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I. INTRODUCTION

I consider a many-particle system with fixed
number of particles, with a density matrix p.
We define the reduced density matrices pi, p2,- -+ by

Spp=1, 1
(fleiy = Sp azea}
(kl) palij) = Sp axaspala’ @)
ete.,

where ¢, j,--- represent single particle states and
as, a; the annihilation operators for these states. In
all our discussions, unless explicitly stated otherwise,
we consider a collection of identical particles, either
fermions or bosons.

1. This paper is concerned with the concept that
in a many-body system of bosons or fermions, it is
possible to have an off-diagonal long-range order
(ODLRO) of the reduced density matrices in the
coordinate space representation. The onset of such
an order leads to a new thermodynamic phase of the
system. It is reasonable to assume that superfluid
He II and the superconductors are phases character-
ized by the existence of such an order.

2. The general characteristics of the gaseous, the
liquid, and the solid phases are well known and are
describable in classical mechanical terms. In par-
ticular, the solid phase is characterized by the exist-
ence of a long-range correlation. However, the long-
range correlation in the solid is exhibited in quantum
mechanics in the diagonal element of p. in coordinate
space and is quite different from the off-diagonal-
long-range-order that we shall discuss in this paper.
Since off-diagonal elements have no classical analog,
the off-diagonal long-range order discussed in this
paper is a quantum phenomenon not describable in
classical mechanical terms.

3. The long-range correlation in a solid is the
basis of essentially all approximate calculations of

the properties of a solid. If ODLRO is the character-
istic of the phases He II and superconductors, it
seems that a reasonable calculation of their properties
can only be made with ODLRO explicitly built into
the physical picture.

4. We shall show that the existence of ODLRO
in p, implies its existence in reduced density matrices
pm Wwith m > n. [In fact for m = 2n, the ODLRO
oceurs in a more intensified form.] The smallest n
for which ODLRO occurs gives the collection of n
particles that, in a sense, forms a basic group [here-
after called the basic group] exhibiting the long-range
correlation. Of course, the system of particles that
we consider may be a collection of particles of differ-
ent kinds, such as nuclei and electrons. We shall give
reasons to believe that the basic group must be com-
posed of bosons and an even number of fermions.
The phenomena of ODLRO is therefore fundamen-
tally related to that of Bose-Einstein condensation.
Or, more precisely, Bose-Einstein condensation is
the simplest form of an ODLRO.

5. For a system of bosons the possible existence
of ODLRO in p, was discussed in a paper by Penrose!
and later in a paper by Penrose and Onsager.?

For the fermions, the ideas discussed in this paper
are clearly related to the ideas of ‘“long-range order
of the average momentum,” ‘“macroscopic quantum
state,” ete., of London.? They are also clearly re-
lated to the ideas based on quasi-boson condensation
in the papers of Schafroth, Butler, and Blatt.*
Furthermore, since the wave functions assumed by
Bardeen, Cooper, and Schrieffer® and by Bogoliubov?®
(as an ansatz) do have the ODLRO, the contents of

1 Q. Penrose, Phil. Mag. 42, 1373 (1951).

2 Q. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).

3 F. London, Superfluids (John Wiley & Sons, Inec., Vol. 1,
1950, Vol. 2, 1954).

4 M. R. Schafroth, Phys. Rev. 96, 1442 (1954); M. R.
Schafroth, S. T. Butler, and J. M. Blatt, Helv. Phys. Acta
30, 93 (1957).

5 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).

6 N. N. Bogoliubov, Nuovo cimento 7, 794 (1958).

694



OFF-DIAGONAL LONG-RANGLE ORDER

the present paper are clearly also related to their
work. However, it seems to us that in none of the
previous works has the question of the detailed
mathematical characterization of the superconduct-
ing state been raised. [Within the context of this
question, the pairing idea of Bardeen, Cooper, and
Schrieffer seems to be the closest in its implications
to the ideas discussed in this paper.] Nor has there
been an explicit understanding of exactly in what
sense are the characterization of superfluidity and
that of superconductivity similar, a similarity that
London had emphasized.

6. It will be shown in Sec. IV that the existence
of ODLRO gives rise to the phenomena, of quantized
magnetic flux. Furthermore, for cases where the
basic group is two electrons, the unit of magnetic
flux is hc/2e, as it was experimentally found.”

7. There is no discussion in this paper of the
properties of the Hamiltonian that is needed to
ensure the existence of ODLRO at low temperatures.

In the solid phase the existence of long-range cor-
relation makes it necessary to introduce additional
macroscopic variables, (namely, the strain) to de-
scribe the thermodynamics of the system. It is
important to recognize that similarly the onset of
ODLRO necessitates the introduction of additional
macroscopic variables. What these variables are,
however, is not discussed in this paper, except for a
speculation about the fraction of superfluid in Sec.
10 and one about the penetration depth in Sec. 40.

II. PROPERTIES OF p,

8. The reduced density matrices of Sec. 1 have the
following properties:

p. = positive definite or semidefinite , 3)

Sppr =N,

Spp2 :N(N_— 1);

Spps=NHN — 1)(N —2), ete., 4)
where N = total number of particles.

It is obvious that if we perform a unitary transfor-
mation on the operators a;, the reduced density
matrices p, undergo a similar transformation. In
fact, the transformation from, e.g., the coordinate to
the momentum space representation of the p’s fol-

lows the same law as the usual operators.
The following formulas are easy to prove:

22 (ilpsliky = (N — 1){jlo|k)
2 (ijklpslilm) = (N — 2)(jklpe|lm) , ete.  (5)

7B. 8. Deaver and W. M. Fairbank, Phys. Rev. Letters 7,
43 (1961); R. Doll and M. Nibauer, ibid. 7, 51 (1961).
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In defining the reduced density matrix p. in (2),
we allow the indices ¢ and 7 to run freely over all
states. Clearly, there is a symmetry or antisym-
metry when we switch ¢ and j. There is, of course, a
natural way to reject the superfluous elements of
pz, ps- -+ due to these symmetries by considering
pz, p3,- -+ to operate only on states of the correct
symmetry. A whole mathematical formalism can be
neatly worked out for this process. We shall, how-
ever, not go into it, as it does not really add to the
clarity of the physics of the problem.

9. We define A, as the largest eigenvalue of p..
From (3) and (4) it is obvious that all eigenvalues
of p, are = 0, and,

MEN,
MA=ENWN-—-1),
NMENN-1HWV—-2), (6)

ete.

10. Theorem 1. As = A} — A\, for a system of
bosons.
Proof. Let fi be the normalized eigenvector for
('] p1|7) with eigenvalue A;.

Define F = Y fFa:.
Then Sp lf'TFp = A(.

Use fif; as a trial wave function for (i'j’|p:|j).
Clearly,

A2 = trial expectation value of p, = Sp FFF Fo. (7)

But F'r=rr —1.

Thus Ne = SpFFFFp — .

Using 0 = Sp (F'F — \)% = Sp F'FFFp — X (8)

=N =\, QED.

Theorem 2. Az = Ni — 2\7 — X, for a system of
bosons.

Proof. Use the same notation as the proof of Theorem
1.

we obtain

\s = Sp P F'F'FFFp

=Sp FIF'(FF" — 1)FFp

> Sp FFFFFFp — ).
Sp F'(F'F — \)*Fp = Sp FF I TFp
— 2\ Sp F'FFFp + 2\ = Sp FIFFFFFp
— 2\ Sp F'FF'Fp + 20 Sp F Fp + N

But,

o
IIA



696
By (8), therefore,
Sp PP FFFFp > 20, Sp FIFF'Fp — 223 — \}
=l -2 — Al =2 -2\
Thus A=A — 207 — X, QED.

Theorem 3. Ay = N3 — 4Nz — 2), for a system of
bosons.
Proof. Let fi; be the normalized eigenvector of
(1’2’| p2|12) with eigenvalue A.. Define

F = Zl,szzaﬂlz .

The proof follows essentially the same lines as
that of Theorem 1. In place of (8) one uses

0<8p (F'F — )% =Sp (FF)% — A2
In place of (7) one uses
M= Sp FFFR,

obtained by taking a product trial wave function
for ps. By carrying out the detailed computation of

FIF'F — FFF
one easily obtains

M=\ — 4N — 2\, QED.

Theorem /. Ae = N5 — 2\ for a system of fermions.
This theorem can be proved in the same way as
Theorem 3.

Notice that for fermions if we follow the reasoning
that led to Theorem 1, we do not obtain any useful
results.

Theorem 1 has been stated before® without proof.
It is clear that theorems establishing lower bounds
for As, Ne,- -+ can be obtained in a similar fashion.
These theorems presumably will show that if p, has®
an eigenvalue of the order of N, p.i1, pusz,- -+ have
also large eigenvalues. Furthermore for the boson
case, if A, is of the order of N, (\2),/2 (\3)'/3- - - form
a monotonically increasing series = N. Thus they
approach a limit and it is tempting® to identify this
limit with the size of the superfluid component of the
system, if p is the density matrix for thermal equi-
librium. !

11. Theorem 5. For fermions, \; = 1.

Proof. This follows from the fact that the expectation
value of ala; where a, is the annihilation operator
for any states is = 1. Q.E.D.

8 C. N. Yang, Physica 26, S49 (1960).
9 We use the term “of the order of N’ to apply loosely to a
quantity = aN where « is a fixed number independent of N.
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Theorem 6.
MNSNWM-—-N+2)/M 9)

for a system of N fermions in M states. We assume
both M and N to be even.

This theorem is proved in Appendix A. The proof
will also show that the upper limit for \. given by
(9) can be reached, and can be reached in essentially
only one way.

Notice that for any value of M, for fermions,

=N,

Theorems 5 and 6 suggest the following generali-
zation:

Conjecture. There exists numerical constants 8s,
Bs,+ - so that

A= ()28,
WS (V)M %,

for n = even,
n = odd,

for a system of identical fermions.

These theorems demonstrate that large eigenvalues
in the reduced density matrices for fermions essen-
tially originate from pairs of fermions forming Bose-
Einstein degeneracy.

12. Theorem 7. For a system of N, bosons and N,
fermions, consider

for

O'f'|p21bf) 5

where b and f label boson and fermion states, re-
spectively. Its largest eigenvalue is = 1 4 \; where
M is the largest eigenvalue of (b']p:|b).

Proof. Consider the normalized eigenfunction fy; for
(10) with the ‘largest eigenvalue N\. By a unitary
transformation on the states of the fermion and one
on the states of the boson, fi;; can be reduced to a
paired form:

(10)

F = Zb,,fwaba/ = E]alal + Ezazaz +’ Tty (11)
where o« are the annihilation operators for the
fermion states and a those of the boson states. In
(11) all £s are = 0. Now
FIF+ FF = &@la + aial)
-+ f; (a;az + 062012) +-

But A=SpFFp<Sp([FF+ FFp.
Furthermore, Sp aiatp =1,
TE=1,
Sp (atai)p =\
Thus AENM+1, QED.
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This theorem suggests the following generalization:
Congecture. In a mixture of particles, consider

<alblycl' ° Ip,,la,b,c, o > (12)

where a, b, ¢ are states of bosons or fermions. If the
collection of particles in @, b, ¢,- - - > contains an odd
number of fermions, then the largest eigenvalue of
(12) is = a function, independent of N, of the
largest eigenvalues of the reduced density matrices

<alll’blll, . ImeaII,bll,cII7. . .> ,

where o', b, ¢, -

(12).

It follows from this conjectured theorem that if
all lower order p’s have no eigenvalues as large as of
the order of N, then (12) also does not have such a
large eigenvalue, if a, b, c¢,---) contains an odd
number of fermions. In the next chapter we shall
demonstrate the equivalence of the existence for p.
of large eigenvalues and that of an off-diagonal long-
range order. The above conjecture forms, then, the
basis of the discussion in Sec. 4 about the basic
group.

is a subgroup of particles in

III. OFF-DIAGONAL LONG-RANGE ORDER (ODLRO)

13. We shall now discuss the equivalence of the
existence for p, of eigenvalues of the order of N and
that of an off-diagonal long-range order. To illustrate
the concept consider a system of N free fermions or
bosons in a periodic box of volume @ in thermal
equilibrium. p commutes with the total momentum.
Therefore in the momentum representation p; is
diagonal :

(p,|p1|p> = OppNp »
where the diagonal element np is the average occupa-
tion number of the single particle state p.

—p2 /T

ue

n = =7 .
14 ue ™"

(13)

In coordinate representation

& |pu[x) = (1/@) 2o mpexpip(x’ — %) = g(x’— x).
(14)

For fermions, or for free bosons at high tempera-
tures, all n are finite and

&|p|x) >0 as |[x — x| > w. (15)

But for free bosons below the Bose-Einstein transi-
tion temperature, no = Na, where « is a finite frac-

tion. Therefore,
&'|pi|x) > Na/Q as |x — x| > .

(16)
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The existence of a Bose-Einstein condensation is
thus characterized by the nonvanishing behavior
of (x'|p1|x) as |x — x| — 0.

14. If the condensation is in a state with p # 0,
it is clear that

&'|ps|x) = (No/Q) exp ip(x’ — %),
17)

as ¥ — x| > w.
It seems that the general criterion for Bose-Einstein
condensation is

/Q(x’lpllx)dx<x[p1{x’) = order of Q. (18)

15. We now consider the case of N particles with
any boundary condition and any density matrix p.
By taking the trial wave function ¢ = 1/(Q)'/? it is
obvious that (16) implies the existence of a large
eigenvalue of the order of Na for p;. Conversely, if
o1 has a large eigenvalue Na with an eigenfunction
¢(x), we can make a spectral resolution of p;:

(@'|pi|2) = Nog(x)¢*(x) + pf (19)

where p,’ is a positive operator. It is reasonable to
assume ¢(x) to contain the normalization factor
1/(@)/2. Equation (19) shows that

E'lpey 0 as |x —x|—> . (20)

16. We shall take (20) or (18) as the definition of
the existence of an off-diagonal long-range order
(ODLRO) in p:. Its existence is equivalent to that
of the existence of a large eigenvalue for p; of the
order of N.

Proposition 1. The phase He II of liquid He is
characterized by the existence of ODLRO in p, for
the equilibrium density matrix of the interacting
He atoms. This ODLRO is defined either by (20),
or equivalently, by the condition that p: has an
eigenvalue of the order of V.

17. Tor a system of bosons, if ODLRO exists in
p1, (x'|p1|x) remains, in general, nonvanishing for all
values of x and x’. What is the characteristic of
(x1x5|p2|X:%2) in such a case? It is clear that a large
contribution to p: comes from

(x1] p1 [ x1)(x3] p1 | %2)

and therefore, in general, p. remains nonvanishing
for all values of x1, X», X7, and Xs.

The above statement is well illustrated by the
example of the free Bose gas in equilibrium. In that
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case, it is simplest to treat the equilibrium grand
canonical ensemble. It is clear that

\PID% P21 P1P2) = Op,5,"8p.0. M, M0, + 85,5,"0p,p, N0, Mo,
+ 6?;?1 ’61)2172 lépxpzmpx i (21)

where mp is the average of M? — M — 2np for the

state p, M being the occupation number of the state.

A simple calculation shows that m, = 0 for the equi-
librium distribution. Thus

(xixb|pe|x1%) = g (X1 — x1)g (X5 — Xz)

+ g — x)g(x: — x1) . (22)

Therefore, for a free Bose gas, for the grand canonical
ensemble,

with ODLRO in ps, ps # 0 for all zi, x1, 22, 25 ;

(23)

without ODLRO in py,
borhood of

p2 = 0 except in the neigh-

(a) xs = X1, X2 = X5

and (b) x1 = x4, X5 = X{ . (24)

18. The two cases (23) and (24) are also charac-
terized by the fact that the largest eigenvalue of p»
is of the order of N? and is finite, respectively. What
happens if it is of the order of N? This case cannot
obtain for a free Bose gas in equilibrium, but may
obtain for other systems. Following the argument in
Sec. 15 for the ODLRO in p; we make a spectral
separation of ps, separating the largest eigenvalue

(xix}| p2|x:%:/ = Nao(xixi)¢* (xiX2) + pz, (25)
where p} is positive. The eigenfunction ¢(x,x.), one
can expect, is zero for large separations |x; — X.| and
is ~1/(Q)'/? for microscopic separations for x; and
x,. Thus, we have a type of behavior intermediate
between (23) and (24):

With ODLRO in pz, but not in ps:
p2 = 0 except in the neighborhood of

@) xs =%, X =%5;

(b) X, = x5, X =X1;

and (¢) x; = X», xi = x} (but|x; — x3jmaybe o) .

(26)

It is clear that if (26) obtains, p» has an eigenvalue
of the order of N.

19. For a system of fermions, Theorem 5 shows

that ODLRO cannot obtain for pi;. Theorem 6

shows, however, that p, may have eigenvalues of the

order of N. Thus, for fermions ODLRO may occur
in p. in the sense of (26).

C.N. YANG

Two examples are illuminating in this connection.
For a system of free fermions in equilibrium, all
eigenvalues of p, are finite (i.e., not of the order of
N). Thus, neither in p; nor p, is there ODLRO. For a
system in which the pair occupation hypothesis of
Bardeen, Cooper, and Schrieffer® (BCS) is legitimate,
it is easy to show that p. has an eigenvalue of the
order of N. In fact in the proof of Theorem 6, in
order to find a system with a maximum eigenvalue
for p., one is forced to have pair occupation of single
particle states exactly in the manner of the BCS
ansatz.

20. Proposition 2. The superconducting state is
characterized by the existence of ODLRO in

@7)

where ei, e, €1, e represent electron states, for the
ensemble in thermal equilibrium. This ODLRO is
defined either by (26), or equivalently, by the condi-
tion that (27) has an eigenvalue of the order of N,
the number of electrons in the system.

- 21. Actually the two propositions above are more
restrictive than they need be. Take the case of He.
To describe liquid He as a collection of He atoms is
only an approximation. A much better description is
a collection of electrons and He nuclei. A general
characterization of a new phase exhibiting ODLRO
should apply both to liquid He as a collection of He
atoms and to liquid He as a collection of electrons
and He nuclei. It is evident that in the latter de-
scription ODLRO first occurs in

(etes|pa|enes)

(He' et ,es| ps|He,e1,e5)

because any reduced density matrix of lower order
would mostly describe only the internal structure of
the He atom.

It thus seems that in a macroscopic system,
ODLRO can set in at p,. The theorems of II indicate
that the reduced density matrix, to be called p.., of
lowest order which has ODLRO must operate on a
basic group that consists of an even number of
fermions and any number of bosons. For liquid He IT
the basic group is the He atom; for superconductors,
the basic group is a set of two electrons. For p., the
largest eigenvalue is of the order of N. It has an
ODLRO in the sense that in coordinate representa-
tion, when the unprimed coordinates are micro-
scopically close to a point x, and the primed co-
ordinates are microscopically close to another point
x/, with x and x’ macroscopically apart, p. remains
nonvanishing. For fixed unprimed coordinates micro-
scopically close together, the region of the primed
coordinates where p,, remains nonvanishing is thus a
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“tube’” with one 3-space dimension extending macro-
scopically. The volume of the region is

Q X (microscopic dimension)™ ™" .

For higher order reduced density matrices with
particle groups containing one or more basic groups,
the corresponding region would have one or more
3-space dimensions extending macroscopically.

Physically the concepts of ODLRO and of the basic
group are therefore directly related to the dimension-
ality of the macroscopic regions in space where the
matrix elements of pi, ps,--- are not vanishingly
small.

22. It is easy to believe that the onset of ODLRO
in an equilibrium system would lead to a phase
transition. Consider, for example, a system of Bose
(or Fermi) particles in thermal equilibrium. The
thermodynamical function of the system can be
obtained'® as the maximum of a functional of p;.
This variational principle also determines p;. The
functional is expressed as a series of terms each of
which involves integrations over products of matrix
elements of p,. It has been shown'! that if an eigen-
value of p; attains the order of IV, the series contains
progressively larger terms and a rearrangement is
necessary. Such a rearrangement is, of course, what
is required by every phase transition.

The formalism of reference 10 has been generalized
by De Dominicis!? to the case where p, is also ex-
plicitly used in the argument of the functional. It is
not difficult to find the successive terms in his for-
malism that become progressively larger when p. has
a large eigenvalue of the order of N. Thus there is to
be expected also a phase transition when ODLRO
first sets in in ps.

23. The existence of ODLRO in p; [or p.] implies
the possible separation (19) [or (25)]. If there is only
one large eigenvalue of the order of N, then p; [or
p2] vanishes as x becomes far separated from x’ [or
as X1, X» become far separated from xi, x5]. Thus, at
large spatial separations p: [or p.] assumes a product
form. p; thus behaves, in some respects, like a single
(double) particle system in a pure state. It is worth
noticing that the hypothesis of a product form for p.
underlies many*? discussions on superconductivity.

24. For nonequilibrium systems the existence of
ODLRO requires a reformulation of transport
properties. However, it is doubtful that much real

10T, D. Lee and C. N. Yang, Phys. Rev. 117, 22 (1960).
T D. Lee and C. N. Yang, Phys. Rev. 117, 897 (1960).
12 C. De Dominicis (to be published).
18 See e.g., L. P. Gor’kov, J. Exptl. Theoret. Phys. U.S.S.R.
E34, 7)?}5 (1958) [translation: Soviet Phys—JETP 7, 505
1958)].
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progress can be made without a first understanding
of the microscopic basis of the additional macroscopic
equilibrium variables required by ODLRO. [Cf. Sec.
7.]

25. It is obvious that the basic group may form
a bound state, as in liquid He II; or it may not form
a bound state, as in superconductors.

It is also evident from these examples that ODLRO
may occur in a liquid, and it may also occur in a
solid. But in a solid the basic group cannot contain
particles that are localized, such as the nuclei.

26. In an insulator, the electrons, because of
energy considerations, have no usable empty states.
Effectively, in the notation of Theorem 6, M = N.
Thus, by that theorem, p, cannot have an eigenvalue
of the order of N and consequently it cannot have
an ODLRO. Thus, an insulator cannot satisfy the
characterization of a superconductor as given in
Sec. 20.

IV. MAGNETIC FLUX QUANTIZATION

27. To discuss the question of magnetic flux
quantization we recall that'¢ for a superconducting
ring P with a magnetic field in the hole O, but no
magnetic field in P, the vector potential can be
transformed away by a gauge transformation (See
Fig. 1). The Schrodinger equation for the electrons

g/

in P is then the same as that for the case where there
is no magnetic field in O, but the boundary condition
is that the wave function changes by a phase factor
exp [i(e/ch)®] every time an electron is brought
around the ring. The symbol ® stands for the total
magnetic flux through O. The Schrodinger equation
together with the boundary condition determine the
energy levels, and consequently the free energy N-!

In Q of the system. The arguments of reference 14
show that if

F1a. 1. Super-
conducting ring.

O

L’N7'1In Q (28)

varies as ® is changed, then the system would have
magnetic flux quantization (because body currents
would be generated if & is not quantized). The
quantity L is the circumference of the ring.

" N. Byers and C. N. Yang, Phys. Rev. Letters 7, 46 (1961.)
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28. It is convenient for the present discussion to
change slightly the geometry of the mathematical
problem formulated above. Instead of a ring-shaped
body P we consider a periodic box, i.e., a box of
dimension L X L’ X L’ with strict periodicity con-
dition in the y and z directions:

Yy + L) =¥y, v+ L") =y¢@),
and periodicity with a phase factor in the z direction:
Y(x + L) = exp [i(e/ch) PW(x) , (30)

where ® is a parameter. If the quantity (28) shows a
variation with ®, it is reasonable to assume that the
same obtains for the ring geometry, and the physical
system would show a quantization of flux, of a unit
that is equal to the period in ® of (28).

29. The periodicity conditions (29) and (30) as-
sume a particularly simple form in the momentum
representation: The lattice in momentum space is
displaced from the origin by e®/cL in the x direction.
The quantization of flux therefore depends on
whether the free energy of the system changes with
this displacement.

For a free Fermi gas it is not difficult to demon-
strate that the free energy is independent of this
displacement, as stated in reference 14. Thus, a free
Fermi gas shows no magnetic flux quantization.

For a free Bose gas the same obtains for tempera-
tures above the Bose-Einstein transition temperature.
But below the Bose-Einstein transition temperature,
the momentum state closest to the origin (in momen-
tum space) is degenerate to a degree proportional to
N and (28) varies with ® quadratically for small ®.
Thus, a free Bose gas below the transition tem-
perature should exhibit the phenomena of quantized
flux. The period in ® is clearly ch/e, which is therefore
the unit of quantization.

30. While for a free particle system it is convenient
to examine in momentum space the large occupation
numbers, hence the large eigenvalues of py, for an
interacting system of particles, it is convenient to
examine the problem in coordinate space. Also, we
shall use an equilibrium density matrix R with a
different normalization from that of p as given in (1).

R = exp (—H/ET) . (31)

Defining the normalization constant as ), one has
R = Qp, (32)
¢ = Sp R = partition function . (33)

(29)

where

The contracted density matrices R, are defined as

R. = Qp.. [Q = anumber, not a matrix.] (34)

C.N. YANG

Through (4) and (34) we easily obtain

Q=N"SpR,

Q=[NN—-1)]"SpR:, (35)
ete.

Let us consider the matrix elements of E;:
&'|Ry|x) .
The periodicity conditions (29) and (30) imply
(@' + L|R:|z) = (@'|Ri|lx — L)
= oxp [i(e/ch) B |Ralz),  (36)

'+ LIR:|y) = (/| R:ly — L) = (/| Ruly), ete. (37)

31. We shall symbolically represent a 3-space x by
one dimension. In what region of x and x’ is R; non-
vanishingly small, relative to its value near x = x'?
The free Bose gas example of Secs. 13 and 14 shows
the following:

(A) Without ODLRO, the region consists of narrow
parallel strips running along

=2,

r=2'"x1L,

x=a + 2L, (38)
ete.

(Cf. Fig. 2.) The values of R; between the strips

| Fig. 2. Region of
i | relatively nonvanish-
It '1' ' ing values of R;, in
l,I Lo x  absence of ODLRO.
|

are vanishingly small. The values of R, in two neigh-
boring strips, by (36), are different only by a phase
factor exp [i(e/ch)®]. The width of the strips is
microscopic, but the distance between the strips is
macroscopic.

(B) With ODLRO, the strips merge into each other,
and R is nonvanishing everywhere. The phase
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change by a factor exp [¢(e/ch)®] at distances L,
however, remains.

The behavior of R; along a cut in the x x’ plane at
x + x’ = 0 is schematically illustrated in Fig. 3.

Ry

WITH
obLro —J\ /] N Nn__
WITHOUT A N A\
ODLRO e L— xx'

Fra. 3. Schematic plot of R; against x — x’. Notice that
with & # 0, R; is, in general, complex.

Notice that the merging of the strips occurs not as a
consequence of the broadening of the strips, but as
that of the sudden lifting of the value of R between
the strips.

32. The above discussion of the region of (rela-
tively) nonvanishing values for R, for the cases with
and without ODLRO is obviously valid for inter-
acting particles as well.

33. When the parameter & is changed, it is clear
from Fig. 3 that with ODLRO, the whole dependence
of R, on x — x’ must change. Consequently, by
(35) the partition function @ changes with ® and
quantization of flux follows.

If on the other hand ODLRO is not present in p,
the different strips are separated from each other and
the phase change at distances L can be effected by
a simple multiplicative factor, as in the free Bose
gas discussed in Sec. 31. Thus quantization of flux
need not be present.

The difference in the behavior of R under changes
in ® for the cases with and without ODLRO is quite
similar to the Bloch eigenvalue problem'® in a
periodic potential. Bloch showed that wave functions
should be sought that changes by a phase factor
e*® for each lattice displacement. How does the wave
function depend on ®? If the wave function remains
finite between lattice points, the energy value and
the wave function would be dependent on &®. If,
however, the wave function becomes very small in a
region between lattice points, caused by, e.g., a
potential barrier, then the energy and the wave
function would not be very much dependent on &.
TFor an infinite potential barrier in between the atoms,
the wave function vanishes in the barrier, and the
energy levels would be independent of ® while the

1 F. Bloch, 7. Physik 52, 555 (1928).
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wave function only picks up phase factors ¢ from
one atom to the next.

The physical meaning of the effect of the presence
of ODLRO on the phase condition (36) is that
ODLRO preserves the memory of phases over
macroscopic distances. Also in this sense, one can
interpret for the Bloch problem, the effect of the
small nonvanishing interatomic value of the wave
function on the ® dependence of the energy: The
nonvanishing interatomic value of the wave function
preserves the memory of phases from one atom to
the next.

34. In the absence of an ODLRO in p, it becomes
necessary to examine p.. The region of relatively non-
vanishing values of R. can be obtained from (24) if
ODLRO is absent in pz, and from (26) if ODLRO is
present in p,. To simplify matters we suppress as
before y and z dimensions and consider the element

(xizs| Ra|2122)
as a function of
E =01 — 2,
n =l — a2,
and ¢ =+ X —al — ah. (39)

Invariance under uniform displacement ensures that,
for equilibrium, R, is independent of the fourth
coordinate

21+ @+ a1+
The periodicity conditions (29) and (30) imply

(@) + L2} Re|z,22) = (1,28 + L|Ra|21,22)
= (x{,xélele - L,x2> = <$§,£C2'[R2|331yx2 - L>
exp [i(e/ch) @) xtl,zs| R:i|ay,22) . (40)

Repeated application of these conditions shows that
in the (&7,¢) space a face-centered cubic lattice of
displacements can be formed.

Displacements by (ni,ns,ns =
+ m3 = even)

(E)’?)f) - (E + nlL}") + ?’LzL,g' + n3L)
changes the value of R by a factor exp [— #ns(e/ch) ®].
(41)

35. If ODLRO is not present in ps, the region D of
(relatively) nonvanishing values of R: is given by
(24) in case L = . It consists of the two lines

=+ integers, n; + 7.

f=”), {ZO and EZ_TIJ g‘:O;
and their microscopic neighborhoods . (42)

Tor finite L all displacements of (42) by the lattice
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(41) should also be included in the region D. Thus,
D consists of

§—n= ¢ =msL;
and £+ ¢ =msL;
and their microscopic neighborhoods,

mil,

miL s

(where m:, ms = == integers, m; + ms = even) . (43)

Geometrically, D consists of parallel plane square
nets. Those in the even planes { = msL, ms = even,
are plotted in Fig. 4 in horizontal shading and those
in the odd planes { = msL, ms = odd, are plotted
in vertical shading.

36. The values of R not on the nets are (rela-
tively) vanishing. The dependence condition on & is
contained in (41). Now (41) says (i) that nets in
different planes should have a relative phase factor
exp [2(Ams)(e/ch)®], and (ii) that the value of R on
each net is periodic with no phase factor under the
displacements (£7,0) — (¢ + miLyn + n2L,$) i + e
= even.

Since different nets are not connected to each
other, (41) can be satisfied by a mere phase change
from net to net, and (35) demonstrates that the free
energy need not vary with ®. Thus, there need not
be a quantization of flux.

37. In case ODLRO is present in p; but not in p,
the discussions of the last two sections have to be
modified. The region D is now to be generated from
(26). It consists of the nets (43) plus the rods

£=l1L7 77=Z2L)
and their microscopic neighborhoods .

li,l; = - integers (44)

Fi1g. 4. Projection in ¢ = 0 plane of region of relatively
nonvanishing values of Rj, in absence of ODLRO.

C.N. YANG

Now the rods (44) are perpendicular to the planes
of the nets and connect all the nets in the even planes
together, and also connect all the nets in the odd
planes together. But nets in different even (odd)
planes have phase-factor differences which are powers
of

exp 2¢(e/ch)®d . (45)

Thus, R, changes when ® varies, and we have the
phenomena of flux quantization. The unit of quanti-
zation is, from (45),

ch/2e .

38. The discussions above can be generalized to
the case where the basic group (Secs. 4 and 21) is of
any size. If the sum of charges of the particles in the
basic group is ‘

26750,

quantization of flux should take place with a unit of
quantization ch/(3 e).

39. It is clear that the discussions above are in
many respects similar to the discussions of reference
14 which was in terms of the BCS pairs. It is also
similar to the discussions of Onsager in terms of a
boson picture!® and of Bardeen!” in terms of the
Ginsburg-Landau equation of a doubly charged
single-particle system. Furthermore, the discussions
of the present paper are based on a series of proposi-
tions and guesses. However, we believe these proposi-
tions and guesses, in fact, give the common general
physical basis of the phenomena, of a type of quantum
phase in a many-body system.

40. We conclude this paper with a speculation.
For superconductors, an important experimental
quantity is the penetration depth, defined, for ex-
ample, in London’s book. Is it related to the function
(28)? We have some arguments to indicate that it is.
In fact,

62
Q06

-1/2
5 (k7T In Q)J
(46)

penetration depth = l:-—41rL2

at® =0,

where Q is the volume of the box.
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APPENDIX A

To prove Theorem 6, the following lemma is
useful :
Lemma. Let X be an antisymmetrical matrix

X =-X.

There exists a unitary matrix U so that UXT is zero
everywhere except for 2 X 2 diagonal blocks of the

fOI‘In
( —Qa 0)

where all a’s are real and positive.
Proof. Let ¢ be a normalized eigenvector of X'X:
(f = Hermitian conjugate)

X'Xy=a¥, a>0 (A1)
Then X*Xy = —a'y. (A2)
Define ¢ = —a ' XM*. (A3)
By (Al) X¢ = ay* . (A4)
By (A3) Xy = —ao*. (Ab)
From (A4) and (A5),

yg* =0,

and be* = anp* =1.

Thus ¢ and ¢ are orthogonal unit vectors. Taking
them as the first two columns of 7, one easily proves
the lemma by induction.

Proof of Theorem 6. (a) To prove the theorem it is
necessary and sufficient to prove it for the case that
p is the density matrix of an N particle pure state ¥.
(b) Consider any normalized antisymmetrical trial
function f;; for ps: Let

F= Zif fhaa; . (A6)
Then the expectation value of p; is
Sp FpF' = ¥'F'rw . (A7)

Under a unitary transformation U on a;, the matrix
fi; is transformed like the matrix X of the lemma.
Thus, we can take f;; to be of the diagonal 2 X 2
block form of the lemma. In other words, we can
take without loss of generality,

F = o (a1a2 — agal) + az((lalh - a4a3) +---, (AS)
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;=0 and 2D ol =1, (A9)
and Theorem 6 is equivalent to the assertion that
VPP < NM - N +2)/M.  (A10)

(c¢) Consider that ¥ and F which are of the form of
(A8), and maximize ¥'FTF¥. Not all a are 0. With-
out loss of generality we can assume

a1>0

where

We write

(A11)

so that G and K only operate on states 3, 4, 5,- - -.
We write ¥ in the form of

oo
¢01
P10
¢11

where the subscripts of ¢ represent the occupation
numbers of states 1 and 2. In this notation

(A12)

G 26{1
G
F = a (A13)
@
The condition on ¥ is
N
B N-1 ¥,

Kv¥ = N (A14)

N-2

Thus both the operator F'F and the condition on ¥
do not mix the subspace spanned by ¢¢ and ¢;; with
that spanned by ¢o: and ¢i0. Hence for maximum
VIFTFY, either oo = ¢11 = 0 or ¢10 = por = 0. But
in the former case we can always increase ¥'FIF¥
by proportionally increasing as, as,---, and simul-
taneously decreasing o; to keep (A9) satisfied [so
that G is proportionally increased]. Hence we can put

¢10 = ¢o1 = 0 (A15)
which means that the states 1 and 2 are either both
empty or both occupied. [Cf. Sec. 19.]
(d) Equations (A13), (A15), and Schwartz’s in-
equality lead to
Tt T AF T AT
VEFFY = ¢00G G¢oo + 20{1[¢00G 4)11 + C.C.}
+ 401?(1511-1(}511 '+‘ ¢T1GTG¢11
< 600G oo + dalpnion + ¢1G Gy
+ 4:041[(¢I1¢11) (¢T)0GTG¢00)]1/2 .
(A16)
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(e) Let B(M,N) be the maximum for WFF¥.
(A16) implies
VFFY < X*6°B(M — 2,N) + 4a2(1 — X°)

+ 8 (1 — X)BWM —2,N — 2)

+ 4oy (1 — X*)'*XB[B(M — 2,N)]'"*, (A17)
where

B=(1—2H"20, X= ()" 20.
(f) We can now prove by induction that for even M
and N

B(M,N)=N(M — N + 2)/M (A18)

as follows: Substitute (A18) into the right-hand side
of (A17) and maximize the resultant expression with
respect to oy and X. After some straightforward
algebra, one finds the only maximum of the right-
hand side of (A17) at

X'=M —-N)/M, ofi=1/M,

where it assumes the value of B(M,N) in (A18).
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The induction is then easily completed. Q.E.D.

It is clear from the above that the only maximum
of ¥FTF¥ with F having the form (A8) is obtained
when

—1/2
a1=a2=--~=M/.

(A19)

F'urthermore, each pair of states (1,2), (3,4),--- is
never occupied singly. For such a problem it is easy
to see that we can define M /2 sets of Pauli spin
matrices so that

F = ‘Zu‘_l/2 ZM/z ((T;: + ’L'O'z) .
Thus, F'F=M"[(X6) = (o) -2 7.
(A20)

The condition that the total number of particles is
N is

> i1 —¢")=N/2. (A21)

Equations (A20) and (A21) show that there is only
one largest eigenvalue for F1# consistent with (A21).
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I. INTRODUCTION

HELL-model calculations of nuclear-energy levels
can be carried out only by using effective inter-
actions between the nucleons. The interaction be-
tween free nucleons is highly singular and leads to
strong short-range correlations between them. Shell-
model wave functions contain no such correlations
and therefore do not furnish an exact description of
nuclear states. Still, under certain conditions, these
functions can be used for energy calculations. To do
this, it is necessary to introduce the effect of the
short-range correlations into the interaction Hamil-
tonian. Under favorable conditions this modification
results in the replacement of the free-nucleon inter-
action by a reaction matrix or effective interaction.
The derivation of the effective interaction in finite
nuclei has not yet been carried out. It is, therefore,

impossible to know in advance whether the shell
model can be used for the calculation of nuclear
energies. The only way to find the answer to this
question is by trying to carry out such calculations.
In the past, many such attempts have been made.
The main difficulty has been the lack of information
about the effective interaction to be used. In the last
few years an approach which avoids this difficulty
has been used. The effective nuclear interaction was
determined in several cases from the experimental
energies. The consistency of the shell-model descrip-
tion of these cases was checked as follows. If the
effective interaction between nucleons is, indeed, a
two-body interaction, its matrix elements in n-
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Commission and the Higgins Scientific Trust Fund.

T On leave from the Weizmann Institute of Science, Reho-
voth, Israel.



