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(1/c')A(r) —V'A(r) = Jr(r), (IV.13)

where

and

(IV.14)

J(r) = —(p ——A(r) l f, (rp)dp. (Iv. ls)

The above equations constitute an alternate

The above equations of the hierarchy are coupled
with those of the electromagnetic field

formulation of quantum electrodynamics in which
bilinear products of the particle field operators have
been eliminated in favor of phase space distribution
functions. The field equations have the form of a
generalized magnetohydrodynamics and indeed may
be used as the starting point for the investigation of
transport phenomena in quantum fluids.

The expectation values formed from these equa-
tions no longer satisfy closed sets of equations. In
addition to the Wigner distribution (f ) and the aver-
age field (A(r)), there arise Green's functions of the
types(A(r)A(r')), (f(x)f(x')), and(f(x)A(r')). Theories
of irreversibility may be constructed if one makes
various statistical assumptions concerning the struc-
ture of these Green's functions.
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&HE Thomas-Fermi model has been used in ap-
proximating the properties of molecules. ' On the

other hand, Sheldon' finds no stable equilibrium in a
calculation applying the Thomas-Fermi-Dirac model
to the N2 molecule. At the end of his paper, Sheldon
gives arguments to support the view that similar
calculations will not give rise to stable molecular
binding. In the following a proof is given that statisti-
cal models cannot give rise to lower energies in the
molecular state than obtained for the separated
atoms. The proof applies to the stability of both
neutral molecules and under certain conditions to
positive molecular ions.

Consider first a fixed positive-charge distribution
in space and an equal amount of negative charges
carried by an electron gas which obeys the Thomas-
Fermi equation

3/2
~v = 0 —p+.

Here —eq is the potential energy of the electrons

& A summary can be found in the seventh chapter of the
book by P. Gombas, Die Statistische Theoric des Atoms und
ihre Anmendungen (Springer-Verlag, Berlin, 1949). Also S.
Fliigge, Encyclopedia of Physics (Springer-Verlag, Berlin,
1956), Vol. 36, p. 108.

s J. W. Sheldon, Phys. Rev. 99, 1291 (1955).

measured in appropriate units which have been so
adjusted as to eliminate numerical coefficients in
the Thomas-Fermi equation. The term p+ represents
the positive charge density measured in appropriate
units. This positive charge density is zero except
within the spatial extension of the nuclei of the
molecule in question. These locations are fixed and
have been chosen without regard to the stability of
the configuration. The proof is simpler if we do not
consider the nuclei as point charges and do not intro-
duce any singularities. This, of course, happens to
correspond to physical reality. For the time being
we shall consider neutral molecules. The potential q

and the quantity y'/' are positive, and since p+ is re-
stricted to a finite region in space, y approaches zero
at great distances as 1/r'. This behavior is the same
as for neutral atoms and is due to the fact that for
1/r4 both sides of (1) approach zero with the same
power, namely, 1/r'.

I et us now add to the positive-charge distribution
an infinitesimal additional positive charge near one
location. This additional charge distribution shall be
designated by L Let us also. introduce a correspond-
ing electron distribution so as to keep the system
strictly neutral. Then we can prove the following
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lemma: The addition to the positive function q is
everywhere positive definite.

The new Thomas-Fermi equation is

~(~+ ~) = ( + ~)' ' —(i++ 0) . (2)
Considering that the function e is infinitesimal one
obtains from (2) and (1) the linear differential
equation

—,
' p (3)

The value of e cannot be negative at all locations
because near the point where f has been introduced
the eGect of the positive charge surely predominates
and the value of q must increase. Let us now assume
that e has different signs in different regions of space.
Then there will exist a region V not containing the
additional charge t, inside of which e has the opposite
sign from the one that e assumes near f On. t.he sur-
face 8 of V, e shall vanish.

In V the function e satisfies the homogeneous linear
differential equation

D6= ~p 6. (4:)

Considering that y'i' is everywhere positive Ac must
be negative throughout V. But the gradient of e

cannot point inward along 8, because e = 0 on 8
and c ( 0 inside 8. Therefore, the assumption that
6 has diferent signs in different regions is disproved.

The statement remains correct if V extends in
some directions to infinity. As we approach infinity
e approaches zero more rapidly than 1/r4 and thus
the integration over 8 is not influenced by portions
of 8 which lie at infinity.

We can furthermore see that e cannot become zero
in a volume, on a surface, a line, or a point. In fact,
if that were the ease and if e is positive in the neigh-
borhood of this region, surface, line, or point, we
must again consider a bounding surface surrounding
the region where e = 0 and close enough to that
region. If we now let the bounding surface contract
onto the region where ~ = 0, the volume integral of

always approaches zero more rapidly than
the surface integral of V'~ since the former contains
two more powers of the infinitesimal thickness of the
region of integration in which e & 0. In case 1 W 0,
within the region the contradiction is even more
sharp, since now the volume integral is carried out
over —,

' y'~' e —f'.

Thus, we can conclude that an increase of the
charge f' at any place will produce an increase of the
potential q at every place, which is the content of
the lemma.

If we now compare an atom in which the nucleus
has a charge equal to Z with a molecule in which the

same nucleus occurs, it follows that at any selected
distance from Z in the molecule y is greater than y
at this same distance in the atom. Indeed, the mole-
cule can be obtained from the atom by adding succes-
sively infinitesimal charges at the locations of the
other nuclei and by adding each time the correspond-
ing electronic-charge distribution. In this process q

steadily increases and so the resultant molecular q

function must be greater.
We are now prepared to prove that a neutral mole-

cule in the Thomas-Fermi approximation always has
a higher energy than the isolated atoms of which it
consists. We shall start from a single atom. Next we
shall compare two processes. In the Grst we shall
begin to build up a second atom at a great distance.
We shall do this by adding an infinitesimal positive
charge at a time and follow this by adding enough
electrons —distributed according to the Thomas-
Fermi equation —to neutralize the positive charge.
This is the atom-building process. The second process
is carried out similarly, only the positive charges are
added —in infinitesimal amounts —at a location near
the first nucleus so that in the end a molecular solu-
tion should result. This is the molecule-building
process.

In each of the two cases we shall consider the
energy needed to carry out the addition of the
charges. Of course, for the building up of a nucleus of
small volume, a very great amount of positive energy
is needed. But we have considered the positive
charge as spread out and so no divergence will be
encountered. Comparing the atom-building process
to the molecule-building process we see that in
building up the two nuclei in a similar fashion more
energy is needed in each step of adding the positive
charge in the molecule-building process. In fact,
we have seen that, at corresponding locations meas-
ured from the nucleus being built, q is higher in the
molecule than in the corresponding location in the
atom. Furthermore, q is attractive for electrons; thus,
it is repulsive for positive charges.

On the other hand, the additions of infinitesimal
electron distributions, which alternate with the addi-
tion of the positive charges, do not change the
energy. In a neutral system the electrons are filled
up to the zero level. After each addition of an infini-
tesimal t an energy gain per electron proportional to

becomes available. But only an infinitesimal
amount f' is added to the negative charge. Thus, the
energy is changed by a quantity proportional to t'
and in the limiting case of f —+ 0 no contribution is
made to the energy by these steps.

We see, therefore, that more energy is expended
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in the molecule-building process than in the atom-
building process. After a diatomic molecule is com-
pleted a third nucleus is started —at an isolated loca-
tion in one case, within the molecule in the other. The
same arguments apply as above. In this way one can
prove that the energy of any collection of isolated
atoms is lower than any grouping of these atoms into
a molecule.

The result which we have proved is, of course, by
no means surprising. Indeed the formation of a stable
molecule in the Thomas-Fermi model would lead to
a rather peculiar situation. In this model a similarity
transformation holds. If all nuclear charges are
multiplied by a factor F then a new solution is ob-
tained in which all distances are multiplied by
II ' ' and all energies by Il'". Thus, if a molecule in
the Thomas-Fermi model should turn out to be
stable then another molecule, built of atoms with
greater Z values, would have smaller equilibrium
distances and a considerably higher binding energy.

The result obtained for the Thomas-Fermi ap-
proximation continues to hold if an exchange term is
introduced and the Thomas-Fermi-Dirac approxi-
rnation is used. In this case y obeys the equation

At the surface of a neutral atom or molecule the
potential q vanishes and thus assumes the same value
as at infinity. But at such a surface (at which, of
course, p+ is assumed to be zero) the term ~' persists
and thus the electronic-charge density retains a finite
value at the surface. Beyond the surface the charge
density becomes abruptly zero. In this way the
Thomas-Fermi-Dirac solutions for neutral structures
are confined to finite volumes and do not extend to
infinity.

If we now again introduce an in'.nitesimal localized
positive perturbation to the charge density p+ we ob-
tain for the additional potential e the equation

This is an equation similar to our Eq. (8) and similar
conclusions can be drawn as have been derived earlier
for the Thomas-Fermi case. Specifically, it can be
stated that a positive addition l' inside the original
electron cloud will cause an increase in y at every
location. However, this statement holds only for the
finite volume inside which the original q distribution
was different from zero. All other noncontiguous
regions representing other neutral atoms or molecules
remain undisturbed.

The surface at which q = 0 merits special atten-

tion. At the surface d, e becomes singular. This indeed
had to be expected. The perturbation extends the
region in which the charge density, given by hq, has
a value hq &~ ~'. Thus, near the surface an infini-
tesimal change, f, produces a finite change in hp.
This change extends only over an infinitesimal
volume. %hile a finite change in Ay results the
change in the potential, q remains infinitesimal even
on the surface.

As in the earlier proof of our lemma, no negative
region can occur for e that lies entirely inside the
region where hp ) i~'. If the region of negative e has
a border coincident with the original surface where
Ay = ~' there results an infinitesimal strip in which
the introduction of l' reduces p to the value zero. In
this strip, Eq. (6) is not valid, and on the border of
the strip, Eq. (6) gives a divergent result since the
denominator q'~' becomes zero.

But in spite of these complications, the function
e still is the difference between the new and old
values of y and thus Maxwell's equations must still
hold for e. On the border of the region in which e is
negative the gradients of e point outward and never-
theless he (i.e., the difference of hp after the change
and before it) is negative. These two statements are
incompatible and so a region of negative e values
cannot be assumed.

A region, surface, line, or point where e = 0 inside,
or extending into the volume where dq ) ~', can
likewise be ruled out. A portion of such a structure
could be surrounded by a surface inside the volume
where Aq & ~' even though this surface may cut the
region where e = 0. One can thus use the same argu-
ment as in the Thomas-Fermi case. Thus, we And

e & 0 in every neutral atom or molecule to which the
infinitesimal localized positive charge f and the
corresponding electron distribution have been added.

The further steps of our argument follow in the
same manner as for the Thomas-Fermi model. One
can show in the same way as above that comparing
corresponding locations in an atom and a molecule,
made up of that atom and other atoms, &p is always
greater for the molecule. One can further proceed to
show that adding positive charges in the molecule-
building process requires more work than in the
corresponding steps during the atom-building proc-
ess. Finally, the addition of electron distributions
which alternate with the addition of positive charges,
produces no additional energy terms. This last con-
clusion can be drawn because the increments e of the
potential remain infinitesimal in each step at all
places —even on the surface of the Thomas-Fermi-
Dirac distribution.
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Thus, we have shown that no neutral molecule is
stable in the Thomas-Fermi-Dirac theory.

It remains to be proved that the same result holds
for positive molecular ions. For ions, 0 q extends over
a finite volume. On the surface of this volume the
electron density vanishes (A&p = 0) in the Thoinas-
Fermi model, or assumes the minimum value (A&p

= a' with Aq = 0 outside the surface) in the Thomas-
Fermi-Dirac model. But in contrast to the case of
neutral structures, p will not be constant outside the
region where Aq / 0. For the ionic case it is neces-
sary to introduce a constant q 0 for all ions (or atoms)
and to use &p

—qo instead of &p in Eqs. (1) and (5).
On the surface of these structures the quantity
y —y, vanishes. If a single value y, is used and if
this value is positive (i.e., greater than the value q

assumes at infinity where we set q = 0), then we are
talking about an assembly of positive ions with no
neutral structures present.

It is actually customary to use a different potential

q ~ for the surface of each ion l and adjust these
potentials in such a manner as to make the integrated
charge density equal to a multiple of the elementary
charge on each of the separate atoms, molecules and
ions. From the point of view of the statistical model,
this procedure is not quite consistent. In the follow-

ing, a proof of the instability of ions is given only
for the case where the potentials on the surfaces of
all structures are equal to yo.

First, we point out that our lemma can be general-
ized for ions: If a localized infinitesimal positive
charge is added and no compensating electrons are
introduced the change in q is everywhere positive
de6nite. To show this we shall add an infinitesimal
localized l and an amount of electrons which will

have the result that we wind up with unchanged
value of p0. Under these conditions the quantity

pp will behave in the same way in which p be-
haved in neutral atoms or molecules of limited ex-
tension in the Thomas-Fermi-Dirac model. Thus,
q

—q0 increases everywhere except on the bounda-
ries where it will remain unchanged. The same can
be stated about q since q0 has remained unchanged.

As a second step we shall change the number of
electrons in such a way as to return to the total
number of electrons that were found before f' had
been added. If one adds electrons to a solution of the
statistical equation for ions, then in the new solution
the quantity hq increases everywhere. Indeed, nega-
tive values of Ae can occur only in a bounded region.
If we set ~ equal to the change of q

—q0, use of Eq.
(4) and the reasoning given subsequent to that equa-
tion show that such a region cannot exist. The in-

crease of the negative charge density decreases the
potential q in all locations.

Furthermore, the addition of a positive charge,
without adding electrons will surely increase q0.
Otherwise more energy will be expended if we added

l first and afterward an equal charge in electrons,
than if we proceeded in the opposite order. The
original addition of f has therefore increased q, , and
we see that in our first step electrons had to be added
to keep q0 constant. In our second step, therefore,
electrons must be removed. This increases the value
of y at every position. Since in our erst step we did
not decrease p anywhere our lemma is proved.

To proceed with our proof we shall consider a
neutral structure with the same number of electrons
as the ionic structure we want to investigate. This
will be done —for the sake of comparison —both for
the molecular ion and the separate atomic ions. After
this we shall add successively localized infinitesimal
charges l without adding electrons, but allowing
electrons to redistribute themselves so as to maintain
the same value qo on all ions. It follows from our
lemma and from a reasoning similar to the one given
for neutral structures that in the process in which
the molecular ion is built up, higher values of q are
encountered in each step and correspondingly more
energy is required than in the process in which the
atomic ions are being built. There is only one point
in which this phase of the proof is different for the
ions: After each addition of f, no electrons are added
but we merely allow the electrons to readjust to the
new positive charge distribution. But this readjust-
ment (like the addition of electrons in the neutral
case) adds only quadratic infinitesimal terms to the
energy since the statistical models can be derived
from a variational principle.

Therefore, we can say that a molecular ion in the
statistical theories is less stable than the correspond-
ing separate atomic ions, provided it is assumed that
the electrons are so distributed in the latter case as
to make the ionization potential q0 equal for all
atomic ions.

If that last condition is dropped, one can easily
construct appropriate examples in which the molecu-
lar ion in the statistical theory is more stable than
atoms and atomic ions separated at infinite distances.
For example, in the Thomas-Fermi-Dirac theory we
can bring an ion into the neighborhood of a neutral.
atom. During this process we expend no work against
a Coulomb repulsion, but polarization terms lower
the energy. In the end the structures coalesce with
a net lowering of energy. The same counterexample
does not work in the Thomas-Fermi case because
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for this model neutral structures extend to infmity.
But in this case we can consider an atomic ion with
a low value of Z and exceedingly low difference be-
tween positive and negative charges. Such a structure
will have a high polarizability. If we now bring up a

bare nucleus of very great charge Z' the effect of
polarizability will again outweigh the effect of the
electrostatic repulsion. Indeed, the former is propor-
tional to (Z')', whereas the latter increases only as
the first power of Z'.
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1. INTRODUCTION

A. Scoye of the Present Paper

&OR a third of a century the concept of exchange
coupling of two or more non-singlet atoms has

occupied a prominent place in theories of molecular
binding and of magnetism. This concept, born in the
Heitler-London theory' of the chemical bond, was

applied by Heisenberg' in his celebrated theory of
ferromagnetism, and soon received a very appealing
formulation in terms of spin vectors at the hands of
Van Vleck' and M@ller. ' Although the "spin Hamil-
tonian" resulting from this formulation has continued
to be used in much —even most —theoretical work
on magnetism, grave doubts as to its validity have
been expressed, "and various papers have attempted
to disprove it, justify it, or test it. The object of the
present paper is to clarify the status of the spin
Hamiltonian and of the Heitler-London method of
calculating the constants entering into it for the
limiting case to which the original derivations were
intended to apply, namely, the case of well-separated
atoms. We shall give a rigorous justi6cation of the
concept of a spin Hamiltonian, a physical picture of
the virtues and limitations of the Heitler-London

~ W. Heitler and F. London, Z. Physik 44, 455 (1927).
s W. Heisenberg, Z. Physik 49, 819 (1928).
3 J. H. Van Vleck, I'heory of Electric and Magnetic Sus-

ceptibilities (Clarendon Press, Oxford, 1982).
s C. Meller, Z. Physik 82, 559 (1988).
s S. C. Slater, Revs. Modern Phys. 25, 199 (1958).
s G. Heber, Fortschr. Physik 1, 707 (1954).
~ For a general review of this and other topics in the theory

of direct exchange see C. Herring, "Theory of Direct Ex-
change" in Magnetism edited by G. Rado and H. Suhl (A.ca-
demic Press Inc. , New York, to be published).

approach, and a prescription, which may even be
practical in simple cases, for exact a priori calculation
of the limiting exchange coupling.

It should be emphasized at once, however, that
the arguments to be presented here are of more value
to the world of pure thought than to the world of
magnetic phenomena. For they are based, as we
have implied, on the assumption that the wave
functions of neighboring atoms overlap only slightly,
and this is almost never true in molecules and solids.
It has, of course, sometimes been supposed that the
coupling of the atomic spins of unfilled M or 4f shells
can be calculated by applying the Heitler-London
method to the wave functions of these shells alone,
ignoring the valence electrons responsible for chemi-
cal or metallic binding. If this were so, the assump-
tion of weak overlap of neighbors would indeed be
justified in many, though not all, cases. But in recent
years it has become clear that the valence electrons
just mentioned usually play a vital role in the cou-
pling of the spins of neighboring atoms, via the
indirect exchange' and superexchange' mechanisms.
In metals, moreover, it may often happen that even
the electrons responsible for ferro- or antiferro-
magnetism must be treated as itinerant, rather than
tightly bound to their atoms. "

8 See the review by T. Easuya in Magnetism edited by G.
Rado and H. Suhl (Academic Press Inc. , New York, to be
published).

See the review by P. W. Anderson, "Exchange in Insula-
tors: Superexchange, Direct Exchange and Double Exchange, "
in 3IIagnetism edited by G. Rado and H. Suhl (Academic
Press Inc. , New York, to be published).

& See the review by C. Herring, "Exchange Interactions
Among Itinerant Electrons, "in Magnetism edited by O. Rado
and H. Suhl {Academic Press Inc. , New York, to be published).


