
SPIN COUPLING AT LARGE DISTANCES

where dS is along the outward normal to Z„. By
(All) and (A12), the volume integral in (A16) is ( 0,
so finally

Iih( ) ( ~p —sly-w. l

(A17)

P' = (2m/fi')rtsi, (A.18)

where e& is the least of the atomic ionization energies
and q = 1 is a factor by which el must be reduced if
the electron being removed is removed only to a dis-
tance L from its atom. For y values for which the
hyperplane y = constant passes close to a negative-
ion configuration, e& in (18) should be replaced by sr

where 0' is algebraic and yo is the nearest point of Z„
to the point y.

We wish to apply this theorem to the bounding of
the x~ of Sec. 2D inside the surfaces Zr, P 4 1. Draw
a straight line in configuration space from a point of
Z1 to a point of Z&, and let these points be so chosen
as to minimize the distance between them. Let y be
the coordinate in the direction of this line, x1, x. 1

the coordinates in all orthogonal directions. For most
values of y, the hyperplane y = constant will not pass
near any point corresponding to a negative-ion con-
figuration, and (A12) will be valid with [cf. (36)]

fb,v)~'" 'p p~p d

would have to increase without limit. This seems
physicaOy unlikely.

minus an electron affinity. However, there will be
only finite ranges of y for which this occurs, and since
the right of (A17) must contain I'~'(yo) as a factor,
we can apply (A17) consecutively to the large ranges
of y values for which (A18) holds as written and the
small ranges for which it must be modified. The re-
sult will be that (A17) holds everywhere outside Z, ,
the only effect of the negative-ion configurations
being to increase the coefficient 0'.

Unfortunately, the bounding of I, defined by (AS),
is not enough for our needs, since in our use of (35)
and (40) we have to multiply values of x& inside Z& by
a potential-energy perturbation which may become
locally infinite. We expect, of course, that the maxi-
mum of x& on the x variables will obey a relation of
the form (A17). This will be the case unless this maxi-
mum becomes more and more sharply peaked in x as

y increases. This would mean that the x-momentum
distribution would have to spread to ever larger
momentum values. In mathematical terms, if f(p,y)
is the Fourier transform of x~ on the x variables,
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GREGORY H. W+NNIKH,

University of Oregon, Eugene, Oregon*,

INTRODUCTION

&HE following lines are a tribute to my teacher,
Eugene Wigner, who introduced me to the

subject of solid state physics.
The present communication reaches rather di-

rectly across a quarter century into the time when
I was the Benjamin among his solid-state physics
students at Princeton University. He first suggested
to me that there ought to be a way to reconcile the
local and the band concept for electrons, and that
such a reconciliation would probably be useful in

* This work was supported in part by the OfFice of Naval
Research.

understanding the spectra of insulators. The result
of this suggestion was a paper on the electronic
excitation levels in insulators. '

When I did that work I felt that it had rather wide
implications. Unfortunately, the trend of the times,
and perhaps also my own negligence in clarifying the
ideas sketched in the article (I had been taught in
Switzerland that the cardinal sin of a physicist is to
restate the obvious, a tenet to which I now no longer
subscribe) left the duality of energy band and lattice
cell in a haze from which it was not to emerge for
some time.

r Gregory H. Wannier, Phys. Rev. 52, 158 (1937).
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When solid-state physics was taken up again after
the war, the study of localized states in solids brought
the issue back to the attention of physicists. Slater'
showed the applicability of the original method to
the problem of impurity states. The computational
possibilities of the original article were thereupon
quickly realized. "The idea that the method recon-
ciled the band and cell concepts as a matter of
principle was not so easily accepted. This was so
much the case that an "equivalent" method gained
wide acceptance' ' in which this reconciliation is an
approximate feature valid in the neighborhood of
the band edge only.

The course of experimental discovery, particularly
the results for the de Haas-van Alphen effect,
magnetoresistance, and cyclotron resonance in
metals'' have made a restricted view of the "ef-
fective mass approximation" rather implausible.
If one approaches this question from the point of
view of theory, then the central problem is the status
of interband matrix elements. There are two alterna-
tive views possible concerning them. Either they are
considered as coupling the bands. The band picture
is then approximate only and the laws of motion
resulting from this picture are in competition with
interband transitions. Or one may look upon the
interband matrix elements as nonessential. One then
sees them as modifiers of a poorly approximated
band wave function. The effective mass picture is
then considered exact in some sense. When I re-
examined the question in this light in 1955, it seemed
to me reasonable to hope that the band picture and
the effective mass formalism might be exact in the
presence of homogeneous fields. The reason for this
hope was that bands arise from the periodicity of the
crystal, and that this periodicity is not destroyed by
such fields. Interband transitions would then be
properly associated with Geld inhomogeneities which

are, of course, a form of disorder just as thermal
agitation or impurities.

Theory has conGrmed this view in a general way,
but the idea must not be interpreted too widely.
Thus, it will be seen below that the greater part of

& J. C. Slater, Phys. Rev. V6, 1592 (1949).
s C. Kittel and A. H. Mitchell, Phys. Rev. 96, 1488 (1954).
4 J. C. Slater, EncyclopeCka of Physics XIX (Springer-

Verlag, Berlin, 1956), pp. 70—78.
s J. M. Luttinger and W. Kohn, Phys. Rev. 9'7, 869 (1955).
e W. Kohn, Solid State Phys~ cs (Academic Press In'c. , New

York, 1957), Vol. 5, pp. 271—281.
7 I. M. Lifshitz and V. G. Peschanskii J. Exptl. Theoret.

Phys. (U.S.S.R.) 35, 1251 (1958) [translation: Soviet Phys. —
JETP 8, 875 (1959)];ibid. 38, 188 (1960) [translation: ibid. 11,
187, 1960).

The Fermi Surface, Proceedings of an International Con-
ference, Cooperstomn, New York, 1960 (John Wiley tk Sons,
Inc. , New York, 1960).

the theory is only proved asymptotically to all powers
of the field. However, the theory as a whole cannot
be dismissed as asymptotic, because a very crucial
part of it can be proved exactly; exact proofs for
other parts may very well follow in the future. An-
other direction in which one must be careful not to
use too wide an interpretation is in the effect of
time-dependent homogenous fields. It appears that
such fields can produce true interband coupling and
thus lead beyond the effective Hamiltonian for-
malism for single bands or band groups.

1. HAMILTONIAN BAND MECHANICS

In this section the basic ideas of band dynamics
will be developed in the simplest possible way,
namely, by the study of the field-free cystal. Clear
concepts can be evolved this way, but interband
coupling appears then as an obscure sort of competi-
tive process. That this competition is, in fact, not
severe is an extraneous piece of information to make
the development meaningful.

For our purposes a crystal is an infinite' medium
having translational periodicity. It has three funda-
mental periods a, b, and c. All points related to each
other by a lattice vector y such that

9 = la + mb + nc

l, m, n integer (1b)

have identical properties as a medium for electron
motion.

The crucial variable in the discussion of band
theory is the wave vector k. For an understanding of
this variable it is desirable to introduce a class of
operators, called the lattice translation operators.
They are defined as

F(9) = exP [(iP 9)/h] (2)

where p is the momentum and 9 is given by (1).They
obey the comutation relation

~(9)f(p,x) = f(p,x+ 9)r(9) (3)

Since the assumed one-electron Hamiltonian X,
has the property

50, (p,x+ 9) = see(p, x),
we have the result that the operators F(y) are con-
stants of the motion. Since, in addition, they also
commute with each other, they are simultaneously

9 The formalism is developed for a finite Born-von Earman
volume in G. H. Wannier, E/ements of Solid State Theory
(Cambridge University Press, New York, 1959), pp. 172—201.
The presentation is simpler but has certain logical Qaws which
are removed by assuming the crystal infinite.
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diagonalizable. The numerical values are reducible
to the eigenvalues of the three generating elements
T(a), T(b), and T(c). These eigenvalues are on the
unit circle because the operators are unitary. Let the
three eigenvalues be e' '", e' *", and e' '". It is then
clear that X, p, and v are determined only up to an
additive integer. In physics it is the custom to repre-
sent the eigenvalues of (2) in terms of a wave vector
k, that is, to write

F(9)ga = exp (zk. p)gati, . (5)

It follows then from the preceding analysis that k
equals

k = 2zrI) aa + zzbs + vc*}, (6a)

where a*, b*, and c* are the basis vectors of the lat-
tice which is reciprocal to the lattice (I), or explicitly,

bXc b*= cXa aXb
abXc' abXc' abXc'

(6b)

Since all distinct values of ), p, , and v arise within
an interval of length unity, we see that all significant
values of k are reached if k varies within one primi-
tive cell of the reciprocal lattice expanded by 2zr

(first Brillouin zone). Outside this cell we reach k
values which are equivalent. In particular, all k
vectors lying on an (expanded) reciprocal lattice
with respect to each other are equivalent. Conse-
quently, any physically meaningful function of k
must be periodic in reciprocal space. This means, in

general, that it can be written as I'ourier series of
the form

f(k) = Z. v (9) exp (zk 9) (7)

where 9 is given by (1).
Bloch fzznctione are the eigenfunctions of a Hamil-

tonian having the symmetry property (4), which are
simultaneously eigenfunctions of the lattice transla-
tion operators (2). The idea of Blocb bands is still
largely intuitive even today. It has been proved in
one dimension for Schrodinger equations with
periodic potentials"" that if -one proceeds in the
direction of increasing energy one can label successive
bands of energies in such a way that each band con-
tains the entire spectrum of eigenvalues of k without
energy overlap between successive bands. Bands can
thus be labeled by successive integers which we call
the band index q. It is certain that the idea of a band
index cannot be used in the same simple way in

I H. A. Kramers, Physica 2, 488 (1985).
» E. C. Titchmarsh, Eigenfunction Expansions (Oxford

University Press, New York, 1958), Chap. 21.

three dimensions. One must, at least, allow the
property of degeneracy. By degeneracy we mean, in
solid state physics, a set of wave functions degenerate
in k as well as in energy. Such degeneracy can occur
on points, lines, or even occasionally surfaces of k
space. " Concurrently, one usually has to allow for
overlapping of the bands in energy. It appears that
with these restrictions the concept of a band index is
valid for actual solids. However, even if this is the
case, the Hamiltonian formalism cannot be signifi-
cantly implemented without taking the degeneracy
into account. This means the introduction of many
component wave functions and matrix operators
even in the classical limit. We shall not discuss this
subject further, but refer the reader to the litera-
ture. "Many aspects of this feature are actually not
yet thoroughly explored.

In the following, we shall introduce nondegeneracy
of the band under consideration as an additional
postulate which is rarely true, but which allows us to
bring out qualitatively and quantitatively certain
features of Bloch bands. If a band is nondegenerate,
and its band index q is a good quantum number,
both the energy eigenvalue and the Bloch function
may be expanded in Fourier series of the type (7).
We thus write for the energy W', (k)

W, (k) = Q, w, (9) exp (zk 9)
and for the wave functions b, (x;k)

b, (x;k) = Qp exp (zk 9)a, (x;6) . (9)

The functions a, (x;9) have the property that they
depend only on the difference of the two arguments.
This is seen in the following way. We may modify
the above equation to write

b, (x —9',k) = g, exp (zk 9)a, (x —9',9) .

An alternative way of writing this follows from the
definition of k:

b, (x —9';k) = Qp exp I.zk (9 —9')]a,(x;9),

or with a shift in the summation index:

b. (x —9 'k) = Zn exp (zk e)a.(x'9'+ 9 )

Identifying the coeKcients in the two series and
setting y equal to zero we finally get

a, (x —9',0) = a, (x;9') .

zz C. Herring, Phys. Rev. 52, 861 (1987).
zs J. M. Lutti»ger, Phys. Rev. 102, 1080 (1956).See also the

references 3, 5, and 6.
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We shall drop the superAuous argument 0 and write
(9) in the form

b, (x;k) = Q, exp (zk 9)a, (x —9) . (10)

diKculty about exchanging the order of integration.
If we impose the suggested normalization on 6,
namely,

lb, (x;k)l'dx = 1,The functions a, (x —y) are known as the Wannier
functzons associated with the band of index q. A.

single one of them, say, a, (x) contains within itself
the entire information about any one band. Compu-
tation of a Wannier function appears to be trouble-
some; consequently, they are primarily devices for
reasoning. They are also plagued by a certain in-
determinacy since the left-hand side can be multi-
plied with an arbitrary periodic function of k. Gib-
son" has shown that there is a "best" choice of the
a, 's giving the least mean square deviation to the
coordinate x in a, (x). The function a, (x), so deter-
mined, converges exponentially at large distances,
unless the band is degenerate with other bands. "

Since the c,'s are Fourier coefFicients of the 6,'s

they are given

then we finally get

la, (x) I'dx = (~/8s-') dk = 1 .

If the phase of b, (x;k) is chosen appropriately, the
probability density of a, (x) can be concentrated near
the origin. The probability density of a, (x —9) is
then concentrated near the lattice point y. The Wan-
nier functions thus offer a limited definition of
localization compatible with the existence of a band
index q. These notions are expressed in operator
language by the definition of the jtcttice vector operator
r which is defined through

by r a.(x —9) = ea. (x —9) (15)
From (10) it follows then that the result of operating

exp (—zk p)b, (x;k)dk. (11) with r on b, (x;k) isa, (x —6) =

b ( k)
. Bb, (x;k)Here co is the volume of the primitive cell of the

crystal. au** is a primitive cell co* of reciprocal space
whose linear dimensions are enlarged by 2~. One
can show with the help of (6b) that co and a&* are
reciprocals of each other.

Normalization of Bloch and Wannier functions is
somewhat a matter of taste, except for the physical
fact that the former are not, and the latter are
normalizable over all space. If the Bloch functions
are normalized to unity within a primitive cell then
the Wannier functions defined by (10) and (11) are
normalized to unity over all space. To prove this we
start out with the completeness relation for the
Fo

(16)

The proper operator relation connecting r and k
results from this by treating an arbitrary wave
function lt as a superposition of such Bloch functions.
In other words we write

lt (x) = Q n(tt;k)b, (x;k)dk.

The result of the operator r on f then takes the form

urier series (10) which reads From what was said previously, both n and 6, must
be periodic in k. We can therefore integrate by parts

x;k) I
dk = (8~'/~) g, la, (x —9) I' . (l2) with integrated out part 0. This yields

Now calculating the normalization integral of a, (x)
we proceed in two steps. First, we split the integral
into a sum over cells, then we integrate over one cell.
This yields with (12)

r i/r = g i k' b, (x;k)dk

r o.(q;k) = i. Bo.(q;k)

la, (x) I'dx = g, la, (x —9) I'dx r is thus a variable conjugate to Ak within the band
g.

dx
I b, (x;k) I'dk . The usefulness of (17) for a quantum mechanics

co c0 of solids is treated extensively elsewhere. What has

s both integra]. s are over a f,nite range, there is no been very seldom done" and what is worth Pointing

i4 J. B. Gibson, Bull. Am. Phys. Soc. 3, 146 (1958).
is W. Kohn, Phys. Rev. 115, 809 (1959).

~6 The point being made here was made previously in
reference 2. However, the inclusion of magnetic Gelds in the
formalism is new.
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out here is that we may use r and hk as conjugate
variables for a quasi-classical form of mechanics.
Such a passage to the limit is favored by the fact
that the number of quantum states in a band is very
large. Thus, even though the band as such must be
accepted as a quantum phenomenon, events involv-
ing electrons from one band only can often be formu-
lated in quasiclassical language.

Let us start with the simplest case, an electron
moving under no forces except those arising from
the crystalline medium. We have

se = W, (k) .

Hamilton's equations for (18) read

hdr/dt = BW/B, k

h dk/dt = 0. (2o)

These are well-known relationships.
If we add a potential V(x) to this Hamiltonian

we may hope that we can replace the argument x by
the lattice vector r."We are then led to consider a
Hamiltonian of the form

K = W, (k) + e V (r) . (21)

The expression (21) is the one which explains im-

purity and exciton states and their similarity to the
Rydberg series." In the quasi-classical approxima-
tion we get from it the equations of motion

to yield the time derivative of the quantity (24).
We get with (26)

or more simply

e BW, BA;
Ac BE; Br

dK e, BH, XH. (28)

Equation (28) is the magnetic part of the Lorentz
force law which is thus seen to apply to the variable
K. The results (21) and (25) can be combined to
yield a Hamiltonian when both electric and magnetic
fields are present. The Hamiltonian then reads

K = W, [k —(e/Ac)A(r, t)] + eV(r, t) . (29)

The result is that the Lorentz force law applies in
its entirety to the variable K. The Hamiltonian (29)
can again be justified rigorously for the case that
the fields are homogeneous and independent of time.

There is a second way of doing Hamiltonian me-
chanics which is implicit in the Eqs. (25) and (29).
We can shift our attention to motion in K-space and
treat (26) as an auxiliary equation telling us what is

going on in ordinary space. If the fields are homo-
geneous the Lorentz force equation contains, in fact,
no reference to x-space at all. As an example, we

may analyze (28), assuming a constant magnetic
field in the z direction. We find

hdr/dt = BW,/Bk (22)

h dk/dt = —e BV/Br . (23)

If a magnetic G.eld is present we make the substi-
tution

dK. eH BW, (K)
dt 5'c BE„

dZ„eII BW, (K)
Ac BE (30b)

K = k —(e/Ac)A(r),

and write the Hamiltonian in the form

(24)

K = W, (K). (25)

„dk e BW, BA;
dt Ac BE; Br

(27)

Equation (27) is inconvenient and is better modi6ed

~7 Simple qualitative estimates such as the one in reference
9, p. 180, as to when this step is valid give a criterion which is
too stringent. For it will be shown that the step can be justified
rigorously for a homogeneous electric Geld.

The correctness of this step is proved below for the
case of a homogeneous magnetic field. In the quasi-
classical approximation we derive from (24) and

(25) the equations of motion

dr BW,
dt BK dW, (K) BW, (K) dK.

dt BE. dt
BW, (K) dE„
BE„dt

(32)

The trajectories in K-space are therefore the inter-
sections of planes E, = const with surfaces of con-
stant energy TV, . These curves are either open, in
which case they are periodic in reciprocal space, or
they are closed. In either case, the motion in K-space

dK, /dt = 0.
Rather surprisingly, the Eqs. (30) are in themselves
a Hamiltonian system of equations in which W, (K)
plays the role of a Hamiltonian, and (V%II)'~'K.
and (h, 'c/eII)'~'Z„play the role of conjugate varia-
bles; according to (31), K, acts as a 6xed parameter
of no dynamical status. The trajectories lie in the
E.—K, plane. They have an energy integral, that is,
it follows from (30) that
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is periodic in time. Specializing for the latter case,
we may calculate the period T for traversing a closed
curve by the formula

dK. h'c dK
K. eH (BW/BK„)~,~

The integral is the area 2 enclosed in the K.—K„
plane by the chosen trajectory. Hence, we can write
for the period T

T = (A, 'c/eH)(BA/BW)~ .

The Hamiltonian structure of the Eqs. (80) with
respect to K. and K„ is no accident. The result holds
also in the quantum situation. It follows from (24)
that K obeys the commutation rule

attitude was taken in the original publications. ""
However, it seems useful here to indicate the physical
motivation since there might well be other problems
benefitting from that aspect. The physical motiva-
tion again involves the localized functions associated
with a band. Originally the purpose of these functions
was to permit the handling of localized problems.
Now it comes out that they are also instrumental in
solving the problem of homogeneous fields. The
reason is, of course, that it is relatively easier to
predict the effect of a field on a localized function.
If the postulate of no band coupling is introduced in
addition the structure of the equations comes out to
be entirely determined. We shall now proceed to
carry out this sort of derivation.

As a first step we must observe the effect of a
periodic Hamiltonian on its Wannier functions.
Suppose we have

Geo(p, x) = (1/2m)p' + V(x) (85)

with V(x) periodic. K, (p,x) then obeys relation (4)
and has Bloch functions as eigenfunctions.

K && K = ieH/hc . (84)
X,(p,x)b, (x;k) = W, (k)b, (x;k) . (86)

We find therefore again that (APc/eH)'~'K, and
(h'c/eH)'"Z„are conjugate variables. Furthermore,
since the Hamiltonian (25) depends only on K, we
deal with a problem in K-space only, also in the
quantum limit. The two formulations are equivalent
within the limitations of the Bohr-Sommerfeld
correspondence principle; the energy spacing of the
quantum levels equals h/T, with T given by (88).
This reduces to the cyclotron resonance formula in
the appropriate special case.

2. HOMOGENEOUS FIELDS; GENERAL THEORY

Having studied in the previous section the physi-
cal implications of band mechanics, we shall be con-
cerned in the following with its justification. The
theory of the field-free crystal is an extremely nar-
row base for a general theory of motion under forces,
and the experiment itself indicates a much greater
range for it than one would expect from such a start-
ing point. We shall see now that the formalism can
be rigorously justified for homogeneous fields, as
stated in the introduction. Such an extension broad-
ens the base in the sense that interband transitions
are now linked to inhomogeneities or sudden switches
of the field in time. This is as it should be on the
basis of physical intuition.

In the derivation of a result it is not necessary to
indicate the physical reasoning which led to it. This

Since (86) is based on symmetry only the exact form
(85) of the Hamiltoni. an is not essential here. In
view of the growing importance of many-particle
and quasi-particle formulations, it is important to
keep the more general case in mind.

We now substitute into (86) the Fourier expansions
(8) and (10) and collect terms. We get

geoa, (x —y) = g, w, (y —y')a, (x —y') . (87)

We see that in the Wannier representation Ko is
represented by a matrix without interband coupling
terms which is cyclic with respect to the lattice
vector y.

Let us take up the electric field as the next step
in difFiculty. We now add to the Hamiltonian BCO a
term —e E.x and set

K = 3C, (p,x) —eE.x. (88)

The new term destroys necessarily the cyclic property
(87) . The reason for it is that we have now a potential
which varies from point to point. As a consequence,
the result of operating with K on a a, (x —g) must
differ from the result of operating on a, (x) by the
amount —e E y. Thus, we may write

BCa, (x —p) = —eE ya, (x —y) + cyclic terms. (89)

~8 Gregory H. Wannier, Phys. Rev. 117, 432 {1960).» G. II. Wannier and D. R. Fredkin, Phys. Rev. 125, 1910
(1962).
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and hence

dk/dt = eE/5, (48)

k = ko + eEt/h, . (44)

It follows from this that it is possible to write down
solutions of the Schrodinger equation which diago-
nalize the lattice translation operators rather than
the Hamiltonian. Houston first wrote down such
solutions which were approximate in his case."The

ko W. V. Houston, Phys. Rev. S'7, 184 (1940).

The above statement is true for any localized set of
functions. Now if we add to this the postulate that
there are no interband terms in the cyclic part, we
are led to the completely specified equation

{K+eE 9}a,(x —9) = Q, te, (y —9')a, (x —9')

or with (88)

{geo(p,x) —eE (x —9) }a,(x —g)
= gp ie, (y —9')a, (x —y') . (40)

The Bloch form of Eq. (40) results through multipli-
cation with exp Qt 6 and the summation over {o.

We find with (8) and (10)

{BCO(p,x) —eE(x+ i 8/Bk) }b,(x;k) = W, (k)b, (x;k)

(41)
The sense iri which (41) is a correct equation will

not be discussed here in detail. We shall only observe
that the operator in curly brackets is a periodic
operator because x + i 8/Bk is a periodic operator.
A good justification for (41) is provided by proceed-
ing in powers of E in determining b, and W, . Such a
justification "to all power of E" is found elsewhere. "
A rigorous proof of (41) will be found below in See. 8.

Equations (40) and (41) already constitute a
partial solution of the Hamiltonian problem. Since
operation with K on a function of band index g leads
only to functions of the same index, any solution will

necessarily be a linear combination of functions of
equal index only. In the present case the problem is
even simpler, if we are willing to accept time-depend-
ent solutions. A set of such solutions can be worked
out with the help of the lattice translation operators
(2). It is true that these operators are no longer com-
muting with the Hamiltonian, but they are still
simultaneously diagonalizable and have a very simple
time dependence. From (8) and (88) we get

ih dT(g)/dt = —eE 9T(y) . (42)

This means that the time derivative of T(9) is
diagonal if T(9) is diagonal, and k can be treated as
a number varying in time. We get with (5)

exp W, (k)dk. (45)

where b, and W, are solutions of (41) and x is the
direction of the E field. The statement is verified
by direct substitution of (41) and (45) into the
equation of motion

ih, 8&/r)t = {Xo(p,x) —eE x}P.
The solution (46) may be Fourier analyzed to

yield the constant energy solutions associated with
one band. If E is in a direction of the reciprocal lat-
tice having period a*, then a Fourier series for (46)
will contain the frequencies

A +2ma*

co,.= ~, W, (k)dk. + neE/ha*.he*
OX

This yields the energy spectrum

1
kox+2~a*

8,.=, W, (1 )dk. + neE/a*. (46)
ox

Equation (46) is easily interpreted. The first term is
a mean value of the energy in the band, and the
second yields a uniformly spaced system of levels.
The spacing is the energy difference between states
which are shifted in space from one lattice plane to
the next (since 1/a* is the distance of separation of
the lattice planes perpendicular to E). This Stark
ladder system has a characteristic instability, in the
sense that the slightest change in the direction of E
completely alters the level system. The Houston
solutions do not have this instability and seem
therefore a more reliable basis for the study of
associated effects, such as interband tunneling. They
also have the II: conservation explicitly built in which
is an advantage.

We may close the electric case with the remark
that the derivation yields also the effective Hamil-
tonian (21). If we substitute the definition (16) into
(41) we get

X,(p,x) —eE x = W, (k) —eE r . (47)

The relation holds in the sense of an equivalence
within the band of index q. It permits the Hamil-
tonian treatment of motion within a band outlined
in Sec. 1.This treatment is also free of the instability
just discussed; the instability arises only upon
quantization.

The problem of motion in a magnetic field poses

same type of solution now becomes exact. It reads

P(x, () = k(,x;k. + ezra
't

a, +eat/I
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qualitatively the same problem, but its solution is proper matrix expansion. We are led to choose a
more dificult. One of the possible forms of the better ansatz by the observation that
Hamlltonlan ls

x X g + y X y' + y' X x
3C = 3C, (y ——', (e/c)H X x,x), (48)

where 3C, (p,x) satisfies (4) and may or may not have
the form (35). In writing down (48) we ha, ve chosen
the symmetric gauge and a fixed origin. The choice
ef gauge has no real importance here. The effects of a
change of gauge are well known and we could reason
with any other gauge if we wanted. The choice of an
origin is the dificult problem. It singles out a particu-
lar cell and shows that the result of operating with

(48) on localized functions can never be cyclic. In
Eq. (39) we could handle this simply by adding a
term. This would not work here because the non-
yeriodic part of BC is at least quadratic in x and in-
volves jp as well as x. The solution to this dilemma was
found by Peierls21 while studying the effect of mag-
netic fields on tight binding wave functions. He
showed that it is possible to And a phase factor for
tight binding functions which permits shifting of the
origin in the vector potential. His argument is ap-
plicable to any set of localized functions. It is ex-
yressed in the formula

{p ——,
' (e/c)H X x} exp [——,'i(e/hc)H x X g]

X a, (x —p) = exp [——,
' i(e/hc)H x X p]

X {p ——,
' (e/c)H X (x —g) }a (x —y) (49)

This means that if we take a set of identical localized
functions we get a very complicated result when

operating on them with the same Hamiltonian, but
if we give to each of the functions its Peierls phase
factor results will, in fact, be cyclic in p. We there-
fore choose our basis functions in the form

A, (x;g) = exp [—zz i(e/hc)H x X y]a, (x —y) (50)

and get

3CO[p —-', (e/c)H X x,x]A, (x;y)
= exp [—-,'i(e/hc)H. x X g]

X 3Co[p —
z (e/c)H X (x —g),x]a, (x —g) .

(»)
We could now postulate that the right-hand-side
operator in (51), together with the wave function
following, yields a cyclic matrix when expanded in
functions a, (x —p'). This assumption leads to a
dead end, because there is an exponent in front
dependent on x which prevents this from being a

~~ R. Peierls, Z. Physik 80, 763 (1983}.

is an expression depending only on the differences of
the three vectors x, p, y' and that multiplication of
a, (x —p') with

exp [-,' i(e/hc)H (x X p + g X p' + y' X x)]
will simultaneously remove the incorrect exponent
in (51) and bring in the correct one so that expansion
is with respect to the wave functions (50). The
exponent containing y )& y' is the price we pay for
this privilege. We therefore make the assumption
that

3C0[p ——,
' (e/c)H X (x —y),x]a, (x —y)

= g, exp [-', i(e/hc)H (x X y + g X y' + p' X x)]
X,(p —y') a, (x —y') (52)

is our basic set of uncoupled quasi-cyclic equations.
We can then substitute this into (51), make use of
(50), and come out with

3CO[p ——', (e/c)H X x,x]A, (x;y)
= g, exp [-', z(e/&c)H g X y']zc, (y —g')A, (x;p').

(53)

Equations (52) and (53) contain the final answer
in embryonic form. From (52) one can work back
to a Bloch-type equation de6ning the band parame-
ters. (53), on the other hand, is a matrix expansion
of the operator 3C when acting on a localized wave
function A, (x;y); the expansion is free of interband
terms. It can be made to yield the traditional effec-
tive Hamiltonian. We shall take up these two tasks
in sequence.

To get the Bloch-type equation inherent in (52)
we multiply with exp[ik y] and sum over p. We get

g„exp [ik y]3Cop[ ——,'(e/c)H X (x —p),x]

X a, (x —y) = go, o'exp [zk g]

X exp [-', i(e/Ac)H (x X p + y X g' + p' X «)]

X zc, (y —g')a, (x —y') .

We now replace p on the right by p + y' and adopt
the definition (10) on both sides. We find

3CO[y —-', (e/c)H X (x + i 8/Bk), x]b, (x;k)
= g~ exp [ik g]zc, (y) {exp [——,

' i(e/Ac)
~ H X g x]b, (x;k + —,

' (e/hc)H X y) } . (54)

The equation defines a Bloch function because the
nonperiodic x on the left now occurs in the periodic
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combination x+ i 8/Bk. On the right the Bloch
functions have a slightly shifted k vector, which is,
however, restored by a special exponential placed in
front of it. It is somewhat easier to envisage realizing
the solution by power series expansion in H if we
first use the conventional splitup

b, (x;k) = exp [z'k x]u, (x;k),
which yields

(55)

Qs exp [zk 9]A, (x;9) = B,(x;k),

where we define

(57)

B,(x;k) = b, [x;k ——', (e/hc)H X x] . (58)

These rather curious functions having the argument
x in two diferent places were first introduced by
Harper. "Their purpose is the same as that of the
Houston functions (45), namely, to find a distortion
of Bloch functions suitable for handling homogeneous
fields. In the electric case the success is more direct.
In the present case, combination of (58), (57), and
(58) yields

llco[p —-', (e/c)H X x,x]B,(x;k)
= Q, exp [ik 9]w, (9)B,[x;k+ -,'(e/hc)H X 9] .

(59)

In other words, we have a matrix representation of
K in the 8,'s which is free of interband elements, but
not a direct solution of the time dependent Schrod-
inger equation as in the previous case. Thus, there
remains more work to be done, and (59) is not a
terminal result.

Closer examination of (59) shows that the matrix
equation is of just such a structure as to produce the

zz P. J. Harper, Proc. Phys. Soc. (London) A68, 879 (1955).

K&[p + hk —-', z(e/c)H X 8/Bk, x]u, (x;k)
= gs exp [zk 9]w, (9)u, (x;k + —', (e/hc)H X 9) .

(56)

Equation (56) is the equation for the periodic part
of a Bloch function in the limit H = 0. Thereupon,
power series expansion is possible in both positions
containing H, yielding power series results for
u, (x;k) and w, (9). The corrections remain periodic
in x. Thus, the Bloch function exists, at least as a
power series in H.

To proceed in the other direction toward an
effective band Hamiltonian, we start from (58),
multiply with exp[zk 9] and sum over 9. We observe
from (50) and (10) that

Hamiltonian that Onsager" postulated for the mag-
netic problem. To obtain this we write an eigenfunc-
tion of (48) in the form of an integral over the B,'s
in the first Brillouin zone, taking advantage of the
fact that only one band index is involved:

p(x) = I f(lr)S, (x;k,)dk . (60)

Thereupon we ask for the equation obeyed by the
amplitude function f,(k). Substitution of (59) into
(60) yields

3C lt (x) = f, (k) g exp [zk. y]w, ()o)

X B,[x;k + —', (e/hc)H X )a]dk,

or with a shift in the integration variable k

5(' P(x) = g f,[k ——,
' (e/hc)H X 9]

s3 L. Onsager, Phil. Mag. 43, 1006 (1952).

X exp [zk 9]w, (9)B,(x;k)dk . (61)
The f s will define an eigenfunction of 5('. if (61) diA'ers

from (60) by an energy multiplier 8 only. Since the
8's are linearly independent, at least for small
enough H, we can factor out their coe%cients in the
resultant expression and write

p, exp [zk 9]w, (9)f[k —(e/2hc)H X 9] = 6 f(k) .
(62)

The displaced argument of f is advantageously
given the form

f[k —(e/2hc)H X )o]

= exp [—(e/2hc)H X 9 (8/Bk)]&(k),

so that (62) takes the form

Qp w, (9) exp [zk )a]

X exp [—(e/2hc)H X 9 (&/&k)] f(k) = 6 f(k) .

The two exponentials combine into a single one,
because the derivative is always taken with respect
to a component of k at right angles to y. The eigen-
value equation therefore takes the form

W, [k ——,
' i(e/hc)HX (rl/Bk)] f(k) = 6 f(k), (68)

where W, (k) is given by (8). This is exactly the
result expressed through the equation pair (25) and.

(84) in Sec. 1. From this the Eqs. (80) will follow in
the classical limit. It must be emphasized, of course,
that our W, (K) is not the band-energy function for
the field-free band, but a modified band-energy
function constructed with the help of the auxiliary
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equation (54) or (56). Another point which needs
emphasis here is that the basis functions B,(x;k)
differ slightly from Bloch functions. Equation (58)
a,ssociates a Bloch function with them, but they
themselves have a different structure. The band of
index q is therefore not quite a Bloch band but a
slightly modified manifold.

Determination of the energy levels from (63) or
from the equivalent operator problem (25) and (34) is
not as simple as in the corresponding case for the
electric field. The basic simplicity of the electric field
case is its isochronism or, in quantum language, the
even spacing of its energy states. This is evident from
Eq. (46). This same feature is also the one which
allows the more exact treatment of the electric field

case given in Sec. 3. Magnetic levels show even spac-
ing under a variety of circumstances, but not as a
universal rule. Completion of the calculation thus
requires real algebraic study, and will not be dis-

cussed here. In many cases the quasi-classical for-
mula (33), together with the correspondence princi-

ple, allows at least the determination of the spacing
of the magnetic levels.

The derivation carried out here can be extended
without difhculty to the case of simultaneous homo-

geneous electric and magnetic fields. The calculation
is routine, and gives routine answers. Iiiterested
readers can find the derivation elsewhere. "

3. THE ELECTRIC FIELD; EXACT THEQRY

The results of Sec. 2 form a rounded and beautiful
general theory of electron behavior. There is, how-

ever, some question concerning its mathematical
validity. Until it was proved that Wannier functions
of nondegenerate bands fall off exponentially at
large distance, " the doubt affected the theory as a
whole. Since that time, the questions have become
Inore specific. In particular, the fundamental equa-
tions of Sec. 2 are partial differential equations in
more than three variables, and the method of solu-

tion assumes that the dependence of the solution on

k has a very special form. It seems likely that the
general solution of these equations goes beyond this
form. There is a way out of this difhculty. If one
looks for solutions of (41) and (56) which proceed
in powers of the field then the zero-order equation is
the Bloch equation for field-free electrons. The extra
derivative and difference operators occur then in

perturbation, and it is relatively easy to show that
the solutions so obtained have the right structure. "
Unfortunately, a proof based on a power-series ex-

24 See reference 19, Sec. 4.

pansion is only asymptotically valid for infinitesi-

mally small expansion parameter. Thus, the work
of Sec. 2 leaves open the possibility that a remainder
term with entirely different properties might exist,
and that the theory might only be asymptotic. We
shall disprove this possibility now by giving a rigor-
ous proof of one key element in the theory: the exist-
ence of closed B2oeh banCs in c uniform electric field.

Let us assume the Hamiltonian (38) and consider
its effect on a wave function which has the value

P(x,0) at the time t = 0. We then know that

P(x, t) = exp [—(i/5)Xt]P(x, 0) (64)

is a, solution of the Schrodinger equation at time t

Now if g (x,0), instead of being arbitrary, happens to
be a Bloch function of wave vector ko then it follows
from (44) that P(x, t) is a Bloch function of wave
vector ko + (e/h, )Et. If now the electric field is in a
reciprocal lattice direction and if the period of the
reciprocal lattice in that direction is a~, then the
original wave vector will have been restored after
a time

exp [—iKT/A] = exp [—(i/A)TAO(p, x) —2~ia* x] .

(66)

This operator has the lattice period in x because the
first term on the right has the period as stated in (4).
The second term, on the other hand, is just such as to
impart this property to any exponent of which it is
a part. It follows that we can define a set of Bloch
functions as eigenfunctions of the operator (66),
writing

exp [—ix,T/5] b, (x;k) = e
' ' b, (x;k) . (67)

If we now start out at time t = 0 with one of those
wave functions b, (x;k) then the wave function

P(x, t) = exp [—iKt/A] b, (x;ko)

will vary periodically in time because it returns to
its original form (apart from a phase factor) after a
time I'. Thus, the bands generated by the operator
Eq. (66) are closed in time.

The question arises whether the wave functions

6, defined here are identical with the solutions of
(41). This can be answered in the affirmative, be-

T = Ao,*/eE.

It follows that the unitary operator exp[ —AT/h]
preserves the reduced wave vector, and its eigen-
functions must be Bloch functions. This conclusion
can be verified directly on the Ha, miltonian (38).
We find with (65)
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cause (41) follows from (66) and (67). To do this
we must complete the latter definition by specifying
the phase of the Bloch functions. I et us write it as
follows:

}Be, —eE (x+ i B/Bk) }b,(x;k)
= eE (Bx/Bk)b, (x;k) .

This is Eq. (41) with the identification

(69)

W, (k)dk. .1
eE

Equation (70) is the Houston determination of the
phase factor, as one sees by comparing (45), (68), and

(70). Equations (64) and (41) are therefore equiva-
lent. It should be emphasized at this point that the
identification establishes only the validity of the
five theorems of reference 18. It does not prove the
validity of the power-series expansion itself, nor does
it establish the existence of an effective Hamiltonian
of the type (47).

4. CONCLUSIONS

In Sec. 1 of this paper there is sketched a Hamil-
tonian formalism for the study of the motion of
electrons in solids. The formalism is closely associ-
ated with the energy bands within the solid. In Sec.
2 the formalism is proved under the assumption that
arbitrary uniform static fmlds are present. The proof
is an asymptotic proof only, even though results are
in closed form. It is very fortunate that we have in
Sec. 3 a rigorous proof of one central piece of the
general theory. The proof lays to rest the notion that
we are dealing only with an asymptotic theory which
has no bearing on practical questions. The theory
must have its limits of validity, but these limits have
yet to be determined. One might hopefully try to
assume that the entire treatment of Sec. 2 is always
valid at finite fields. This is also incorrect. For it is
shown in reference 18 that the proof of Sec. 3 is

b, (x;ko + sEt/5) = exp tix(ko + eEt/h, )]
&& exp [—iBCt/5] b, (x;ko) . (68)

Here x(ko + eEt/b) is a phase which is largely unde-
termined but which is known to take on the value 0
if t = 0 and the value p, when t = T. I et us dif-
ferentiate this relation with respect to time, using (44)

eE [Bb,(x;k)/Bk]
= ieE [Bx(k)/Bk] b, (x;k) —iSeb, (x;k)

or with (38)

applicable to free electrons. For such electrons the
effective Hamiltonian (47) cannot be constructed
because the energy of an electron increases indefi-
nitely in time. The same situation must prevail if the
periodic field is weak compared with the uniform
field. Nothing can be said at this time about the case
of a weak Geld. If the theory of the atomic Stark
effect is any clue then all power series results must
be expected to have only asymptotic validity.

In view of the symmetry between electric and
magnetic results, it seems highly likely that closed
bands exist for Gnite magnetic fields as well, even
though we have today only an asymptotic proof for
it. The magnetic field does not have the intrinsic
divergences which arise in the electric field case so
that it may even be true that the effective Hamil-
tonian formalism (63) holds for finite fields. The
opposite possibility is, however, also open.

A case worth studying is the case of time de-
pendent, but uniform fields. The case is intermediate
between the case treated here and the case of non-
uniform fields. The question one would like to see
answered there is whether the modified bands are
adiabatically connected to the bands whose "label"
they have at zero Geld. Evidence on this point is
convicting. The author has a nontrivial two-band
model for which this is the case. He also has another
one for which it is not, but that one has discontinui-
ties in the energy-band function. The problem is
associated with degeneracies in the angle p, between
different bands. It follows from (67) and (70) that

Jso ~+2~a*

W, (k)dk. .

The form of this angle yields an infinity of degenera-
cies between any two bands as the Geld becomes
small. The evidence from two-band calculations is
that these degeneracies have no practical signiGcance,
but that we may not have true analytic continua-
tlon.

If the field varies rapidly during a certain time
interval then interband transitions must certainly
occur. For it follows from this paper that the Bloch
functions are field dependent. If the field changes too
fast this dependence cannot be realized in time, and
transitions take place. This type of transition is
easily amenable to calculation. %hat this paper
brings out is that in order to have such transitions
the field must bs changing in time or space. An un-

changing field does not produce interband transitions.


