
(e) Let B(iV,X) be the maximum for + F"F+
(A16) implies

+ F F%' ~ X P'B(ill —2,X) + 4u& (1 —X )

+ P'(1 —X )B(3' —2, X —2)

+ 4+i(1 —X')' 'XP[B(1II —2,X)]'", (A17)

where

p = (1 —2:)'"~ 0, X = (~-~-)'" ~ 0

(f) We can now prove by induction that for even 3l
and Ã

B(3I,3/) = iV (M —X + 2)/3I (A18)

as follows: Substitute (A18) into the right-hand side
of (A17) and maximize the resultant expression with
respect to n& and X. After some straightforward
algebra, one Gnds the only maximum of the right-
hand side of (A17) at

The induction is then easily completed. Q.E.D.
It is clear from the above that the only maximum

of @tF"F+with F having the form (AS) is obtained
when

I~'urthermore, each pair of states (1,2), (3,4), is
never occupied singly. For such a problem it is easy
to see that we can define 3I/2 sets of Pauli spin
matrices so that

Q -,'(1 —(r*) = X/2. (A21)

F = 3I " '
Qm)3 (0; + io";) .

Thus, F F = M '[(P d) —(P o. ')' —2 g 0 *] .

(A20)

The condition that the total number of particles is
Vis

X' =- (cV —3/)/3I, a& ——1/3I, Equations (A20) and (A21) show that there is only
where it assumes the value of B(M,X) in (A18). onelargesteigenvaluefor FtF consistentwith (A21).
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I. INTRODUCTION

HELL-model calculations of nuclear-energy levels
~~

~~

~~

~~

~~

~ ~

can be carried out only by using effective inter-
actions between the nucleons. The interaction be-
tween free nucleons is highly singular and leads to
strong short-range correlations between them. Shell-
model wave functions contain no such correlations
and therefore do not furnish an exact description of
nuclear states. Still, under certain conditions, these
functions can be used for energy calculations. To do
this, it is necessary to introduce the effect of the
short-range correlations into the interaction Hamil-
tonian. Under favorable conditions this modification
results in the replacement of the free-nucleon inter-
action by a reaction matrix. or effective interaction.

The derivation of the effective interaction in finite
nuclei has not yet been carried out. It is, therefore,

impossible to know in advance whether the shell
model can be used for the calculation of nuclear
energies. The only way to find the answer to this
question is by trying to carry out such calculations.
In the past, many such attempts have been made.
The main difficulty has been the lack of information
about the effective interaction to be used. In the last
few years an approach which avoids this difBculty
has been used. The effective nuclear interaction was
determined in several cases from the experimental
energies. The consistency of the shell-model descrip-
tion of these cases was checked as follows. If the
effective interaction between nucleons is, indeed, a
t»o-body interaction, its matrix elements in n-

*This work was supported by the U. S. Atomic Energy
t ornmission and the Higgins Scientific Trust Fund.

t On leave from the Weizmann Institute of Science, Reho-
voth, Israel.
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particle configurations are linear combinations of the
matrix elements in two-particle configurations. The
restriction to two-body (effective) interaction thus
imposes certain conditions on nuclear energies. If
these conditions are satisfied by the experimental
energies, we conclude that the shell model may be
used for the calculation of the energies considered.
In such cases we obtain a reliable set of matrix ele-
ments of the effective interaction. These can be used
to predict other energies. On the other hand, only if
the experimental data do not satisfy these conditions
is it possible to conclude that the specie. c shell-model
wave functions used do not give an adequate descrip-
tion. It often happens that energy levels can be con-
sistently given by the shell model and yet cannot be
reproduced with simple minded phenomenological
interactions.

The very idea of an effective interaction involves
configuration admixtures. A hard core in the inter-
action potential admixes to any given shell-model
configuration many configurations that may lie
arbitrarily high. The combined effect of these con-
figuration mixtures is to give an effective interaction
from which the hard core has been eliminated. The
effect of the short-range correlations described by
these configuration admixtures can therefore be re-
placed by a modification of the two-body interaction.
This is, indeed, the case if the admixtures are small
and the perturbation series is convergent. It is also
important to realize that this is the case only if the
excited configurations differ from one another by the
quantum numbers of two, four, six, etc. , particles.
The matrix elements of the interaction which appear
in these expansions involve configurations that differ
by the quantum numbers of two nucleons. Due to
momentum conservation this is the only type of
excitation that may occur in infinite nuclear matter.
Por finite nuclei, however, another type of configura-
tion admixtures is possible which involves single
particle excitations. Later on these will be considered
in detail.

Thus, configuration interaction may be replaced
in many cases by a modification of the two-body
interaction. In our approach it is impossible to
recognize the contributions of the various con-
figurations. However, there may be cases in which
the eGect of the configurations admixed may vary
from nucleus to nucleus and even be different for the
various states of the same nucleus. In such cases,
configuration interaction will have to be considered
explicitly. It is clear that the inclusion of configura-
tion interaction in such cases makes sense only if the
zero-order approximation gives, at least, a rough

agreement. The question whether configuration in-
teraction is important or not is not a matter of belief
or arguments. In the case of every level, it is decided
by the ratio of the nondiagonal matrix elements to
the distance of the corresponding perturbing levels.
The effect may be negligible for certain levels (e.g. ,
certain ground states) and more important for others.

In trying to determine matrix elements of the
effective interaction from the experimental data it is
imperative to use wave functions which are as simple
as possible. Only then can one hope to extract useful
and reliable information from the available data. If
the wave functions used are complicated (e.g. , in-
volve several configurations in the most general form)
there may be too many matrix elements of the effec-
tive interaction. The few available experimental data
will then not determine all these theoretical parame-
ters. Even if good agreement is obtained by a
"reasonable" choice of the undetermined parame-
ters, it cannot be called quantitatively significant.
Good agreement can be obtained only if the data
are consistent with the theory. In other words, if
several theoretical parameters reproduce accurately
many more experimental data.

The simplest possible wave functions are those
given by the jj-coupling shell model. A jj-coupling
configuration has generally less states than the
corresponding 1.8-coupling configuration. Any inter-
mediate coupling calculation involves several jj-
coupling configurations and the interactions between
them. The prevalent use of jj coupling is not because
its functions give the most accurate description of
nuclear states. Even though it is only an approxima-
tion, jj coupling is used in order to be able to obtain
quantitative agreement. In some cases the agree-
ment obtained is quite spectacular.

One such case is the relation between the jj-
coupling configurations in CP' and K". I»7Cl21
there is one ld3y2 proton outside closed shells and one
1fI/2 neutron outside closed shells (including the
closed 1dg2 neutron shell). In»K2', there are three
lda/2 protons and one 1f~/2 neutron outside the same
closed shells. The d3/2f, /, configuration of Cl" should
have four states with J = 2, 3, 4, 5. The K" con-
figuration is that of a d~/2 proton hole (one dh/u

proton missing from closed shells) and one f7/2

neutron and therefore also has four states with
1 = 2, 3, 4, 5. The da/2 f&/& interaction energy in the
four-nucleon configuration is a linear combination
of the interaction energies in the two-nucleon con-
figuration of Cl" and vice versa. The kinetic energy
is the same in all states of a given configuration. Also,
the mutual interaction of the three d3/2 protons in
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K4' is the same in all states since only one antisym-
metric state, with J = 3/2, is available for these
protons. Thus, starting from the K" spectrum, the
level spacings in CP' can be calculated. ' ' The results
of such a calculation are presented in Fig. 1 and com-
pared with the experimentally measured level scheme
of CP'

I.32 I.BI2

0.89

0.80 p.75 0.762

5 0.70 0.672 5

0.03
0

40
ia" 2l

3
3/2 7/2

p 0
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l7 2l

5/2 7/2

l7 2l

Experirnenta I CalcUlated Experimental

FrG. 1. Related con6gurations in CP8 and E 0.

i S. Goldstein and I. Talmi, Phys. Rev. 102, 589 (1956).
2 S. P. Pandya, Phys. Rev. 103, 956 (1966).

The good agreement obtained in Fig. 1 justifies
the assumptions as well as the configuration assign-
ments. The only essential assumption is that of jj
coupling and effective two-body interactions be-
tween nucleons. The results indicate not only that a
d proton hole and a f neutron hole couple in jj
coupling (a single-particle or single-hole wave func-
tion is the same in jj coupling and L8 coupling).
They indicate that jj coupling also holds in the d7

configuration of CPs. Only then do we have a closed
d5/2 shell (and s&/& shell) and a single d&/& proton.
Another important result is that the matrix elements
of the two-body effective interaction change very
little by going from Cl" to K".This also happens to
be the case when larger groups of nuclei are con-
sidered. This fact greatly simplifies things and ena-
bles the achievement of quantitative agreement in
many cases. The example described above is so
simple and the agreement is so good, that it could
serve as a useful check for phenomenological poten-
tials. Potential interactions that give rise to very
strong configuration interactions in all cases would
probably fail to give good agreement for both CP'
and K4'.

In the following, the information obtained from
nuclei about the effective interaction will be pre-
sented. The general properties of this interaction

will be discussed as well as their implications on the
coupling scheme in nuclei.

II. INTERACTIONS BETWEEN IDENTICAL NUCLEONS

In this section the matrix elements of the effective
interaction between identical nucleons will be con-
sidered. We shall thus look at configurations with
either protons or neutrons outside closed shells. The
low-lying levels belong, generally, to a configuration
in which all extra protons or neutrons outside closed
shells are in one j orbit. We thus consider j" con-
figurations of n such identical particles.

As a concrete example for such configurations, let
us consider the oxygen isotopes beyond 0". In 0'"'
both protons and neutrons are in closed shells. It is
really disci.cult to excite such a structure as evident
from the height of the first excited state 6 MeV
above the ground state. The next nucleus is 0'" with
one neutron outside closed shells. In the ground state
this neutron occupies the 1d5/2 orbit as evident from
the spin, parity, and magnetic moment of 017. Ex-
cited states of 0"can now be obtained by raising the
extra neutron into a higher single-particle orbit. In
this way the following states are obtained: 1/2+ at
0.87 MeV (presumably the 2s, /& orbit), 7/2 at 3.85
MeV (presumably the 1f~/s orbit), and 3/2+ at 5.08
MeV (presumably the 1ds/s orbit). We take these
energies as effective single-neutron energies in the
central field due to the 0" core to be used in shell-
model calculations. As mentioned above, no calcu-
lation of these energies nor any explanation of their
order has yet been given. It should be remarked that
tile d5/s d3/s splitting (due to effective single-neutron
spin-orbit interaction) is rather large and even larger
than the d, /2 f~/, spl-itting. Various statements have
been made about the separations of major oscillator
shells from each other. Here is an example of how
schematic such statements are. As more d5/2 nucleons
are added, their stronger interaction with a d3/2

nucleon lowers its position relative to the f7/2 orbit.
Eventually, the standard order of these two orbits
is reached. The order of single-nucleon levels de-
pends critically on the occupied orbits and may differ
considerably from any schematic picture. Other cases
of relative movements of single-nucleon levels will
be considered later.

Other levels in 0" which also involve excitations
of nucleons from one oscillator shell to the next are
the 1/2 level at 3.06 MeV and the 3/2 level at 4.55
MeV. These levels presumably contain excitations
of single nucleons from the 1@1/& and i@3/2 orbits,
respectively. The order of these hole levels is re-
versed as compared to the single nucleon 1p3/2 Mld
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1p&/2 levels. It is seen that the presence of the single
ld5/~ neutron makes this type of excitation much
lower in energy as compared with 0".This "softening
of the core" is probably due mainly to the gain in
d5/2 pairing energy. We shall not discuss these levels
further, since they involve excitations of both protons
and neutrons from the closed shells.

In 0" there are two neutrons outside the 0" core
and the probable low configuration is d5/2. This con-
figuration has antisymmetric states with J = 0, 2, 4.
Indeed a 2 state lies at 1.98 MeV and a 4+ state at
3.55 MeV. Another 0+ state lies at 3.63 MeV and
another 2+ state at 3.92 MeV. We interpret these
higher states as due to the 2s&j& configuration and
d5/'2 s1/2 configuration, respectively. The s1/&configura-

tion has a higher single neutron energy (2 X 0.87
= 1.74 MeV), as well as a lower pairing energy. ' The

d5/'2 s&/2 configuration has a higher single-neutron
energy, and an interaction energy much smaller than
the d5/2 pairing energy. Naturally, there may be some
interaction between the two 0+ states as well as be-
tween the two 2 states. In first approximation we

ignore this interaction, part of which may still ap-
pear in the matrix elements of the effective inter-
action. Thus, making this assumption about the 0"
levels, we can make use of them in obtaining infor-
mation on the matrix elements of the effective inter-
action in the 1d5/2 configuration. Only when more
experimental data are incorporated will it be possible
to check the consistency of the approach. To achieve
this we have to go to the d5/2 configuration in 0".

The interaction energies in the d5/& configuration
(whose antisymmetric states have J = 5/2, 3/2,
9/2) are linear combinations of those in the ds)s

configuration. The coeKcients in these linear combi-
nations involve coefFicients of fractional parentage.
However, for j = 5/2 a closed formula exists for the
interaction energies in the j configuration. These
energies are given by4'

r() pv) = —', n(e —1)a + (J(J + 1} —-' ~)&

+ -,'(n —v)(8 —n —v)c. (1)

The coeKcients e, 5, and c in (1) depend on the
nature of the interaction. If the two-particle inter-
action energies, V& ——V(j',J,v), are given, c, 5, and
t." can be calculated by equating V& to the expression
(1) with n = 2. The quantum number v is the

s I. Talmi and I. IInna, Nuclear Physics 30, 280 (1962}.
4 G. Racah, L Farkas Memorial .Volume (Research Council

of Israel, Jerusalem, 1952), p. 294."I.Talmi and I. Unna, Annual Rev. Nuclear Sci., 10, 353
(1960).

seniority of the state considered. 1'or J = 0 (n
= 2,4,6) it is v = 0, for J = 2,4 (n = 2,4) we have
v=2, for J=5/2 (n= 135), v=1, and for
J = 3/2, 9/2 (n = 3) it is given by v = 3. With the
help of (1), the (5/2)' interaction energies can readily
be expressed in terms of the VJ. These expressions
are demonstrated graphically in Fig. 2. The level
spacings of the (5/2)' and (5/2)' configurations are
plotted there, relative to the J = 0 and J = 5/2
states, respectively, as a function of a certain parame-
ter which characterizes the interaction. The Vo —V2

spacing is fixed throughout. At the left end of the
diagram 6 is equal to zero and V2 ——V4. At the right
end, c is equal to zero and the energies have the
J(J + 1) dependence. Between these two limits
Vo —V4 is extrapolated linearly. It is seen how for
5 = 0, the 3/2 and 9/2 levels of the (5/2)' configura-
tion coincide since the energy depends only on the
seniority. For c = 0, these levels are well separated
and the 3/2 state even becomes the ground state.

The interaction for which t) = 0 (as well as a = 0)
is called a "pairing interaction. " It has been used
recently as a phenomenological interaction (also for
j ) 5/2). The spacing between the J = 0, v = 0
ground state and the degenerate v = 2 (J = 2, 4,
6. . . ) levels is referred to as the "energy gap. " If this
were to give a good description of nuclear spectra
the J = land 7 = 2 levels in 0"were very close in
energy. Unless we want to use different forces for
different levels, we must conclude that the "pairing
interaction" is very different from the actual effec-
tive interaction in nuclei. We also see that the 8

force (which is sometimes described as the physical
basis for using the "pairing interaction") fails to
give the observed large spacing between the J = 2
and J = 4 levels.

The inadequacy of the "pairing interaction" (as
well as the 5 force) is demonstrated much more
clearly in the d5'j, configuration. In the 6 = 0 limit,
the 3/2 and 9/2 states should be degenerate and lie
two-thirds of the "energy gap" above the 5/2 ground
state. In 0" there is a 3/2+ level, 0.1 MeV above the
5/2+ ground state. This level most probably belon. gs
to the d»2 configuration and has a very small ad-
mixture of the d5/2 d3/2 configuration. This is evident
from its very small separation from the 5/2 ground
state (compare the 5 MeV ds)s —d, y, splitting in
0"), from its not showing any stripping (which could
go only by a d}})'s neutron capture) and the much
attenuated 3IIl transition to the ground state. ' Thus,
the energy gap seems to be nonexistent in 0".The
9/2+ level in 0"ha, s not yet been identified. The only
other level known in 0",below 3 MeV is a 1/2+ level
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at, 1.47 MeV, presumably due to the d&/2 s1/2 con-

figuration.

On the other hand, if we take the matrix elements
of the effective interaction from 0", the 3/2+ level
is predicted to lie 0.8 MeV above the ground state
which is in reasonable agreement with experiment.
A. much better agreement is obtained in the case of
the 2d5/2 configurations in the Zr isotopes. ' The
position of the 3/2+ state in 4eZr53 is calculated from
the Zr" levels at 0.26 MeV. The experimental 3/2+
level lies 0.27 MeV above the 5/2+ ground state. In
Zr" with the d&/& configuration, which is comple-
mentary to the d5/2 configuration, the positions of
the J = 2 and J = 4 levels above the ground state
(at 0.92 and 1.47 MeV, respectively) are almost
exactly the same as in Zr" (at 0.93 and 1.49 MeV,
respectively). This agreement is, indeed, better than
in the oxygen isotopes where in 0"the J = 2 level is

6 I. Talmi, Phys. H,ev. (to be published).

1.68 MeV above the ground state as compared with
l. .98 MeV in 0" (the J = 4 level has not yet been
identified). The experimental level spacings in the
oxygen and zirconium isotopes are marked in Fig. 2.

The occurrence of low lying states with J = j —I
(and v = 3) in js configurations is by no means con-
fined to 0" or the dsts configurations. In the Ifr/2
neutron shell (between Ca," and Ca4') and the If,/,
proton shell (Sc4s to Ni") low-lying 5/2 states occur
in fr'ts configurations as well as in the complementary
f, /s (=fr'qs) configu—rations. These states show no
stripping and decay by very slow lVl transitions.
Their positions agree well with that calculated from
the fr'/s configurations (occurring in even nuclei). "

The spacings between the J = 2,4,6(v = 2) levels
relative to the J = 2 —J = 0 spacings are much
bigger than predicted by the 8 force (and are cer-

~ I. Talmi, Proceedings of the Rehovoth Conference on Nuclear
Structure, edited by H. S. Lipkin (North-Holland Publishing
Company, Amsterdam, 1958l, p. 81.
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tainly far from being degenerate as suggested by the
"pairing interaction"). As a result, the calculated
J = 5/2 —J = 7/2 separation is much smaller than
the J = 0 —J = 2 separation and agrees well with
the experiment. In the 1g()/2 configurations a very
low-lying 7/2+ level is observed whose position can
be calculated very well from the g9~s spectrum in
in neighboring nuclei. ' Some level schemes, taken
from experiment, are given in Fig. 3, exhibiting the

0
0)

2 — 2 ——

crease is obviously due to the fact that in larger
nuclei the outer nucleons are farther apart. It is also
seen that this decrease is less pronounced for the
states with higher l values (and no radial nodes) like

1frps and lgo/s. Unfortunately, not enough level
spectra are known for a quantitative study of this
effect.

The preceding discussion was concerned with level

spacings. The energies of ground states will now be
considered. For j & 5/2 no simple closed expression
such as (1) is available for interaction energies. How-

ever, things are simpler if we consider only the
average interaction energies in groups of states with
the same seniority v in the j" configuration. These
averages are given by the following expression, ''
which is even simpler than (1),

V(j",v) = -,'n(n —l)a
+ —', (n —v) (2j + 3 —n —v) 6 . (2)

O —0
Id

0 0--—0—
2 R

If Ig 2d5~

The coefhcients a and b in (2) are given by the
special case of that expression for n = 2. In that case
we obtain

a+ (2j+ l)b = V(j',0) = Vs

(0 ) (Ca ) (Zr, Mo ) (Zr )

FIG. 3. Energy levels of j con6gurations.

actual behavior of the matrix element, s of the effec-
tive interaction and the degree of departure from
the "pairing interaction. "

The level schemes presented in Fig. 3 are taken
from specific nuclei, but only in cases where there
are enough experimental data to check the validity
of the description in terms of j" configurations. Al-

though more consistent values for the energy levels
can be obtained by least-squares fits, they do not
change the general features of Fig. 3. All these
spectra deviate appreciably from those obtained from
short-range pot, entials. In fact, if one tries to obtain
the experimental level spacings by using a Majorana
potential (which gives in the long-range limit a
J(J + 1) beha, vior of level spacings), its range has
to be much bigger than the "reasonable value"
usually adopted in such calculation. s (which is ob-
tained from the pion mass).

Comparing the spectra of different nuclei, we see
that there is a decrease of the level spacings as a
function of mass number. This corresponds to a de-
crease of the interaction energy in the J = 0 state
(pairing energy) to be discussed later on. This de-

s I. Talmi and I. Unna, Nuclear Phys. 19, 225 (1960).

or explicitly

= V(j'2) = V

(2J+ 1)Vg ~ (2J+ 1)
J&0 evenJ&0 even

1 (2J + l)Vz

(3)

V(j",g.s. ) = —', n(n —l)(a —b) + t —',n](2j + 2)b

= -'n( —1) + I:l lP

f = (V —V )/(2j + 1) .

The formula (2) refers to the interaction energy of
a group of actual eigenstates, if the interaction
energy is diagonal in the seniority scheme (this is
always the ease for a two-body interaction and

j & 7/2). In the general case it represents the average
expectation value of the interaction in the group of
states with given seniority.

In particular, there is only one state with v = 0
(namely, a, J = 0 state) in the j" configuration if n
is even, and only one v = 1 state (a J = j state) if
n is odd. Thus, (2) can be directly applied to the
interaction energies of ground states of j" configura-
tions of identical nucleons. Substitut, ing v = 0 or
v = 1 in (2), a simpler expression results as follows:
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The [n/2] in (5) is the step function which is equal
to n/2 if n is even and (n —1)/2 if n is odd ([x] is the
largest integer not exceeding x). The coefficients
o. and p in (5) are obtained from (4) to be

2(j+ 1)Vs —Vo

2j+ 1
2(j + 1) (y2j+ 1

(6)
The general formula (5) is very simple indeed. It
contains only a term quadratic in n and a pairing
term. This simplicity is a direct result of the sen-
iority scheme. Equation (5) holds for any two-body
interaction whether central or noncentral, local or
nonlocal.

The total energy of the n nucleons outside closed
shells also contains, in addition to the mutual inter-
action (5), a sum of n equal single-particle energies.
Each of these energies, to be denoted by t, is the
sum of the kinetic energy of a single j nucleon and
its interaction with the closed shells. The total bind-
ing energy of the nucleus also contains the energy of
the closed shells. In order to separate these two
parts, we subtract from the binding energy of the
nucleus considered the binding energy of the nucleus
with no j nucleons outside closed shells. The remain-
ing energy is given according to our assumptions by

s I. Talmi, Phys. Rev. 107, 326 (1957).

B.E.(j") —B.E.(n = 0) = ~(;

+ -,'n(n —l)a+ [-,'n]p. (7)
It should be realized that any changes linear in n
of the binding energy (B.E.) of the closed shells are
absorbed into the first term in (7). Similarly, any
quadratic changes of B.E.(n = 0), as well as linear
changes in C, are absorbed into the second (quad-
ratic) term in (7). Actually, some of these changes
can be expressed as due to configuration interaction
and, as such, are included, by definition in the
effective interaction (5).

It is now possible to check the consistency of the
model by trying to find, in a given shell, constants
(;, n, and p that will reproduce accurately the experi-
mental energies. This procedure will be meaningful
if there are more than three experimental energies.
In that case, the theoretical parameters are deter-
mined by a least-squares fit, so that they best repro-
duce the experimental energies. When these best
values are introduced into (7), the calculated values
are obtained. These should be compared with the
experimental energies to check the agreement. An
example of such an analysis, for the proton and
neutron f~g, configuration, is given in Table I.' For
the sake of convenience, the binding energies are

TABLE I. Binding energies of lfrj2 configurations (in MeV).

Binding energy

Experi- Calcu-
Nucleus mental lated

Binding energy

Exp eri- Calcu-
Nucleus mental lated

41.oCa. l

42.oCa22
43sc«.s

44
20ca24

45
20Ca25

46
2oCa26

47.oCa.7

48.oCa.s

8.36 8.38

19.83 19.86

27.75 27.78

38.89 38.80

46.31 46.26

56.72 56.82

63.81

73.95 73.93

49
21~C28

~ 50
22Ti28

51
23V28

52
24Cr2s

53
25Mn28

54
26Fe28

55.7Co.s
~ 56

28+i28

9.69

21.78 21.72

29.82 29.86

40.34 40.32

46.90 46.90

55.75 55.80

60.85 60.81

68.17

& From these the binding energy of Ca4o was subtracted.
b From these the binding energy of Ca" was subtracted.

Occasionally one wonders whether the existence of such
a simple formula should not have been kept as a trade secret.
The good agreement in Table I, had it been obtained by the
lengthy procedure of using tables of coefficients of fractional
parentage, Racah coeRcients, etc., would seem much more im-
pressive.

taken to be positive numbers. This convention will
also be used in the following. The agreement obtained
is seen to be very good and statistically significant.

Equation (7) is, in fact, a, niass formula covering
a limited region. It very accurately reproduces the
parabolas of the mass surface. Furthermore, the
pairing term is a natural result of the seniority scheme
and is not added by making ad hoc assumptions. The
fact that the semi-empirical mass formula also has
similar terms can now be justified on the basis of the
shell model. The appearance of such terms in the
semi-empirical mass formula is not the basis of (7).
The expression (7) is an exact mathematical result
that holds for any interaction in the seniority scheme. "
Another feature of (7), not shared by the semi-
empirical mass formula, is the fact that the co-
eKcients (;, o., and p are constants. The values of
these parameters depend, however, on the shell con-
sidered and change discontinuously from one shell
to the next. In the semi-empirical mass formula these
discrete jumps are replaced by a smooth variation
with mass number. This way a formula that covers
a greater region is obtained, yet the detailed agree-
ment offered by (7) is lost.

The theoretical parameters (, , o., and p that give
the best fit in the case of the neutron fry& configura-
tions are given (with the statistical errors) by

C = 8.38 & 0.05 cx = —0.23 & 0.01

P = 3.33 ~ 0.12 MeV.
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For the proton f7/2 con6gurations the corresponding
quantities are

TABLE II. Parameters of the effective interaction in j"
configurations of identical nucleons (in MeV).

C = 9.69 & 0.04 0. = —0.78 & 0.01

P = 3.11 & 0.09 MeV. (9)

Orbit
Single nucleon Coefficient of Coefficient of

energy C quadratic term pairing term
CX p

In both cases the quadratic term is repulsive (nega-
tive in our convention) and the pairing term is
attractive (positive). Comparing the sets (8) and

(9), the values of (; should not be expected to be
equal. In the case of the protons, C also contains the
electrostatic repulsion of one f&/, proton and the
protons in closed shells. This strong repulsion is
more than compensated for by the interaction of the
f7/s proton with the closed f,/, neutron shell. The f&/Q

neutrons in the Ca isotopes do not have this extra
interaction. Similarly, the values of n and P for the
protons should also be reduced by the Coulomb
interaction in comparison with the neutron values.
This is, indeed, the case for the values of n and P in

(8) and (9). The value of the Coulomb pairing
energy" is equal, with the quoted errors, to the differ-
ences in P between (8) and (9). The change in rr is,
however, bigger than expected, and may reHect
changes in the effective interaction, due to the dif-
ferent closed shells in the two cases as mentioned in
the discussion following (7).

The only parameter that is related to excited
states is the coefficient P of the pairing term. It is
simply related, by (6), to the position of the center
of mass of the v = 2 J = 2, 4, 6. . . levels, V2, above
the J = 0 ground state. In the Ca4' spectrum (Fig.
3) this center of mass lies 2.7 MeV above the ground
state. This value is in fair agreement with the values
2.96 ~ 0.11 MeV and 2.76 ~ 0.08 MeV obtained
from (8) and (9), respectively. A similar analysis
of the neutron 2d&&2 configurations beyond Zr"
also gives good agreement between (7) and experi-
ment, .' The theoretical parameter P obtained from
this analysis is equal to 1.50 MeV. The value of
Vs —I/s obtained from this is 1.50 (6j7) = 1.29 MeV.
This agrees very well with the value obtained from
the 2C5/2 excited states (Fig. 3). The center of mass
of the J = 2 and J = 4 levels lies in Zr94 at 1.27
MeV and in Zr" at 1.29 MeV above the ground
state.

The energy parameters („a, and P obtained from
this type of analysis in various configurations are
presented in Table II. The behavior of the pairing
parameter P as a function of mass number is very
similar to the trends of the energy spacings of Fig. 3.
There is a decrease with mass number which is less

"B.C. Carlson and I. Talmi, Phys. Rev. 95, 436 (1954).

a

neutron 1d5y& 4.2
neutron 1f7/2 8.38
proton 1f7q2 9.69
proton or

neuton 1g9g2

neutron 2d&y2

—0.1
—0.23
—0.78

—0.19

3.8
3.33
3.11

2.2
1.50

a Tentative values.

pronounced for higher l values (and no radial nodes).
The energy parameter n turns out to be repulsive

(negative) in all cases considered. This is required
by the saturation properties of nuclear energies. As
mentioned earlier, the quadratic term is responsible
for the fact that nuclei to which more and more
nucleons of the same kind are added become less and
less stable. Dealing with energies of actual nuclei,
this term must be repulsive. %e shall make further
comments on this point but first take notice of a
simple yet interesting fact. Due to (7), as well a,s to
the corresponding expression for both protons and
neutrons outside closed shells to be given later, nuclei
with magic proton or neutron numbers have no extra
binding energy as compared to preceding even nuclei.
Moreover, the occurrence of the repulsive term makes
such nuclei have relatively less binding energy than
some preceding even nuclei. This is clearly demon-
strated by considering the separation energy of the
last nucleon. This separation energy is given by C
for n = 1, is higher by the value P for even n than
for odd n, due to the pairing term, and is decreasing
linearly with n, due to the quadratic term. Magic
nuclei are more stable than others, only because the
nuclei beyond them have much lower separation
energies. Stability is not a property of a single nucleus
but depends on its neighbors. A nucleus is unstable
only if another nucleus is available to which it can
decay. Magic nuclei are thus more stable relative to
nuclei beyond them. Only the total binding energy
or the separation energy is a good objective measure
for the amount of binding. The behavior discussed
above is clearly demonstrated for the neutron 1f&/2

shell' in Fig. 4 and for the neutron 2d5/2 shell' in
Fig. 5. The separation energies are plotted against n
and are seen to lie on two parallel straight lines. The
separation energy of the first nucleus beyond the
closed shells is also plotted, so that the sharp drop
can be visualized. The drop in Fig. 4 is much bigger
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of this D and Uo ——(g'J = OlVlj'J = 0), that cri-
terion is

(10)
The ratio Vo/D is considered a, measure for the
length of the ra,nge. Using (5) for n = 2j+ 1, we
obtain the following expression for the quantity D

D = -'(2j + p) = -', V. + -'(2~ —1) . (11)
In the case of the 5 force, as weH as for every inter-
action with the pairing property, the parameter n
va, nishes [in this case 2 (j+ 1) V, = U, ], and there-
fore Uo/D = 2. In all cases of interactions that re-
produce nuclear energies, o. is negative whereas V0
is positive. Thus, for any such interaction Vo/D ) 2,
and certainly, V, ) D. If the condition (10) had
made any sense, it would mean that the saturation
properties of the nuclear interaction (which deter-
mine the relative sign of n and Vo) would destroy the
shell model. It is the current opinion, though, that
these saturation properties help establish the shel. l

model. If we still like to use the loose terms "short-
range" and "long-range" forces, we see that our re-
sults imply that the long-range components of the
force (which give rise to the quadratic term) a,re re-
pulsive within a j shell of identical nucleons. '"

To summarize, we repeat that within the j" con-
figuration of identical nucleons the only attractive
term in the interaction energies of ground states is
the pairing term. The quadratic term is repulsive.
Thus, in the ground state of the j' configuration,
there is a repulsion between one nucleon and the
other two. The only attraction in this case comes
from the pairing term. This effect is by no means con-
fined to identical nucleons in the same j orbit. The
effective nucleon interaction between a j' neutron
and a pair of neutrons in the J = 0 state of the j'
configuration is always repulsive. This is also a result
of the known fact that adding to a stable nucleus
many nucleons of the same kind makes it less stable.
This repulsive interaction is given by the simple
expression

U(j'(o)j') =- U(j"(o)j)

= 2 P (2J + 1)V{jj'J)/(2j+ 1) (2j'+ 1).
l j—j''l

(12)
The individual interaction energies V(jj'J) need not
all be repulsive, but their combination (12) is. It

&4 without realizing this fact, it wouM seem that the pair-
ing force, given by (2) with 0 = 0, which has a repulsive quad-
ratic term and gives VO/D = 2j + 1, has a range shorter than
the zero range 8 force.

turns out that in actual cases the V(jj'J) are small
in their absolute value. "' The absolute value of (12)
is a few tenths of MeV in light nuclei and decreases
for higher mass numbers.

This summarizes the properties of the effective
interaction between identical nucleons. It does not
seem probable that the interaction of many of them
will lead to an average attractive interaction which
will be stronger than the attractive pairing energy
in the seniority scheme. In fact, nuclei where either
protons or neutrons are in closed shells do not show
the characteristic properties due to deformation. The
deviations from the seniority scheme and spherical
nuclei seem to be connected with the interaction be-
tween protons and neutrons outside closed shells.
This point will be considered in detail in the next
section. Before going into it, we shall summarize the
little information available on configuration inter-
action.

As mentioned earlier, configuration interaction
where two nucleons are excited, can be incorporated,
under certain conditions, into the effective two-body
interaction. Thus, if this interaction can be treated
in perturbation theory, there is no simple way to
distinguish between the interactions with the various

configurations. There are, however, cases where con-
6guration interaction of this type has a strong effect
on certain energy levels. This occurs whenever two
unperturbed states with the same value of J lie close
in energy. If there is an appreciable nondiagonal
matrix element of the interaction between them, the
two states get strongly admixed. Con6.guration inter-
action can also be treated by the method of effective
interactions. Also, nondiagonal matrix elements of
the effective interaction can be taken as free parame-
ters to be determined from the experimental data
rather than from Yukawa or Gaussian phenomeno-
logical potentials. The only difhculty is that, in most
cases, many nondiagonal elements may be present,
so that many experimental data are required for a
quantitative analysis.

A simple case where this could be carried out in-

volves the 2@1/2 and 1g9/2 orbits. In this case there is
only one possible nondiagonal element which con-
nects the J = 0 states of the p&, 2 and the g9/2 coIl-
figurations. Enough experimental data are known,
so that energy levels of these con6gurations could be
treated and fair agreement obtained. ' %e shall not
go into the details of that analysis which are pre-
sented in reference S. The nondiagonal element turns
out to be about 0.7 MeV. On the other hand, the

I. ITnna, and I. Talmi, Phys. Rev. 112, 4M (1958).
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spacing of the unperturbed levels in this particular
case is of the order of 1 MeV. Thus, fairly large
energy shifts are obtained. In Zr" the interaction
between the p1/2 and g9» configurations aGects only
the positions of the two 0+ states, the spacings be-
tween the levels with J = 2, 4, 6, 8 are unchanged. In
Mo" the interaction between the p1/2 g9/2 and the g9/2

configurations affects the J = 0 state of the p1/2g9/2

configuration and the v = 0, J = 0 state of the go/2

configuration. It also shifts the J = 2, 4, 6, 8 in the
p1/2g9/2 configuration and the v = 2, J = 2, 4, 6, 8
states in the g9/& configuration. However, all J = 2,
4, 6, 8 states of the p1/209/2 configuration, having
v = 2, are pushed down by the same amount due to
the interaction with the g9/2 configuration. %e there-
fore expect to find the same level spacings of the
J = 2, 4, 6, 8 levels in Zr" and Mo". This is actually
the case."The relative positions of the various J = 0
states give information about the nondiagonal ele-
ment of the effective interaction. Here is an example
of how configuration interaction strongly affects only
certain levels (with J = 0) and does not change the
spacings of other levels.

Another case where configuration interaction af-
fects only certain states is found in the f7)& spectra,
considered above. The ground-state energies agree
very well with the description in terms of f&)2 con-
figurations both for proton and neutron configura-
tions. Also, most of the excited states agree very well

with this description. In particular, the position of
the first excited 5/2 state in f&y2 or f7y2 configurations
is practically the same in all possible four nuclei.
Furthermore, this experimental position agrees with
that calculated from the f7(, spectra. On the other
hand, the position of the 3/2- level in Ca4' is only
0.59 MeV above the ground state, much lower than
the calculated position of about 1 to 1.2 MeV. It is
not diKcult to find the perturbing state in this case.
In Ca" the single neutron 2p3/2 level is only 1.95 MeV
above the 1f,q, ground level. In Ca" the 3/2 ground
state of the f~~2pg2 configuration may be 2 MeV or
even less (due to the f7~2 —p&y2 interaction) above
the 7/2- ground state. Thus, these two 8/2 states
(of the f&y2 and f&~2pg& configurations) may be quite
close in energy and, as a result, interact strongly.
The admixture of the f~, ~p,g, configuration in the
0.59-MeV state can be inferred from its large width
for /„= 1 stripping (the other perturbing state, with
a larger width, is at 2.05 MeV). This could be con-
trasted with the unperturbed position of the 5/2
state which shows no l. = 3 stripping. In that case,

6 R. van Lieshout, S. .Monaro, G. B. Vingiani, and H.
Morinaga, Bull. Am. Phys. Soc. 7, 342 (1962).

the 1f~(2 level in Ca" is believed to be higher than 6
MeV above the lf&q& ground state. No quantitative
analysis of this effect has yet been carried out. In
other cases it occurs only to a lesser degree. In V",
for instance, the 3/2 level is at 0.93 MeV. The
smaller deviation from the calculated value is most
probably due to the higher energy of the perturbing
state. The single nucleon energy depends rather
strongly on which of the shells are closed. In Sc",
with one proton outside the Ca" closed shells, there
is experimental evidence indicating that the 2@3/2

level is 3.1 MeV above the 1f7)2 ground state (as
compared to 1.95 MeV in Ca").

III. PROTONS AND NEUTRONS
OUTSIDE CLOSED SHELLS

Disregarding the repulsive Coulomb energy, nuclei
are most stable when the number of protons is equal
to the number of neutrons. This fact, in itself, is
suKcient to prove that on the average the interaction
between a proton and a neutron is attractive. In the
detailed analysis, based on the shell model, this fact
is clearly demonstrated. Yet occasionally the state-
ment is made that the proton-neutron interaction is
weak. As stated above, this is manifestly not true.
Apart from the pairing energy, the only interaction
which, on the average, is strong and attractive is the
interaction between protons and neutrons. In this
section we shall first discuss the available information
on the proton-neutron interaction and then see how
it can lead to deviations from jj coupling and from
spherical symmetry of nuclei.

First, we consider nucleons (both protons and
neutrons) in the same j orbit. There are very few
cases where experimental information is available on
the excited levels of such a configuration. Some of
these cases will be considered later, but first we treat
energies of ground states binding energies. The
matrix elements of the interaction energy in the j"
configuration are linear combinations of the inter-
action energies of the j' configuration. The co-
eFicients of these linear combinations involve coef-
ficients of fractional parentage and depend on the
values of J, 'I' (total isospin, for charge-independent
interactions) and other quantum numbers of the
states considered. EIowever, if we consider in the j"
configuration, the expectation values of the interac-
tion energy, averaged over a group of states with the
same value of Y' and the same quantum numbers of
the seniority scheme, a great simplification occurs.
Such average interaction energies are simple linear
combinations of the average interactions in the j'
configuration. In the j' configuration the 7' = 1.,
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J = 0 state is characterized by v = 0, t = 0, where
v is the seniority and t the reduced isospin. " The
other states with T = 1, which have J = 2, 4, 6,
..., 2j —1 have seniority v = 2 and t = 1.The states
with T = 0 and J= 1, 3, 5, ..., 2jalso have
v = 2 but a different reduced isospin, t = 0. The
average interaction energies in the j" configuration
are thus linear combinations of Up, V2 which is de-
fined by (3) and

V~ ——Q (2J+ l)Vg Q (2J+ 1)
J odd J odd

Q(n, v, t, F) = —,
' (n —v)(4j+ 8 —n —v)

—7'(T'+ 1) + &(t + 1) (»)
The parameters c', 6', and c' are simple linear com-
binations of V&&, V&, and V&. Using (14) for the case
n = 2 we obtain

3Vs + V&6 V2 —V1
) C

VP —V2

2j+ 1

(16)

Equation (14) gives only average interaction
energies, but in certain simple cases it is more specific.
In any j" configuration, for any given value of 7.',
there is only one state which has lowest seniority.
These states have J = 0, v = 0, t = 0 if n is even,
and J = j, v = 1, t = 1/2 if n is odd. Putting these
values of v and t in (14), we directly obtain the inter-
action energies in these states. The resulting expres-
sions turn out to be much simpler than (14), in the
same way that (5) is simpler than (2). However, be-
fore applying these expressions to the calculation of
nuclear energies, we must discuss the question
whether the seniority is a good quantum number in
the present case of both protons and neutrons out-
side closed shells. For identical nucleons, with
F = n/2, the seniority is a good quantum number

~" B. H. Flowers, Proc. Roy. Soc. (London) A212, 248
{1952).

1

(
. +. 1) (2

. +. 1)Q (2J + 1)V . (13)

The average interaction energies in a group of
states of the j"configuration having the same values
of T, v, and t can be expressed in a form analogous to
(2). This expression is given by"
—', n (n —1)a' + (T(T + 1) —-sn) 5' + Q (n, v, t, T)c' .

(14)

The eigenvalues of the seniority operator Q are given

by

for j & 7/2 irrespective of the nature of the two-body
interaction. In the general case, considered here, this
is true only for j ( 3/2. In the case of maximum T,
the available information on the 1g9/2 configuration
indicates that the seniority is a good quantum num-
ber even in that case. No decisive experimental evi-
dence about this question exists for d5/2 or f7/2 coil-
figurations of protons and neutrons. However, there
are several indications that the effective interaction
may not be diagonal in the seniority scheme. Where-
as, the interaction in the J = 0 state is by far the
strongest of the T = 1 states, there are T = 0 states
with as strong and even stronger interaction. Thus,
the expectation values of the interaction in states
with lowest seniority may not be spaced far from
those of states with the same 7 and J and higher
seniority. Nevertheless, we try to see whether ap-
proximating ground states by states with lowest
seniority gives a good description of binding energies.

For the cases v = 0, t = 0 and v = 1, t = 1/2, the
expression (14) simp1ifies into

V(j",F,g.s. ) = —', n(n —1) (a' —-', c')

+ [T(T + 1) —'n](b' —c')-
+ [-',n](2j+ 2)c' (17)

where [n/2] has the same meaning as in (5) . The bind-
ing energy due to the n nucleons in the j orbit will be
obtained by adding to (17) their kinetic energy and
interaction with the closed shells as well as the
Coulomb energy (C. E.) of the jprotons. The electro-
static energy can be calculated by using a simple
model (e.g. , harmonic oscillator potential) or better
be taken from mirror nuclei. The other energies are
given as a sum of n equal single-nucleon energies C.
We thus obtain for the difference in binding energies
of the given nucleus and the nucleus with no j
nucleons outside closed shells the simple expression

B.E.(j",T) —B.E.(n = 0) = nC + -', n(n —l)a
+ (T(F + 1) ——,'n)b+ [-',n]c+ C.E. (

The constants a, ti, and c which appear in (18) are
linear combinations of Vc, V„and V&. They are given
explicitly by

[(6j+ 5)V2+ (2j+ 1)V& —2Vc]
4(2j+ 1)

[(2j + 8) V~ —(2j + 1)Vi —2Vc]
2(2j+ 1)

c = — . (Vc —Vs).2(j+ 1)
2g 1

It is now possible to see whether sets of values of
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the constants t. , c, 6, and c can be found which
accurately reproduce the experimental binding ener-
gies. It turns out that (18) gives a fair description of
binding energies which, however, is not as good as
in the case of only identical nucleons outside closed
shells. "The agreement obtained for the 1d3/2 shell is

Tzgr. z III. Binding «nergies

Binding energy'

Experi- Calcu-
Nucleus mental lated

of lds(~ configurations (in MeV).

Binding energy'

Exp eri- Calcu-
Nucleus mental lated

33
16S17

~34
16+18

35
16S19

36
16S20

33
17Cl16

34
17C117

35
, r Cl, s

36
17CI19

37
,r Cl.o

8.65 8.66

20.05 20.04

27.07 27.12

36.97 36.97

2.42 2.38

13.75 13.77

26.46 26.29

35.03 35.10

45.39 45.23

35
18Ar17

36
18Ar18

37
18Ar19

38
18~r20

37
19K18

38
19K19

39
19K20

39
20Ca19

40
20Ca20

19.69 19.58

34.96 34.83

43.79 43.96

55.54 GG.82

36.88 37.00

48.88 48.86

61.96 61.85

54.32 54.44

70.29 70.17

a From these the binding energy of S"was subtracted.

8 I. Yalmi and R. Yhieberger, Phys. Rev. 103, 718 (1956).

demonstrated in Table III. The experirnerital ener-
gies are compared with the values obtained from
(18) by using the best values of C, a, b, and c."

Equation (18) is a mass formula which covers s,

limited region (where the j orbit is being filled). The
appearance of a symmetry term and a pairing term in

(18) gives a shell-model basis for such terms in the
semi-empirical mass formula. The parameter c is
very small in all cases analyzed. The parameter 6 in
the symmetry term is large and repulsive (negative).
It thus causes states with lower values of T to have
lower energy (greater binding). In the case of identi-
cal particles, where T = n/2, the coefficient of
n(n —1)/2 becomes a+ b/2 and is therefore re-
pulsive. The parameter c in the pairing term is large
and attractive as in the case of identical nucleons.
We also see that in the present case, nuclei with
magic proton and neutron numbers do not have
much extra binding as compared with preceding
even-even nuclei with T = 0. Such magic nuclei are
more stable because the nuclei beyond them have
less binding. In order to reproduce the data, the
parameters C, c, 6, and c should be fixed for each j
shell. These parameters are constant within each

0.5—

0.87
i/2

-05—

0.72
0.'39
030 ~ 3 0

0
, 2

dS/2

-O.I—
15 16 17

6C9 YN SO9

FIG. 6. Single 1d5/2 and 281/2 neutron levels.

subshell, but change discontinuously from one shell
to the other. In the semi-empirical mass formula,
which covers a larger region, these jumps are re-
placed by a continuous variation of the parameters
with mass number. This is the reason why mass
formulas do not work properly for light nuclei. It
is not that these nuclei are less regular than others.
Their masses are given well by (18) with constant
coeKcients. However, only for heavier nuclei where
the discrete changes in the constants become smaller,
can a smooth formula give a good description.

The properties of the interaction between protons
and neutrons in the same j orbit are also present in
the interaction between protons and neutrons in
diHerent orbits. The interaction between a j proton
and a j' neutron is strong and attractive. This clearly
follows from the saturation properties of nuclear
energies, even when protons and neutrons occupy
different shells. It is also borne out by the more de-
tailed analysis in cases where it is possible. '" The
states where there are m j protons and n j' neutrons,
outside closed shells have definite isospin provided
the j-neutron shell is filled. The interaction between
a j proton and a j' neutron, in this case, is given by

V(ii'J) = s Ã(i2'T = 1~) + V(jj'T = 0~)~ (2o)

The interaction between a pair of j protons and a
j' neutron is given by Eq. (12), where V(jj'J) is now
defined by (20). The interaction energy V(j'(0)j')
= V(jj"(0)) is strong and attractive. Its strength
depends on the specific j and j' orbits involved. As a
result, when a certain proton shell is being filled, the
relative positions of the single-neutron orbits may
change considerably.

An example of this effect is presented in Fig. 6.
In 0", as already mentioned, the ninth neutron is in
the ld;, /2 orbit in the ground st ~te. The single 2sl/2

neutron orbit is 0.87 MeV above it. Removing two
1@1/2 protons leads to C" where the order of these
levels may be different. Information about the
p1/2-proton d5/2-neutron and p1/2-proton sI/2-neutron
interaction can be obtained from other nuclei in this
region. From this information it is possible to predict,
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the order of the 5/2+ and 1/2+ levels and their spac-
ing in C".' " In Fig. 6 this information is obtained
from the level spacings in N"."The 2- and 3- levels
in that nucleus are assigned the p&j2-proton d5/2-

neutron configuration, whereas the 0- and 1 levels
are taken to belong to the p1/2-proton s&/2-neutron

configuration. In view of (12) it is clear that the pre-
dicted relative position of the C" levels is obtained
by tt'neer extrapolation from the 5/2+ and 1/2+ levels
of 0" through the centers of mass of the 2 and 3
levels and the 0 and 1- levels in N", respectively.
The result is that the ground state of C" is predicted
to be a 1/2+ state with a 5/2+ state 0.58 MeV above
it. This result is obtained also from the more de-
tailed calculation"' and is in good agreement with
the experimentally observed order of levels and their
spacing (0.72 MeV).

An analogous case which is more amusing concerns
the order of the single 1p&/2 and 2s&/2 neutron levels.
In C" the ground state has spin 1/2 which indicates
that the last neutron is in the 1pI/& orbit. The posi-
tion of the 2s1/2 orbit, which is in a higher oscillator
shell, is given by the first excited 1/2+ state at 3.09
MeV. If two p3/2 protons are removed from C", the
Be"nucleus is obtained. It is plausible that the inter-
action of a p3/2 proton with a p1/& neutron will be
stronger than that with a s1/2 neutron. Thus, the
level spacing in Be"may be quite different from that
in C". The experimental information on the inter-
actions involved can be obtained from the 1+, 2+ and
2, 1 levels in B".A linear extrapolation from the
C" levels, through corresponding centers of mass of
B" levels, shows" that the ground state of Be" is
expected to have spin 1/2 and positive parity (as
suggested by experimental data") the 1/2- state is
predicted to lie 0.2 MeV above the 1/2+ ground state.
Subsequent experiments confirmed this prediction. "
The ground state of Be" was verified to have spin
1/2+ and an excited state was found 0.82 MeV
above it."

It is worthwhile to mention that the linear extra-
polation in Figs. 6 and 7 is not "systematics of even-
parity states in nuclei of odd mass" in this region. It
is based on the shell-model theoretical expression
(12).The values of V(jj'J') were determined directly
from the experimental data. The same result would

is I. Talmi and I. Unna, Phys. Rev. Letters 4, 469 (1960).
2o D. H. Wilkinson and D. E. Alburger, Phys. Rev. 113, 563

(1959).
2' P. F. Donovan, J. V. Eane, R. E. Pixley, and D. H.

Wilkinson, Phys. Rev. 123, 589 (1961).» S. Hinds, A. E. Litherland, R. Middleton, and P. J.
Pullen, ProceeChngs of the kingston Conference on Xuctecr
Structure, edited by D. A. Bromley and E.W. Vogt (University
of Toronto Press, Toronto, 1960), p. 436.
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I&'io. 7. Single 1pi/2 and 281/2 neutron levels.

~3 B. L. Cohen and P. Mukherjee, Bull. Am. Phys. . 8oc. 7,
347 (1962) and B.L. Cohen, Phys. Rev. (to be published).

have been obtained in a more "fashionable" way if a
phenomenological interaction would have been first
introduced to reproduce the B" level spacings. The
procedure described here only demonstrates that
such a phenomenological interaction is not necessary
in the present shell-model calculation. Several other
cases of movements of single nucleon levels were
recently published. "

The strong proton-neutron interaction gives rise
to other effects which can be observed in the struc-
ture of nuclear spectra. In nuclei with protons and
neutrons outside closed shells, it is possible to define
a scheme of states in which the protons are in a
definite state with spin J„and the neutrons in a
definite state with spin J„.The total spin J of the
states is obtained by coupling the given J„ to the
given J„.However, such states will not be eigenstates
of the nuclear Hamiltonian, even if the protons and
neutrons are in different shells. The proton-neutron
interaction will generally admix states with different
values of J, and J„(provided the total spin J is the
same). The states described here belong to the same
configuration, and the admixtures discussed are not
configuration admixtures. These admixtures are due
to the fact that protons and neutrons interact even
if they are in different orbits. The matrix elements
which give rise to such admixtures are linear combi-
nations of the proton neutron interaction energies
V(jj'J). If all the V(jj'J), with diA'erent values of J,
are equal, these matrix elements vanish. Thus, the
existence of nondiagonal matrix elements in the
scheme characterized by J, and J„ is directly re-
lated not to the strength of the proton neutron inter-
action but rather to the spread of V(jj'J). From
Fig. 1 it can be seen that for j—= ldsps and j' —= 1fr/2

the various V(jj'J) differ widely in energy.
The extent to which the admixtures discussed

above inAuence energies of nuclear states also de-
pends, of course, on the difference of the diagonal
elements with different values of J„and J„of the



energy matrix. An even group of identical nucleons
in the lowest state has J„=0 and therefore J = J„.
The next higher state with this value of J can
generally be obtained only with J, = 2 which is con-
siderably higher than the ground state. It is, there-
fore, clear that such admixtures will not be important
for low-lying levels in odd-even nuclei. On the other
hand, such admixtures can affect very strongly level

spacings in odd-odd nuclei. This can clearly be seen
from the following example.

In K" the lowest proton configuration is that of a
Ps/& hole, J„=3/2, as in E4'. The neutrons are in the

f7/2 configuration. The ground state of the f7/s coil-
figuration has J„=7/2 but another state, with
J„=5/2, lies only 0.37 MeV above it. Thus, the
states with J = 2,3,4 of K" are expected to have
rather large admixtures of states with J„=7/2 and
J„=5/2. The matrix elements of the 1ds/, -proton
1fr/Q neutron interaction are well known from the
CP' —K" analysis. Therefore, the energy matrices
can be written down and diagonalized. The results
are quite instructive. '4 Whereas the ground state of
K" has J = 4, the lowest diagonal element of the
d„', f7/s configuration has J„=7/2 and J = 3. How-

ever, diagonalization of the matrices leads to the
lowest eigenvalue obtained for a state with J = 2,
which agrees with the experimental value. The
ground state turns out to be an almost equal admix-
ture of states with J. = 7/2 and J.= 5/2 (states
with other values of J„are higher and do not con-
tribute much). This example shows that no sche-
Inatic coupling rule for spins of odd-odd nuclei can
work in all cases. The matrix elements due to the
proton-neutron interaction are of great importance
in the determination of spacing and order of levels
in odd-odd nuclei. It may be worthwhile to mention
that in the special case of one proton (or neutron)
with J' = 1/2, the states characterized by different,
values of J„(or J„) are eigensta, tes of the proton-
neutron interaction. '

The proton-neutron interaction gives rise also to
configuration admixtures. Some of these will be dis-
cussed in detail later on. It may be worthwhile to
repeat that the importance of configuration interac-
tion is determined in every case by the distance of
the perturbing states in addition to the magnitude
of the matrix element connecting them. Thus, con-
figuration interaction may be important even in
configurations with 1ds/s protons and 1f~/, neutrons,
in spite of the excellent agreement obtained for the
Cl" and K40 spectra. Consider, for instance K".The

~4 S. Goldstein and I. Talmi. , Phys. Rev. 105, 995 (1957).

lowest possible proton configuration that could be
admixed to the ground d, /, f7/s configuration lies
more than 2.5 MeV above it, as seen from the K"
spectrum. Similarly, looking at Ca41 we see that the
single 2p&/2-neutron level lies about 2 MeV above
the 1f&/s ground state. The J = 2,3 states of the
d / p3/2 configuration could be admixed to the
corresponding states of the d, /, f, /s ground con-
figuration of K". Even if the nondiagonal matrix
elements would be of order V 0.2 MeV the energy
shifts l/'/6 would turn out to be about 20 keV. Such
shifts are consistent with the deviations between
calculated and experimental level spacings in Fig. 1.

Consider, however, the»Ar2& nucleus. The ground
statehas J = J„=7/2 and mostly J„. = 0 with some
admixture of the state with J„=2. The state with
J„=2 lies about 2 MeV above the J„=0 state as
observed in Ar". Other states, with J, = 2, are also
possible with J = 3/2, 5/2, 7/2, 9/2, and 11/2. They
all should lie roughly 2 MeV above the ground state
(their positions can be computed from the d»', fr/,
interaction). On the other hand, a 3/2 state which
belongs to the d„', ps/s configuration (mostly with
J„=0) is also expected to lie about 2 MeV above
the Ar" ground state. A nondiagonal matrix element
of 0.2 MeV would strongly admix these two 3/2
states of the d», f&/s and ds/, ps/& configurations and
cause large energy shifts. An effect of this type is
actually observed in Ar".

The general effect of configuration interaction in
states where both protons and neutrons are outside
closed shells is to cause large deviations from jj
coupling. The fact that jj coupling works better for
identical nucleons (or rather for high T values) has
been observed by several authors. Both by those
who used some simple phenomenological interac-
tions25 ""as well as by those who used the method
of effective interactions. "" We shall consider now a
simple example in which it is possible to see the
res, son for this behavior. " Some of the features of
this case may be more general and may apply to
other cases.

Let us consider two nucleons outside the closed
shells of O". It was mentioned earlier that T = 1
states (e.g. , in 0") can be consistently described in

ss J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)
A229, 536 (1955).

ss M. G. Redlich, Phys. Rev. 99, 1427 (1955).
~7 J. P. Elliott and A. M. Lane, EncycLopedic of Physics,

edited bv S. Flugge (Springer Verlag, Berlin 1957), Vol. 39,
p. 241.

~8 Many of the following considerations were carried out in
coll.aboration with l&r. I. Unna. A detailed description of the
example considered here is presented in his Ph, l), Thesis,
1962 (nnpublished).
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terms of the d,'/, configuration. It is instructive to see
what is the situation for 7 = 0 states (in F").It
turns out that jj coupling cannot reproduce the ex-
perimental data. With pure d,"&, configurations Al"
would have the complementary configuration, d»„
to that of F" and therefore the same level scheme.
The separation between the T = 1, J = 0, and
J = 2 levels is about the same in A12' and F" (the
J = 4 level has not been identified in AP'). Also, the
relative positions of the T = 0, J = 5 and T = 1,
J = 0 levels are fairly close in both nuclei. The rela-
tive positions of the T = 0, J = 3 level in F" and
Al aI'e not so similar. But most of all, the position
of the T = 0, J = 1 levels is drastically different in
these two nuclei. The lowest 1+ level in Al" lies about
1 MeV above the ground state, whereas in F" the
ground state has J = 1 and is about 1 MeV below
the J =

d'or

J = Olevels. The position of the J = 1
state cannot be explained in terms of interaction
with only the s1/2 configuration. The F"ground state
has a considerable amount of the d,'„configuration
(as evident from its beta decay to 0").The next
higher 1+ state in F" is only 1.7 MeV above the
ground state. If these two states are strong admix-
tures of only the d,'/, and s', &, configurations, the
unperturbed position of the J = 1 state of the d,'/,
configuration would be much lower as compared to
Al". It seems as if these two lowest J = 1 states
(in F") are both pushed down by a higher J = 1

state. A reasonable configuration that could have
such a J = 1 state is the d5/2 d3/2 configuration.

What is the difference in the behavior of the
T=1, J=Oandthe T=O, J=l levels? The
only configurations that could admix to the J = 0
state of the d,'/, configuration are those in which both
nucleons are excited into a higher orbit, i.e., the s»2
or d,'/, configurations. In the following we shall con-
sider only the d3, 2 orbit since the discussio». in that
case can be carried out in a more general form. The
difference in energy between the d,'/, and the d', &2

configurations, due to the spin-orbit interaction, is

about 10 MeV. The inclusion of the mutual inter-
action modifies this difference and may introduce a
nondiagonal matrix element connecting the J = 0
states of these two configurations.

There is no simple way to determine the matrix
elements of the interaction in the present case. For
the sake of illustration we shall consider a simple
central interaction. In that case we expand both d,'»
J = 0 and d3/& J = 0 states in terms of LS-coupling
wave functions. The matrix elements of the mutual
interaction, both diagonal and nondiagonal, are then
linear combinations of the interaction energies in the
various states of the d configuratio. Using the ap-
propriate expansion coefFicients, "we find in this case

= (v'6/5)lv(d''8) —v(d"I )]. (21)

We now assume that V(d' '8) is much bigger in
absolute value than V(d' 'P). In that case we can
compute V(d' '8) from the actual interaction energy
V0 in the J = 0 state of the 0"d5/2 configuration.
Using the value of V0 obtained from experiment, '
we obtain V(d' '8) 6 MeV. Therefore, due to (21),
the separation between the two interacting J = 0
levels becomes 11 MeV which is considerably bigger
than the nondiagonal element which is about 3 MeV
under our simplifying assumptions.

The situation is quite different in the case of the
7 = 0, J = 1 state. The mutual interaction would
admix to the d&/2 J = 1 state not only the J = 1

state of the d3/2 configuration but also the J = 1
state of the d5/2 dk/2 configuration. This latter state
is separated only by 5 MeV from the d&/& state due
to the spin-orbit interaction. Even this 5-MeV split-
ting is considerably reduced upon introduction of the
mutual interaction. The interaction Il1atrix ls given
in analogy with (21), by

(dg/, J = 0~ V~dk/2J = 0) = -', V(d 8) + -,'V(d P)

(d3/2 j 0~ V~d3/2J = 0) = —, V(d 8) + —,'V(d P)

( 5/2 J = 0
I
V Id 3/2 J = 0)

2

&k/2

2

&5/2 C7(4V('S) —2V('P) —2V('D))

16V(3S) + 2V('P) + 7V(~D)

—~14(V(3S) —3V('I') + 2V(3D))

—+2(4V(3S) + Sv('P) —7V(~D)) && ~~

7V('S) + 14V('P) + 4V('D)

dq/2'/2 +7(4V('S) —2V(iP) —2V('D))
2

Ch/2 (22)—~14(v(3S) —Bv(~P) + 2V(3D)) —$2(4V(3S) + 3V(~P) —7V(~D)) 2V(3S) + 9V(~P) + 14V(3D)

We obtain some idea about the numerical values of
the elements of the interaction matrix (22) by making
the drastic assumption of spin independence of the
interaction, i.e., V('8) = V('8), V('P) = V('P), and

V('D) = V('I)). Under this assumption V('D) can
be taken from the energy of the J = 2 state of the

~9 G. Racah, Phyaica 16, 651 (1950).
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'8
V('8)
—a+6

—a+6
V('P) —a

where 0 is defined by the single-nucleon spin-orbit
interaction a(1 s). A 5-MeV splitting between the
d5/2 and d3/2 orbits yields a = 2 MeV. Using this
value of a, as well as the va, lue given above of V('8),
we find that the difference between the diagonal ele-
ments of this matrix is 8 MeV. However, the non-
diagonal element connecting them is about 5 MeV
and gives rise to large admixture between these two
states. The resulting function is rather close to the
jj-coupling wave function of the d5/2 configuration.

The energy matrix for the Z' = 0, J = 1 states is"
'8

V('8)

a+2
0

lp

a+2
Y('P)

a+ v.

'D

0
—aQ-,-' . (24)

V('D) ——',a

d,'„configuration in 0" [we also ignore V('I&')]. We
thus neglect V('P), take U('8) to be about 6 MeV,
and for V('D) we obtain a value of about 3 MeV. We
then find that the interaction in the J = 1 state of
the d5q~ d3y2 configuration is 4.7 MeV which is 2.g
MeV stronger than that in the corresponding state
of the d5/2 configuration. The difference between the
unperturbed states is thus reduced to 2.5 MeV only.
For the nondiagonal matrix element connecting these
two states we obtain the value of 1.9 MeV. As a re-
sult, these two states get strongly admixed. On the
other hand, the interaction in the J = 1 state of the
d32/& configuration is the same as in the d5/2 configura-
tion. The nondiagonal element between these two
states turns out to be smaller than 2 MeV as com-
pared to the 10-MeV difference. The nondiagonal
matrix element connecting the J = 1 states of the
d, q, d3g2 and the dsq2 configurations is negligible (it, is
less than 0.2 MeV as compared to a 7.5-MeV energy
difference). This structure of the interaction matrix
is primarily due to the predominant interaction in
the 8 state of the d-' configuration. This feature leads
to the lowering of the d5/2 d3/2 J = 1 state and the
existence of a large matrix element connecting it
with the J = 1 state of the d5/& configuration. Thus,
the large admixture of the d5/2 d3/2 collfiguratlon is
rather insensitive to other details of the effective
interaction.

The difference between the T = 1, J = 0 and
Z' = 0, J = 1 states can be seen also in the I8-
coupling scheme. The energy matrix for Z' = 1,
J =0is"

Although the energy difference between the '8 state
and 'I' state is only 6 MeV, the nondiagonal ele-
ment between thein is much smaller than in (23).
It is only 2.8 MeV and does not admix enough 'P
into the lower '8 state as required for a d„'/2 wave
function.

Certain features of the configuration interaction
for two nucleons are also present in the case of several
nucleons. Starting from states of the d5/2 configura-
tion with maximum F, the d",/2 d3/2 d5(.2 d3/2, ~ ~ ~

configurations could also contribute to them. Iiow-
ever, the matrix elements between states of the dg/.
and d";/,' d3/2 configurations are not expected to be
large. The reason is that these elements are linear
combinations of two nucleon matrix elements
(d,'i, T J~V~d&/2 dsl, T J). Since we consider states
with maximum isospin, Z' must be equal to 1 in the
two-nucleon matrix elements. Therefore, J can be
equal to 0, 2, or 4. However, J = 0 cannot be ob-
tained by coupling d5/2 and d3/& nucleons. %e thus
see that the nondiagonal elements between the dp/2

and d".,„' d3/2 configurations, with maximum isospin,
do not contain the large interaction energy V(d' '8).
If only V('8) is different from zero, these non-
diagonal elements all vanish. Thus, the configura-
tions that are expected to be admixed to the dg/&

configuration of identical nucleons differ by the
quantum numbers of two, four, . . . nucleons. Such
configurations lie at least 10 MeV higher, and thus
are not expected to be strongly admixed. Moreover,
their contributions can probably assume the form
of a modification of the effective two-body interac-
tion. As a result, jj coupling is a good approximation
for identical nucleons.

If, however, the states considered do not have
maximum isospin, the Z' in the matrix elements
(d&, 2 T J~ V~d:q2 d;~y~ T J) can be T = 0, snd for J = 1

the matrix element will contain the large value of
V(d' '8). Even if only V('8) = V('8) is different
from zero, large admixtures of the low-lying d,"„'
d3/2 configuration are expected, leading to a break-
down of jj coupling. From the point of view of I8
coupling, this behavior means that the spin-orbit
interaction is less effective in states which do not
have maximum isospin. It has been argued that this
is due to larger differences in interaction energies of
the unperturbed I 8-coupling states for lower isospin
values. The simple example discussed above shows
that this is not the case. With the choice of the inter-
action made above, the difference in interaction
energy between the '8 and 'P states for Z' = 0 is
exactly equal to that between the '8 and 'P states
for Z' = 1. The different results are due to the non-
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diagonal matrix element of the spin-orbit interaction
being larger for the T = 1 than for the T = 0 states,
as well as to the larger overlap between the '8 and
d,'/2 J = 0 wave functions. Also in the case of three
d nucleons it seems that the difference between
T = 3/2 and T = 1/2 states is mainly due to the
matrix elements of the spin-orbit interaction.

The main difference between states with maximum
isospin and other states seems to be that the latter
are appreciably admixed with configurations obtained
by single-nucleon excitations. The energy shifts due
to such excitations cannot be absorbed into the
effective two-body interaction. This type of con-
figuration interaction does not describe correlations
of two nucleons. Instead, it involves the single-
nucleon wave functions. We can try to ascribe the
change in the wave function to a modish. cation of the
single-nucleon wave functions. To do this we must
construct wave fun. ctions which are linear combina-
tions of single-nucleon functions with different values
of j, e.g. , d5/& and d3/2. In other words, we must give
up the spherical symmetry of the central field. In the
case discussed here we start with single-nucleon
wave functions

P(d, /2, m) + nP(d, /„m), (25)

where m is the z projection of j.We now put several
nucleons in the orbits (25), characterized by m, and
project, from the product of their functions, wave
functions with given values of J. In this way con-
figuration a,dmixtures as those described above are
obtained. As long as u is small (compared to 1) the
deformed potential well is only a mathematical
device for building wave functions. If, however, cx be-
comes bigger and more single-nucleon wave functions
are added to (25), the situation may change. It may
happen that some of the projected functions may be
described as due to one definite intrinsic function in
the deformed potential well. If this is the case, the
deformed potential has a physical meaning and the
eigenstates of the nucleus form rotational bands.

Thus, the proton-neutron interaction may give
rise, in favorable cases, to deformed nuclei. The devi-
ations from the spherical shell model that lead to
this situation involve admixtures of configurations
obtained by single-nucleon excitations. The possi-
bility of such excitations is a direct consequence of
the finite size of nuclei. In infinite nuclear matter no
such excitations nor deformations are possible.

As mentioned earlier, the "short-range compo-
nents" of the nuclear interaction are described as
giving rise to the seniority scheme. The "long-range
components" are described as field producing. It is

amusing to realize that the same interaction, with
large expectation values V('8) = V('8) (which can
be described as the pairing in.teraction in the d"
configuration), gives rise to both coupling schemes
in our example. For states with maximum isospin,
it only gives rise to excitations of nucleon pairs with
J = 0. On the other hand, in other states the same
interaction leads to deformed nuclei and thus acts
like a "field-producing interaction. " It seems that
the nature of the nuclear states considered is much
more important in the determination of the coupling
scheme than the details of the nuclear interaction.
It is true that we dealt above only with excitations
of d5/2 nucleons into d3j2 orbits. However, the be-
havior discussed may well depend on rather general
features of the nuclear interaction. Thus, excitations
into other orbits may show the same features, al-
though they cannot be described in terms of simple
interaction as was the case above.

The different coupling scheme of the low-lying
statesin0" (T = 3/2) and F" (T = 1/2) may explain
the unfavored beta decay of 0".In the extreme case
of pure jj coupling, this transition, as well as many
others, would have been superallowed. In Wigner's
supermultiplet theory such a transition occurs be-
tween states of different supermultiplets and should
therefore be forbidden. Although such transitions
have "normal" allowed log ft values they are much
attenuated in comparison with mirror and other
favored transitions. It seems that this very attractive
feature of the supermultiplet theory may be still
preserved in spite of the presence of strong spin-orbit
interaction. Consider a situation in which the
J = 5/2 state of F" belongs to a well-defined (1/2,
1/2, —1/2) supermultiplet. Even if the J = 5/2
state in 0"has a pure jj-coupling d» configuration,
the transition would still be forbidden. Without
spin-orbit interaction the J = 5/2 ground state of
0"would belong to the (3/2, 1/2, 1/2) supermultiplet.
The spin-orbit interaction admixes to it states of the
(3/2, 3/2, 3/2) supermultiplet but it cannot admix to
it states of the (1/2, 1/2, —1/2) supermultiplet
(these have isospin T = 1/2). If we now expand this
J = 5/2 state of F" in terms of jj-coupling wave
functions, we obtain

(lg (d5/2) +Pp (d5/283/2) + yp (d, /, da/2) + ~f (d3/2) ~ (26)

The decay of the d,', 2 J = 5/2 state of 0"can pro-
ceed only to the first two terms of this expansion (it
is a single-nucleon transition). Thus, even if the
actual values of y and 6 are much smaller than in the
supermultiplet theory, the transition would still be
forbidden. If, however, due to the spin-orbit inter-
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action, the value of P relative to that of cr is smaller
than. in the supermultiplet wave function, the transi-
tion will be allowed but will not be favored.

Putting this result in another way, we see that the
devlatIons from jJ collpllIlg fol' the T = 1/2 state
largely attenuate the matrix element for beta decay.
For the supermultiplet wave functions the rate of the
decay has a stationary value. Therefore, slow decays,
as in C", are incompatible with the supermultiplet
theory. On the other hand, rates of beta decay are
very sensitive to slight deviations from jj coupling.
In the example presented here, the deviation from
pure d5/2 configurations is in the right direction and
causes a large decrease in the rate of the transition
considered.

Configuration interaction in its most general form
including the 1d3/'2 and 2s&/2 orbits in addition to
1d5/& orbit is very complicated. It involves the diago-
nalization of large matrices but this is not the real

difhculty. Such a calculation involves more than 50
matrix elements of the interaction. In the method of
effective interactions, these must all be taken as free
parameters to be determined by the experimental
data. Thus, very many experimental energies will

be required, Inany more than known to belong to
such configurations. The jj-coupling approximation
does not work very well in this region, as mentioned
earlier in connection with the F" spectra. Also, the
F" and Ne" energies do not lend themselves to such
a description. On the other hand, there is evidence
that the collective model may have some validity in
the d, 8 shell. H,otational bands have been identified
in Mg" (and AP') and even in Ne".

It is therefore of interest to see whether shell-model
calculations could be carried out using the coupling
scheme obtained from a deformed potential well.
Such calculations were recently carried out. '" The
single-nucleon wave functions were taken as a linear
combination of 1d5/'2, 143/2, and 2s&f'2 wave functions
with m = & I/O. This orbit may contain up to four
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nucleons. The actual wave functions were obtained
by taking such product functions and projecting
from them the components with definite values of J
(and T). The resulting wave functions have con-
figuration admixtures of a very restricted form. Thus,
the matrix elements of the mutual two-body effec-
tive interaction can be expressed in terms of a rather
small number of two-nucleon matrix elements. These
latter elements, as well as the coeKcients of the linear
combinations in the single-nucleon wave functions,
are taken as free parameters. They are determined by
the experimental energy levels taken from 0", F"
(and 0"), F" (and Ne"), and Ne". There are many
more experimental energies than theoretical parame-
ters and this gives a check on the coupling scheme
used. The agreement obtained is very good and much
better than that obtained before with simple phe-
nomenological interactions. The wave functions ob-
tained involve large admixtures of configurations
with 1d3/'2 and 2s&/2 nucleons. It may be significant
that when the T = 1 levels of F" (and 0") are ex-
cluded the agreement is greatly improved. "The root
mean square deviation is then reduced to half its
value. This is a good measure for the improvement
since the r.m. s. deviation takes into account the fact
that the number of data is reduced. This is an ex-
ample of how the method of effective interactions
can give quantitatively significant results in a region
which is not well described by jj coupling.

It is remarkable that Ne20, with only four nucleons
outside the closed shells of 0", has properties associ-
ated with deformed nuclei. On the other hand, the
oxygen isotopes seem to be fairly well described by
the spherical sheH model. The example considered
above may indicate how this can be understood from
the properties of the effective nuclear interaction.
She discussion given above is far from being general
or complete. It is only hoped that it can serve as an
indication for the possibility of understanding the
relations between the various coupling schemes which
occur in actual nuclei.

» I. Unna (to be published).


