Professor Wigner’s eightieth birthday when the
full technological validity of his views on breeders
will undoubtedly have been amply demonstrated.



