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I. INTRODUCTION

&0 determine critical fields and currents in small
superconducting specimens, it has long been

recognized that it is necessary to take into account
the effect of a change in the order parameter with
Geld or current. Pippard' discussed the problem in a
qualitative way and showed that under some con-
ditions the order parameter goes gradually to zero
with increasing field, giving a second-order transi-
tion, while in others the transition is of first order.
He suggested that the concentration of supercon-
ducting electrons n, of the two-Quid model might
be taken as the order parameter, and that an extra
energy is involved if n, changes appreciably over
distances comparable to the coherence distance.

A phenomenological theory for treating such
problems quantitatively was given by Ginzburg and
Landau (G-L),' in which they introduced an effec-
tive wave function + whose square is proportional
to n, . Their equations reduce to those of the London
theory when space variations of n, are ignored, and
thus are not valid when the Pippard nonlocal theory
must be used. Gor'kov' has shown that the present
microscopic theory leads to the G-L theory near 7',

where the London equations do apply. The only
change is that the effective charge is —2e rather
than —e, a consequence of the pairing in the super-
conducting ground state. Gor'kov takes +(r) propor-
tional to the energy gap parameter A(r). As we shall

see, there is a close connection between this choice
and the original concept of n, as the order parameter.

In the present paper we shall be primarily con-
cerned with small specimens of dimensions less than
the coherence distance, so that changes in the energy
gap with position may be neglected. One may then
extend the theory to arbitrary temperatures by
treating the gap as a variational parameter and find-

*Supported in part by the U. S. Army Research Office
(Durham).

& A. B. Pippard, Phil. Mag. 43, 278 (1952).
2V. L. Ginzburg and L. D. Landau, J. Exptl. Theoret.

Phys. (U.S.S.R.) 20, 1064 (1950).
s L. P. Gor'kov, J. Exptl. Theoret. Phys. (U.S.S.R.) 36,

1918 (1959); 37, 883 (1959); Soviet Phys. —JETP 9, 1364
(1959); 10, 593 (1960).

ing the value which makes the free energy a mini-
mum for given fields or currents.

Several calculations of critical currents and fields

have been given, particularly by Gin zburg and
Abrikosov, 4 on the basis of the original version of
the G-L theory. This work can be taken over with
little or no Inodification for application to tempera-
tures near T,. Douglass' has used the G-L equations
to estimate the magnetic-field dependence of the
energy gap, and finds good agreement between
theory and experiments of Giaevar and Megerle. '
By using the gap as a parameter, and by determining
the dependence of free energy on gap at lower tem-
peratures from a phenomenological two-Quid model,
Tinkham' was able to get a significant improvement
over the G-L theory in fitting his data on the de-
pendence of thermal conductivity on magnetic Geld.
Rogers' used the gap as a free parameter and deter-
Inined how it changed with field or current. The
present paper is an attempt to review this work, to
put the theory on a more systematic basis, and to
apply it to several problems.

In a few cases, more basic calculations have been
made from the microscopic theory in which a modi-
Ged equation for the gap has been obtained for a
superconductor in the presence of fields or currents.
Rogers' treated the case of a uniform current Qow

in a bulk specimen. Nambu and Tuan' have calcu-
lated the reduction in gap to the second order in
Geld strength for a bulk superconductor with Gelds
of arbitrary wavelength. Results obtained are equiva-
lent to those obtained. by the variational method in
cases where they can be compared.

Section II is concerned with a general formulation
of the thermodynamic relations when the gap is
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(1952); J. Expt. Theoret. Phys. (U.S.S.R.) 34, 113 (1958);
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treated as a parameter, Sec. III with the Ginzburg-
Landau equations, Sec. IV and Appendix C with
explicit calculations of the free-energy difference
between superconducting and normal states for
general values of the gap parameter, and Sec. V
deals with applications ef the methods to the calcu-
lation of changes of gap with field or current in small
specimens. Expressions for the magnetic moment of
small specimens are listed in Appendix A and Ap-
pendix B gives Roger's calculation for uniform cur-
rent Aow.

mdv, /dt = —eG . (2.1)

The entire distribution of electrons, including the
pairs, is displaced in momentum space by the electric
field. Scattering of quasi-particles tends to reduce the
current, but does not change the value of v, . In a
normal metal such scattering reduces the current to
zero, but in a superconductor a net Row remains.

It is convenient to use rather than the electric
current density, the density of mass How defined by

II. THERMODYNAMIC RELATIONS

To discuss the thermodynamics of a supercon-
ductor in a magnetic field or with current How, it is
most convenient to take the external field II and the
superQuid velocity v, as independent variables. The
latter is a significant variable only for thin films or
wires of dimensions small compared with the coher-
ence distance. In a bulk specimen, the current How

is confined to the penetration region near the surface
and is determined by the magnetic field at the
surface. The critical current is determined by the
bulk critical field (Silsbee s hypothesis). In the dis-
cussion of thin films or wires, we shall assume that v,
is constant across the cross section.

We may take v, to be the common velocity of the
pairs in the ground state. More precisely, if the
ground-state pairing" is (k+ q $,—k+ q J, ), one
may define v, = h, q/m, where, in a periodic potential,
m is an effective mass. In an electric field 8, , the
acceleration is given by

More generally, one may define p, by the equation

so that

p, (v, ) = dJ, (v.)/dv, , (2.3)

dJ, dJ. dv. ep, G

dt dv, dt m
(2.4)

It is assumed that the variation with time is suf-
ficiently slow, so that the quasi-particle distribution
attains a steady-state distribution appropriate to
the velocity v, of the ground pairs.

One may use (2.2) and (2.4) to define v, and p.
when impurity scattering is present so that the wave
vector k is not a good quantum number. It is neces-
sary to include eA'ects of impurity scattering in thin
films or other small specimens where electrons can
be randomly scattered from the surface.

The displacement of the pairs causes an increase
in free energy of the system which may be expressed
simply in terms of J,. The rate at which work is done
per unit volume on the supercurrent by the electric
field is

The net increase in free energy obtained by inte-
grating with respect to t is

J(v,')dv! . (2.6)

In addition to the work associated with the super-
fluid component, there also will be a dissipation of
energy from scattering of quasi-particles. 'By ac-
celerating the electrons in a suKciently small electric
field, this ohmic energy dissipation can be made
negligible with respect to E&.

The increase in free energy as a result of an external
magnetic field H is

M(H') dH', (2.7)

dW/dt = —eG g v; = —ee J;()/m = VJ.(dvv/dt).

(2.5)

(2.2)

where 'U is the volume and v; the velocity of the ith
electron. The electric current density is then —eJ,/m.
When v, is small, the equilibrium density J, is
proportional to v„and the ratio is the density p, of
the superAuid component of the two-Quid model. "

0 J. Bardeen, L. N. Cooper, and J. R. Sehrieffer, Phys.
Rev. 108, 1175 (1957).

n J. Bardeen, Phys. Rev. Letters 1, 899 (1959).

where M is the total magnetic moment. This expres-
sion applies to a body of any shape. For a body of a
simple shape such that there is no demagnetizing
field,

(2 8)

where x is the susceptibility, equal to —1/4s. for a
bulk superconductor.

For a specimen with dimensions small compared
with the coherence distance, the magnetic moment
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for small fields is given by an expression of the form Integration of (2.12) gives the usual expression
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M = 'U—aHN(0) 606 tanh (-',Ph), (2.9)

where a is a constant dependent on the shape of the
body but independent of H and of the energy gap
parameter A. Here N(0) is the density of states of
one spin in energy at the Fermi surface and Ap the
gap at T = 0 in the absence of fields. The method of
derivation of (2.9) together with a list of values of
the parameter c for different specimen shapes is
given in Appendix A.

In large fields, the gap may depend on H and v, .
Further, for very large fields there may be strictly
nonlinear effects not included in the change of A.

The fact that there is only a very small change of
penetration depth up to the critical field, indicates
that such effects are unimportant for fields up to the
usual bulk critical fields of a few hundred oersteds,
but they may be important for specimens of small
dimensions with critical fields of 104 or even 10' Oe.
We shall ignore such effects here, and include only
the dependence of 6 on H and v. .

The procedure is to take 6 as an independent
parameter along with H and v, . This implies that
calculations of the free energy are made with a set
of quasi-particle states appropriate to a gap
giving

F,(A,H, v.) = F,o(h) — M(H', 6)dH'

F,(H,v, ) = F,(0,v, ) — M(h(H', v, ),H')dH' . (2.18)

In Eq. (2.10), the dependence of F„,M, and J, on
the gap has been indicated explicitly. Methods for
determining these functions are discussed in the
following sections.

If we assume that x(A) and p, (A) are independent
of H and v„we have

F. = F,.(~) —-', ~x(a)H'+ —', ~p. (Z)v'. . (2.14)

In this approximation, the gap is treated as an order
parameter, and the dependence of x and p, on 0 is
included, but other nonlinear effects are ignored.
While this procedure can be justified for tempera-
tures near T„and, in fact, gives the same results as
the Gor'kov version of the Ginzburg-Landau theory,
it may be in error for small specimens at low tem-
peratures.

An equation similar to (2.14), but which ignores
changes in x and p, with the gap or equivalent order
parameter has sometimes been used to estimate
critical fields or currents. The transition to the normal
state would then occur when the added terms are
equal to the free energy difference, F„—F... be-
tween normal and superconducting states in the
absence of fields and currents. The critical field for
v. = 0 would then be

+ '0 J,(v'„A)dv!, (2.10) H. = H. g( m4i xi)
' ', (2.15)

where H, t, is the bulk critical field, for which y
= 1/4~. The critical current density for H = 0
would be

where F„(A) is the free energy in the absence of
fields and currents, but with a gap which may differ
from the usual value. One then finds the value of
D(H, v,) which makes the over-all free energy a mini-
mum for given H and v, by setting

J, = p,v. = (p./4m)H. g. .(2.16)

(BF,/Bh)~, .„r = 0.
At T = O'K, and in the absence of impurity scatter-
ing, p, = p = nm and H, f,

——Hp so that
(2.11)

When this value of 6(H,v,) is substituted in (2.10),
one obtains an upper bound on the true free energy.

It should be noted that the moment M(H, v,) is
given by the usual expression,

(2.12)

Since the second term on the right vanishes by virtue
of (2.11), one finds that M(H, v,) = M(d, (H, v,),H).

J, = (p/4v)' 'Ho ——[nmN(0)ho]

= (2/3)' 'N(0)hmv~, (2.17)

where in the last form v& is the velocity at the Fermi
surface for a simple free electron model. We have
used the relation H20/8~ = —,'N(0) 620, where Ho and
Ap are the bulk critical field and gap parameter at
T = O'K, respectively. These expressions for H, and
J, are equivalent to those which have been derived
some years ago from the original London theory.
When changes of 6 with field or current are taken into
account, larger values are obtained for critical fields
and somewhat smaller values for critical currents.
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Ps/P ) (8.1)

+ will be proportional to the gap. Gor'kov used a
somewhat different normalization for q, one which
is not as close to that of G-L. With our definition,
the G--L equation may be written

8 ie———A(r) 4 —nq + P~%~ q = 0,2m* Br Ac

(8.2)

where m* = 2m and e* = —2e, representing the
mass and charge of a pair. With Gor'kov's deGnition
of 0', m rather than 2m appears in the kinetic energy
term. Equation (8.2) may be regarded as representing
the center-of-mass motion of a bound pair; the wave
vector for%'is q„, that of a pair.

The free-energy difference per unit volume is
obtained by integrating over space and multiplying
by n/2, the number of pairs per unit volume at

np', —p'„=—
2

8 ie*———A (r)2m* Br hc

I&l'+ l el+I') &' (8.8)

The density of mass Bow is given by

n ih 84 8%'* e*
+ —i%'i'A . (8.4)2 2 Br Br e

The kinetic-energy density for a wave vector q„
= 2q for a pair is -,'n(fPq„'/2m*) ~N~' and the density
of flow J = -,'nhq„~%'~'. Note that with v, = Aq„/m*
= Aq/m and p, = p(q ~' = nmtq t', these become

—',p,v', and p,v„as they should.
The coefficients n and p are temperature-dependent

parameters which were evaluated by Gor'kov from
the microscopic theory. They also can be obtained
directly from the equilibrium values of p,/p and of
F. —F, = H', t/Svr in the absence of applied fields.
The equilibrium value of ~+ ' = n/p, which is that
which makes —n~+t'+ —,'p%'~' a minimum. The
minimum free energy per unit volume for this value
of [ef' is

F, —F„= —nn'/4p = H, b/87r . —(8.5)

III. GINZBURG-LANDAU EQUATIONS FOR T —To

Gor'kov, ' by use of a Green's-function method,
has shown that the Ginzburg-Landau equations may
be derived from the microscopic theory if the tem-
perature is near T, so that the local London theory
applies. At these temperatures, p, is proportional to
the square of the gap, so that if one defines an effec-
tive wave function 0', such that

One may express p,/p in terms of the penetration
depth X(T) for the given temperature and Xr.

(pc'/4s n'e') "~', the London penetration depth
for density p'.

p,/p = Xi/X' = n/p . (8 6)

p,/p 2(l —t) .

One may also write for temperatures near Te)

(8.8)

H'„= (dH. ,/dt)'. (1 —t)' . (8.9)
The slope of the critical Geld curve near T, may be
expressed in terms of the jump in speciGc heat at T.
by use of Rutgers relation:

(1/Ss-)(dH, b/dt). = -', T, (C. —C„) . (8.10)
For the BCS model, T.(C, —C.) = 6.2(H,'/Ss. ) and

nn = T, (C, —C.)(l —t) .

np = —,
' T,(C, —C„) .

Near T„ the equilibrium gap is given by

(A(T)/A) = 81(1 —t)

(8.11a)

(8.lib)

(8.12)

The expressions (8.7) are valid when impurity
scattering is present, if the appropriate value of X

is used. Although H, ~ and the equilibrium gap are
not changed very much by scattering, P is increased.
According to Miller, " in the limit for which the
mean free path / is much less than the coherence
distance, $o = Avs/vrAp,

p. ) '. ~tA tanh (-,'PA)
p )' hv~

(8.18}

where P = 1/kT Equation (8.18.) leads to values of
n and p equivalent to those derived by Gor'kov for
the limit T —+ T,. Note that (8.8) is no longer valid
when impurity scattering is present. I:n the limit
T=O) 6 —+Ap)and

p, = lp/fs ——so.m'Ao/(he'), (8.14)

where X = ne'r/m is the conductivity in the normal
state.

~2 P. B. Miller, Phys. Rev. 113, 1209 (1959). Equivalent
results werc obtained by a different method by A. A. Abriko-
sov and L. P. Gor'kov, J. Kxptl. Theoret. Phys. (U.S.S.H, .)
35, 1558 (1958); 36, 819 (1959); Soviet Phys. —JETP 8, 1090:
(1959); 9, 220 (1959).

n = H', gX'/2~ n)ir, p = H', tX'/2xn), 1, . (8.7)
For temperatures near T. such that (T. —T)/T

1 —t «1, the model of Cooper, Schrieffer, and
the author (BCS)"gives
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(4.2)

OI'
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l:1 —2f(E)1 E(8.17)= -' (~p/P)(n~/8p)(p.v, )~..—3 p

the maximum is 1 —2f(~)1 —2f(E)
E
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1 —g, (xo) —= 2xo'

gral equation (4.2) for the gap at T = T„we find where
that the first integral on the right-hand side of (4.6)
is equal to 1/(N(0) V) . Thus, we have {X[1—2f(X)] —

k (x:/x)

Ace X [1 —2f(x)] —x[1 —2f(x)] }dx .
[I —2f(E)]E = g—(p~) +N 0 V+»— (4.11)

Again, g, may be expanded in a power series in
x02, the first term of which is

In the limit T ~ 0, we may neglect f and find
2

go(xo) = —, aoxo +
g, (pt), ) ~ ln (pa/p, ao) .

The integral (4.7) set equal to 1/[N(0) V] is just the
integral equation (4.2) for the gap. From previous
calculations of p 6 as a function of p/p. = T,/T, one
can determine g, (ph). A direct evaluation is given
in Appendix C.

The first line on the right-hand side of (4.1) may
be written, after an integration by parts,

L, = 2N(0) {(Aa)' —h(u[(her)' + 6']' '}

+ 2N(0) {E[1—2f(E)] —e[1 —2f(o)] }ds .
0

(4 8)

To get rapid convergence of the integrand of the
second term, we may write it in the form

2N(0) {E[1—2f(E)] —is (6 /s) [1 —2f(e)]

with as given by (4.5). In the low-temperature limit,
x0 large, we have by direct integration

g, (xo) = ln (xo/P. ao) y —,
' —2(.(2)/xo .

Plots of g&(x) and go(x) as calculated by McMillan
are given in Figs. 1 and 2.

jo-

gi(X)

12

X~
Fzo. 1. Plot of the function g&(X), as defined by Eq. (4.4).

—e[1 —2f(o)]}de+ 6 N(0)
" 1 —2f(o)d

(4.9)

The upper limit of the first integral may now be
replaced by infinity without appreciable error. In
this way we find that LI may be expressed to a
good approximation in the form

L = N(0)~'{1/N(o)V+1 (P/P ) —g (P~)}

(4.10)

gq(X)

.8-

12

I I I

0 1 2 3 4 5
X

FIG. 2. Plot of the function go(X), as defined by Eq. (4.11).

The second line of (4.1) may be evaluated with use of (4.7). We thus find

F„—F„= +N(0) 6'{1/N(0) V + ln (p/p. ) —
g (ph) —N(0) V[—g (ph) + 1/N (0) V + ln (p/p. )]'}

= —N(0)~ {[—2gi +» (P/P. )][1+N(o) V» (P/P. )] + N(o) Vg~ + go} (4.13)

Expanding to order 6', we find

F,.—F„=N (0)a' {ln t[1 —N(0) V ln t]

+ ao(PA)'[1 —4N(0) V ln t] + },
(4.14)

where t = p,/p = T/T, .
The limiting expression as T —& 0 is

F.o —F„= —N (0)6'

X {-', —ln (6/6o) + N(0) V[ln (i1/6o)]'} . (4.15)
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Fze. 8. Free-energy difference (F„(a) —F„) in units of sN(0)as = Hs /87r as a
function of 6/A0 for several reduced temperatures. The minima of these curves corre-
spond to the usual equilibrium gap for the corresponding temperatures. The curves
apply to a coupling strength N(0) V = 0.8.

A plot of (P,.—P„)/[-,'X(0) 60] as a function of
6/Dc, for several different reduced temperatures,
based on calculations of McMillan, is given in Fig. 3.

V. APPLICATION TO SMALL SPECIMENS

In this section we consider the application of the
theory to a thin film or filament with thickness small
compared with the penetration depth. We suppose
that the magnetic field is either transverse or parallel
to the filament or is in the plane of the film. Scatter-
ing at the boundaries may be taken into account by
use of an effective mean free path /, which by our
assumptions, is such that t/(c &(1. We shall use
(2.14) for the free energy, which takes into account
the dependence of x and p, on 6 but neglects other
nonlinear effects. This approximation is valid when

PA « 1, and probably also at lower temperatures
when l « Ps, since critical currents and fields may
then not be so large as to get into the true nonlinear
range. It is certainly not valid when PA ) 1 and
t ) $&&. As shown in Appendix B, for the latter case
one may still use the concept of a gap varying with
v., but the current density is not given by p, (A)u,
as assumed in (2.14). Whereas a calcula, tion similar
to that of Appendix 8 could be made for small speci-
mens for a boundary condition corresponding to
specular reAection, it is diFicult to treat the case of

large fields or currents with random scattering at the
surface or that corresponding to l &( $0.

We shall use (2.9) for the magnetic moment and
(3.13) for p, . Since the dependence on 6 is the same
for both, we have for unit volume

Z. = r', y —,
' (aH'+ l.', )X(O)~.~ tanh (-', PS),

(5.1)
where a is the symbol in (2.9) and, from (3.13)

lp/[&sX(0) 6s]

The equilibrium value of 6 is that which makes
the free energy a minimum. Analytic solutions can
be obtained only for the limits P 6 &( 1 and P 6 )& 1.
For the former, we use (4.14) and for the latter
(4 15)

In the limit P 6 (( 1, we have

P, —F„=X(0)6'
I ln t[1 —X(0)V ln t]

+ as(PD) [1 —4X(0)Vln t])

+ AX(0)hc(-', PD ——,', P 6 ), (5.2)

where A = -', (aII' + bv', ). The equilibrium value
of 6 is given by

—{ln t[l —X(0)V ln t] —-', PA 60
2a, [l —4X(0)V ln t] ——,

'
PALEO
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Kith increasing magnetic field, there is a second-
order transition if 6 gradually goes to zero. This
means that there must exist a solution of (5.3) as
6 —+ 0, which would occur for

pAoA = —2 ln t[l —X(0)V ln t] . (5.4)

It is necessary that the denominator remain positive
for this value of A, or that t be such that

2a2 [1 —4iV (0) V ln t] ) —
~~ ln t[1 —X(0) V ln t] .

(5.5)

The reduced temperature tl, above which the transi-
tion is second order, is given by the solution of the
quadratic equation

The value of y which makes F, a minimum is given
by the solution of

—-,'4ylnyL —X(0)V —X(0)Vlny] = A. (5.10)

If A is larger than a critical value A., the free energy
in the normal state will be lower than that of the
superconducting state. To determine the critical
value of y = y„we substitute the value of A given
by (5.10) into (5.9), set F, = F„„and solve for ln

yc:

lny,
1 —2X(0)V —

I 1 —2X(0)V+ 4[%(0)V]'}' '
2X(0)U

(5.11)
+ ( ) "] y~ ( y ' ( ' ) For x(0)U = 0.3, lil y. ——0.80 aild

II'. = 4(l —t)/P. d,a. (5.8)

Values of a for various specimen shapes are given in
Appendix A.

In the opposite limit of low temperatures, p, and

x are proportional to A. With y = 6/60, as in
(4.15),

F, = F„o ——', X(0)day'

X [1 —21ny[1 —X(0)V»y]} + ~X(0)~,t), .

(5.9)

where y = —ln t& A. plot. of t, as a function of X(0)V
is given in Fig. 4.

At reduced temperatures above t&, such that (5.4)
applies, the critical field II, is given by

—2 ln t[1 —X(0) U ln t]
C

pro
Near T„ this expression reduces to:

A, = 0.68.
For a value of A less than A„ the minimum in I',
will be less than F„p and for larger values of A greater
than F p. At this critical value, a first-order transi-
tion to the normal state will occur. Such a transition
has not been observed in small specimens of dimen-
sions of the order of the penetration depth or less.

Numerical calculations are required to determine
the variation of the gap with field for the complete
range of temperatures. Figure 5 is a plot of (6/t4)
vs the parameter A for several reduced temperatures
for X(0)V = 0.3, based on the free energy plots of
Fig. 3. For this case, the gap gradually goes to zero,

I.O

.St

5

.2

.2

N(0) V

Fxo. 4. Reduced temperatures tl, which mark the change
from a 6rst- to a second-order transition of small specimens
in a magnetic Geld as a function of the coupling strength,
X(0)V.

0
0 .i .2 .3 4 .5 .6 .7

A poH
I

FIG. 5. Change in gap parameter with A = z aH~ for cou-
pling strength X(0)V = 0.3 at several reduced temperatures.
the plotted points are deduced from data of Tinkham and
Morris (reference 7) on thermal conductivity of a thin
( 650A) film of indium for t = 0.63.
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giving a second-order transition, if t & 0.325, and
the transition is of Grst order for t & 0.325. At the
higher reduced temperatures, t = 0.6 and 0.8,
(6/dc)' is very close to a linear function of A or of
H'. Even at t = 0.4, the departures are not very
large. An asymptotic behavior of this sort is to be
expected from (5.3) near t = 1, when the first term
of the numerator as well as the ln t term in the
denominator can be neglected. It also follows from
the Ginzburg-Landau theory, as shown by Douglass. '
However, it is surprising that this limiting behavior
is approximately valid at reduced teInperatures as
low as t = 0.6, or even 0.4.

In Fig. 6 is plotted, again for X(0)V = 0.3, the

C R ITICAL FIELD

j
.6

N(o)V= 0.3

.I

0 ,I .2 3 .4 .5 .6 .7 ,8 .9 I 0

2.—-—

FIG. 6. Critical values of A, =
~ OII,2 at which the transi-

tion from superconducting to normal state occurs for N(0)V
= 0.3. Below about t = 0.325, the transition is of Grst order,
above it is second order.

critical value of A, denoted by A„at which the
transition from superconducting to normal behavior
occurs. Below the inAection point near t = 0.325,
the transition is of Grst order, above of second order.

Experimental evidence for a change in gap with
field and a second order transition comes from (1)
tunneling experiments of Giaevar and Megerle, '
(2) changes of thermal conductivity in thin films
with field as measured by Tinkham, ' and (3) changes
in the specific heat curves of high Geld supercon-
ductors, which presumably have superconducting
domains of very small size. Morin and his co-
workers" have measured the specific heat of V3 Ga
in fields of 40 kG and of 70 kG, and find that T, de-
creases with increasing Geld, but the transition ap-
parently remains one of second order, contrary to
the behavior expected in bulk specimens which
exhibit a Meissner effect. Their data indicate that

H, varies as (1 —t) while the theory [Eq. (5.8)] for
small specimens of uniform size predicts H', rather
than H. is linear in t near T,. The reason for this
discrepancy is not known. From the plot of Fig. 6,
one might expect that at very high fields, such that
t & 0.3, the transition would change to one of first
order. To date, no such first order transition has
been observed, although measurements on lead' have
been made at temperatures as low as t = 0.2.

Values of A(H)/A(0) deduced by Tinkham and
Morris' from measurements of thermal conductivity
in thin ( 650A) films of indium in high magnetic
Gelds are compared with theory in Fig. 5. The re-
duced temperature for the experimental run is
t = 0.63. Agreement between theory and experiment
is excellent. Data taken at t = 0.36 (not shown) are
in much poorer agreement with theory.

Elukhara" has measured critical fields of de-
posited mercury films with thickness d, varying
from about 1 to 10 X 10 ' cm. The fields were
parallel to the plane of the Glms. Measurements made
near T, were found to be in good quantitative agree-
ment with predictions of the Gor'kov version of the
Ginzburg-Landau theory as modified to take im-

purity scattering into account (see Sec. III). Sus-
ceptibilities were calculated by use of the local
London theory for a mean free path l ( d (Appendix
A). The theory predicts, as observed, that H. varies
inversely with d. In the Pippard nonlocal limit with
t & d, one would expect H, to vary as d '/' when d
is very small. While measurements were made on
annealed films with longer mean free path, the film
thicknesses were too large to expect this limit to
apply. It was found that critical fields of the an-
nealed films as well as of the unannealed Glms varied
as 4

%e next consider the application of the equations
to a calculation of critical currents. As noted in Sec.
III, the current density p,v, increases to a maximum
and then decreases with increasing v„as the decrease
in p, with decreasing gap more than compensates
for the increase in v. . Only the values up to the
maximum can be realized in practice. Since at the
maximum there is only a moderate decrease in the
gap, large changes in gap cannot be obtained simply
by increasing the current. A magnetic Geld is neces-
sary. Vfe shall first derive the expression for the
critical current when a magnetic field is present for
the limit PD « 1, which may apply either near T,
or in high magnetic fields near H, .

~3 F. J. Morin, J. P. Maita, H. J. Williams, R. C. Sherwood,
J. H. Wernick, and J. E. Eunsler, Phys. Rev. Letters (to be
published).

r4 I. S. Ehukhareva, J. Exptl. Theoret. Phys. (U.S.S.R.)
41, 728 (1961);Soviet Phys. —JETP 14, 626 (1962).
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Using (5.8) and (8.18), we may express p, in the electrical current density is obtained by multiplying
form by e/m:

ps
8bX(0)62 c, —v',

2p C2 —V,
(5.18)

1/2

I2.E. = ',' =
4
', {emu. ) (5.21)H. b 4xpse H, b

4m m 7I

where

c, = —(4/62pb) I ln t[1 —X(0) V ln t] } —aII'/b

(5.14)

c, = (12a2/3, 2Pb) [1 —4X (0) V ln t) —aH'/b .

(5.15)

The value of v. = v„which makes p,v, a maximum
is given by setting

where XL, is the London penetration depth. Equation
(5.21) may be used to estimate critical current
densities at temperatures different from zero, if
H, &(T) and p, (T) are the temperature dependent
quantities. The dependence of p, on scattering mean
free paths should be taken into account, with use of
(8.18) if t &( $2. The values obtained from (5.21) are
somewhat too large because this expression does not
take into account the dependence of the gap on v, .

Near T„when P 6 &( 1, we have from (8.19)
d v, (c, —v', )

dvs c2 —v,
(5.16) I./I2 F,

——(2/. 8.)
' = 0.545. (5.22)

which gives

v', . = —,
' I8c2 —cl —[(Qc2 —c,) (c, —cl)]'"} . (5.17)

The value of (P 6)2 for this critical velocity is

1/2 1/2

(p~)2 8
(9c2 cl) —8 (c2 cl)

(5 18)
(9C2 Cl) (C2 Cl) I./I , 2. E——1.017(2/8) ' 0.82 . (5.24)

Near T = 0, with t «f2, we have from (4.15) and
(5 1)

I,/I2. , ———,
' I-', [1 —X(0)V]}'' -,'. (5.28)

Near T = 0, with no scattering, we have from
(B12)

The solution is valid only when (ph), &( 1, which, An approximate formula valid for all temperatures
in turn, implies cl «c2. In this limit, v, ~ cl/8 and may be obtained by using the relations H.&(t)

(P 6)', 2cl/c2. The critical current is = H2(1 —t'), XL, (t) = X(0)/(1 —t4)'~2, so that,

J, = p,v„[bc,X(0)h,/Pc2](c, /8)' '. (5.19) H. l, (t)/X(t) = [H2/Xl(0)](1 —t ) (1+ t ) . (5.25)

To obtain a useful approximation valid for all
temperatures one may express p in terms of the
conductivity, o = ne2t/mvz, of the normal state,
and find for t(& $2 (the usual situation for thin
films):

As indicated by (8.18), p, is proportional to
near T„and near T = 0 is independent of 6 for
t )) g2 and proportional to 6 for t (( p2. In Fig. 5 is
shown how p, varies with A. Note that in the ab-
sence of a magnetic field, A is proportional to v', .
Thus, near T„p, decreases linearly with v', Near
T = 0, for t (( $2, 6 and thus p, drop roughly linearly
with A or v', until a critical field is reached at which
an abrupt first-order change to the normal state
occurs

I.= —;Ho(~/&2)'"(1 —t')'"

0 i/2500.

. The slope in the limit A ~0, T —&0, is Since H2 is proportional to D2 and p, to 6&, I.varies
as T','/'. A rough formula based on a free-electrondA 1 dp,

dA p, dA 2[1 —X(0)V]
'

(5.20)

The current density, proportional to p,v., increases
to a maximum and then decreases with increasing
v, ; the critical current density is given by the maxi-
mum of the curve. Several limiting forms for the
critical current density, J. = (p,v,) .„., are of interest.
It is convenient to normalize in terms of the critical
density JF.~. given by the free-energy criterion for
a bulk specimen as given in (2.18).The corresponding

I.= (8t/)t'" T{l —t')" X 10'A/em'. (5.27)

The best experimental observations of critcial
currents in thin film are in fair agreement with
(5.26), both as regards temperature dependence and
magnitude. Care must be taken to avoid eGects of
magnetic fields produced by the current on the cur-
rent distribution by use of a compensated geometry,
and also as pointed out particularly by Bremer and
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Newhouse" to avoid heating effects by use of short
pulses. As far as the writer is aware, no experiments
have been done in which both precautions have been
taken. Ginzburg and Shalnikov" and Alekseevskii
and Mikheeva" have used a compensated geometry
with a specimen in the form of a thin film deposited
on the outside of a circular cylinder. They found
that I, varies as (1 —t)'~' near T., as predicted by
the 6-L theory. However, they used direct currents,
and so may have had heating effects and observed
the critical current for propagation of a normal-
superconducting boundary rather than a true critical
current. "Mercereau and Hunt" have observed the
Aux trapped in thin film rings of tin of very small
dimensions. With films less than 700A in t,hickness,
they find current densities greater than 10' A/cm'
and near T, the predicted temperature dependence
of critical current. A plot of their data is given in

Fig. 7. Observations with pulses so as to avoid heat
effects have been made by a number of workers""
on planar film strips, mainly in connection with
cryotron studies. This geometry is unfavorable for

Ioo

~a4
Ch

ias4

IO—

I

O.OI

I f I

O.I

5 J. W. Bremer and V. L. Newhouse, Phys. Rev. 116, 309
(1959).

6 N. I. Ginzburg and A. I. Shalnikov, J. Exptl. Theoret.
Phys. (U.S.S.R.) 3'7, 899 (1959); Soviet Phys. —JETP 10,
28' (i.960).

7 N. E. Alekseevskii and M. N. Mikheeva, J. Exptl.
Theoret. Phys. (U.S.S.R.) 38, 292 (1960); Soviet Phys. —
JETP 11, 211 (1960).

8 J. E. Mercereau and T. K. Hunt, Phys. Rev. Letters 8,
243 (1962).

9 The problems encountered are discussed in A. M. Kolchin,
Yu. Q. Mikhailov, N. M. Reinov, A. V. Runyantreva, A. P.
Smirnov, and V. N. Totubaliv, J. Exptl. Theoret. Phys. 40,
1548 (1961);Soviet Phys. —JETP 13, 1088 (1961),where other
references to the literature may be found.

(Tc-T)

Fig. 7. Critical currents of thin ( ~700A) Glms of tin as a
function of T, —T, from data of Mercereau and Hunt
(reference 18). Theory predicts a slope of 1.50.

basic studies because the current distribution may
be altered by the magnetic field and not be uniform
across the film. Nevertheless, results have generally
been in qualitative accord with theory.

VI. CONCLUDING REMARXS

The discussion has been confined to specimens
with at least one dimension small in comparison
with the coherence distance, so that the variation
of the gap parameter 5 with position may be
neglected. To determine changes in gap with applied
fields and currents, we use a variational method and
treat 6 as a free parameter, chosen to make the
over-all free energy a minimum. As discussed in Sec.
II, there are three contributions to the free energy:
(1) that from the pairing interaction, which is a
minimum for the value of 6 determined from the
usual gap equation; (2) that from the magnetization,
which decreases as 6 decreases, allowing further
penetration of the field; and (3) that from the
kinetic energy of the supercurrents. Section IV and
Appendix C are concerned with the calculation of
the first of these, the free energy difference F,o

—I'.
between superconducting and normal states for
general values of A.

To determine the magnetization, 3II(II, A), and
the supercurrent density, J,(v„A), for a velocity,
v„of the ground-state pairs, we have generally taken
the first nonvanishing terms, those proportional to
H' and v'„respectively. Thus, we take into account
eAects of changes of gap, but neglect other specifi-
cally nonlinear effects. This procedure is justified
for temperatures near T„and, in fact, gives results
equivalent to those derived from the Gor'kov version
of the Ginzburg-Landau theory. This latter theory
is reviewed in Sec. III. It is likely that the method
gives reasonably satisfactory results at all tempera-
tures for fields and currents up to the critical values
if the mean free path of the electrons is much less
than the coherence distance, the usual situation in
small specimens. Applications of the theory to
various problems and comparisons of theory and
experiment are discussed in Sec. V.

While agreement between theory and experiment
is good in general, there are some discrepancies.
Further experiments on well-defined specimens are
desirable. In particle, it would be of interest to study
combined effects of field and current on specimens
of simple geometry. Measurements of the change of
gap with field at very low reduced temperatures
(t ( 0.3) are required to see whether or not the
predicted first-order transition occurs.

Rather than use the variational method, one could,
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from a more basic point of view, rederive an integral
equation for the gap in the presence of fields and
currents, and thus determine changes in 6 with II
and v, directly from an integral equation. This latter
method is applied in Appendix 8 to determine
changes in gap with a uniform current How. In more
general cases, the integral equation may be derived
from the general Gor'kov equations, valid for all
temperatures, or directly from microscopic theory.
In the few cases where comparisons can be made,
results obtained by the more general methods are
equivalent to those obtained by the variational
method. It would be desirable to make further calcu-
lations by the more general methods, particularly in
cases where nonlinear effects other than those repre-
sented by changes in gap are important.

We have not discussed the closely related problem
of changes of gap with rotation in nuclei. To first
order, the Coriolis force in the rotating frame is
equivalent to a magnetic field. As pointed out first
by Mottelson and Valaten, "one expects, as for the
corresponding magnetic case, that the gap will de-
crease with increasing rotational velocity, and even-
tually go to zero. These authors derived a modifmd

gap equation valid to second order for the rotational
velocity. Recently Grin" has treated the problem
from the general Gor'kov equations.
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Tash, x I. CoefFicients for calculation of magnetization of
small specimens from Eqs. (A6) and (A7).

Specimen
geometry

Random
scattering

g

Specular
reflection g

London
limit

gL,

I Thin Glm parallel
Geld 0.876'b

II Cylinder parallel
Geld 0 100g

III Cylinder trans-
verse Geld 0.200g

IV Sphere 0 0625c

0.500d

0.122d

0.316d
0.0845 '

0.333'

0.125"

0.250"
0.100d'

a J. R. Schrieffer, Phys. Rev. 105, 47 (1957).E.T. Rodgers, Ph. D. Thesis, University of Illinois (1960) (unpublished).
0 t . S. Whitehead, Proc. Roy. Soc. (London) A238, 175 (1956).
& J. J. Hauser and E. Helfand, reference 23.
e R. M. May and M. R. Schafroth, Proc. Phys. Soc. (London) 74, 153

(1959).
f F. London, Suyerjluids (John Wiley k Sons, Inc. , New York, 1950).
& Hitherto unpublished calculations of %. L. McMillan.

APPENDIX A. MAGNETIC MOMENTS
FOR VARIOUS SPECIMEN SHAPES

Here we shall tabulate results of calculations
which have been made of the magnetic moment of
specimens whose smallest dimension d is less than
the coherence distance $0 (typically of the order of
10 ' to 10 ' cm). Different methods have been used
to make such calculations. The London theory, with
a penetration depth X given by (3.13), may be used
when the mean free path t((d. When / ) d, a non-
local theory must be used to determine the current
density from the vector potential. In this case the
results depend to some extent on the boundary
condition assumed for scattering of electrons from
the surface. May and Schafroth" have given a
general method by which the magnetic moment of a
specimen of any shape can be determined for the
case of specular reHection. Random scattering is
more dificult 4o treat; a method suggested by Pip-
pard can be used for specimens of simple shape.

Recently, Hauser and Helfand" have given calcu-
lations for several specimen shapes according to the
London theory and also for the nonlocal theory with
use of the method of May and Schafroth. Included
were a sphere, a cylinder in a transverse field, a
cylinder in a parallel field, and a thin plate in a
parallel field. They took into account effects of a
mean free path in the expression for the current
density. Earlier calculations have been made with
use of the random scattering boundary condition
for a sphere by Whitehead and for a thin plate by
Schrieffer. In Table I are given the results of these

B.R. Mottelson and J. G. Valatin, Phys. Rev. Letters 5,
511 (1960).

2r Yu T. Grin', J. Exptl. Theor. Phys. (U.S.S.R.) 41& 410
(1961);Soviet Phys. —JETP 14, 320 (1962),

~2 R. M. May and M. R. Schafroth, Proc. Phys'. Soc.
(London) 'l4, 155 (1959).

s3 J. J. Hauser and E. Helfand, Phys. Rev. 12'7, 386 (1962).
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p(r) =— 3
4~c&r)o

R[R A(r')] J(R,T)e
g4 T

where R = r —r'. For specimens with d (& $p, one
may replace J(B,T) by J(O, T) without appreciable
error, where

J (0,T) = (A,/A) (6/Ao) tanh (PA/2) . (A2)

When in addition / (& d, so that A(r) does not vary
much over a mean free path, one may replace A(r')
by A(r), carry out the integration, and find the
London relation

j (r) = —(c/4n-X')A (r), (A3)

with the penetration depth X given by (3.13).
For the case of random scattering with siInple

specimen shapes such as those considered here, one
simply carries out the integration over the specimen.
In the limit d/X ~ 0, the field in the specimen is
little changed from the applied field, so that one
takes for A(r) the vector potential of the external
field H. The magnetic moment is

M = r X j(r)dr
1

2c

36 tanh (-',Pd), (r X R)[R.A(r')],

(A.4)
in which we have assumed l)) d, and replaced
e ~~' by unity. Comparing (AB) and (2.9), and using
the relations Hp/8m = -',X(0) LQ, $o = hvar/pr&o,

A = 4~) 'I/c', we find for the coefficient a of (2.9):

a= o p dr dr' &4, (A5), (r X R)[R A(r')]
&r I 0 0

which is the expression used by McMillan for his
calculations.

The four specimen geometries considered are (I)
a thin film of thickness 2r in a parallel magnetic
field, (II) a small cylinder of radius r in a parallel

calculations for the limit, d (& to, together with
hitherto unpublished calculations of McMillan for
a cylinder in a transverse field and in a parallel Q.eld.

The general expression for the current density,
including the effect of a scattering mean free path
is10,12 .

field, (III) a small cylinder of radius r in a transverse
field, and (IV) a small sphere of radius r. For the
nonlocal theories, the coeKcient a may be expressed
in the form

a = gr /Xr. fpHp, (A6)

where g is a dimensionless geometrical factor. Values
for g are listed in Table I for both random scattering
and specular reQection.

In the London limit, a is proportional to r' rather
than r' and may be expressed in the form

2 2 2a = gJr jX Hp. (A.7)

Values of the dimensionless coeKcient g& are also
listed in Table I, prepared by McMillan.

J. = Q hk. (fo, —f oo) . (Bl)
We want to determine the fo to give a minimum

free energy subject to a given J. We use the BCS
model for which the pair interaction is —V in an
energy zone

~
o&~ & h~ about the Fermi surface,

where oo
——A,'k'/2m —p. If v is a Lagrange multiplier

for J„we have [cf. Fq. (3.16) of reference 9].

24 Based on the thesis of K. T. Rogers, reference 8.

APPENDIX B. DIRECT CALCULATION

OF CHANGE OF GAP WITH CURRENT24

We discuss in this section a direct calculation of
the change in gap with current Row which applies
for all T. The problem is an idealized one because
we disregard effects of magnetic fieMs and assume,
contrary to fact, that one can have a uniform current
fI.ow in a bulk specimen. It is of interest because the
calculation goes back to first principles and because
the change in gap is determined directly from an
integral equation. Results near T, are equivalent to
those obtained from the 0-L theory.

The calculation is similar to that required for the
two-fIuid model, but is extended to arbitrarily large
currents. We consider first a situation in which the
ground-state pairs have zero net momentum, but
for which there is a distribution of quasi-particle
excitations giving a net current J. Let fop be the
probability of an excitation in the state kf and

f o, that in —lr $. Then the mass ffow is

~+ v. ~ = Q oi(f~. + f - '.) + 2 Q oA. (1 —fo. —f op)-
irk((A

+ 5 'v Q "
(fo~ —f o&) —V Q [h~(l —ho)ho(l —hg, )]'"(1—fo„—f og)

BA; Ilk )(AQl

X (1 —fo'o —f o'o) + kP -'I g foo ln f~o + (1 —foo) ln (1 —fo, )

+f go ln f oo + (1 —f oo) ln (1. —f ~~-)],
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where p = (kET) ' and 1't& is the probability of a
pair in k. The values of f& and hp are determined so
as to make I/ + v J a minimum. The solution is
similar to that for v = 0:

to transfer of an electron from one side of the Fermi
sea to the other. This criterion is (depairing condi-
tion)

—', m (hkr/m + v, ) —-', m()'tkE/m —v, ) ) 2h, (B10)
ttp = -', (1 —es/E. )

2 2 2Ep= ep+&

1
1 + exp Ltt (E, + v A,k)] '

1
1 + exp [P(E, —v hk)]

(B3)

(B4)

(B5) v„= 1.03 ep/AkE, (Bll)

hkgv, & A.

The gap decreases very rapidly when v, exceeds the
critical value. The maximum in the Row occurs for

To get a state corresponding a velocity v, of the
ground pairs and a normal component of current
equal to zero, one may displace the above configura-
tions in momentum space by mv, and then take
v = —v, . An equivalent solution can be obtained
from the general Gor'kov equations for the thermal
Green's function, valid for all temperatures. "

%e may write to a close approximation

v'V = ~r&J cos 0 = ~I('&x (86)
where k& is the magnitude of the wave vector of the
Fermi surface, 0 is the angle between v and k and x
= cos 8. The equation for the energy gap then be-
comes

1 1 "dc
N(0)V 2 p E

1 1
X 1, P (@+gx) ~, P (+—gz)

e 1 ~e
(B7)

with the maximum being only slightly greater than
that corresponding to the depairing condition:

J = 1.017 Nep (0)/vE ~ (B12)

This is roughly (2/3)'/2 or about 80% of the value
corresponding to the free-energy criterion.

g(*) —=
1 —2f(x)

S
1 —2f(X)

x
1 —2f(x)

g
dx + 2 dx

"f(X)I X

=ln ' +2+(—1)""
,Ap n=l

APPENDIX C

In order to find the free energy as a function of
6, we must evaluate the functions gr(xp) and gs(xp)
numerically. It is convenient to expand the F-D
function f(X) in powers of e E. From (4.4)

where a = AA:J V, . The integration over angles may
be carried out explicitly to give

"
exp [—n(x' + x', )'"]

(
2 + 2)1/2 dx (C1)

1 t~ 1 t/Es + s

In the limit v = a = 0, this equation reduces to
the usual equation for the gap. At temperatures
near T, such that Pct «1 and Pep(T) (( 1, one may
expand in a series in (Ptt)2 and (Pep)2. To terms of
order v2, one gets

[0 ~(&)]' = [8 '/7t (3)](1 —t) —l (P.&k )'v', (B9)

which is in agreement with (3.15)
In the low temperature limit, P —+ ~, there are

no excitations formed and thus no change in
until the velocity v, reaches the value for which it is
favorable to form pairs of excita, tions, corresponding

"
exp [—n(x' g x', )

' ']
(

2 + 2)1/2
-nzp sinh ye Qg

= Kp(nxp) .

gg (xp) = ln + 2 g (—1)"+Kp(nxp) . (C2)P.kp n=1

Here X = (x'+ xp)'/2, a,nd we make weak cou-
pling approximations, [(Ap/hcc)2 « 1; f(P,hcc) &(1],
throughout.

Substituting x = xo sinh y, we find

26 W. Magnus and F. Oberhetinger, Formulas and Theorems
22 K. Maki and T. Tsuueto, Progr. Theoret. Phys. (Kyoto) for the Functions of Mathematicat Physics (Chelsea Publish-

2'7, 228 (1962). ing Company, New York, 1954), p. 27.
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We may evaluate g&(xp) in a similar way. From
(4.11)

2
gp(xp)

—= 1—
Xp

[1 —2f(X)]

2

2x [1 —2f(x)] —x[1 —2f(x)] dx

~ cAoo=1—
p Xp

1 —2f(x) 2x
dX

+ p [Xf(X) —xf (x)]dx .
Xp 0

We again expand f(X) in powers of e ~

Xf(X)dx =, Q (—1)"+'

exp I
—n[(x'+ x:)]' 'I[(x'+ x', )]"dx.

Substituting x = xp sinh y

X Xdx=4 —1"+'

exp (—nx, sinh y)(1 + sinh'y)dy

= 4 g (—1)"" Z.(n*.) y

where Ei(x) is the Hankel function of order one. The

remaining integrals of (C8) are easily evaluated.
We find

g, (x,) = —,
' + ln (x,/P. t),p) —2i (x)/x;

= 4 Q (—1)""[Kp(nxp) + ' '-], (C4)

where f(x) is the Riemann zeta function. " The
Hankel functions E.(x) are related to the Bessel
functions of the third kind" H„(x) by

K„(x) = (s-i/2)e"" 'H„"'(ix) .

The Hankel functions decrease exponentially for
large values of the argument allowing the summa-
tions to be truncated at n 5/xp. The functions

gr(xp) and gp(xp), calculated from (C2) and (C4) are
given in Figs. 1 and 2. Using these functions and
(4.18), we can calculate the free energy as a function
of 6 in the absence of external fields or currents.
The free energy as a function of 6 for X(0)V = 0.8
is given in Fig. 3. Finally, we can And the free energy
as a function of 3, when both a magnetic Geld and
current Row are present, and minimize this free
energy with respect to 6 to determine the gap 6 in
the presence of the field and current. The energy

gap as a function of the field has been determined, for
X(0)V = 0.8, with the free energy given by (4.18)
and (5.1), and is given by the solid lines in Fig. 5.

»K. Zahnke and F. Emde, Tables of Functions (Dover
Publications, Inc. , New York, 1945},p. 236.

28 These functions are tabulated in reference 27, p. 236 and
elsewhere.
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&HE coupling between spins of magnetic ions, or
of nuclei, which results indirectly from the inter-

action of such spins with those of conduction elec-
trons in metals has been the subject of a number of
papers. Zener' proposed that this indirect mecha-
nism is the cause of ferromagnetism. The correspond-
ing calculation for nuclear spins was made still earlier

i C. Zener, Phys. Rev. 81,440 (1951).

by Frohlich and Nabarro. 2 The resulting nuclear
coupling is, of course, very weak, but capable of de-
tection in some metals by nuclear resonance. Calcu-
lations of the Zener-Frohlich-Nabarro (ZFN) type
are incomplete because they neglect the effect,
essentially a second-order or polarization one, of
the matrix elements which are nondiagonal in the

s H. Frohlich and F.R.N. Nabarro, Proc. Roy. Soc. (London)
Al'75, 882 (1940).


