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THE BASIC PROBLEM

~ONE can build up a quantum field theory by
W ~ working from a classical action principle. If one

takes the action to be Lorentz invariant, the classical
theory must be relativistic. With such an action, by
following a standard method, one can put the classi-
cal equations of motion into the Hamiltonian form.
They then refer to the concept of a state at a certain
time, which is a nonrelativistic concept, so they are
no longer manifestly relativistic. Still, one knows
that they must be relativistic in their content, since
they follow entirely from Lorentz-invariant assump-
tions.

When one passes over to the quantum theory one
makes new assumptions —for example, one assumes
an order for noncommuting factors in a product-
and the condition that the original action shall be
Lorentz invariant is no longer sufficient to ensure
that the theory shall be relativistic. We must make
a special investigation to see what is required for a
quantum field theory to be relativistic.

At the basis of quantum mechanics we have the
principle of superposition of states. We must consider
the states as embedded in space-time. Taking spaee-
time to be Aat, it is subject to a group of operations
of translation and rotation, the inhomogeneous
Lorentz group (IHLG). These operations can be
applied to the states to give other states, with the
result that the states provide a representation of the
IHLG, and the laws of quantum mechanics further
require tha, t the representation shall be a, unitary
one. Thus, each dyna, mical system in quantum
theory corresponds to a unitary representation of
the IHLG.

An alternative picture is to suppose each state to
be referred to a system of coordinates (rectilinear
and orthogonal) and to be described by a wave
function with reference to these coordinates. If we
change the system of coordinates by applying to it a
translation or rotation, we get a different wave
function. The various wave functions obtained in

THE INTEGRATION PROCESS

A. powerful way of obtaining representations of a
group is to work from the infinitesimal operators.
YVith the IHLG there are ten independent infin-
tesimal operators, the translations P„and the rota, —
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I E. signer, Ann. Math. 40, 149 (1939).

this way for one particular state again provide a
unitary representation of the IHLG; in fact, the
same representation as before. This second picture
is the one needed for the development of the theory
that will be given here.

If one worked out all unitary representations of
the IHLG, one would obtain the theory of all dynam-
ical systems, according to the accepted laws of
quantum mechanics.

The problem of working out all unitary representa-
tions of the IHLG has been dealt with by Wigner, '
taking the mathematical point of view that two
representations are equivalent if they are connected
by a unitary transformation. He decomposes the
representations into their irreducible constituents
and finds that the irreducible constituents provide
theories of elementary particles with various spins.
This work does not lead to any interaction between
particles.

To bring in interaction, one must depart from the
point of view of looking at two representations as
equivalent if they are connected by a unitary trans-
formation, a point of view which involves looking
upon all unitary transformations as trivial. To a
physicist, some unitary transformations are trivial,
whereas others (for example, the 8 matrix) are far
from trivial, so a physicist cannot look upon two
representations connected by a unitary transforma-
tion as necessarily equivalent. With this broader
point of view, the problem of obtaining all unitary
representations of the IHLG is wide open. We shall
here be concerned with discussing those representa-
tions that can serve as quantum field theories.



RELATIVISTIC QUANTUM FIELD THEORY

tions 3f„.= —3II„„(p,u = 0,1,2,3). They satisfy the
commutation relations

[P„,P„] = 0 [P„,M,.] = g„,P. —g„.P,
[~pvs~pv] gV'purva + gpv~vv + gvp~pss gvv~Fp

After one knows the effect of each of the infini-
tesimal operators on a wave function, one needs a
process of integration to determine the eGect of a
fiiiite translation or rotation. If the representation is
to correspond to a dynamical theory, this process of
integration must play the role of the integration of
the dynamical equations of motion.

In the usual form of dynamics one starts with an
initial state at a certain time, with respect to some
observer, and the integration of the equations of
motion leads to the state at another time, with re-
spect to the same or a different observer. To connect
this form of dynamics with the representation
theory, we express the dynamics entirely in terms of
the state at the time x0 ——0, and consider how the
state at x0 = 0 changes when the system of coordi-
nates is changed. For a change which shifts the hy-
perplane x0 = 0 in space-time we get a new state,
and the integration of the dynamical equations of
motion gives the connection between this new state
and the initial one. This integration corresponds to
an integration of infinitesimal group operators in-
volving P0 and 1II,0. A change in the system of co-
ordinates which does not shift the hyperplane x0 ——0
does not lead to a new state, but merely refers the
initial state to different coordinates x1, x2, x3, which
is a trivial change. This corresponds to an integration
of infinitesimal group operators involving only P,
and cVI„(r,s = 1,2,3).

Thus, we see that we require a representation of
the IHLG with a special property, namely, the
integration with respect to P„, 3'„, must be trivial.
The trivial operators form a subgroup. There is, of
course, a disturbance of four-dimensional symmetry
involved in picking out this subgroup. It does not
arise from any lack of symmetry in the fundamental
laws of nature, but only in our way of looking at
them.

One could set up a form of dynamics corresponding
to representations for which some different subgroup
of operators are trivial. The various alternatives
have been discussed by the author. ' They have not
been pursued very far and will not be considered
here.

2 P. A. M. Dirac, Revs. Modern Phys. 21, 392 (1949).

[VP] = V, , (2)

[V,3f„] = x,V,.—x.V„+x.. . (3)
where V, , means BV/Bx'or —BV/Bxvs The additional
term x„, in (3) gives the effect of the rotation of axes
on V. It depends on the tensor or spinor character
of V and can easily be worked out in any particular
case. Thus, if Vis a scalar, x„, is zero. If Vis a com-
ponent As of a vector (t = 1,2,3), then

X„= -8„A, + 3„Av, s.

One can check this by taking (3) with V a scalar and

x„zero, differentiating it with respect to x& and
putting V, , = A. &. If V is a component of a four-
component spinor f describing an electron with spin
matrices 0.„, one finds

Xvs = 4 (tXvO's rrs~r)P

These laws serve to fix the infinitesimal operators
P„3II„in terms of the Geld quantities, as is illus-

trated by the examples below.
The field quantities are usually assumed to satisfy

local commutation relations, so that the commutator
(or anticommutator) of any two of them, located,
respectively, at the points x and x' in the three-
dimensional space, vanishes unless x and x' are very
close, and then involves B(x —x') and its derivatives.
Under these conditions P„and 3f„,are of the form

3J,. = (x,K, —x,K,)d'x, (6)

where K, is a localized Geld quantity having the
physical meaning of momentum density. It can easily
be worked out in any particular case.

If the Geld quantities are expressed in terms of
canonical pairs p, r1 satisfying

[P, 1'] =r8(x —x'),
then

LOCAL VARIABLES

We have to consider how 'to get a representation
of the IHLG for which the integration with respect
to P„3f„is trivial. We can do this by working in
terms of Geld quantities that are localized in the
three-dimensional space xp = 0, so that the way in
which any of them is changed by a change in the
coordinate system x&, x2, x3 is immediately evident.

The laws expressing how a field quantity V, located
at the point x1, x2, x8, is aBected by the infinitesimal
operators P„, M„, are
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[Po,P.] = 0 [Mro, P.] = &.J'o

[Po,M-] = 0 [Mro, 3II-] = —8rr3II.o + S,rM. o .

So the new infinitesimal operators Pp M p satisfy
the correct commutation relations with the previous
ones P„3f„.

It only remains to secure that they satisfy the
correct commutation relations with one another.
This gives us some conditions of the second degree
in U, namely,

(8)

From this formula one can work out the contribu-
tion to 8„, of any kind of nonscalar canonical field

quantities. Thus, for canonical vectors A„B,
satisfying

where the sum is over all the canonical pairs and This leads to
0„is built up from contributions for all the nonscalar
canonical field quantities. One sees that (7) leads to
(2) with V equal to any P or g, and it also leads to
(3) provided

[A„B',j = b,.b(x —x')

the contribution is

e„(vector) = —A,B, ,

and for a four-component spinor field satisfying

f.P'o* + P'o*P. = B.ol(x —x') (a,b = 1,2,8,4)
it is

(9)

x,[U, U']d'zd'x' = K,d'z

x,x'.[U, U']d'xd'z' = — (x„K, —x,K„)d'x. (14)

The commutator [U, U'] involves 8(x —x') and
its derivatives, say,

8„,(spinor) = —ih-', P*(a,n, —cx,n, )P . (10)
%'e see that the momentum density depends only

on the geometrical nature of the various field quanti-
ties occurring in the theory. It is merely a sum of
contributions arising from the various basic field

quantities, without interaction terms. Any physical
interaction between the fields does not show itself
here.

The momentum density must itself satisfy (2),
(3), and (4), so that

[K„P,] = K, ,

[K„3II„]= x,K(,, —x,K, , —B,E.+ b„K, . (11')

[U, U'] = ab(x —x') + b,5, ,(x —x')

+ c„B,„(x —x') + d„,8,„,(x —x') +
(15)

The coefFicients c, b„c„,dr„, may be taken to be
functions only of the field point x, since if field
quantities at x did occur in them, one could elimi-
nate these field quantities by suitable transforma-
tions. The fact that [U, U'] is antisymmetric between
x and x' imposes some relations on the coefFicients.
Interchanging x and x' in (15), we get

[U', U] = ab —b!8,, + c'„8,„—d'„,8„,+,
= ab —(b,b), , + (c,.b), „—(d„,b) „,+

These equations combined with (6) immediately
lead to those of the commutation relations (1) for
which p, v are restricted to 1, 2, 3.

THE ENERGY DENSlTY

To complete the representation we must obtain
the remaining infinitesimal operators Pp 3f p to
satisfy (1).We may do this by introducing a suitable
localized field quantity U and setting

(a br, r + crs, rs drsr, rsr' ' ')8

+ ( b„+ 2c„... ——3d„r„,. )8, ,

+ (c„, —3d„„, )5„,+
Putting (15) plus (16) equal to zero, we get

brr+ Crs, rs , drst, rsr' ' ' = 0

2rs, s 3drst, st

(16)

(18)

Pp
—— Ud'x 3f,p

—— x,Ud'x . (12)

[UP,) = U, ,

[U,M„] = x,U, , —x,U, ,

U has the physical meaning of energy density and
must be chosen so as to make Pp, M, p satisfy the
correct commutation relations.

%e take U of course to be a three-dimensional
scalar. Thus it satisfies

2~rs 3drst, t (19)
and so on. Equation (18) is a consequence of (19).

Equation (17) shows that

6 = 0!rr)

2n„= b, —c„„+d„„,., (20)

Equation (18) shows that c„„can be expressed in
terms of second derivatives, and hence from (20)
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on a wave function, all attempts to do so leading to
divergent integrals. Under these circumstances, one
does not really have a representation of the IHLG at
all.

Physicists have constructed a method for handling
the divergent integrals, the renormalization method,
which is successful in many cases in leading to well-
defined physical results that can be compared with
experiment. However, the method can be considered
only as a stopgap, since it does not follow logically
from established physical laws. A. satisfactory solu-
tion of the problem, if it is to conform to accepted
basic laws of quantum mechanics, really must lead
to a representation of the IHLG, and the renorrnali-
zation technique does not do this.

Since the diKculties arise entirely from the inte-
gration of the infinitesimal operators, one can avoid
them by short-circuiting the integration process, not
using at all the infinitesimal operators, and. dealing
only with those integrals that are needed for com-
parison with experiment. A great deal of work has
been done on these lines in recent years. However,
it is unlikely that such work can lead to a complete
theory. A process of integration seems to be an
essential feature of dynamical theory.

It appears that the most hopeful prospect is to
try to get representations of the IHLG in some more
general way, still working from the infinitesimal
operators and using a process of integration for the
finite ones. There are several places where one might
try to generalize the method that has been followed
here. For example, one might depart from the local.
character of the energy density, or the local commu-
tation relations for the basic field quantities. If all
such attempts fail, one would have to consider
altering the fundamental laws of quantum mechanics,
which would involve finding some new general princi-
ple to replace the present use of representations of
the IHLG.

SUMMARY

A quantum field theory in agreement with special
relativity can be built up from the infinitesimal
operators of translation and rotation. These opera-
tors are expressible in terms of a momentum density
and an energy density. The momentum density is
determined by the geometrical properties of the
fields concerned. The energy density has to satisfy
commutation relations for which certain conditions
hold, given by Eqs. (15), (25), and (26).
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SECTION C

~~)UITE a revolution is going on at present con-~ cerning basic ideas of geophysics, geology, and
paleoclimatology. Numerous authors have contrib-
uted to the new revolutionary picture of our Earth
and its history that is now developing. Some of the
contributions are newly detected empirical facts,
others are new interpretations of things long known,
and some of the ideas of the new theory have been
conceived independently by several different authors.
Among those who have contributed to the new ideas
are Binge, Brill, Carey, Dicke, Egyed, Ewing, Fisher,
Gamow, ter Haar, Heezen, Ivanenko, Jordan, Kiril-
low, Neumann, Sagitov, Teller, and Tharp.

This new understanding of the development of the
earth is closely related to a generalization of the

~ physical theory of gravitation. This started from
Dirac's idea (1937) that the "constant" of gravita-
tion, ~ = 8~G/c', might in reality be a variable
quantity. The generalization of Einstein's theory of
gravitation that is generated by assuming ~ to be a
scalar field variable has been explored mathemati-
cally by the author since 1943. It was studied also
by Einstein and Bergmann, Thiry, Dicke, and in
connection with the author's work by Ludwig, Cl.
Mueller, Heckmann, Fricke, Gressmann, Schuecking,
Ehlers, Kundt, Pauli, Fierz, Just, Figueras, and
8rill.

This generalized theory of gravitation, based on
Dirac s hypothesis that ~ is diminishing with time,
approximately inversely proportional to the age of
the universe, is meaningful in cosmology and as-
tronomy, in connection with double stars, origin of


