
STABILITY OF MOLKCULKS

for this model neutral structures extend to infmity.
But in this case we can consider an atomic ion with
a low value of Z and exceedingly low difference be-
tween positive and negative charges. Such a structure
will have a high polarizability. If we now bring up a

bare nucleus of very great charge Z' the effect of
polarizability will again outweigh the effect of the
electrostatic repulsion. Indeed, the former is propor-
tional to (Z')', whereas the latter increases only as
the first power of Z'.
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1. INTRODUCTION

A. Scoye of the Present Paper

&OR a third of a century the concept of exchange
coupling of two or more non-singlet atoms has

occupied a prominent place in theories of molecular
binding and of magnetism. This concept, born in the
Heitler-London theory' of the chemical bond, was

applied by Heisenberg' in his celebrated theory of
ferromagnetism, and soon received a very appealing
formulation in terms of spin vectors at the hands of
Van Vleck' and M@ller. ' Although the "spin Hamil-
tonian" resulting from this formulation has continued
to be used in much —even most —theoretical work
on magnetism, grave doubts as to its validity have
been expressed, "and various papers have attempted
to disprove it, justify it, or test it. The object of the
present paper is to clarify the status of the spin
Hamiltonian and of the Heitler-London method of
calculating the constants entering into it for the
limiting case to which the original derivations were
intended to apply, namely, the case of well-separated
atoms. We shall give a rigorous justi6cation of the
concept of a spin Hamiltonian, a physical picture of
the virtues and limitations of the Heitler-London

~ W. Heitler and F. London, Z. Physik 44, 455 (1927).
s W. Heisenberg, Z. Physik 49, 819 (1928).
3 J. H. Van Vleck, I'heory of Electric and Magnetic Sus-

ceptibilities (Clarendon Press, Oxford, 1982).
s C. Meller, Z. Physik 82, 559 (1988).
s S. C. Slater, Revs. Modern Phys. 25, 199 (1958).
s G. Heber, Fortschr. Physik 1, 707 (1954).
~ For a general review of this and other topics in the theory

of direct exchange see C. Herring, "Theory of Direct Ex-
change" in Magnetism edited by G. Rado and H. Suhl (A.ca-
demic Press Inc. , New York, to be published).

approach, and a prescription, which may even be
practical in simple cases, for exact a priori calculation
of the limiting exchange coupling.

It should be emphasized at once, however, that
the arguments to be presented here are of more value
to the world of pure thought than to the world of
magnetic phenomena. For they are based, as we
have implied, on the assumption that the wave
functions of neighboring atoms overlap only slightly,
and this is almost never true in molecules and solids.
It has, of course, sometimes been supposed that the
coupling of the atomic spins of unfilled M or 4f shells
can be calculated by applying the Heitler-London
method to the wave functions of these shells alone,
ignoring the valence electrons responsible for chemi-
cal or metallic binding. If this were so, the assump-
tion of weak overlap of neighbors would indeed be
justified in many, though not all, cases. But in recent
years it has become clear that the valence electrons
just mentioned usually play a vital role in the cou-
pling of the spins of neighboring atoms, via the
indirect exchange' and superexchange' mechanisms.
In metals, moreover, it may often happen that even
the electrons responsible for ferro- or antiferro-
magnetism must be treated as itinerant, rather than
tightly bound to their atoms. "

8 See the review by T. Easuya in Magnetism edited by G.
Rado and H. Suhl (Academic Press Inc. , New York, to be
published).

See the review by P. W. Anderson, "Exchange in Insula-
tors: Superexchange, Direct Exchange and Double Exchange, "
in 3IIagnetism edited by G. Rado and H. Suhl (Academic
Press Inc. , New York, to be published).

& See the review by C. Herring, "Exchange Interactions
Among Itinerant Electrons, "in Magnetism edited by O. Rado
and H. Suhl {Academic Press Inc. , New York, to be published).
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B. Formulation of the Problem

Consider a system of X atoms, without orbital
degeneracy, and possessing spins 8&, 8&. At in6-
nite separations, the ground state of this system has
degeneracy

As the interatomic separations 8;; are decreased, this
degeneracy will split up, but if the 8;, are not too
small, there will still be a group of v lowest levels,
well separated (if X is not too large) from more
highly excited states. If, as we shall assume, there
are no spin-orbit terms in the Hamiltonian, these v

states can be chosen to be eigenstates of the total
spin variables 8', 8,. Moreover, each such state can
be placed in a one-to-one correspondence —not quite
free of arbitrariness, of course with a state of the
system of completely separated atoms having the
same 8, S„and having a similar distribution of spin
density on the various atoms. In other words, the
subspace spanned by the v lowest eigenstates is
isomorphic to the spin space of X atomic spins. The
first of the statements whose validity we wish to
examine is that the Hamiltonian in the former sub-
space is equivalent to a constant plus a, certain "spin
Hamiltonian"

(2)

in the spin space, to within an error which becomes
negligible in comparison with the range of eigen-
values of (2) as the 8;; —+ ~.

It is well known' that (2) can be deriv. .d on the
basis of the Heitler-London approximation. In this
approximation one assumes that, in the subspace
we are considering, a complete (though not ortho-
normal) basis is provided by the antisymmetrized
products of single-atom functions, usually though not
necessarily assumed to be eigenfunctions of the
corresponding one-atom problems. In other words,
one tries to make eigenfunctions out of linear combi-
nations of the v functions

+» —= +»„...»„——A[&», (r„r„„s„s., )

X f», (r„,+~, r.„„„s„,~~, s„,+„,) ], (3)

+ 1 for even, —1 for odd permutations. If the
atomic wave functions have the property

P»,(r„.r„,.) ~ e "'as r; —& ~,
then it is not hard to show that the matrix element
of the Hamiltonian H between any pair of states of
the form (3) is dominated, at large interatomic
distances, by terms of the form

(II f., I@I II 0', ) o (II W, IIII~' II 0',),
(6)

where I';; is a permutation of a single pair of electrons
which appear in Qf»', on two atoms i,j, which are
close neighbors. The second type of term in (6) is
of order

ij pair term ~max [e
' ' ",e ' ' "],

while contributions to matrix elements of H involving
higher-order permutations turn out to contain nega-
tive exponentials of three or more nB terms. %ith
neglect of terms of the latter order, the Heitler-
London approximation leads to a secular equation
equivalent to that obtained from the spin Hamil-
tonian (2), with the coeKeients J;, given explicitly
as two-atom exchange integrals.

Unfortunately, it is far from obvious that the
Heitler-London approximation should become as-
ymptotically correct at large separations; as we shall
see below, it is, in fact, not asymptotically correct.
It is true, of course, that functions of the form (3)
approach the exact eigenfunctions as the separations
are increased, but it is not obvious that the subspace
spanned by them approaches the correct one rapidly
enough for the fractional error in the energy splittings
computed from them to go to zero. Consider the
hydrogen molecule, for example. One might use as a
basis the Heitler-London set (3) formed from the
free-atom eigenfunctions p.n, q.P, pbbs (p»P around
the two nuclei a, 6, where q., pf, are coordinate wave
functions and n, P are spin functions. This choice
leads, as is well known, to a negative J, i.e., a ground-
state singlet lying below the triplet (at reasonable
values of R.», see below). Alternatively, one might
construct a set of the form (3) from functions whose
coordinate parts p., p& are related to q., q» by

where the subscripts k; identify different spin states
of atom i, and where

A = (X!) ' Qz "s~I'

is the antisymmetrizer, I' being a permutation
applied both to coordinates and spins, and 8I being

pa = @pa

p(p b (8)

(Po,Pb), chosen to make the
set pa, p& orthonormal. Since q, ~q., q» —+q» as
R.b

—+ ~, this choice might seem as plausible, super-
ficially, as the 6rst. But substitution of the wave
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functions (8) in the Heitler-'London expression for
the exchange constant J, which to the lowest order
(e ' s ~) in exponentials is

J —sdrldr2B+= 2 3 3 1 1
ab ~12

&& l~ (1)v»(2)l',

~2a
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Naturforseh. 16a, 484 (1961).
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Physik (Springer-Verlag, Berlin, 1931), 2nd ed. , Chap. VI,
No. 6.

I4 K. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962).

always gives J ) 0, i.e., triplet below singlet, since
the orthogonality makes the negative terms vanish.
Why should the one choice be more plausible than
the other's May not the true singlet-triplet splitting
differ from either of these computed values?

Closer inspection of the Heitler-London calcula-
tion for the hydrogen molecule shows that at very
large interatomic separations (B.s 50alr) it be-
comes physically unreasonable and its predictions
impossible. '" For at large B.s, the positive 1/r»
term in (9) becomes dominant, " being larger than
the other terms by a factor containing ln B.t,. This
term represents the self-energy of the exchange
charge distribution q.qb, and as B.b ~ ~ this charge
distribution approaches a cylindrical distribution
about the internuclear line, the radius of the cylinder
being of order (B.sarr)'~'; the logarithm arises from
the potential of this cylinder. Thus, at large B.t„J
becomes positive (triplet below singlet). But this is
impossible, by virtue of the theorem that the lowest
eigenfunction of a Sturm-Lionville equation must be
nodeless, " a theorem cited in this connection by
Heisenberg' himself, and recently extended by Lieb
and Mattis. " What is wrong, clearly, is that the
Heitler-London approximation greatly overestimates
(1/r»)., The true eigenfunctions of the hydrogen
molecule will contain correlations in the positions
of the two electrons, so that they avoid each other.

These considerations show that we must reject the
Heitler-London approximation as lacking even an
asymptotic validity at large separations. While one
intuitively expects that a spin Hamiltonian of the
form (2) should be asymptotically a valid approxima-
tion, the proof has yet to be given. It also remains to
be shown that the J;; for an X-atom problem can be
computed as a two-atom problem, i.e., that exchange
forces are pairwise additive, and if so, how an explicit
a priori calculation can be carried out. We shall ad-
dress ourselves to these questions, and to keep the
discussion tractable, we shall consider only quantities

of the dominant order as the interatomic spacings
become infmite, i.e., (as we shall see) quantities of
the order of (7). All quantities with negative ex-
ponentials of four or more nB terms will be discarded.
This means that we shall not enter into the complex
of questions which arise when the number X of atoms
is allowed to become very large as in a crystal, so
that quantities of the form Ãe ' cease to be « l.
These questions, mathematically quite dificult, but
not provoking one's physical intuition to any grave
doubts, have been extensively discussed elsewhere. '"
C. Some Unsatisfactory Approaches to the Problem

It is worthwhile to mention here some of the
difficulties, and even misleading conclusions, which
one can encounter in pursuing what at first sight
seem to be appealing ways of improving upon the
Heitler-London approximation. A.s these are treated
in some detail elsewhere, ' we shall discuss them only
very brieQy.

The several approaches we shall mention are all
based on the idea of configuration interaction, i.e.,
on solving a secular equation in a subspace contain-
ing not only the Heitler-London basis (8), but also a
finite or infinite set of other functions. One might,
for example, augment the set (8) by functions con-
structed in a similar manner from P&,. functions per-
taining to excited atomic states. However, it turns
out that if only a finite set of such excited functions
is used, the splittings between the various spin states
will contain factors of the form (7) with n,*, n,*, the
quantities describing the radial decay of wave func-
tions of excited states. At large 8;; such terms will
dominate over terms of the form (7). It is physically
clear, however, that the splittings must be of the
order (7). For the physical meaning of an exchange
constant J;; is that if we were to make a particular
assignment of electrons 1, n; to atom i, n;+ 1,

. n; + n, to atom j, then we should have to wait
a time of order h/J;; before finding an appreciable
probability to have one of the first n; electrons on
atom j and one of the second n, on atom i. This ex-
change process is a tunneling through a region of
configuration space in which the potential energy
exceeds the total energy by the ground-state ioniza-
tion energy of one or both of the atoms. It must
therefore contain the factor (7), with n; and n;
determined from the respective ground-state ioniza-
tion energies.

The difficulty just mentioned can be avoided by
including in the configuration-interaction calculation

~s T. Arai, Phys. Rev. 126, 471 (1962).
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all the possible excited states of the atoms, including
the continuous spectrum. Terms from the latter,
having imaginary u*'s, can, by proper combination
of phases, cancel the undesirable terms with small
real n*'s. But formulations which have been at-
tempted" in terms of infinite summations over ex-
cited states turn out to involve logical as well as
practical diKculties, ' and have not yet led to a
satisfactory derivation of (2).

The approach"-" which has received most atten-
tion in recent years is one which is admittedly only
a rough approximation, but which at least avoids
convict with (7). This is to augment the Heitler-
London basis (3) by wave functions representing
ionized states, the electrons on the negative ions
being placed in orbits with the same o.'s as the neutral
atoms. While this approach gives some insight into
the way in which the Heitler-London approximation
gives way to the molecular-orbital approximation at
small interatomic separations, it can be shown' that
at large separations it gives results which differ
negligibly from those of the Heitler-London method;
thus it does not remedy the defects of the latter with
which we are concerned. Similar remarks apply to
other methods based on a limited configuration in-
teraction. "

2. A MODIFIED HEITLER-LONDON METHOD

A. Existence of an Analogous Method which Is Exact

As we have just demonstrated, the Heitler-
London method with its use of products of isolated-
atom eigenfunctions is not even asymptotically exact
at large interatomic separations. However, it is not
hard to see that there must be a closely analogous
method which is exact. We know that at large separa-
tions the subspace spanned by the exact eigenfunc-
tions C'.(s = 1 to r) of the exchange degeneracy
problem must nearly coincide with the subspace
spanned by the Heitler-London functions $1, of (3).
We could make a similar statement, in fact, relating
the subspace spanned by all the permutations of the
wave function in square brackets in (3) to the sub-
space spanned by the vn!/ii n;!corresponding eigen-
functions of the Hamiltonian in the full (not just the
antisymmetric) coordinate-spin space. There must,
therefore be some linear combination I, = P C, 4, of

&s R. Eisensehitz and F. London, Z. Physik 60, 491 (1930).
~r J. C. Slater, Phys. Rev. 52, 198 (1937).
&s J. C. Slater, J. Chem. Phys. 19, 220 (1951).
~ D. I. Paul, Phys. Rev. 118, 92 (1960).
zs L. F. Mattheiss, Phys. Rev. 123, 1219 (1961).
z~ L. F. Mattheiss, Phys. Rev. 123, 1209 (1961).
~2 R. E. Nesbet, Ann. Phys. (N. Y.) 4, 87 (1958).

true eigenfunctions which closely approximates the
particular function g P~,. occurring in square brackets
in (3). Since at large separations any permutation P
of g fa,.which assigns the electrons differently to the
various atoms is almost orthogonal to g P... P C»

must be almost orthogonal to C». Therefore the func-
tions C» have two important properties:

(i) Like g P~, , C ~ has a strong degree of localization
of electrons 1 to n& on atom 1, n& + 1 to n, + n,
on atom 2, etc.
(ii) The exact eigenfunctions can be constructed
from the C» and their permutations.
Of course, finding functions CI. of the sort just

described is no easier than ending the eigenfunctions
C, themselves. But the fact that such functions exist
spurs us to search for a better approximation to them
than the Heitler-London products. This improved
approximation will have to take account of the
mutual polarization of different atoms, since the van
der Waals term which this polarization introduces
into the energy is large compared with the exchange
splittings we are trying to calculate. This suggests
that we should try to construct functions which will

obey the complete wave equation exactly in that part
of configuration space which makes the main contri-
bution to the van der Waals energy, i.e., the region
where each electron is fairly definitely associated with
"its own" atom, but which are so defined as to be
small outside of this region. We shall define such wave
functions x& presently, and show that for large
separations they adequately approximate the 4» in
terms of which the exact eigenfunctions can be ex-
pressed. It may be objected that finding an exact
solution of the wave equation, even in a limited
region of configuration space, is of a diKculty com-
parable with that of solving the entire problem and
getting the 4, directly. But this is not true: Whereas
grave difhculties beset the direct calculation of the
eigenstates of the many-atom system from the free-
atorn eigenfunctions by perturbation methods, the
difference between the wave equation obeyed by a
product of free-atom functions and that obeyed by
the x~, which we shall define below, is of a sort which
can readily be treated as a small perturbation.

B. Illustration of the Method for H2+

Although our ultimate objective is to carry through
the program just outlined for the general problem of
spin exchange among X many-electron atoms, the
essential features of the method can be seen by
considering an analogous problem involving only
one electron, capable of exchanging positions be-
tween two potential minima. The H2+ molecule is a
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case of this type, for which the exact Z, and Z.
energies are known. "These energies can be calculated
approximately from the assumption that the corre-
sponding wave functions are, respectively, the nor-
malized sum and difference of the 1a free-atom wave
functions centered on nuclei c and b. '4 The resulting
energy difference E(Z„) —E(Z,) is, for large separa-
tions 8, less than the correct value in the ratio 1:1.1.
This means that even for It'. —+ ~ the free-atom
eigenfunction P.(r) is not an adequate approximation
to the function 4. defined in Sec. 2A above, i.e., to

C,(r)—:2 '
lC', (r) + C'„(r)], (10)

where C„C„are the exact eigenfunctions of Z„Z„
states.

Figure 1 shows, as the full curve, the potential
acting on the electron along the internuclear line.
The dashed curve is the one-atom potential due to
nucleus c alone. Let an artificial potential V' be con-
structed as shown by the beaded curve in Fig. l.
This V' is chosen to coincide with the two-proton
potential everywhere on the c side of some surface
Z& (e.g. , a plane as shown in Fig. 2) lying well to the
right of the median plane M but still far enough
away from nucleus b for the potential on Z& to be
small (compared to a Rydberg unit). On the b side
of Z&, we define V' to be zero (actually, it does not
matter how V' is defined here, as long as it has no
deep potential trough). Let x.(r) be defined as the
ground-state eigenfunction in the potential V'. It
clearly differs very little from P.(r), and we shall

Fre. 2. The H2+ ion, showing
nuclei c and b, midplane 3f,
and plane Zz beyond which
the potential V' is assumed
to vanish.

t

)Xp

I~El & (+I (H —E)'I+)!
I
~E--

I (»)
where E is the mean energy of the state + and
AE;. is the energy interval from E to the nearest
neighboring eigenvalue of the same symmetry as 4'.
Let us apply (ll) to the functions

where I'~ = 2-'" is a normalizing factor. The
numerator of (11) can be written

d'rl(H —E)(x. ~ x )I',

now show that it differs from P.(r) in just such a way
as to be a good approximation to the C.(r) defined

by (10). We do this by showing that the sum and
diGerence of X. and its mirror image x& in the plane
M have energies which as 8 —+ ~ adequately ap-
proach the E(Z,) and E(Z„) which we seek.

For the proof we use the well-known theorem""
that the error bE in the energy of a normalized
approximation + to any eigenstate obeys

a
I

I

t'lUC LEU S sue LE:us b
Fxe. 1. Potentials for the H+ ion, as functions of distance
along the internuclear line. Full curve: true potential. Dashed
curve: one-atom potential. Beaded curve: potential V'.

23 D. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans.
Roy. Soc. London 246, 215 (1953).

24H. Bethe, "Quantenmechanik der Ein-und Zwei-Elek-
tronenprobleme, " in Handbuch der Physik (Springer-Verlag,
Berlin, 1933), 24/2, No. 58.

and if E were the eigenvalue E~ of x. in the potential
V', (H —E„) x. would vanish on the a side of the
surface Z&, and (H —E„) x~ would vanish on the
6 side of the mirror-image surface. Since insertion of
any number other than E into (11) only increases
the value of the right-hand side, we have for the
difference bE+ between the mean energy of either of
the functions (12) and the corresponding exact
eigenvalue

d'rl (H —Ex)x.l j &E-- (1&)
b side Z~

Now since V' differs only slightly from a free-atom
potential, its eigenfunction x. and the corresponding
energy E„will differ only slightly from those of a
hydrogenic 18 function. In particular, when R is
large, V' —E will be positive and of the order of a

s~ G. Temple, Proc. Roy. Soc. (London) A119, 276 (1928);
W. Eohn, Phys. Rev. '7l, 902 (1947).IT. Kate, J. Phys. Soc. Japan 4, 384 (1949).



CON YERS HERRING

Rydberg unit not only on the b side of the surface
Z~ but also over most of the region between nucleus
a and Z~. Therefore, on the 6 side of Zp,

IX.I —exp [[—(1 + $)R —AZ]/2'], (15)

where AZ & 0 measures distance to the right of
Zrandwhere0 & $ & 1, PR/2measuringhowfarthe
closest point of Z~ lies to the right of the midpoint.
Thus, the right of (14) must contain a factor
exp [—(1+ g) R/air] times quantities which are
finite and at most algebraic in R (actually they in-
volve R'), so

I5E~I = 0{exp [ —(1+ $)R/urr]} . (16)

Since the splitting E(Z„) —E(Z,) is of order
Re s~ rr, (16) shows that our errors 5E~ are asymp-
totically (( the splitting.

C. Explicit Calculation for H2+

The explicit expression for the energy splitting in
terms of x. can be given in various forms. Particu-
larly convenient for our purposes is a formulation
in terms of a surface integral over the median plane,
the plane M of Fig. 2. This formulation is especially
appealing because it reminds us of the physical
meaning of the energy splitting as a tunneling proba-
bility between the two potential minima. We write,
from (12)

E(&-) —E(~,) = 2(x.,Hx. ) (I~-I' —I~+I')
—251(x.,Hx. ) (l~-I' + l~ I')

(17)
Since this is an energy difference, it is unchanged by
adding any constant to H in the expressions on the
right. If we replace H by H —E„, the quantity
(H —E„)x. will vanish to the left of the surface Zp
in Fig. 2, and will be & exp [—(1 + $) R/2arr] to
the right of it. Since l~-I' I~+I' conta~~s the facto~
e s'rr, the first term of (17) is negligible, being of the
same order as (16).To this order of accuracy we can
replace IF I'+IF+I' by 1 in the second term. If we
choose the phase of y. and Xf, so that these quantities
are real, and note that (H —E,) xb vanishes in the
region to the right of 3II, we have

E(Z„) —E(Z,) = —2 d'rx. (H —E,)x.
left

—2 d'rxb (H —E„)x.
left

+ dS (x.Vxb —xbVx. )m

ds x.Vx. , (18)
2A

m

since X.equals its mirror image x& on the plane M and

(H —E„) x. = 0 to the left of M. The error in (18)
is of the order of (16).

Having shown that the eigenfunction x. of the
potential V' of Fig. 1 can be used, via the LCAO
expressions (12), to get asymptotically accurate
energies, let us now see if we can obtain an adequate
explicit approximation to x. by perturbation of the
single-atom eigenfunction P.. This has been done
by Holstein" in a study of the charge-exchange
problem in gases, a study which, though entirely
independent of the present work, very closely re-
sembles the method described in the present section.
As our main interest, unlike Holstein s, is in the
spin-exchange problem to be discussed in the next
section, we shall not attempt, as Holstein does, a,

systematic development of x./P, in powers of 1/R,
but shall only sketch, without rigor, how the leading
term can be obtained. We set

and choose atomic units h, = m = e = 1, so that
P = m-'~'e " and

g = cR(R —Z) 'e '
(22)

Normalization requires that g = 1 for small Z, hence
that c = 1, so the value of g at the midpoint is, to
the leading order in 1/R,

g(R/2) = 2e (23)

The value of the surface integral (18), when

P. = ~ '~'e is substituted for x., is easily found to

27 T. Holstein, Vilestinghouse Research Report 60-94698-3-
R9 {1955).I am indebted to Dr. Holstein for informing me of
the existence of this work, and of subsequent corrections, and.
for some illuminating discussions of it.

2 Bg——Vg+ ar ~r —R,
l

+E„—Ef I g = 0.

(20)

Now we expect g to vary smoothly over distances of
the order of R, so that V"g is of order g/R', Bg/Br of
order g/R. For the same reason we expect the ratio
of the surface integral (18) to its value with x. re-
placed by P. to be simply the square of g at the mid-
point, plus quantities of order 1/R or smaller. Using
the fact that the leading term in E, —E~ is just the
potential —1/R of nucleus b at the position of a,
we therefore approximate the differential equation.
(20) along the internuclear line (Z direction) by

~g/»+ I:1/R —1/(R —Z)]g = o (21&

the solution of which is
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be Be ~ atomic units (1 a. u. = 27.2 eV). Note that
this does not correspond to the LCAO energy split-
ting calculated with f., f~, which is"

}:E(&-)—E(&u) J««&

= (4/8) Be + O(B 'e ) a.u. ; (24)

the reason is that the reduction of (17) to (18) is not
valid for P., P&. Multiplying Be ~ by the square of
(28), we get

E(Z„) —E(Z, ) = (4/e) Be + O(e ") a.u. (25)

which divers from the asymptotic LCAO value by
the factor 8/e = 1.104. Comparison with the sup-
posedly exact numerical calculations of Bates, Led-
sham, and Stewart" that the ratio of the splitting
to the LCA.O value appears to pass through a maxi-
mum of about 1.14 at 8 = 9 or 10 c&, the curvature
of the plot being such that extrapolation to 1.104 at
8 = ~ would be reasonable. The reasonableness of
such an extrapolation is supported by the fact that
it requires a 1/B term in the ratio, of approximately
the magnitude predicted by Holstein. "

D. DeQnitions of Concepts to be Used
for the Spin-Exchange Problem

After this illustrative digression, let us return to
the problem of the coupling of the spins of weakly
interacting atoms. We shall try to construct an
asymptotically exact formalism for this case which
will be related to the Heitler-London formalism in
much the same way that our calculation in the two
preceding sections was related to the LCAO method.
For H2+ we constructed a function x. which resem-
bled, in its localization, the free-atom function iP.,
but which at the same time approximated as closely
as possible the sum of the exact Z, and Z„eigenfunc-
tions of the molecule. Here we wish to construct a
set of functions x&, one for each set of spin quantum
numbers k, which will have two analogous properties:
First, they should resemble the products g;P&,. of
atomic functions in (8) in having analogous spin
quantum numbers and in having each electron
associated with a definite atom; second, the x~
should approximate as closely as possible to the 4»
defined in Sec. 2A. above, in terms of which the exact
eigenfunctions can be expressed.

As before, we shall define x& to be an eigenfunction
in a synthetic potential V . Consider the 3n-dimen-
sional configuration space of all the electrons. Let
the term "original center" be applied to that point
for which the positions of electrons 1 to nl coincide
with the position of nucleus 1, electrons n& + 1 to
n, + n, with nucleus 2, etc. Designate as the "Pth

inside Z&

outside all Z~

= E, + el inside any ZI,P 4 1, (28)

where V is the true potential energy function, and
Eo is the ground-state energy of separated atoms.
Thus, V' coincides with V in and somewhat beyond
the potentia, l well neighboring the original center,
but differs from V in having no comparable potential
wells around the Pth centers, P A l.

The eigenfunctions x~ in the potential V will, of
course, have a spin degeneracy. Since V' is invariant
under the subgroup Go of permutations which in the
original assignment permute electrons of each atom
among themselves only, the x& can be classified ac-
cording to the irreducible representations of Go to
which they belong. We wish to limit our considera-
tion to those x~ whose energies are close to Eo. These
XI, will be antisymmetric under Go, and it is easy to
show (see Appendix I) that the x& can be so chosen
as to be eigenfunctions of the operators 8';, 8;,(i
= 1, X), where 8& is the sum of the spins of
electrons 1 to nl, etc. Thus, the set of v possible spin
indices k for the x& is isomorphic to the set Ik, , A&I

of spin indices for X separate atoms.

center" the point obtained from the original center
by applying the permutation P to the electronic
coordinates. Of course, any permutation of the sub-
group Go which permutes the first nl electrons among
themselves, the next n2 among themselves, etc. ,
leaves the original center invariant. Therefore only
n!/ii n;! of the Pth centers are distinct. Let rj, be
the position of electron X, R~ the position of the
nucleus at which this electron is localized in the Pth
center. Define Z~ to be the (8n —1)-dimensional
hypersurface

(26)

where I is to be chosen as small as possible, consistent
with the requirement that the lowest eigenvalue of
the Schrodinger equation for n —1 electrons with
the remaining electron fixed at a distance & I from
any nucleus is

(n —1)-el. energy & E, + ge&, (27)

where Eo is the ground-state energy of separated
atoms, g is a number nearly unity, and ~I is the least
of the atomic ionization energies. Thus, I is moder-
ately greater than an "atomic radius, " and Z& is a
surface outside which it is appropriate to say that
the Pth configuration is ionized. We can now define
V' by
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&max (+ l(H —7)'I +)/I~E--I, (8o)

whereE, is the mean energy of P, and lhE;
f

is the
minimum energy interval from any of the E, to any
eigenvalue other than the set being approximated.

In the application of (80) to our problem it is
convenient to write

« = E, + (« —Ex), (81)

where E, is the eigenvalue of the x& in the potential
V'. Since (H —E,) x& vanishes outside the Zr for
P W 1, the evaluation of the numerator of (80) re-
duces to the evaluation of the following types of
ternis, 111 wlllcll Q,)1, IIieails a splI1 scalar pl"oduct
and the integration is over all electronic coordinates
inside Z&..

(82)
all 8 X~+1

(« —&.) 2 f II «x*(s —&.)x. (33)
all s Z~yEI

(« —E,)', (84)
s The relation (30) differs slightly from the form given by

Kato (reference 26}, which has a summation on t instead of a
maxirnurn. However, {30) is easily derived from Kato's
Eq. (22). Either form of the inequality will suFice for our
purposes, but (30) makes the analogy with the nondegenerate
case closer.

E. Asymptotic Accuracy of the
Modi6ed Heitler-London Method

%e are interested in the v roots E of the secular
equation

det (X. lH —Elder, ) = 0, (29)

where A is the antisymmetrizer (4). These roots, as
we shall now show, approximate the corresponding
exact eigenvalues to within errors which, for large
interatomic separations, are exponentially small com-
pared with the spacings of the eigenvalues, For the
demonstration we need a generalization of the energy-
bounding inequality (11). As (ll) is written, the
energy interval in the denominator could, in some
cases, be of the order of the level splitting we are
seeking, which goes to zero at large separations.
However, Eato" has given a generalization of (11)
for sets of eigenvalues, which contains in the de-
nominator only an interval to the nearest eigenvalue
not of the set being approximated. Specifically, if
the functions p, (s = 1 to I) are the orthonormal
linear combinations of any p approximating functions
which diagonalize the Hamiltonian in the subspace
spanned by them, then the error bE, in the sth eigen-
value obeys"

o. = (2mgsi/i'I')' '
(86)

is related to (27) and approximates one of the o.;
defined in (5). For the case of H&+ the analogous
inequality (15), though stated in Sec. 2B without
proof, can be proved easily, "from the fact that V'
is well in excess of E, once one is well away from
nucleus II. A rigorous proof of (85) is, in general, more
difFicult, since for the many-electron case there are
paths in configuration space from Z& to Z~ along
which V' is —~, i.e., for which one or more of the
electrons not being exchanged remains very close
to its nucleus. However, this should not vitiate (85)
because in the neighborhood of such paths one
expects x~ to approximate a ground-state eigen-
function for the electrons not being exchanged, times
a coefFicient which is an exponentially decreasing
function of the coordinates of the exchanging elec--

trons. Appendix II gives a rigorous argument which,
if combined with reasonable assumptions about the
boundedness of certain momentum distributions, .

implies (85).
Accepting (85), then, we see that (82), (88), and

their modifications involving a Qx& obey

(82), (88), and their Q modifications

& A.
' exp (—4aR;.), (87)

29 I am indebted to Dr. J. McKenna for the details of a
rigorous proof, which will not be given here for lack of space-
and because of its similarity to the more general (though less
satisfactory) arguments of Appendix II.

plus terms differing from (82) or (88) by replace-
ment of one of the x&'s in the integrand by a per-
muted function Qx& (Q W P), and terms differing
from (84) by multiplication by an overlap integral
of x, and Qx~. Terms with k' Q Ic do not enter be-
cause of the spin orthogonality of x& and XI,.

To establish the smallness of (82) and (88) we
need only the intuitively obvious fact that x& decays
exponentially with increasing distance from the
original center, once one is outside the surface Z&.

Inside Z~, for P ~ 1, at 1east two electrons have to
be within a distance I of some nucleus other than
the ones with which they were associated in the
original center. We therefore expect that inside any
such Z~)

lggl & A. exp l

—2o.(R;.—I)], (85)

where the coeKcient A is, at most, algebraic in the
separations 8;;. Here 8;.is the least of the inter-
atomic distances, I is the length defined in (26),
which remains finite as the interatomic spacings
become infinite, and
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where A', like the A of (85) is, at most, algebraic in
the separations 8;,. As for the quantities (84), it is
easy to show that

IEg —E,l
& A.

"exp (—2~8;.), (88)

where A" is again, at most, algebraic in the 8;,, hence
that (84) and its Q modification also obey (87). For,
as we shall see explicitly in Sec. 2F below, the solu-
tions E of the secular equation (29) must differ from
the dominant term (xiIHlx~) of the diagonal ele-
ments by quantities of the order of the (xgHI&x~),
where P is some permutation exchanging at least
two electrons on different atoms. The latter quanti-
ties involve the small overlap of y& and Px~, which
contain factors & exp (—2nB;.). Thus we conclude,
finally, that the upper limits (80) to the departures
of the roots of (29) from the corresponding true
eigenvalues are bounded by quantities of the order
(87). Since (87) is asymptotically&( (88), we have
proved the asymptotic exactness of the solutions
of (29) at large separations.

F. The Syin Hamiltonian

Having thus described a method for the construc-
tion of an asymptotically exact solution to the
coupled-atom proble, we shall now undertake to
show that this method is equivalent to the use of a
spin Hamiltonian of the form (2), to within the
accuracy of the original approximation. The argu-
ment is really identical with that for the ordinary
Heitler-London approximation (8). However, despite
the extensive literature using the latter approxima-
tion, no completely general derivation of (2) from

(8) seems to have been given; all papers make special
assumptions, e.g. , one electron per atom, no doubly
filled orbitals, determinantal wave functions with
nearest-neighbor exchange integrals the same for all
pairs of orbits, etc. We shall therefore give a general

argument ab initio, assuming only that II does not
contain spin variables and that the separated atoms
have no orbital degeneracy. (The latter assumption
can be dispensed with, ' but the complications which
this entails will not be discussed here. )

Consider the matrix elements in the secular equa-
tion (29), after inserting the explicit expression (4)
for the antisymmetrizer A. The general term is

(x'I& —EIPx.) . (89)

Now the functions x~ are localized near the original
center in the 3n-dimensional configuration space,
while the Pg~ are localized near the Pth center. If P
belongs to the subgroup Go of permutations which
never mix electrons associated with different nuclei

in the original center of configuration space, the Pth
center and the original center will be the same, and
(89) can be large. For all other cases (89) will be
small, approaching zero as the interatomic separa-
tions become large. As in (85), it is intuitively obvious
(and proved mathematically in Appendix II under
the momentum-boundedness proviso described there)
that the overlap of yI.. and Px~ contains a factor at
least as small as

exp [ —a Q), IBg —Rgl], (40)

where n is given by (86), or roughly by (5), the sum-
mation is over all electrons, and, as in (26), B~ is
the position of the nucleus with which electron X is
associated in the Pth center. The other factors in the
overlap are at most algebraic in the separations. If
Bz differs from 8& for only two electrons X, i.e., if P
transfers only one pair of electrons to new atoms,
(40) has the value exp (—2o,R;,), where i and j are
the two nuclei in question. The maximum value of
this, for near neighbors, is

max pair-transfer term ~ exp (—2aB; ) . (41)

[This maximum will be attained for off-diagonal
matrix elements of the form (89) if there exists a
pair of non-singlet atoms with separation 8 ., at
least one of which possesses the minimum ionization
energy er used in the definition (86) of n. While there
are important cases for which this condition is not
met, ' we shall not complicate the present discussion
by considering them. ] If I' is a higher-order permuta-
tion, i.e., transfers more than two electrons to new
atoms, then the contribution to (89) is of order

higher-order terms &exp (—8mB;.), (42)

hence negligible, at large separations, compared with
(4&). [Actually, it can be shown'" that all terms
of this order can still be described by a spin Hamil-
tonian of the form (2).]

Having thus shown that for large separations we
need consider only those terms (89) which correspond
to transfer of at most one pair of electrons between
closely neighboring atoms, let us now consider how
these terms can be simplified. The no-transfer terms
are of course very simple: If Q is an element of the
group Go which permutes only electrons associated
with the same nucleus in the original center, then,
because of the antisyrnmetry and spinorthogonality
of the xg„

no-transfer terms = (nI)
' g (x& III —Elb&QX&)

Q'Ego

= [II;(,t)i t](E, -E)~-, (48)
30 H. A. Kramers, Physica 1, 182 (1934}.
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where E~ is the mean energy of any of the xI,. For
the pair-transfer terms, we note that the most
general P which transfers just one pair of electrons
between atoms i and j can be written in the form

P = QP;;Q',
where Q and Q' are elements of ( c, and P;, is the
simple interchange of the erst electron of atom i
with the first electron of atom j. The number of
distinct P's obtained by letting Q and Q' run inde-
pendently over Gc is

No. (ij) transfer permutations = n,n, II, (n„!) .
(45)

Thus, the pair-transfer terms of the general element
of (29) are

pair-transfer terms

E

The next step is to express P;; in terms of spin
operators. If we designate the two electrons which

P;; interchanges as 1, 2, we have the familiar rela-
tion

P;, = P(1,2) = P';",'(-', + 2s s.), (47)

where P,',".' —= Pt'(1,2) interchanges coordinates only.
But (47) contains only the spins of individual elec-
trons, and to derive (2) we must get into the picture
the total spin vectors S; of the atoms, i.e., of the sets
of electrons associated with nucleus i and nucleus j
in the original center. If the atoms have no doubly
filled orbits, so that their wave functions are spin
symmetric, replacement of si, ss, in (47) in terms of
S;, S,, is quite easy. For the general case a slightly
longer argument is necessary, which we shall now
sketch.

We have noted at the end of Sec. 2D, and proved
in Appendix I, that the x~ have the same permuta-

tional and spin-rotation symmetries as products of
single-atom wave functions. Therefore, x~ has the
form"

Mt M ~

yi, ——(3E;3E,)
' ' g g qsr(r's, other spins and ki's)

(=1 g 1

X e, ,(s„)e,,„(s„. ), (48)

where ~1, are the n1 spin variables of the electrons
associated in the original center with nucleus i, and
the orthonormal spin functions 0&,.t are transformed
irreducibly into combinations of the OI, ,~. by spin
permutations and into combinations of the 01, ,~ by
spin rotations; similar statements hold for the n;
spin variables s2, and the OI,, t.. If D; is the 3f;—
dimensional irreducible representation of the spin
permutation group of i to which the 8&,~ belong, the
yet for different P will be transformed irreducibly
among themselves by the corresponding coordinate
permutations, according to the associated representa-
tion D*; D differs from D in having the signs of the
matrices of odd permutations reversed.

The major step in our argument is now to use the
Wigner-Eckart theorem33 that the matrix of a vector
operator connecting two subspaces each irreducible
under spin rotations equals the matrix of the total
spin vector times a constant, dependent on the sub-
spaces in question; the constant is nonzero only if
the representations of the spin-rotation group in the
two subspaces are equivalent. Thus, in the space of
the spin functions 8&,.~, we have, using angular
brackets to designate spin scalar products,

(~~l&'Is I&'&& = f~"tP i&IS'I&'6, (49)

where the coeKcients f&'I are determined by the
symmetry properties of the atomic spin functions
K„t. The last factor in (49) is independent, of g, and
will be written henceforth simply (Ic,'IS, lk;). The
ftgt obey

ft"t = fA' Kraft't' = ~'/&' ~

pair-transfer terms = —n;n;

Using (49) and (50) and the corresponding equations for a,tom j in (46) and (47), we get for the pair-
transfer contribution to the general element of the secular equation (29)

II( l)
nt

3& P. A. M. Dirac, The Principles of Quantum llfechanics
(Clarendon Press, Oxford, 193Q); Proc. Roy. Soc. (London),
A1237 714 (1929).

32 E. Wigner, gruppentheorie und ihre 4nwendung auf die
Quantenmechanik der Atom spektren (Friedrich Vieweg tk Sohn,
Braunschweig, 1931); Group Theory and Its Application to the
Quantum Mechanics of Atomic Spectra, translated by J. J.
Griffin (Academic Press Inc. , New York, 1959), Chap. 22.

33 Reference 32, Chap. 21. For a very concise proof see,
B. I. Van der Waerden, Die gruppentheoretische Methode in
der Quantenmechanik, (Springer-Verlag, Berlin, 1932), Sec. 19.
For a proof not presupposing a familiarity with group theory
see, E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (The Macmillan Company, New York, 1935), Chap.
3, Sec. 8.
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where q&'r is the q~r of (48), considered as a function
of coordinates only, for any arbitrary k& and any
single set of spin variables of the atoms other than
i, j, for which it does not vanish, and renormalized
to unity. The first term of (51) can be neglected, to
the order to which we are working, since it is (E„
—Ex) times an overlap integral, and each factor is
of the order of (38) or (41). Thus, combining (51)
with (43), we can write the secular equation (29) in
terms of matrix elements in spin space only:

~',O'IS,'S'lA) + (E. —E)~-

+ higher-order terms = 0, (52)

where the "higher-order terms" contain factors at
least as small as (42). Here the exchange constant J;,
is given by

X (H —E,)P;',"'pi'r" .

This completes the justification of (2).

3e ADVANTAGES OF EXPRESSING Jij
AS A SURFACE INTEGRAL

A. The Surface-Integra1 Transformation

In Sec. 2C we found that the Z„—Z, separation
for H3+ could be conveniently expressed by a surface
integral (18), an expression which was especially
appealing because it embodied the notion that this
energy splitting represents a tunneling frequency
from the one atom to the other. We shall show here
that an exactly similar formulation is possible for
the spin coupling problem.

Define Z*,; to be the (3n —1)-dimensional hyper-
plane in coordinate space consisting of all points
equidistant from the original center and the P;;th
center. In the expression (53) for J;,, we may replace
E~ by the eigenvalue E„of the x~ in the potential V'

dered in Sec. 2D; this alters J;j only by an amount
comparable with the neglected "higher-order terms"
of (52). Since the q ~&'&', like the x,, are eigenfunctions
in the potential V' with eigenvalue E„the integrand
in (53) vanishes on the side of Z*;; on which the
P;;th center lies. The integral may therefore be
extended only over the half-space on the side of the
original center. Integrating by parts as in the deriva-
tion of (18), we obtain a vanishing volume integral

and a surface integral whose two terms turn out to
be equal. Thus, finally,

J., = n, n, (M,M;) 'e.
m

Mi Mj

X Q Q f('(fr"'r „dS.(P,',

"~year"

) 7.q )"r', (54)

where the n vector dS is the normal to the hyperplane
Z*;;, directed away from the original center.

Since y&~p~ decreases exponentially as we go away
from the original center, it is clear that the pre-
dominant contribution to (54) comes from regions
of Z,*; close to that point of Z,*;, often near the mid-

point between the original and P;;th centers, at which
y&~&'~ is largest. (It may happen that y~~p~ is small or
zero exactly at this midpoint, but we cannot go very
far away from it without the integrand becoming
exponentially small. ) Thus, (54) accords nicely with
the physical picture of tunneling via the easiest path
in configuration space.

Note that, in perfect analogy to our finding in
connection with (24), it is not possible to express the
J;jgiven by the Heitler-London approximation in the
form of a surface integral like (54).

3.The Question of Additivity

The Heitler-London model possesses a property
which it would be nice to verify for the present, .

asymptotically exact, model. This is the property
that, for large separations, the exchange coupling
constant J;j between any two atoms of the array is
a function of the relative positions of these two
atoms, independent of the presence of the other
atoms.

In the Heitler-London approximation this follows
from the expression of J;j as an overlap matrix ele-
ment similar to (53). Coordinates of electrons located
on atoms other than i and j can be integrated out,
the result being merely to replace H, the X atom.
Hamiltonian, by H;;, a two-atom Hamiltonian
formed by averaging over the wave functions of the
other atoms. If the other atoms are neutral, H;; will

differ only by exponentially small quantities from
the Hamiltonian of the two atoms i, j. If some of the
other atoms are ionized, however, the reasoning
breaks down.

For the present model the elimination of the co-
ordinates of electrons belonging to atoms other
than i and j is less automatic, since the q ~~~'~ are not,

product functions. However, we can make good use
of the fact, already noted, that the surface integral
(54) is dominated by the contribution from points of
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Z,*; not too far from one or more "peaking points. "
Since on Z,*, one or both of the electrons 1, 2 being
exchanged is far from its nucleus, all the electrons of
other atoms must be close to their respective nuclei
as long as we stay close enough to the peaking point
for the integrand to be appreciable. Thus, the func-
tions q ~&' can be well approximated, near the peaking
point, by products of two-atom p~~' 's and isolated-
atom functions for the remaining atoms. However,
we may expect the departures from this approximate
form, due to van der Waals type interactions with
the other atoms, to decrease only algebraically with
increasing interatomic separations.

Thus, we conclude that, for neutral atoms, the
asymptotically exact J;, for an E-atom array, com-
puted from (53) or (54), coincides with the corre-
sponding value for a two-atom problem to within a
fractional error which is only algebraically small as
the 8;; increase, not exponentially small as in the
Heitler-London approximation.

C. Sign of the Exchange Constant

A particularly useful application of the surface-
integral expression (54) is to the problem of the sign
of the exchange constant J;;. Common sense, aug-
mented by the mathematical analysis of Appendix
II, tells us that the functions y~~', which are eigen-
functions of the potential V' described in Sec. 2D,
must be decreasing exponentially as we cross the
surface Z;; going away from the original center.
Therefore dS V„q~~' must, at each point of Z;*;,

have a sign opposite to q ~~' . Therefore, if 3f;
= M, = 1 (all spins of each atom parallel), and if

has the same sign at all points of Z,*; reasonably
close to the peaking point, J;; must be negative, i.e.,

antiferromagnetic.
A negative J;; must also occur if 3f; = JlI; = 1

and if P;; takes each point of Z;, into itself, as is the
case for a pair of atoms (with any number of elec-
trons) in one dimension. This conclusion supplements
that of Lieb and Mattis. '4 These authors proved that
for any one-dimensional n-electron system the lowest
state of total spin 8 lies below the lowest state of total
spin 8 + 1, etc. Their result is more general than
ours, in not being restricted to almost-separated
atoms, while ours goes beyond theirs in applying to
levels derived from maximum-multiplicity excited
states of the atoms.

Our result is also more general than that of Lieb
and Mattis in being applicable to systems in three
dimensions with nonseparable potentials. Our con-
clusion for such real atomic systems is that for atoms
with all spins aligned a positive (ferromagnetic) J,

is possible, in the limit of large separations, only if
q ~~' can assume opposite signs at points r and P„'& r
both in close proximity to peaking points of Z;;. This
requires that there be angular nodes in the wave
functions; more specifically, there must be angular
nodes in the tail of at least one of the atomic wave
functions considered as a function of the coordinates
of one electron, when this electron is far from the
nucleus. Although the presence of filled inner shells
spoils the vigor of the foregoing argument by making
M; ) 1 and allowing some of the eigenvalues of
f&l'& to be (0, it is probable that the conclusion holds
for Hund's-rule atoms in general. Thus, antiferro-
magnetic J;,'s should be the rule, ferromagnetic
J; s the exception.

4. DISCUSSION AND CONCLUSIONS

In this section we recapitulate what has been
assumed and what has been proved so far, and then
add a few remarks about possible extensions and
applications.

We have assumed an array of X atoms, without
orbital degeneracy and with no spin-dependent terms
in the Hamiltonian. Nothing has been assumed about
the internal wave functions of the atoms, which are,
in general, of a many-electron type with correlations.
Nor have we assumed the atoms to be spherically
symmetrical: The word "atom" could everywhere be
interpreted to mean "molecule. " We have assumed
that some, at least, of the atoms have nonzero spins,
and have undertaken to find an effective Hamil-
tonian which will su%.ce to calculate the energy
splittings arising from the coupling of these spins, to
within errors which will be exponentially small com-
pared with the splittings as the interatomic separa-
tions are allowed to become infinite. Our procedure
has involved neglecting quantities of the order of
(37), where 8; is the minimum interatomic separa-
tion and 0. is related to the minimum ionization po-
tential of the atoms by (86). Since the lowest-order
terms in the energy splittings being sought are of
the order of (41) with B;.interpreted as a minimum
distance between non-singlet atoms and 0, related to
the lesser of the ionization potentials of these atoms,
the terms we neglect are negligible only if the latter
type of nB; is not too large compared with the
former. If this condition fails to be fulfilled, some-
thing like the theory of superexchange must be
used." Implicit, too, in our neglect of quantities
of the order of (37), is that the interatomic separa-
tions be large enough to make these negligible even
when multiplied by numbers like X, the number of
atoms. While it is not to be expected that the
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coupling in large arrays will be physically different
from that in small arrays, the mathematical rigor of
our approach would be spoiled if X were allowed to
become infinite. The mathematical difhculties in

applying the Heitler-London method to very large
systems have, in fact, been the object of considerable
discussion in the literature. ' "

Having made these assumptions, we have shown:

(i) To within neglect of terms of the order of (87)
[or (42), unless supplemental arguments are used to
show that these vanishj, the term structure of the
system is the same as that of the eigenvalues of a
spin Hamiltonian of the form (2). In this spin Hamil-
tonian only those neighboring pairs i, j, of atoms
need be included whose exchange constants J;, [of
the order of (41) with n and 8 appropriate to the
pair, i, j] contain exponential factors of larger order
than that occurring in the neglected quantities (87).

(ii) If all atoms are neutral, the exchange constants

J;; appropriate to a given array of atoms differ from
those for corresponding isolated pairs i, j, by frac-
tional amounts which go to zero at infinite inter-
atomic separations as an inverse power of the latter.
This behavior differs from that of the Heitler-London
approximation, where the fractional departure from
additivity is exponentially small.

(iii) The exchange constants J;; can be expressed
as surface integrals, of the form (54), over a hyper-
plane in configuration space separating the original
assignment of electrons to atoms from the exchanged
assignment. The wave functions q~~' entering into
this expression are solutions of the wave equation in
the fictitiou potential V' defined by (28), which

reduce the group of coordinate permutations on each
atom. The principal contribution to the surface
integral comes from regions not too far from a "peak-
ing point, " and corresponds to the physical notion
of barrier penetration by tunneling.

(iv) For atoms with all spins parallel, and probably
for all Hund's-rule atoms, the exchange constant J;;
can be positive (ferromagnetic) only if the tail of at
least one of the atomic wave functions has angular
nodes.

The analysis leading to these conclusions was

based on the properties of the x& or q~~', which are
eigenfunctions of the potential V' defined by (28).
These were shown in Sec. 3K to be adequate approxi-
mations to the functions C» defined in Sec. 3A, in

terms of which the true eigenfunctions can be exactly
expressed. Actually, all the analysis of Secs. 3F and
BG could have been carried through with C ~ replacing

x~, provided one were willing to assume that the 4~

possess exponentially decaying tails leading to prop-

erties like (35),(40), etc. If one were willing to make
such an assumption, one could formally evaluate
successively higher-order approximations to an effec-
tive Hamiltonian, leading to terms in four, six, etc.
atomic S; vectors. However, a rigorous proof that
such terms have successively smaller orders of
magnitude seems hard to construct by our approach.

The assumption of no orbital degeneracy can easily
be dispensed with, at the cost of a little complication
of the formalism, provided the assumption that H
contains no spin variables is retained. In practice,
of course, spin-orbit coupling will always exceed the
interatomic spin couplings at large enough separa-
tions.

It does not seem beyond the range of possibility
to compute an asymptotically exact exchange-

coupling constant J for, say, the hydrogen molecule;

perhaps by an extension of Holstein's method for
H2+. This remains a problem for the future.
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APPENDIX I

Rotational and Permutational Symmetry of g~

We have defined the x~ in Sec. 2D as eigenfunctions

in the potential V' defined by (28). This potential is

invariant under the subgroup Go of the permutation

group, consisting of all permutations of the first nj.

electrons among themselves, of the next n& among
themselves, etc. Accordingly, it must be possible to
express any y& in terms of coordinate functions which

reduce the corresponding group G~"~ of coordinate
permutations. Let, such functions be designated

y(g&, P~, r's), where for any P permuting the
ith group of coordinates only (i.e., permuting "elec-
trons of the ith atom"),

(Al)

the coefficients D~&*",&; (P;) being matrices of an ir-
reducible representation of the permutation group
of n; objects. Thus,

x = Z (5 '''5 s'''s )w(5 ''''5 'r s) (A2)
$8

Now we have required each x~ to be antisymmetric
when the operations of 6'0 are applied to coordinates
and spins together. Therefore, the functions O~ in
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S = gsq, S, = g s~, etc.
g=n, +l

(A4)

It is obvious, and not hard to demonstrate ex-

plicitly, that identical statements hold for the func-
tions 4» defined in Sec. 2A.

APPENDIK II

Exponential Decay of g& at Large Distances
from the Original Center

Consider any function x(x,y) of two sets of vari-
ables xl, w„and yl, ~ y„obeying a wave equation

[—~,' —~'„+ V'(x, y) —E]x = 0, (AG)

where p'. , p'„are the p- and q-dimensional Laplacian
operators in x- and y-space, respectively, and where
the boundary condition is to be the usual one of van-
ishing at infinity, E being thus an eigenvalue of a
bound state. Suppose that for each y outside of some

34 Reference 32, Chap. 13.

(A2) must transform under the group G&~&'l of spin
permutations, according to the complex conjugate
of a representation differing from that to which the
p($'s; r's) belong simply in having signs of the
matrices of odd permutations reversed. "Since the
group 60 is the direct product of the "single-atom"
groups 0; (consisting of the P; defined above), the
matrices of its irreducible representations are simply
products of the D~&'.~,

&; (P;). Therefore, permutations
I' of the ith group of spins must transform the OI,

according to

P Bs( $" s, s )
(s)

= QS.,D', ...(P,)e,( . t'.",s„'„).(A3)

Out of all the 2" possible spin functions for n elec-
trons, all those, and only those, can occur in the OI,

which belong to the irreducible representations D '

of the subgroup 6,, where Dt'l is defined by the mat-
rix occurring in (A3). Continuity requires that for the
set of v states of interest to us, the D ' be the same as
for isolated atoms. It is known" that among all pos-
sible functions of the ith group of spins the represen-
tation Dt'l occurs (28; + 1) times, and that corre-
sponding basis functions of these different equivalent
representations are transformed into one another by
rotations of the ith group of spins according to the
irreducible representation 6 ' going with total spin
quantum number S;. Therefore, the set of allowable
functions OI, must transform according to 6' under
rotations of the ith group of spins; they can thus be
chosen as eigenfunctions of S';, S;„where

surface Z„ in y-space the lowest eigenvalue of the op-
erator

is e(y), so that

H. (y) —= —&'. + V' (Ao)

x*H.(y)xd"x ) e(y) lxl'd"x .

Define

I(y) = Ixl'd'*

Then

~'„I = x*&'„xd"x + c.c. + 2 l&„xl'd"x

) 2[ (y) —E]I + 2 l&„xl'd"x. (A9)

Also,

&„I = x*&„xd"x+ c.c.

x*~.xd'xI' & 4I l~.xl'd'x (Alo)

by Schwarz's inequality. From (A9) and (A10),

~:I —(1/») I~.Il' & 2[e(y) —E]I"
or

&'„I' ' & [s(y) —E]I' ' (All)
Now suppose that for all points of y-space outside

the surface Z„we have

e(y) —E ) P'. (A12)

Let gs(y, y') be the g-dimensional Green's function
obeying

—~'gs+ P'gs = ~(y —y') (A13)

with the boundary condition of vanishing at infinity.
It is a Hankel function with the properties"

(A14)gp & 0 everywhere,

gs = 11(ly —y'l)e ' " ", (A»)
where 0 is a rational algebraic function. %e have

I' '(y') = gs(y —y') t ~:I' '(y)
outside Zy

+ P I (y))dy

dS. [g (y —y')~„I' '(y)

—I"(y) f.gs(y —y')], (A16)
ss G. N. Watson, Treatise on the Theory of Bessel Functions

(The Macmillan Company, New York, 1948), 2nd ed. , Secs.
3.4, 3.6, and 3.71.
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where dS is along the outward normal to Z„. By
(All) and (A12), the volume integral in (A16) is ( 0,
so finally

Iih( ) ( ~p —sly-w. l

(A17)

P' = (2m/fi')rtsi, (A.18)

where e& is the least of the atomic ionization energies
and q = 1 is a factor by which el must be reduced if
the electron being removed is removed only to a dis-
tance L from its atom. For y values for which the
hyperplane y = constant passes close to a negative-
ion configuration, e& in (18) should be replaced by sr

where 0' is algebraic and yo is the nearest point of Z„
to the point y.

We wish to apply this theorem to the bounding of
the x~ of Sec. 2D inside the surfaces Zr, P 4 1. Draw
a straight line in configuration space from a point of
Z1 to a point of Z&, and let these points be so chosen
as to minimize the distance between them. Let y be
the coordinate in the direction of this line, x1, x. 1

the coordinates in all orthogonal directions. For most
values of y, the hyperplane y = constant will not pass
near any point corresponding to a negative-ion con-
figuration, and (A12) will be valid with [cf. (36)]

fb,v)~'" 'p p~p d

would have to increase without limit. This seems
physicaOy unlikely.

minus an electron affinity. However, there will be
only finite ranges of y for which this occurs, and since
the right of (A17) must contain I'~'(yo) as a factor,
we can apply (A17) consecutively to the large ranges
of y values for which (A18) holds as written and the
small ranges for which it must be modified. The re-
sult will be that (A17) holds everywhere outside Z, ,
the only effect of the negative-ion configurations
being to increase the coefficient 0'.

Unfortunately, the bounding of I, defined by (AS),
is not enough for our needs, since in our use of (35)
and (40) we have to multiply values of x& inside Z& by
a potential-energy perturbation which may become
locally infinite. We expect, of course, that the maxi-
mum of x& on the x variables will obey a relation of
the form (A17). This will be the case unless this maxi-
mum becomes more and more sharply peaked in x as

y increases. This would mean that the x-momentum
distribution would have to spread to ever larger
momentum values. In mathematical terms, if f(p,y)
is the Fourier transform of x~ on the x variables,
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INTRODUCTION

&HE following lines are a tribute to my teacher,
Eugene Wigner, who introduced me to the

subject of solid state physics.
The present communication reaches rather di-

rectly across a quarter century into the time when
I was the Benjamin among his solid-state physics
students at Princeton University. He first suggested
to me that there ought to be a way to reconcile the
local and the band concept for electrons, and that
such a reconciliation would probably be useful in

* This work was supported in part by the OfFice of Naval
Research.

understanding the spectra of insulators. The result
of this suggestion was a paper on the electronic
excitation levels in insulators. '

When I did that work I felt that it had rather wide
implications. Unfortunately, the trend of the times,
and perhaps also my own negligence in clarifying the
ideas sketched in the article (I had been taught in
Switzerland that the cardinal sin of a physicist is to
restate the obvious, a tenet to which I now no longer
subscribe) left the duality of energy band and lattice
cell in a haze from which it was not to emerge for
some time.

r Gregory H. Wannier, Phys. Rev. 52, 158 (1937).


