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mechanism postulated by El-Bayoumi and Kasha™
in studies of fluorescence quenching of dimers in
solution.

9. Photoconductivity

The photoconduction of aromatic crystals appears
to be related to the luminescence inasmuch as those
crystals which luminesce with highest efficiency are
often best photoconductors. Therefore, if photocon-
ductivity is to be efficient, the lowest excited state of
the crystal should not rapidly decay nonradiatively.
This, in turn, suggests that photoconductive states
are not populated “vertically,” but involve the re-
laxation of exciton waves within the Brillouin zone.
A probable zone structure is shown in Fig. 12. In this
representation the initial kinetic energy of an
exciton [e(0) — e(k)]is larger than the binding energy
e(d) of the exciton, which is then able to dissociate
into a free electron and a hole by emitting or absorb-
ing phonons. In this example exciton absorption con-

70 M. Ashraf El-Bayoumi and M. Kasha, J. Chem. Phys.
34, 3181 (1961).
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tributes directly to the photoconductivity which
would necessitate that the photoelectric threshold
and the exciton origin be reasonably close together.
Such is apparently not the case for molecular crystals
where there can be a gap of up to 2 to 3 eV. The
presence of defects or impurities could provide other
pathways for exciton dissociation if there were suf-
ficient energy available at the active sites. Conjec-
tures of this nature could readily be tested experi-
mentally, by measurements of reflexion spectra,
quantum yields, excitation spectra of slow fluores-
cence, photoconductive anisotropy, and the slow
fluorescence of crystals in strong electric fields.
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1. INTRODUCTION

HE polarization of the dielectric crystal has been

defined as, or conceived as being equal to, the
electric dipole moment of the unit cell divided by the
volume of the unit cell; analogous to the magnetiza-
tion of the magnetic crystal. Such a definition or con-
ception has not particularly been felt awkward, until
the discovery and investigation of many ferroelectric
and pyroelectric crystals in recent years. These crys-
tals are mostly of poor symmetry and of ionic charac-
ter, and are conceived to be characterized by “spon-
taneous polarization’” (polarization at zero electric
field). In poorly symmetrical crystals, there is a fair
arbitrariness in selecting their unit cell. In the crystals
of ionic character, it is easily seen that the dipole
moment of unit cell may vary with the type of unit
cell selected. Therefore, especially for ferroelectric
and pyroelectric crystals, the conventional concept of
polarization proves more or less obscure. This leads
to the obscurity of other dielectric concepts, since
they are based on the concept of polarization.
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In this paper, we attempt to make clear and exact
the concepts of polarization and other dielectric char-
acteristics of the ionic crystals general. We first con-
sider polarization; then, the new concepts of ‘“boun-
dary polarization,” ‘“‘reference structure,” and ‘‘or-
derly and stationary reference structure’” have to be
introduced. “Reference structure” is to be employed
in place of ‘“unit cell;”’ the former is more suitable for
our general argument. On the basis of this considera-
tion, we next discuss pyroelectric coefficient and
susceptibility, and finally, investigate pyroelectricity,
ferroelectricity, and spontaneous polarization.

In this paper, we are not concerned with the prob-
lem of the origin of ferroelectricity or pyroelectricity,
or more generally, the problem of why a particular
crystal has such a structure.

2. POLARIZATION

2.1. A Theorem of Electrostatics and the Meaning
of Polarization

There is a well-known theorem of electrostatics to
be presented at the outset. We suppose two infinite
plane electrodes separated by a distance [ and both
grounded. Then, the theorem is that if a point charge
q is located between the electrodes at a distance u
from one of them, the charge induced on that elec-
trode is —q(1 — u/l). From this theorem it follows
that a dipole (not necessarily a point dipole) p be-
tween the electrodes induces a charge p-n/l on the
negative-side electrode (referring to the common
normal-vector n of the electrodes). It is noted that
the induced charge depends on the position of the
point charge but not on that of the dipole. The di-
ameters of the electrodes have been assumed to be
infinite, but, in practice, they have merely to be large
enough compared with /.

We consider the meaning of “polarization.” For
this purpose, it is supposed that a macroscopically
homogeneous crystal plate of a thickness [ is in con-
tact with two electrodes; the diameter of the crystal
plate is large enough compared with [, and the elec-
trodes cover the main faces of the crystal plate en-
tirely. The areas of the crystal plate and electrodes
are denoted by S and S’, respectively. In this paper,
the normal component of the ‘“polarization vector”
of the crystal plate is referred to briefly as the
“polarization’” of the crystal plate. If the polariza-
tion of the crystal plate is P, and the potential differ-
ence between the electrodes is V, and the charge on
the negative-side electrode is @, then the relation

Q = SP + S'V/4xl
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holds in practice. P is actually dependent on V, but
for the validity of the above relation such dependence
is not necessary, and it can be conceived that P and
V cause Q independently of one another. Even though
the potential difference varies, the polarization is the
same if the configuration of the charges composing
the crystal plate remains as it is. Therefore, the
polarization P of the crystal plate at a certain po-
tential difference V can be interpreted as P = Qo/S,
where @) is the charge which would accumulate on
the electrode if the potential difference were brought
from V to zero without modifying the charge con-
figuration of the crystal plate. The polarization can
yet be reinterpreted, as follows. The polarization of
the crystal plate at a certain potential difference is
equal to the charge which would be induced on the
negative-side electrode by the substance within a
cylinder running through the crystal plate, with its
bottom of unit area, if both electrodes were to be
grounded without modifying the charge configura-
tion. It is advantageous to interpret the polarization
in this form; for, the polarization can then be cal-
culated from the knowledge of the configuration of
the charges composing the crystal plate, with the
help of the previous theorem of electrostatics.

2.2. Crystals to be Treated

In this paper, we are concerned with the crystals of
ionic character. They will be referred to simply as
crystals. It is assumed that they have neither elec-
tronic, nor ionie, electrical conductivity. We often
imagine an infinite crystal that has no boundaries.
The crystal plates, of a crystal (species), having vari-
ous Miller indices and various boundaries can be
imagined to have been cut out from its infinite
crystal; their internal structures are conceived to be
identical with each other and to be definite at a given
temperature, a given electric field, and a given strain
or stress. Temperature, electric field, strain, and
stress in this paper are of a macroscopic concept and
uniform over the whole crystal or the whole crystal
plate. A crystal to be treated can have disorder (as
potassium dihydrogen phosphate and sodium nitrite).
For convenience of consideration, each of the ions (or
atoms) composing a crystal is replaced by a point
charge and a point dipole located at its nucleus. This
simplification is adequate for the essence of our argu-
ment.

2.3. Connection between Polarization and
Configuration Parameters

A crystal structure is represented by a reference
space lattice and a basis. When two space lattices can
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be superimposed by a parallel displacement, they are
provisionally referred to as parallel to one another.
Any space lattice parallel to a certain reference space
lattice can be adopted as another reference space lat-
tice. The three fundamental translation vectors of a
given crystal are denoted by a, b, and ¢. The volume
per lattice point is denoted by ». All the ions com-
posing the basis are numbered. In case the crystal
has disorder, all the positions the sth ion can occupy
are numbered. The jth position of the ¢th ion is
briefly designated as the (¢,5) position. The vector
getting from the point of the reference space lattice
to the (z,j) position in the same basis is denoted by
si;. The charge and dipole of the 7th ion at the (7,7)
position are denoted by ¢.; and p.;, respectively. The
probability that the ¢th ion occupies the (7,5) position
is denoted by fi;. (It is unessential whether the
positions occupied by the 7th ion are discrete or con-
tinuous; we assume that they are discrete.) It is
obvious that

Difi=1. 2.1)
As the requirement for electrical neutrality of the
crystal, the equation

D iifigis =0
must be satisfied.

We connect the polarization of the crystal plate
with the charge-configuration parameters of the
crystal. The crystal plate has the indices (hihzhs),
the normal vector n, and the thickness /; its diameter
is large enough compared with [. For the present,
we set the following assumption, which will later be
revised. The surface parts of the crystal plate in-
clude no vacancies, and the configuration parameters
S:j, sj, ete., are uniform over the central and surface
parts of the crystal plate. We imagine the crystal
plate within the infinite crystal. In order to carry out
the calculation according to Sec. 2.1, we imagine two
grounded electrodes in contact with the crystal plate.
Out of the (hihehs) planes of the reference space
lattice, one is arbitrarily chosen as the (hihohs) datum
plane. The distance of that plane from the negative-
side electrode (referring to n) is denoted by l,. A
plane which is parallel to an (hih2hs) lattice plane and
goes through (z,7) positions is briefly designated as
an (7,5)-(hihehs) plane. The (7,7)-(hihehs) plane which
is distant by n-s;; from the (hih:hs) datum plane is
referred to as the (z,7)-(hih2hz) datum plane. When
the spacing between two adjoining (h:hshs) lattice
planes is denoted by d, an arbitrary (¢,7)-(hihshs) plane
is distant from the (¢,7)-(hihshs) datum plane by
n:;d (n:;: an integer), and hence from the negative-

2.2)
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side electrode by ly + n-s;; + 7:;d. The total number
of the (z,5)-(hih2hs) planes between the electrodes is
denoted by N:;. An (2,7)-(hihehs) plane contains fi;d/v
7th ions per unit area; hence, for electrical neutrality
of the crystal plate, the equation

> kiﬂiﬁ_l fiid

7,7 n=kij

g:i; =0
or

D i Nufiqi = 0 (2.3)

must be satisfied, where k;; is the n.; of that (7,7)-
(h1hahs) plane which is the nearest to the negative-
side electrode.

The polarization P of the crystal plate is calculated
as follows:

kij+Nij—1 f d
iJ

v

P

II

i gig=kij

d
W ZN” ijq'ij(n'sij + kid + %Nifd)

7,7

d
+ n'—ﬁ' ;Nij iiPis -

n-pPi; }
l

I

Now, we set the second (hihohs) datum plane, to
which an (hihohs) lattice plane is selected. The (3,7)-
(hihshs) plane distant by n-s;; from that plane is the
second (2,7)-(hihohs) datum plane. If the second
(h1hahs) datum plane is distant from the first one by
kd, and the (¢,j)-(hihehs) plane nearest to the posi-
tive-side electrode is distant from the second (z,7)-
(hihzhs) datum plane by ki;d, then

kij +Nij - 1 = k + k:jj . (2.4)

The number of the (7,7)-(hihz2hs) planes N;; might not
be independent, of ¢, but there is a number N such
that [N:;; — N| < 1 (or 2 or the like) over all 7 and j.
Employing ki, and N, we have

Nd Ios; k.
P = ol 'wa% (n-sij + = +2 a )

2,7

Nd
+ n- Ul Zf‘.].pi].
i, N
del Z (Nij - N)fiiqij (n°sij+ ﬁd‘?kid)

d
+ n—UTZ (Ni; — N)feipis -

The last two terms on the right-hand side can be
neglected since they are, ordinarily, far smaller than
the first two terms. [It is noted, from (2.2) and (2.3),
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that Zi,j (N” - N)quw = 0] It is obvious that Nd
= [. Thus, we get to

l

n.—1])._ {E f"jq”(sif - gii) + izjfijpij}
L ko 4 K )

+ » {;fﬁ% ( 9 d

+ izjfiiqii(n'gij>},

where g;; are certain vectors. If we put

P, = (1/v) { 2o fuiis (s — &) + Dois)ibii} (2.6)

and

P

(2.5)

1 ]ij + k:]
- e (25

+ 2 fugis(n-gss) },
then (2.5) becomes
P =nP,+ P;.

2.7)

(2.8)

(Here, = has been employed instead of =. It is im-
material which is employed.)

It is seen that P consists of both P, and the normal
component of P,. Equations (2.6), (2.7), and (2.8)
give the connection between the polarization and the
configuration parameters. The quantities P,, n-P,,
and P; are provisionally referred to as the “bulk
polarization vector” (briefly, bk.p.v.), “bulk polari-
zation” (briefly, bk.p.), and ‘boundary polariza-
tion” (briefly, bd.p.), respectively.

2.4. Reference Structure, Bulk Polarization
Vector, and Boundary Polarization

The position vectors s,; give the structure of the
crystal; likewise, the position vectors g;; give some
kind of structure, which is temporarily referred to
as the “proto-structure.” Many different s sets can
represent the same crystal structure. (The s set is
the set which consists of the vectors s;;.) Similarly,
various g sets are conceivable which represent the
same proto-structure. As seen from (2.6), the bk.p.v.
is to be determined by comparing the crystal struc-
ture with the proto-structure. For this comparison,
the specification only of each of these structures is
not sufficient; we must yet specify the connectron
between them, that is, which one of the (,7) positions
in the proto-structure corresponds to an arbitrary
one of the (z,7) positions in the crystal structure. (The
(7,7) positions, by themselves, form a space lattice.)
Therefore, it is convenient to employ the concept
which involves the ‘“connection” in addition to the
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‘‘proto-structure’; this is provisionally referred to
as the “reference structure’” (briefly, r.s.). If the set
of s;; and g;; and the set of s¥ and g¥ are representa-
tive of the same crystal structure and the same r.s.,
then it is conceived that s¥ — g¥ = s;; — g, or
more generally s¥ — g¥ = s; — g + A (A :a cer-
tain vector), over all 7 and j. If the s set is reselected
otherwise, the g set must also be done in order to
represent the same r.s. A reference structure often
corresponds to a type of unit cell. For the general
consideration of polarization, ete., of ionic crystals,
the concept of “reference structure” is more ex-
pedient than that of “unit cell.” In this paper,
therefore, the former is generally employed in place
of the latter.

The bk.p.v. is determined by specifying the r.s.,
but is independent of the particular representations
of the r.s. The bk.p.v. has no connection with the
boundaries of the crystal plate. The polarization is
dependent upon the boundaries, but independent of
the r.s. The bd.p. depends on the boundaries. It
depends, further, on the r.s., but not on the particular
representations of the r.s.

In order to make the newly introduced concepts
clearer, we consider a model crystal, which is shown
in Fig. 1. The crystal consists of two kinds of ions

|
,&\ \ -
o o~ ID —— )l*\ Fia. 1. Model crystal. Fun-
N /?:\ , damental translation vectors
* a and b are parallel to the
N o~ #/ paper face, and ¢ is normal to

\.\ ~ that. Full circles and open
,4</

tions of positive first ions and
;#/ negative second ions, respec-
tively.

- ones are projections of posi-
\
\

and has no disorder. The first and the second ions
possess a positive charge ¢ and a negative charge
—g, respectively, and have no dipoles. The funda-
mental translation vectors a and b are parallel to
the paper face, and ¢ is normal to that. Full circles
and open ones are projections of first- and second-ion
positions, respectively. Points A,B,C,D, and E are
positive-ion positions in a plane parallel to the paper
face. At a distance ¢ from them, there are points
A’ B’,C",D’, and E’, respectively. Point F is a nega-
tive-ion position between the planes ABC and
A’B’C’. Points G and H are the body centers of the
hexahedrons ABCDA’B’C'D’ and ABCEA'B'C'E/,
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respectively. In this crystal, Eq. (2.6) becomes

P, = (g/v){(s: — &) — (s2 — g2)} .
(i) If weset s, =0,s; = ﬁ‘, g =0,and g =
AG, then s; — g1 = 0,s: — g = GF, and
= (¢/v)FG;

(i1) if weset s; =0, s, = (ﬁ*",gl = 0, arli\gz =
CG, then Sx_—: g1 = 0, Se — g2 = GF, and
P, = (q/V)FG;

(ifi) if we sets; = 0,8, = AT, g =0, and g, =
AH then s; — g1 = 0, s: — go = HI, and
= (¢/v)FH;

@iv) if_\ye set s, = HA, S2 iﬁi’, g =0,and g =
I‘I_Q, then S1i — & =_I_:IA, Sy — go = HF +
HA, and P, = (¢/v)FH

The r.s. in (i) is the same as that in (ii), and the r.s.
in (iii) is the same as that in (iv), but the r.s. in (i)
differs from that in (iii). The r.s. in (i) corresponds
to the type of unit cell that consists of one negative
ion existing at F and one positive ion existing, in the
form of eight identical parts, at A,B,C,D,A’,B’,C’,
and D’. The type of unit cell corresponding to the
r.s. in (iii) consists of one negative ion existing at F
and one positive ion existing, in the form of eight
identical parts, at A,B,C,E,A’,B’,C’, and E’.

The concept of bd.p. is new. Polarization has often
been conceived equal to what corresponds to our
bk.p.; this conception is valid in case bd.p. is negli-
gibly small compared with bk.p.; but in other cases
it is not valid. As to a given crystal plate, its polari-
zation is unique, but its bk.p. and bd.p. are not so.
We remember that they are dependent upon the
particular r.s. selected.

2.5. Illustration of Bulk Polarization and
Boundary Polarization

The model erystal shown in Fig. 2. will serve for
the illustration of bk.p. and bd.p. It consists of two
kinds of ions and has no disorder. The first and the
second ion possess a negative charge —¢q and a posi-
tive charge g, respectively, and have no dipoles. The
fundamental translation vector a is normal to the
paper face, ¢ is parallel to that and orients from left
to right horizontally, and b is normal to the former
two. Open circles and full ones are projections of
first- and second-ion positions, respectively. Points
A,B,C, and D are negative-ion positions in a plane
parallel to the paper face. At a distance a from them,
there are points A’,B’,C’, and D’, respectively.
Point F is the body center of the hexahedron ABCD-
A’B’'C’'D’; G is the face center of the rectangle
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F1a. 2. Model crystal plate. The fundamental translation
vector a is normal to the paper face, c is parallel to that and
horizontal, and b is normal to the former two. Open circles and
full ones are projections of positions of negative first ions and
positive second ions, respectively.

ADA’D’; E is a positive-ion position on the line seg-
ment FG; we put EF = « and EG = w. The normal
vector n of the crystal plate is parallel to c. We put

S1 = 0,
then,

s: =8, g =0, and g2 =&,

P,=n-P, = (¢g/v)n-(s — g)
and
P; = (q¢/20) { (k2 — k1) + (k2 — k1)} + (¢/v)n-g.
If weset s = A_E, then
ky = ko, K = k%, and P, = (g/v)n-g ;
if wesets = Ef*], then

ke —ki=ki —k'’=land P, = (g/v)c +(q/v)n-g.

Various r.s.’s are conceivable, but only three typical
ones will be taken up. We set s = AE, provisionally.

Reference Structure I. We select
g=ﬁ and s—-g=FTI:3.
This r.s. corresponds to the type of unit cell that con-
sists of one positive ion existing at E and one negative
ion existing, in parts, at the eight points A,B,C,D,-
A’ B',C’, and D’. This r.s. may be adopted in case
the positive ion, as shown in Fig. 3(a), is mobile in

the sense of electric field about F as center. In the
present instance,

P, = — (qu/v), P;=qc/2v, P = qu/v.

The bk.p. is negative; therefore, viewing the unit cell
alone, the crystal plate appears as if it were polarized
in the negative sense. The fact is, however, that the
crystal plate is polarized in the positive sense. The
contribution of P; to P overcomes that of P,.

Reference Structure II. We select
g=A_(§ and s—g=G—]';).
This r.s. corresponds to the type of unit cell that
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Fic. 3. Three different cases for the displacement of ions by
electric field. In the uppermost three, the ionic configurations
are the same, but the applied electric fields are different.

consists of one positive and one negative ion, the
former existing, in the form of two identical parts,
at both E and the point distant by ¢ from E, and the
latter existing, in the form of eight identical parts,
at A,B,C,D,A’B,C’, and D’. This r.s. may be
adopted in case the positive ion, as shown in Fig.
3(b), is mobile in the sense of electric field about G
as center. In the present instance,

P,=qw/v, P,=0, P=P,=quw/.

Since the bd.p. is zero, the polarization is equal to the
bk.p. The bk.p. and the bd.p. in R.S. I are not equal
to those in R.S. II, respectively, but the polarization
is, of course, equal in both r.s.’s.

Reference Structure I11. We select
g=AE and s—g=0.
The type of unit cell corresponding to this r.s. is
not simple. This r.s. might be advantageous in case

the positive ion, as shown in Fig. 3(c), is mobile in
the sense of electric field about E as center. Now,

P,=0, P;=gquw/v, P=P;=quw/v.

It is seen that P consists_oj P; alone.

We can also set s = BE. Then, in order to repre-
sent, for instance, R.S. I, we have merely to select
g = BF.

2.6. Boundary Polarization Involving Surface Effect

So far, we have been assuming that the surface
parts of the crystal plate include no vacancies. If we
adhere to this assumption, we shall deviate far from
reality. We consider, for example, the (001) crystal
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plate of cesium chloride. Both its extremities would
then be a perfect plane of chloride ions on one side,
and a perfect plane of cesium ions on the other side.
(Then, the crystal plate is electrically neutral.) The
crystal plate would therefore have a large polariza-
tion at null field. This is not the case, however. As is
known, opposite senses of the normal of the (001)
crystal plate of cesium chloride are equivalent (in
symmetry) to one another; in an ordinary sample of
the crystal plate (species), therefore, its surface parts
on opposite sides are expected to be almost identical.
In order to express such identity in our treatment, we
have to take into consideration vacancies in the sur-
face parts. This is also consistent with the fact that
any real crystal plate of best quality includes
thermally-caused vacancies in its surface parts.
(Vacancies in the central part are, usually, very
sparse.) We have also been assuming that the con-
figuration parameters are uniform over the central
and surface parts of the crystal plate. Is this too
simple?

It is proper that the above-mentioned surface
effect is involved in bd.p. We denote this correction
term by AP;. The density of vacancies can be repre-
sented in terms of f;;, though the former concept is,
originally, different from the latter; in this case Eq.
(2.1) does not hold. It is assumed that the thickness
of each surface part is far smaller than the total
thickness of the crystal plate. Now, we estimate the
degrees of contribution to AP; of the variations in
the configuration parameters within the surface
parts. For this purpose, we consider a one-dimen-
sional model crystal, which consists of positive and
negative ions alternating. (The crystal plate is one-
dimensional in treatment.) In the central part, the
charges of the positive and the negative ion are ¢ and
—g, respectively, and the interval between two ad-
joining positive and negative ions is ¢. The thickness
(or length) of the crystal is I. At first, the crystal ends
with a negative and a positive ion on the left- and the
right-hand side, respectively, and the ionic charges
and the interval between ions are uniform over the
central and surface parts.

The dipole moment of a pair of adjoining positive
and negative ions is qc at first, but it varies by gc if
the interval becomes 2¢, and by g¢/2 if ¢/2. Therefore,
the contribution to AP; of the variations in the lat-
tice constants or the position vectors s;; within the
surface parts is thought to be of the order of Aqc (4 :
a certain coefficient). The case, in the crystal plate,
that vacancies are present in the surface parts corre-
sponds to the case, in the linear model crystal, that
the crystal ends with fractional ions. It is now sup-
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posed that the negative ion at the left-hand extremity
is bisected and one half is left there and the other half
is brought to the right-hand extremity; or that a half
negative ion is added to the right-hand extremity and
a half positive ion is superimposed on the negative
ion at the left-hand extremity. By this operation,
both extremities become identical. This operation
varies the dipole moment of the whole linear crystal
by ¢l/2. Therefore, the contribution to AP; of the
vacancies within the surface parts may be of the
order of Agl. The contribution to AP, of the varia-
tions in the charges g¢;; within the surface parts is
considered to be of the order of Agc. For, if the
charges of two adjoining positive and negative ions
become doubled, the dipole moment varies by ¢c¢; and
if halved, then the moment varies by ¢c¢/2. A con-
ception might here occur: If only the charges of the
negative and the positive ion at the extremities were
to vary, the contribution of the variations in the
ionic charges would be of the same order as that of
the vacancies. This contribution is, however, to be
regarded as of the space charges due to conductive
electrons. We remember that, in this paper, we are
concerned with the nonconductive crystals. This case
is therefore excluded. It may be reasonable to esti-
mate the contribution of the variations in the dipole
moments p;; as being of the same order as that of the
variations in the charges ¢;.

From the above consideration, it is evident that
the vacancy effect is prominent. Hence, it may be
reasonable to assume that the surface effect is repre-
sented by the vacancy effect alone, the other contri-
butions being left out of consideration. There are
other thermally-caused imperfections that have not
been considered above; their effects may also be
negligibly weak compared with the vacancy effect.

We calculate the correction term AP, due to the
vacancy effect. The number of 7th ions per area v/d,
in the kth (z2,5)-(hihehs) plane, in the negative- (or
positive-) side surface part is denoted by fi» (or
f'i%). As the requirement for electrical neutrality,
the equation

> % (fis — fi)gis + Z)k ‘;i‘ (fiwe — fis)gis = 0

.5,k

must be satisfied. It may be obvious that

AP; = —-—;k % (fise — fi5)qis -
If we put
i = (fis = fn)/[fe; or fi = fi;(1 — eijk) , (2.9)
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then

-1

AP, = > Oiafiigid .
U 55k

Thus, we have

1 ki,’ k{,
Py =— {Zfz‘j%(—‘;—_——)d

+ iyzjfuth (n gU) + i;c 5k, "Jq']d}} (2.10)

as the new bd.p.

For the illustration of the new third term, we con-
sider the model crystal shown in Fig. 2. The crystal
is now a little modified: There are vacancies in the
surface parts, the elements of the § set being 6.1,
21, 012, 022, etc., from the left-hand extremity
successively (the subscript j is unnecessary since this
crystal has no disorder). The third term is

(QC/U)(—' 011 + 021 — 012 + 22 — - - ) .
If R.S. I (see Sec. 2.5) is selected,
P/ = (QC/U)(1/2 — 0 + 021 — 612 + Oae — - - ) .
Hence, provided that
0ir — 031 + 012 — Oz + -+ - = 1/2
then
P,=0 and P=P,= — qu/v.

We note that, in this case, the polarization is equal
to the bk.p.
If R.S. III is selected,

Pf = (QC/U)(’ID/C — 61 + 021 — b2 + O — - - ) .
Hence, provided that

011 — 021 + 612 — G2 + - -+ =’w/C,

then
P;=0, P,=0, P=0;

as the bk.p. is zero, so the polarization is zero.

As above illustrated, if ordinary samples of a
crystal plate (species) have unique boundaries (or
surfaces) in a pair, the crystal plate (species) has a
r.s. that gives ordinarily P; = 0. (This problem will
again be considered in Sec. 4.4.)

2.7. Treatment of Group Ions

A group ion, such as a nitrite ion, always behaves
as one group. Each of the atoms (or ions) composing
a group ion can be regarded as a carrier of a point
charge and a point dipole; but it is more advan-
tageous to replace the whole group ion by a point
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charge and a point dipole; for, it is then unnecessary
to know the effective charges and dipoles of the
constituent atoms (or ions). One way of the replace-
ment is as follows. We take the nitrite ion as an ex-
ample. This group ion, as a whole, possesses a charge
of — 1 (electron) unit. Now, it is supposed that two
point charges, 1 unit and — 1 unit, are put on the
nitrogen nucleus. One of them, 1 unit, forms a di-
pole p in combination with the charge — 1 unit
originally present within the group ion. This dipole
can be replaced by the point dipole of the same
moment. There are three nuclei in the nitrite ion;
it is immaterial at which of them this point dipole
is located, but we locate it at the nitrogen nucleus.
The nitrite ion has thus been replaced by a point

~charge —1 unit and a point dipole p both situated

at the nitrogen nucleus. The oxygen atoms are
veiled by this replacement. The two point charges,
1 unit and —1 unit, can also be put on one of the
oxygen nuclei instead of the nitrogen nucleus. Then,
the nitrite ion is replaced by a point charge —1 unit
and a point dipole p’ ( # p) both situated at that
oxygen nucleus. The other oxygen atom and the
nitrogen atom are veiled by this replacement. It can
happen that there is disorder about the position,
orientation, or substance of a group ion in a crystal;
if 8o, an f set is employed as in monatomic ions.

2.8. Orderly Reference Structure

In a disordered crystal, the number of the positions
the 7th ion can occupy may be more than one; the
(4,5) positions, by themselves, form a space lattice,
which is temporarily referred to as the (z,7) space
lattice. One ¢th ion existing at a point, say, “A”, of
the (7,7') space lattice will soon move to a point of
the (7,7'") space lattice. In an ordinary crystal, this
new point may be uniquely determinate—we call the
point “B”’—and, conversely, one 7th ion existing at B
may move to A whenever it moves to a point of the
(7,7") space lattice. This may be the case with all 7 and
j. In such a crystal, there is an s set that makes
ki ki, and Y8 quite, or almost, independent of j, or

kij = ki, K=K, Dufin=0:, (2.11)
for an arbitrary sample of a crystal plate (species),
with arbitrary indices, of the crystal, at a given
temperature and null field. (For instance, s/ =
OA, s;/// = OB, etc., where O is a point of the refer-
ence space lattice.) This s set is provisionally re-
ferred to as “orderly.” If, further, g.; are selected so
that they are independent of j or g;; = g;, the set of
s;; and g;; is referred to as orderly. The r.s. which can
be represented by an orderly s-g set is referred to as
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orderly. (The orderly r.s. can also be represented by
a nonorderly s-g set.) The concept of “orderly r.s.”
is useful; for, the bk.p.v. and the bd.p. have no direct
connection with the particular representations of the
r.s. It is obvious that “orderliness’ does not concern
the crystals without disorder, or that any s-g set or
any r.s. is orderly in these crystals. Which s-g set or
which r.s. is orderly can, usually, be presumed from
the investigation of the crystal structure. If we select
an orderly s-g set, Eq. (2.10) becomes

1 ki 4 K
p= (2 a

i

+ 2 ag) + X e"q‘d}’ 2.12)

where

ijiiqii = ¢ (2.13)
There might be a crystal as follows: When an ¢th
ion existing at A, a point of the (7,5/) space lattice, is
to move to a point of the (z,7') space lattice, the new
point is indeterminate, or in other words, the proba-
bilities of its moving to a point B and another point
B’ are equal to one another. Such a crystal is not
expected to have any orderly s set; it would exhibit
some anomalies. In this paper, every crystal treated
is assumed to have orderly s sets.

3. PYROELECTRIC COEFFICIENT AND
SUSCEPTIBILITY AT CONSTANT STRAIN

3.1. Stationary Reference Structure

The arguments of polarization difference, pyro-
electric coefficient, and susceptibility at constant
strain are considerably different from those at null
stress. In this section, we consider these arguments at
constant strain, and in the next section at null stress.
It is to be noted that “strain’ in this paper is that in
thermodynamics. (Hence, thermal expansion at null
stress leads to variation in strain.)

It is convenient to employ the concept of “station-
ary” r.s. We denote by Ag;; the variation in g
accompanying a variation in temperature or electric
field at constant strain. It is possible to select a g set
such that Ag,; is zero over all ¢ and 7, or more gener-
ally, is independent of 7 and j; this g set is provision-
ally referred to as “stationary.” A r.s. which can be
represented by a stationary g set is referred to as
stationary. For instance, R.S. I and R.S. II in Sec.
2.5 are stationary, while R.S. III is not. A orderly
and stationary s-g set is possible. A r.s. which can
be represented by an orderly and stationary s-g set
is orderly and stationary.
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3.2. Polarization Difference due to Temperature
Difference

We first consider polarization difference due to
temperature difference at constant strain. An orderly
and stationary s-g set is selected. Ranging the
bk.p.v., the bd.p., and the polarization of the crystal
plate, we have

1
P, = ”U‘{ZZ: fiiqsi (8s; — &) +;f€jpii} )
P~ g a5

v %
+2 g +20 eiqid} ;
P =n-P, + Pf . /

When temperature varies from 7" to 7*, the sym-
bols of the configuration parameters vary from
asteriskless to asterisked ones, at constant strain and
null field. It is assumed that the crystal structure
does not change abruptly. It may be obvious that

(The expression k¥ = ki, k¥ = ki can be replaced by
the expression k¥ — k. and k¥ — ki: independent of
7 and j. The latter is more general.) If

F(3.1)

v¥ =,

L3

q: (3.3)

and

for an arbitrary sample of a crystal plate (species),
with arbitrary indices, of the crystal (species), then

P! = (1/0) { s f3a8(s% — g) + Lo.if#p3) } (3.5)
P¥ = P;,, P*=n-P, + P} -

It is thought that if the set of s;; is orderly, the set of
s¥ is also orderly. From (3.1) and (3.5), it follows that

P* — P =n-(P*—P,). (3.6)

The left-hand side is, in itself, unconcerned with
r.s., while the right-hand side is, in itself, independent
of crystal-plate boundaries. The polarization differ-
ence P* — P is therefore independent of boundaries
as well as r.s.

We now scrutinize this consequence. If an arbi-
trary r.s. is selected, not (3.6) but the general equa-
tion

P* — P =n.(P¥ —P,) + (P¥ — P))

is valid. The left-hand side is independent of the
particular s-g sets selected, but it might depend on
the boundaries. Supposing the s-g set selected is
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changed, then the left-hand side remains unaltered,
while each term on the right-hand side may be
altered. According to the previous consideration, the
second term should vanish when an orderly and
stationary s-g set is selected. We know that the sec-
ond term has no direct connection with the particular
representations of the r.s. The second term should,
therefore, vanish when an orderly and stationary
r.s. is selected (at the temperature 7"). The first term
remaining is, in itself, independent of the boundaries;
hence it is evident that the polarization difference
P* — P is, originally, independent of the boundaries.

Equation (3.6) suggests that there exists a vector
IX satisfying

P*— P =~n1; (3.7

II is independent of r.s., crystal-plate orientation,
and crystal-plate boundaries. The equation P¥ — P,
= II is valid if an orderly and stationary r.s. is
selected, but if not so, it may not hold; in a non-
disordered crystal, the equation is valid if a station-
ary r.s. is selected. (All the orderly and stationary
r.s.’s give the same P§ — P,. This, however, does not
mean that all give the same P¥ and the same P,.) The
quantity II is provisionally referred to as the polari-
zation difference vector between T and T™*.
Equation (3.3) is thought to be valid for the
crystal of ionic character. The validity of Eq. (3.4)
might be correlated with time effect, but within an
ordinary time interval, the equation may hold. If
there were a crystal not satisfying (3.4), it should
rather be considered a special kind of crystal that has
singular surfaces and exhibits anomalies about pyro-
electric coefficient, susceptibility, and so forth.

3.3. Polarization Difference due to Phase
Transition

If the crystal transforms its phase at a certain
temperature (under constant strain and null field),
then its structure might abruptly change at the
temperature. This case is considered here. That the
“crystal” transforms its phase at a certain tempera-
ture should mean that the transition temperature is
practically independent of crystal-plate orientation.
The argument here is found analogous to that in
Sec. 3.2, and so it will be briefly done. The parameter
symbols are asteriskless before the change and
asterisked after the change. An orderly and station-
ary s-g set is selected. The equations in (3.2) are
valid. Equations (3.3) and (3.4) are thought to be
valid. The argument hitherto is analogous to that in
Sec. 3.2, and so the conclusion should be analogous.
The equation P¥ = P, holds. The polarization
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difference P* — P is independent of boundaries as
well as r.s. There exists a vector II satisfying (3.7);
II is independent of r.s., crystal-plate orientation,
and crystal-plate boundaries. All the orderly and sta-
tionary r.s.’s give the same P¥ — P,, which is equal
to IT. Both the phases need not be disordered to the
same degree. It may well happen that one phase is
disordered and the other is not.

3.4. Pyroelectric Coefficient at Constant Strain

When temperature difference 7% — T is reduced to
an infinitesimal, the problem of a polarization differ-
ence becomes that of a pyroelectric coefficient, which
is treated here. The present argument is found analo-
gous to that in Sec. 3.2, and so it is briefly treated.
An orderly and stationary s-g set is selected. At con-
stant strain and null field, the equations

(a/aT) Zk O:in = 0 (38)

may be valid for an arbitrary sample of a crystal
plate, with arbitrary indices, of the crystal. There-
fore,

6q@/BT = 0,

apv . a(s” _ apw
T v {Zf” i + Zf“ aT
a(f”qw) 3 o s }
+ ; (Su g@) + ; T P (3.9)
oP,/dT = 0, (3.10)
dP/dT = n-oP,/oT . (3.11)

It is evident that the pyroelectric coefficient 0P/8T
at constant strain is independent of boundaries as
well as r.s., or in other words, that it is definite for
the crystal plate (species). Equation (3.11) suggests
that there exists a vector = satisfying

OP/dT =~ n-= ; (3.12)

= is definite for the crystal (species), that is, inde-
pendent of r.s., crystal-plate orientation, and crystal-
plate boundaries; it is provisionally referred to as
the “pyroelectric vector.” If a nonorderly or non-
stationary r.s. is selected, the general equation

oP/dT = n- (oP,/dT) + oP,;/0T
should be employed instead of (3.11). If an orderly
and stationary r.s. is selected, then

oP,/oT = =. (3.13)

Considering the meanings of the respective terms
on the right-hand side of (3.9), the first and second
terms may correspond to the effects of ionic and
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electronic displacement, respectively, and the last
two terms, to the effect of variation in disorder.

3.5. Illustration of Orderly and Nonorderly
Reference Structures

The model crystal shown in Fig. 4 serves to illus-
trate orderly and nonorderly r.s.’s. It consists of two
kinds of ions and has disorder. The first and the
second ion possess a negative charge —g¢ and a
positive charge ¢, respectively, and have no dipoles.
The fundamental translation vector a is normal to
the paper face, ¢ is parallel to that and orients from
left to right horizontally, and b is normal to the
former two. Open circles and full ones are projections
of first- and second-ion positions, respectively. There

h
_ >
I I
| o O —— 0 o ;
e, © e —— o o o]
| e} O |
}o"?ggh%é——— e o o
| Q-0 —— 0 o |
le" e e ——— o o o
0 O ——— 0o o |
1 1

Fic. 4. Model crystal plate having disorder. The vector a is
normal to the paper face, c is parallel to that and horizontal,
and b is normal to the former two. Open circles and full ones
are prolectlons of positions of negative first ions and positive
second ions, respectively. There are two kinds of second-ion
positions. The surface parts include no vacancies and have the
parameters of the same values as has the central part.

are two kinds of second-ion positions. The charge of
the second ion is independent of the particular kinds
of positions. The first-ion positions are unique. Points
AB,C, and D are first-ion positions in a plane
parallel to the paper face. At a distance a from them,
there are points A’,B’,C’, and D’, respectively. Point
E is the body center of the hexahedron ABCDA’-
B’C’D’. Points F and G are the face centers of the
rectangles ADA’D’ and BCB’C/, respectively. Points
H and L are a (2,1) and a (2,2) position, respectively,
and are situated on the line FG. Point X is distant
by ¢ from H. The normal vector n of the crystal plate
is parallel to c. The surface parts include no vacancies
and have the parameters of the same values as the
central part has. We put

EH = w, EL=u, FH=w, GL = w,

and

fao=f fa=1-Ff

We set
s1 =0, g =0.
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Equations (2.6) and (2.7) become

P, =n:P, = (¢/v){fn:(s21 — ga)
+ (I — f)n-(s22 — g22)}

(e
- f)k22+k22)c

+Mmega + (1 — f)n’gm} .
R.8. a. We select

Sp1 = Kf{, Sgg = [ﬁ:, o1 = go2 = KE\
Then
So1 — o1 = ﬁ[, So2 — 822 = Ei,
kor = ki, koo =ki— 1, kb =k, kis=Fki —1,
P, = (¢/0){— fw + (1 — frus},

= (/) = 3.

Therefore, at constant strain,

P, _ q]_ 6u1

oP;/0T = (q/v) (6f/3T) ¢,
P q Uy
9T " v f

+%(c—u1 —w)}.
It is evident that

B ),

U

e+ a-nSr

aP/aT == aP./aT .

This s set is not orderly; this r.s. is not orderly
(though stationary).
R.S. 8. We select

So1 = fﬁ\{, Sge = A—I\A, go1 = Kf{‘} go2 = A_.G.
Then,

21—g21=ﬁ1, 522—g22=G_I:
k21 = 701, kzz =k — 1, kél = k{, 22 = 70{ - 1,
P, = (Q/U>{fw1 - (1 —f)w2}) Pf = 07 P =P,
Therefore,
o°P 9P, _ g ). 0w ow;
oT aT —v{faT =5

+ (3f/aT) (w: + U)Z)} .
Although this s set is not orderly, the equation

oP/dT = aP,/oT
holds. The fact is that this model erystal has been
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so made that this r.s. is orderly. Orderly representa-
tions of this r.s. are obtained as follows. If we select

Sg1 = B_f{, S22 = ETJ, 821 = o2 = B_G\,
then
S21 — go1 = G_I\{ = FE[, S22 — o2 = GL,
1021 = kzz = lCl, ]Cé], = kég = I{}{ 3

hence, this s-g set represents R.S. 8 and is orderly
(at least for this orientation). If we select

So1 = A_K, S2p = E, go1 = oo = PTG,

then
n— g = GK = FH, s» — gos = G,

Foos = koo = ky — 1, kb =Ko =kt — 1 ;
hence, this s-g set also represents R.S. 8 and is
orderly. (Incidentally, R.S. g is stationary.)

3.6. Susceptibility at Constant Strain

An orderly and stationary s-g set is selected. When
an infinitesimal electric field (normal to the crystal
plate) is applied at constant temperature and con-
stant strain, it may be obvious that

w/dE = 3d/dE = 0k.;/0E = oki;/0E = 0. (3.14)
where F is electric field. The equations

are thought to be always valid. Therefore, it is evi-
dent that

(')P,/GE = 0,
If the tensor

OP/dE = n-0P,/0E . (3.16)

aP apvz/aEz an:c/aEy anx/aEz
5= (apw/aEz oP,,/OE, 0P,/ oE. > (3.17)
aP,./dE, oP,./oE, oP../oE.

is employed (z,y,z refer to the axes of an arbitrary
Cartesian coordinate system, and P,. is the com-
ponent of P, in the x direction), then

oP,/0E = (9P./0E)n (5.18)

(the total differentiability has been assumed); hence,
(3.16) becomes

dP/0E = n(9P,/0E)n . (3.19)
The left- and the right-hand sides are independent
of r.s. and boundaries, respectively; hence, the
susceptibility 0P/0E should be independent of
boundaries as well as r.s., or in other words, be
definite for ‘the crystal plate (species). Equation
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(3.19) suggests that there exists a symmetrical tensor
X satisfying

dP/dE = nxn; (3.20)

X is unique and independent of r.s., crystal-plate
orientation, and crystal-plate boundaries; or it is
definite for the crystal (species). If an orderly and
stationary r.s. is selected, then

[Xlis = % (OP.:/dE; + 0P.;/dE:) (4,j = x,y,2) . (3.21)

The crystal constant % is known as susceptibility
tensor at constant strain.

Selecting an orderly and stationary s-g set, and
writing

n-P, = Pv: N+ = 84, Ngi = ¢i, NPy = Pij,
(3.22)
then we have

P . JiP, _ (")(Sw —~1_
9E ~ oK {Zf” Y5
6 ij J Yt
+ oy L Uo) (s, — g2)

afw 1
+2 P (3.23)

The first and second terms on the right-hand side
correspond to the effects of ionic and electronic
displacement, respectively, and the last two terms,
to the effect of change in disorder. If a nonorderly or
nonstationary r.s. is selected, the general equation

aP/OE = oP,/dE + oP,/oE
should be employed.

4. PYROELECTRIC COEFFICIENT AND
SUSCEPTIBILITY AT NULL STRESS

4.1. Pyroelectric Vector and Susceptibility
Tensor at Null Stress

At null stress, the space lattice of the crystal may
be deformed when the temperature or the electric
field varies; on this account the arguments at “null
stress’” become different from those at “constant
strain.” In some cases the deformation is very little;
for instance, the space lattice of the non-piezoelectric
erystals is deformed very little by the electric field,
and there are some crystals in which the space lattice
is deformed very little when temperature varies
within some limits. In these cases the arguments,
even though at null stress, can be done analogously
to those in Sec. 3, and so need not be repeated. Much
deformation of the space lattice is allowed for in this
chapter.
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We saw in Sec. 3 that, at constant strain, the py-
roelectric coefficient 7 or the susceptibility x of a
crystal plate, with arbitrary indices, of a crystal is
equal to the component of the pyroelectric vector =
or the susceptibility tensor X of the crystal in the
normal (n) direction of the crystal plate, that is,
(4.1)

T =1nN-'x x =0n0nxn.

These relations are essential to = and . At null stress,
= and x can again be defined, as will shortly be seen,
but = and % such as satisfy (4.1) over all possible n
are not generally present.

For the illustration we consider the pyroelectric
coefficient of a model crystal belonging to the point
group m. It consists of two kinds of dipoleless ions.
Distant by s from a negative ion, there is a positive
ion. The direction of s is parallel to the [101] axis
at any temperature. The magnitude s of s and the
angle 8 between the [100] and [001] axes vary with
temperature. Supposing = exists, the crystal symme-
try requires parallelism of = to the (010) plane. The
pyroelectric coefficient of the (101) crystal plate is
to be observed as zero (see Sec. 4.3), so that = must
be parallel to the [101] axis, from (4.1). The pyro-
electric coefficient of the (001) crystal plate might be
observed as nearly zero or as far from zero. We sup-
pose that it is accidentally zero. (This is possible if
there is a certain relation between 9s/dT and 38/97T.)
Then = must be parallel to the [100] axis, from (4.1).
Thus, eventually = must be zero. But on the other
hand, the pyroelectric coefficient of the (101) crystal
plate may in general be observed as nonzero. Thus,
here is a contradiction.

Such a contradiction is general and not peculiar to
the above model crystal. From (4.1), = can be deter-
mined by observing the pyroelectric coefficients in
three linearly-independent directions n;,n,, and ns
(fewer directions are often sufficient if crystal sym-
metry is taken into account) ; this = might not satisfy
(4.1) with respect to a fourth direction n4. It is noted
that, at null stress, the relation (4.1) is more or less
approximate depending on the degree of lattice
deformation. At constant strain we treated ‘“crys-
tals”’; but at null stress, for the above reason, we
shall treat only “crystal plates,” or not connect each
crystal plate with its infinite crystal.

4.2. Polarization Difference at Null Stress

If we write

n-P,= P, n-s; = 8, N = gij, N*Ps; = Paj,
4.2)
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then (2.6), (2.10), and (2.8) become, respectively,
1
P,= > {;fiiqij(sii — gis) + @fﬁpii }; 4.3)
_ 1 m+%)
P, = ” {;fﬁq@'f( ) d

+ 2 fugqugs + Z:kaz‘jk iiqizd} )
P=P,4+ P;.

(4.4)
(4.5)

These new forms do not contain any vectors. Now,
the new scalar parameters s;;, ps;, ete., should be
conceived as the components of s;;, pi;, ete., in the
direction ‘“‘normal to the crystal plate” rather than
“of n.” (There is a nuance between both. The latter
is connected with the infinite crystal, while the
former is not.)

In the present case also, it is convenient to employ
“reference structure,” “orderly’ r.s., and “stationary’’
r.s. If the set of s;; and g,; and the set of s¥ and ¢¥ are
representative of the same r.s., then it is conceived
that s% — g% = s;; — g + 4 for all ¢ and 7, where
A is a constant. An s set is referred to as orderly,
when it makes

ki, k%, and 3 u8: quite, or almost, independent of j,
or

kij = kiy ki‘j = k‘i, Zk Oiir = O, (4.6)

for an arbitrary sample of the crystal plate (species),
at a given temperature and null field. When, in
addition, g:; are selected so that they are independent
of j or g;; = g, the set of s;; and g, is referred to as
orderly. A r.s. is referred to as orderly, when it can
be represented by an orderly s-g set. In a crystal
plate without disorder, any s-g set or any r.s. is
orderly. If an orderly s-g set is selected, Eq. (4.4) is
reduced to

P {2

v

ke 4 K, ‘ 1
LEH) 3 () + 5 e,
@)

where ¢; is defined by (2.13). We denote by A(g:,;/d)
the variation in ¢;;/d accompanying a variation in
temperature or electric field at null stress. It is
possible to select a ¢ set such that A(g:;/d) is zero
for all 7 and j, or more generally, is independent of ¢
and 7; this ¢ set is referred to as stationary. A r.s.
which can be represented by a stationary g set is
referred to as stationary.

We consider polarization difference due to temper-
ature difference or field difference. When temperature
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or field varies from X (= 0 in case of field) to X*,
the symbols of the configuration parameters of the
crystal plate vary from asteriskless to asterisked
ones. An orderly and stationary s-g set is selected.
It may be obvious that

kG = ki, Kif = ki. (4.8)
For an arbitrary sample, the equations
q’f = Qq: (4-9)
and
Zk 6 = 6; (4.10)

may hold. (If the set of s;;is orderly, the set of s;; may
be so0.) From the above, it follows that

*/d*)P} = (v/d)P;, (4.11)
P* — P = (P¥ — P,) + (@*/v* -v/d — 1)P,. (4.12)

If ¥ denotes the average rate of square expansion of
the main face of the crystal plate between X and
X*, Eq. (4.12) is rewritten to

P*¥ —P= (Pt —P,) — (X*—=X)vP,. (413)

We now turn from the problem of polarization
difference to the problems of pyroelectric coefficient
and susceptibility.

4.3. Pyroelectric Coefficient and Susceptibility
at Null Stress

When T* — T or E* is reduced to an infinitesimal,
the argument of polarization difference becomes that
of pyroelectric coefficient or susceptibility, the infin-
itesimal differences being replaced by the differential
coefficients. We denote the differential of temperature
or field by dX. Selecting an orderly and stationary
r.s., we have from (4.13)

aP/aX = oP./oX — P, (4.14)

where

v = (3/9X) log (v/d) ,
that is, ¥ is the rate of thermal or piezoelectric square
expansion of the main face of the crystal plate at the
temperature T and null field.

In case v is not zero, dP/dX might depend on
boundaries, or in other words, its observed values
might vary according to samples of the crystal plate.
The extent, however, of this variation is material. It
might, or might not, be so small that P/dX is practi-
cally thought a crystal-plate constant. We denote
the extent of variation in dP/dX by A(dP/0X). The
bk.p. is independent of boundaries, so that

A(3P/3X) = vAP, = yAP, (4.15)
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where AP is the extent of variation in P at null field.
From (4.15) it follows that if v or AP is small,
A(OP/0X) is so. We are first concerned with sus-
ceptibility. In the nonpiezoelectric crystal, v is
nearly zero, and so it is evident that A(9P/0E) = 0.
In a piezoelectric crystal, ¥ might not be near to
zero, and so AP should be examined.

We are next concerned with pyroelectric coef-
ficient. Since <y is generally nonzero, AP must be
examined. Among crystal plates, there are those
which can exhibit large polarizations at null field,
while there are those which exhibit only nearly-zero
polarizations. In the latter crystal plates, AP is
nearly zero, and so it is evident that A(9P/dT) = 0.
In the former crystal plates, the observed values of P
may range from 0 to P, in accordance with samples,
and so AP = Pu... The expansion rate vy is, or-
dinarily, of the order of 10~% deg~'. Hence, A(dP/-
dT) = 107% deg™! X Pumax. In order to see the order
of A(@P/dT), we refer to two examples. They are
the crystal plates, normal to the polar axis, of barium
titanate and GASH. (GASH is the abbreviation of
guanidinium aluminum sulfate hexahydrate.) Their
ferroelectric spontaneous polarization (see Sec. 6.3)
is denoted by P,. Then, it may be reasonable to put
P = 2P,. At room temperature, thus, for barium
titanate A(OP/0T) = 5 X 10~* uC cm™? deg™* (P,
= 26 uC cm2), and for GASH A@@P/dT) = 7 X
108 uC cm~2 deg™ (P, = 0.35 pC cm™2). It is seen
that values of A(dP/dT) fairly differ according to
crystal plates (species). In practice the ratio of A(9P/
dT) to —IP/dT is more important. For barium
titanate, —0P/0T = 3 X 1072 uC cm~2 deg™?, and
for GASH, —aP/dT = 1.5 X 1073 uC cm™? deg™;
hence it is evident that A(dP/dT) is fairly small com-
pared with —dP/dT. These pyroelectric coefficients
at null stress are, therefore, practically thought to be
crystal-plate constants.

From the above considerations, it may be con-
cluded that the pyroelectric coefficient at null stress
is, ordinarily, a crystal-plate constant. As to sus-
ceptibility and polarization difference, similar con-
clusions will hold.

4.4. Ordinary Boundaries

A crystal plate (species) possessing ‘“‘ordinary”
boundaries (in a pair) has such an orderly and sta-
tionary r.s. as gives ordinarily P, = 0 (see Sec. 2.6).
Selecting such a r.s., the equations

P =P, P*=P* (4.16)

ordinarily hold since the bd.p. P*at the temperature
T* is also ordinarily zero, from (4.11).
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We consider what is meant by an “ordinary”
sample. What sort of sample is ordinary is not so
clear. Different processes of making samples might
yield different characters of samples; for instance,
whether the field inside the growing crystal was zero,
steadily strong, or variable; whether we prepared the
crystal plate in the nonpolar phase at a high tem-
perature and then cooled it down to the polar phase
at room temperature, or we prepared the crystal
plate in the polar phase at a temperature and then
brought it to room temperature, or we made the
crystal plate at room temperature originally. Some
crystal plate might not be sensitive to a difference in
making-processes, and on this account, all its availa-
ble samples might have a like boundary-pair. In
some other crystal plate, all its available samples
might be made through one dominant process ex-
clusively, and on this account might have a like
boundary-pair. In such a crystal plate, however, if
another more advantageous process of making be-
comes discovered and expels the previous one, and
if the crystal plate is sensitive to a difference in
making-processes, then its “ordinary’”’ boundaries
will become otherwise.

As an example, we consider the (001) crystal plate
of barium titanate at room temperature. Its samples
are, currently, manufactured through the following
process. First, a plate is prepared in the cubic phase
at a higher temperature than 120°C under null field,
and then it is cooled down to the polar phase at room
temperature. In the cubic phase, since opposite
senses of the normal are equivalent (in symmetry),
both its boundaries may be identical, and therefore
the polarization may be zero at null field. If we select
such a r.s. as gives zero bk.p. in the cubic phase,
P; may be zero in both the phases.

The crystal plates which can exhibit a large polari-
zation at null field are thought sensitive to a differ-
ence in making-processes. Their samples which ex-
hibit a large polarization at a temperature cannot be
manufactured in a state of nature at that temperature
originally (owing to a large depolarization field).

5. PYROELECTRICITY AND SPONTANEOUS
POLARIZATION

5.1. Spontaneous Polarization Vector

When a crystal plate, with certain indices, of a
crystal has a nonzero pyroelectric coefficient at null
field under constant strain or null stress, the crystal
plate or the crystal is said to be ‘“pyroelectric’”’ or to
exhibit “pyroelectricity.” As is well known, all crys-
tals are classified, according to their symmetries, into
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32 point groups, of which 21 are noncentrosymmetri-
cal groups, of these 21, ten are polar groups. (A crystal
belonging to a polar group is also termed a polar
crystal.)

In association with “pyroelectricity,” the follow-
ing conception might be held (in fact, it has often
been held). Just as the ferromagnetic crystal possesses
a ‘“‘spontaneous magnetization vector,” the pyro-
electric crystal should possess a (spontaneous polari-
zation vector) (briefly, (s.p.v.)) as a characteristic
quantity. The cause of pyroelectricity of the crystal
should be the variation of this {s.p.v.) with tempera-
ture. The pyroelectric crystal should be polar (be-
cause a crystal having a nonzero (s.p.v.), if any, must
be polar, from symmetry).

Or rather, another more general conception might
be held. Any polar crystal should possess a {s.p.v.).
This would more or less vary with temperature.
Therefore, any polar crystal should more or less ex-
hibit pyroelectricity. Thus it follows that the “pyro-
electric crystals” and the ‘“polar crystals’” should be
synonymous.

It is noticed that the above conceptions are not
to be immediately connected with the original defini-
tion of the “pyroelectric crystal.” We examine the
concept of {s.p.v.). The (s.p.v.), as is conceived, of
a crystal in a certain state is one of the bk.p.v.’s
(termed so in this paper) and is uniquely determined
solely by the charge configuration inside the crystal
in that state. How true is this conception? Seeing
(2.6), the second term is independent of r.s., but the
first is not. In the magnetic crystal that contains no
separate ‘“magnetic charges,” the bk.p.v. comprises
the second term alone, and so it is independent of
r.s., or only one bk.p.v. is present. The molecular
dielectric crystal is analogous, in this respect, to the
magnetic crystal (see Sec. 2.7). In these crystals,
(s.p.v.) (or “spontaneous magnetization vector’’) is,
therefore, naturally definite. In the ionic dielectric
crystal, however, since the bk.p.v. contains the first
term and so varies with r.s., the (s.p.v.) is not natu-
rally definite. Thus, the ionic dielectric erystal does
not possess (s.p.v.) of the same nature as that which
the magnetic crystal and the molecular dielectric
crystal possess. But it might be conceived that,
among various bk.p.v.’s of the ionic dielectric crys-
tal, there must be some special one appropriate for
the (s.p.v.). If one attempts to seek it out, one must
first of all select the property with which to de-
termine the speciality of the respective bk.p.v.’s
It is now supposed that one property has been se-
lected. When the speciality is judged according to
that property, more than one different bk.p.v.’s
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might be equally special. Then, it would be necessary
to invoke another property, in order to determine
which one of them is more special than any other. It
may be natural to select “‘symmetry’’ as the criterion
property. This property has a complete effect, how-
ever, solely on the nonpolar crystals. For them,
zero bk.p.v. is more special than any other, so
that it may be reasonable to define their (s.p.v.)
as zero. For the crystals belonging to the polar groups
except 1 and m, the symmetry operation determines
merely the direction of their {s.p.v.), and not its
magnitude nor sense. For the crystals belonging to 1
and m, even the direction cannot be determined. In
order to complete the definition of {(s.p.v.), there-
fore, other properties are necessary in addition to
symmetry. It might be possible to make the general
rule for determining the (s.p.v.’s) of all crystals;
such (s.p.v.’s) would, however, be more or less
arbitrary. From the above, we see it unreasonable to
postulate a definite (s.p.v.) for every polar crystal
of ionic character.

As to some pyroelectric crystals and some ferro-
electric crystals, their “observed s.p.v.’s” have been
reported. This might be thought to contradict the
above consideration. But it will soon become clear
that pyroelectric s.p.v. and ferroelectric s.p.v. are
different, in nature, from previous {s.p.v.), and more-
over that the pyroelectric one has a different nature
from that of the ferroelectric one. Various natures of
s.p.v.’s might be conceived; one of them might, or
might not, be equal in value to another.

5.2. Symmetry of Pyroelectric Crystals and
Pyroelectric Spontaneous Polarization Vector

In this section, we are concerned with the crystal
exhibiting pyroelectricity at constant strain. Ac-
cording to Sec. 3.4, this crystal has a nonzero pyro-
electric vector, and therefore must be polar, from
symmetry. Thus, it is not the {s.p.v.) but the “pyro-
electric vector’’ that requires the crystal to be polar.

We attempt to define the s.p.v. of the crystal. The
s.p.v. is supposed to exist, and is denoted by P,(7,0)
since it may depend on the temperature 7' and the
strain ¢. The pyroelectric vector is denoted by
=(T,0). Then, from the meaning of the pyroelectric
8.p.v., the equation

9P, (T,0) /0T = =(T0) (5.1)

should hold. Integrating both sides with respect to
temperature, we obtain

P.(To) = B.(T%) + [ =0T, o
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where T* is a certain temperature. The vector P,-
(T*,0) should be independent of r.s., crystal-plate
orientation, and crystal-plate boundaries, since
=(1",0) is so and P,(7T,s) should be so. However, it
is obvious that P,(7*,¢) is undefinable except in the
following case.

This case is that, at the strain ¢ and null field, the
crystal has a phase transition at a temperature
T (o) and belongs to a nonpolar group in one phase
n and exhibits pyroelectricity in the other phase p.
The transition temperature 7'.(¢) may depend on o.
It is assumed that the parameters, s;; ete., are con-
tinuous at 7'.(s). If T* is a temperature in n phase,
P.(T*,s) must be zero (from symmetry), so that the
equation

T
P, (Tyo) = /;*ﬂ(T’,o)dT' (5.3)
must hold. (At any temperature 77 between T'.(o)
and T* =(71",0) = 0. The temperature 7 is in
p phase.) In this case, thus, P,(7,s) is uniquely de-
fined in terms of =(7”,s). From Sec. 3.2 and 3.4, it is
obvious that

*

n(7,T*e) = /T =(1",0)dT" . (5.4)

Hence the equation

P.(Tyw) = L (T*,T0) (5.5)
also holds. The s.p.v. could have also been defined in
terms of the polarization difference vector. If we se-
lect such an orderly and stationary r.s. as gives zero
bk.p.v. in n phase at the strain o, then we have

PS(T;‘T) = P@(T,O') ’ (56)
from (5.5) and Sec. 3.2.

As to some pyroelectric crystals having a phase
transition to a nonpolar phase, their “observed
s.p.v.’s” have been reported. We now notice that they
are of the same nature as that of the s.p.v. defined
here. This s.p.v., however, should not be conceived
the same as {s.p.v.) (in.Sec. 5.1). The former is not a
priort postulated but defined by (5.3), (5.5), or (5.6);
it is significant solely for the pyroelectric crystals hav-
ing a phase transition to a nonpolar phase; it is not
determined by the internal charge configuration at
the temperature, alone, but by the configuration at
the temperature and the configuration in the non-
polar phase and the connection between these con-
figurations.
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5.3. Crystals without any Orderly Reference
Structure

In this paper, it is assumed that every crystal has
orderly s sets (see Sec. 2.8). If a crystal did not have
any orderly s set, our argument would not apply to
it. It may be informative to present a model crystal
without any orderly s set. This is shown in Fig. 5. It
consists of two kinds of ions and has disorder and
belongs to the point group 6 at null field. The first
and the second ion possess a negative charge —q and
a positive charge g, respectively, and have no dipoles.
The threefold axis is normal to the paper face. The
fundamental translation vector ¢ is parallel to the
threefold axis. Open circles are projections of first-ion

- p\\\. g @ />(P:\
iM@ \D\ L ® I Fia. 5. Model crystal belonging to
| i N } the point group 6 and having dis-
<~~~ | _>~_i. order. The threefold axis is normal
5¢\\F‘ | oL //q\ to the paper face. Open circles are
I 7 projections of positions of negative
K@ CX H® | first ions. Full circles and hatched
[ ones are projections of first and
By /G. | oN \/¢/\/ second positions of positive second
TN [ - ions, respectively.
~ -
E\ e

positions; full circles and hatched ones are projections
of (2,1) and (2,2) positions, respectively. The first-ion
positions are unique. Points A,B,C,D, and E are
first-ion positions in a plane parallel to the paper face.
Points F and K are distant by ¢/2 from the centers of
the regular triangles ACD and ABC, respectively.
Points F ~ N are in a plane parallel to the paper
face; F,G, and H are (2,1) positions, and K,I,M, and
N are (2,2) positions. If f is the probability that the
second ion occupies the first position, then 1 — f is
the probability that the second ion occupies the
second position. Especially at f = 1/2, the threefold
axis becomes the sixfold axis. It is assumed that
f # 1/2. We now watch a second ion at F. This will
soon move to a second position, but the new point
can be K,L, or M with an equal probability. Hence,
this crystal is not thought to have any orderly s set.
We imagine the crystal plate with its main faces
parallel to the plane which goes through the line AB
normally to the paper face. If f varies with tempera-
ture at constant strain, this crystal plate will exhibit
pyroelectricity at constant strain. But yet it is not
polar. This is inconsistent with the conclusion, in
Sec. 5.2, that the crystals exhibiting pyroelectricity
at constant strain must belong to the polar groups.
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As illustrated by this model crystal, some conclusions
in this paper do not apply to crystals having no
orderly s sets.

5.4. Polarization Difference Vector and
Pyroelectric Spontaneous Polarization Vector

It is supposed that at constant strain and null
field a given crystal has a transition between two
phases @ and 3, and that at the transition from « to
B the parameters of the crystal vary from s;;, ete.,
to s¥, etc. At the reverse transition from 8 to «, the
parameters might not necessarily return from s¥,
ete., to sy, ete. (At the transition from « to 8, the
parameters necessarily turn from s;;, ete., to sk,
etc.) The polarization difference vector I due to the
phase transition (see Sec. 3.3) is considered to be
characteristic of a phase. Hence, « phase must be
polar, from symmetry; if it were not so, II should be
zero. If « phase belongs to one of the polar groups
except 1 and m, IT must be parallel to the polar axis.
B phase may belong to a nonpolar group.

We consider, for instance, the case that « and 8
phases belong to point groups 2 and 2/m, respective-
ly. Opposite senses of the twofold axis in « are not
equivalent; one of them is temporarily referred to as
positive, and the other as negative, according to some
property. When the crystal changes from « to g,
opposite senses of the twofold axis (whose direction
is invariable) become equivalent, and the distinction
between the positive and negative senses vanishes.
When the crystal returns from 8 to «, the two senses
become again distinct. But the previous positive
sense does not necessarily become again positive; the
previous negative sense might become the new posi-
tive sense; or rather, many domains might arise.

In Sec. 5.2 we defined the s.p.v. of the pyroelectric
crystal having a phase transition to a nonpolar phase;
on that occasion it. was assumed that the parameters
S:j, ete., were continuous at the transition tempera-
ture T':(c). This restriction is, now, taken off. It is
thought that the pyroelectric phase and the nonpolar
one correspond to above-mentioned « and 8 phases,
respectively. Hence the pyroelectric phase at the
strain ¢ and the temperature T'.(c) possesses the po-
larization difference vector due to the phase transi-
tion, XI(s), as a characteristic quantity. It may be
reasonable to define the s.p.v. of the pyroelectric
phase at ¢ and 7.(¢s) as —I(s). Consequently, the
8.p.v., Py(T,0), of the pyroelectric crystal at ¢ and T'
should be defined by

T
Pa(-T)o') = H(G’) + T (T,)o')dT, s

Tt(o)

(5.7)
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instead of (5.3). If (5.4) is used, Eq. (5.7) can be re-
written to

— Pu(Tyo) = (o) + I(T,T:(0),0) = (T, T*0) ,
(5.8)

where T'* is an arbitrary temperature in the nonpolar
phase. If we select such an orderly and stationary
r.s. as gives zero bk.p.v. in the nonpolar phase at the
strain ¢, then the equation

P.(Tyw) = P,(Ty0) (5.9)

is established.

5.5. Pyroelectricity and Spontaneous Polarization
at Null Stress

In this section, we consider the crystal plate at
null stress. A crystal plate (species) will henceforth
be termed normally nonpolar or polar, according to
whether opposite senses of the normal are internally
equivalent or not. Since the pyroelectric coefficient
dP/aT atnull stress is ordinarily a crystal-plate con-
stant (see Sec. 4.3), a pyroelectric crystal plate
(species) must be normally polar and hence belong
to a noncentrosymmetrical group. (The crystal plates
of the crystal belonging to a centrosymmetrical
group are all normally nonpolar.)

We attempt to define the s.p. of that crystal plate
which changes from a phase « to another phase 8 at
a certain temperature under null stress and null
field, and which is normally nonpolar in 8. Consider-
ing that the polarization difference P — P* (aster-
isked and asteriskless symbols refer to 8 and « phases,
respectively) is ordinarily a crystal-plate constant, it
may be reasonable to define the s.p. in « as

P, =P — P*. (5.10)

In this definition, the s.p. in 8 has been assumed
zero; it may be natural, from symmetry.

All the orderly and stationary r.s.’s giving zero
bk.p. in 8 give the same bk.p. P, in a (see Sec. 4.2).
Hence, it may also be reasonable to define the s.p. in
a as

P,=P,.

Between P, and P!, there is the relation

(5.11)

P, =P, + (T* — T)y'P*,
from (4.13), (5.10), and (5.11);+’ is the average rate
of square expansion between 7" and T*. The quantity
(T* — T)+' may ordinarily be below 10~2 Therefore,
even if P* = —P,, the second term on the right-hand
side may be fairly small compared with the first term,
so that P, and P may ordinarily be almost equal. To
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be exact, however, P depends on boundaries to some
extent, while P, does not at all. Therefore, if exact-
ness is required, it is more desirable to define the s.p.
as P,.

Between 0P/9T and 9P,/dT, there is the relation

OP/dT = dP,/0T — v (v*d/vd*)P*, (5.12)

from (4.11), (4.14), and (5.11);~ is the rate of square
expansion at the temperature 7'. Hence dP/97T and
dP,/3T may ordinarily be almost equal. To be exact,
dP/dT depends on boundaries to some extent, while
dP,/dT does not at all. We have hitherto been term-
ing dP/3T the “pyroelectric coefficient.” In respect
to exactness, it seems more desirable to term 9P,/0T
as such. This way, however, presupposes the existence
of P, and so it fails in generality.

There is a quantity «’ independent of r.s. as well
as boundaries; it satisfies

w' = (d/v)(3/0T)[(v/d)P.] (5.13)

if an orderly and stationary r.s. is selected. Between
7’ and 9P/aT, there is the relation

aP/oT =~ «' — AP, (5.14)

from (4.14) and (5.13). It is also possible to define the
“pyroelectric coefficient” as #’; this way is general,
for, the pyroelectric crystal plate need not become
normally nonpolar at a certain temperature. Ordi-
narily, =’ and dP/dT may be practically equal so that
it may matter little which is designated as the pyro-
electric coefficient.

The crystals, pyroelectric at constant strain, were
seen to belong to the polar groups. The crystals,
fairly pyroelectric at null stress, are thought to be
also pyroelectric at constant strain and hence to
belong to the polar groups.

6. FERROELECTRICITY

6. 1. Definition of Ferroelectricity

Ferroelectricity has often been defined as follows:
A crystal is said to be ferroelectric or to exhibit
ferroelectricity, when it has (s.p.v.) (see Sec. 5.1)
and when a crystal plate, with certain indices, of it
exhibits a field vs. polarization hysteresis. From this
definition, it follows at once that the ferroelectric
crystal should be polar. This definition, however,
presupposes the existence of (s.p.v.). It is improper,
as we saw in Sec. 5.1. Therefore, we cannot adopt
this definition. Checking any crystal reported to be
ferroelectric, it is found that what has been re-
ported is not that the crystal has (s.p.v.), but only
that a crystal plate, with certain indices, of it has
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two stable states of different polarizations at null
field. (When a “state’” of a crystal plate is spoken
of, not merely the interior but also the boundaries
are taken into account; two states might be identical
in the interior but distinct in the boundaries. This
“state’ is not the same as thermodynamical “‘state.”’)
To “exhibit a field vs polarization hysteresis” is,
essentially, nothing but to ‘‘alternate between the
two stable states by means of suitable electric field
alternating.” In this paper, therefore, ferroelectricity
is redefined as follows. When a crystal plate, with
certain indices, of a crystal has two stable states of
different polarizations at null field and alternates
between the states by means of suitable electric field
alternating (normal to the main faces), then the
crystal plate or the crystal is said to be ferroelectric
or to exhibit ferroelectricity; the crystal plate must
have the same crystal structure and the same thick-
ness in the two stable states. Should the two states
have an equal polarization, the field would not do
any work at the state transition, or the state alterna-
tion by means of the field would not be possible.
Hence, the phrase “of different polarizations” within
the definition is omissible. “Two stable states” are,
usually, those at null stress.

6.2. Symmetry of Ferroelectric Crystals

The two stable states of the ferroelectric crystal
plate are symbolized by S, and S, for the present;
the crystal plate changes from S, to S; by means of a
positive field and from S; to S, by means of a nega-
tive field. When a negative or weak positive field is
applied to the crystal plate in S,, its charge con-
figuration is uniformly modified, and when the field
is taken off, the charge configuration becomes as it
was originally; such modified states are also referred
to as So. (The state S; is considered similar.) Once
the crystal plate has changed from S, to S; by means
of a positive field, it does not return to S, when the
field is taken off.

We investigate the relationship between ferro-
electricity and crystal symmetry. First, the centro-
symmetrical crystal is considered. It is supposed that
a crystal plate, with certain indices, of the crystal
exhibits ferroelectricity. From the supposition, this
crystal plate should change from S, to S, by means
of a negative field of a reasonable magnitude. And we
notice that the crystal plate is normally nonpolar (see
Sec. 5.5). Hence, it is thought that the crystal plate
should change from S, to some state S. (other than
So and 8;) by means of a positive field of almost the
same magnitude. Thus, the crystal plate should have
many like states. When a positive field of magnitude
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enough to give rise to the state transition is applied
to the crystal plate in S, the state transition should
progress over S, as So — S; — S; —- - -, and eventu-
ally the crystal plate should break down. (This proc-
ess of breakdown is too schematic. In the actual
breakdown process, the crystal plate does not step on
several states in order as stated above; rather, the
concept of “stable states,” itself, becomes impossi-
ble.) In other words, unless such a strong field as to
bring about breakdown is applied, the state transition
may not occur. This crystal plate, therefore, cannot
be regarded as ferroelectric.

In general, the normally nonpolar crystal plates,
even though belonging to the noncentrosymmetrical
groups, are not, expected to be ferroelectric. A model
crystal shown in Fig. 6 may serve as an example. It
belongs to 4, one of the noncentrosymmetrical groups.
It consists of three kinds of ions, and has no disorder.
The first, the second, and the third ion possess electric
charges ¢i, ¢z, and —¢s (1 > 0, ¢2 > 0, 1 + ¢ =
2¢s), respectively, and have no dipoles. The funda-
mental translation vector ¢ is parallel to the 4 axis,
and a, b, ¢ are normal to each other, and the magni-
tude of a is equal to that of b. We use the following
type of unit cell: It consists of one first ion existing,
in parts, at the eight apexes of the rectangular
parallelepiped formed by a, b, ¢, and one second ion

——O——-
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Fia. 6. Model crystal belonging to the point group 4. The 4
axis is parallel to the paper face and horizontal. The vector ¢ is
taken as parallel to the 4 axis. Full, hatched, and open circles
correspond to positions of positive first, positive second, and
negative third 10ns, respectively. If negative ions in (a) are dis-
placed by —c/2, (b) is obtained.

existing at the body center, and two third ions
existing, in parts, on the four side faces parallel to c,
each fraction of the third ions being at a distance
¢/4 or —c/4 from one of the middle points of the
edges normal to c. The figure shows the projection
of the unit cell (there are extra negative ions written) ;
b is normal to the paper face, and ¢ is parallel to that
and orients from left to right horizontally. Full,
hatched, and open circles correspond to positions of
first, second, and third ions, respectively. It is sup-
posed that a crystal plate normal to ¢ has been made.
We consider that the unit cell is (a) in the state So
and (b) in S;. When the crystal plate in S, is sub-
jected to a positive field, the negative ions might
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move by —c/2 relative to the positive ions, the
state transition S; — S; resulting; thereafter, when
the crystal plate is subjected to a negative field, the
negative ions might move by ¢/2, the state transition
S1 — 8o resulting. If so, this crystal plate would be
ferroelectric. It is, however, normally nonpolar;
therefore when the crystal plate in S; is subjected to
such a positive field as to give rise to the state
transition Sy — i, the negative ions should move
by —c/2, the state transition S; — S; resulting (the
states So and S. are identical in the interior but
distinct in the boundaries).

The next problem is whether or not a normally
polar crystal plate belonging to one of the noncentro-
symmetrical groups except the polar groups can
exhibit ferroelectricity. It is supposed that there is a
ferroelectric one. We notice that inside the crystal
plate in S; there is always present a direction-and-
sense equivalent to the negative sense of the normal,
both making an obtuse angle with one another. The
crystal plate in S; should therefore change to S. by
means of a positive field which approximates in
magnitude to the negative field giving rise to the
state transition S; — S,. (In the actual process of the
state transition, the stage of domain formation may
intervene between the initial and final states. This
does not affect our reasoning.)

We consider, for illustration, the model crystal
plate of Fig. 5 which belongs to one of the noncentro-
symmetrical groups except the polar groups. Its main
faces are parallel to the plane which goes through the
line AB normally to the paper face. We consider that
the state in which f; = fand f; = 1 — fatnull field is
S, and the state in which f; = 1 — fand f. = fatnull
field is S; (1/2 < f £ 1; especially at f = 1, the crys-
tal has no disorder). When S, changes to S; by means
of a positive field, a positive ion at the first position
F, for instance, might move to the second position
L; thereafter, when S; changes to S, by means of a
negative field, the positive ion at L might return to
F. Inside this crystal, however, three directions
parallel to CK, CL, and CN are equivalent to each
other. Therefore, when S, is subjected to a positive
field, S; might change to S: in such a way that a
positive ion at K, for instance, moves to F or G.
Thus, when S, is subjected to a positive field, the
state transition might progress over Si, the break-
down resulting.

From the above considerations, it is seen that a
crystal plate or a crystal belonging to a nonpolar
group is scarcely expected to exhibit ferroelectricity.
In fact, the ferroelectric crystals known up to now all
belong to the polar groups. But we cannot also con-
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clude that every ferroelectric crystal or crystal plate
should belong to a polar group.

6.3. Spontaneous Polarization of the
Ferroelectric Crystal Plate

We denote the parameters of the ferroelectric crys-
tal plate by the symbols with and without the super-
seript # in the states S, and Si, respectively. At
present, S, and S; refer to null field and null stress.
It is supposed that the crystal plate has changed
from 8, to Sp by means of a negative field. An orderly
and stationary s-g set is selected. (When g%; = g¢,; for
all 7 and j, or more generally, g%; — g:; is independent
of ¢ and 7, the set of g,; or the set of ¢¥; is stationary.)
It may be obvious that

# #
v =0, d =4d,
# K ;. . (6.1)
ki; — ki and ki; — ki :independent of z,j.

The equations

g = g (6.2)

and
S bk = 0 (6.3)

may hold. Therefore,
) ,
Pf = P; = —i—{zzq@ (lﬂ}—;_i)d

-+ Zi qiGi + Zi 9~;Qid} y (6.4)

and
p-pP'=p,—pPh. (6.5)

It is evident that P — P’ is independent of bound-
aries as well as r.s. It may be reasonable to designate
(P — P"/2 as the s.p. of the crystal plate (species) in
S:. Spontaneous polarization of this nature is signifi-
cant solely for the ferroelectric crystal plates.

6.4. Regular Ferroelectric Crystals

There may be a crystal as mentioned below. It has,
at null field and null stress, the two stable states S
and S* of which the space lattices are parallel to one
another (see Sec. 2.3); a crystal plate, with arbitrary
indices, of it alternates between S and S* by means of
suitable electric field alternating, the parallelism of
the space lattices being kept (not in the intermediate
stage of the state transition, but in S and S%). Such
a crystal is provisionally referred to as a ‘regular
ferroelectric crystal.” The parameters of a regular
ferroelectric crystal are denoted by symbols without
and with # in S and 8% respectively. The model
crystal shown in Fig. 7 is an example of regular
ferroelectric crystal. (It has no disorder and its ions
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F1g. 8. Irregular ferroelectric model crystal. The electrodes
are parallel to the paper face, or are normal to both the paper
face and the horizontal plane.

have no dipoles.) It is considered that all positive
ions exist at full circles in S and at hatched circles in
S*. (The space lattice in S is parallel to that in St
The model crystal shown in Fig. 8 is an example of
an irregular ferroelectric crystal. The electrodes are,
for instance, parallel to the paper face, or are normal
to both the paper face and the horizontal plane. The
crystal structure in one state is the same as that in
the other, but the space lattice in one state is not
parallel to that in the other. Among actual ferro-
electric crystals, sodium nitrite is thought regular,
and Rochelle salt is irregular; the crystal plate normal
to the polar axis of the latter crystal has the space
lattices not parallel in both states.

It is to be noted that the state alternation S = S*
within the definition of regularity means the reversi-
bility s;; = s¥;. In relation to this, the consideration
below may be informative. The model crystal of Fig.
5 is taken up. We consider that the state where fi = 0
and f> = 1is S and the state where f; = landf. = 0
is S*. Now, the positive ion at M is watched. When
S — S*, the ion is supposed to move to F. When
thereafter 8* — S, the ion will move to K, L, or M
with an equal probability; it does not necessarily
return to M. (If the ion should reciprocate between F
and M by means of a suitable alternating field parallel
to the line FM, then it would reciprocate between F
and L by means of a field parallel to the line FL.)
Thus, the reversibility s;; = s’ is not satisfied; but,
viewing the interior alone and not the boundaries of
the crystal, the state alternation S = S* appears as if
it were realized.
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We consider the polarization of the regular ferro-
electric crystal. An orderly and stationary s-g set is
selected. For an arbitrary sample of a crystal plate,
with arbitrary indices, of the crystal, the equations

qf = ¢ Zk 0?11‘ = 0; (6.6)
may hold. It may be obvious that
# # \
v =0, d =d, ‘
# A, . } (6.7)
ki;'— ks and ki — ki:independent of 7,j.

Therefore, we obtain

P, = (1/v){ Z@ i qu (Sw g:) + Z@ i prw ’}(6 8)
b= (1/0){ Zt i wq” (S” —g)+ Z% qupw )
and
Pl=p, P—P=n@ —-PH. (69

From (6.9), it is evident that P — P* is independent
of boundaries as well as r.s., and moreover, that there
exists a vector P, which satisfies

P—P' =onp,, (6.10)

and which is independent of r.s., crystal-plate orienta-
tion, and crystal-plate boundaries. When an orderly
and stationary r.s. is selected, the equation

P, = (P, — P})/2 (6.11)

is valid. P, is thought to be characteristic of both S
and S*, and therefore the regular ferroelectric crys-
tal must be polar (see Sec. 5.1). In a regular ferro-
electric crystal belonging to one of the polar groups
except 1 and m, the polar axes in both states must be
parallel to P, and hence to one another. It may be
reasonable to designate P, and Pf = —P, as the
s.p.v.’s of the crystal in S and S, respectively. As to
some ferroelectric crystals, their “observed s.p.v.’s”
have been reported. It may be noticed that they are
of the same nature as that of the s.p.v. defined here.
This s.p.v., however, should not be conceived the
same as {s.p.v.) (see Sec. 5.1). The former is not
a priort postulated but defined by (6.10) or (6.11); it
is significant solely for the regular ferroelectric
crystals; it is not determined by the internal charge
configuration in the state, alone, but by the con-
figurations in both states and the connection between
these configurations. We have obtained two natures
of s.p.v.’s, viz., pyroelectric s.p.v. (see Sec. 5.4) and
ferroelectric s.p.v. It should not be conceived that
both are of the same nature and therefore of equal
value. Both are of different natures. Whether or not
both are of equal value is to be examined (see Sec.
6.7).

In the irregular ferroelectric crystal, the space
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lattices in the two states are not parallel to one
another; hence the vector n is not so naively defined
as before. A crystal plate, with certain indices, of the
crystal might be differently thick in the two states.
(In the definition of ferroelectricity, we required the
same thickness in the two states. This stipulation is
important but not indispensable.) As to the irregu-
lar ferroelectric crystal, therefore, we do not connect
its particular crystal plates (species) with the infinite
crystal.

6.5. Types of State Transition of the Regular
Ferroelectrics

Since the regular ferroelectric crystal has the
same structure in the two states, one state should be
obtained by performing upon the other state an
operation of the rotation group (and a translation
operation); this operation must be such that the
space lattice in one state is parallel to that in the
other state. When this operation is found, it is
possible to find one state from the other, and to know
how the crystal constants (tensorial in general)
change at the state transition; and it is further possi-
ble to classify the regular ferroelectric crystals in
accordance with their own operations. In this section
these problems are treated.

The elements of the rotation group which keep the
general triclinic lattice parallel are the identity
operation 1 and the inversion operation 1. In the
regular ferroelectric crystal belonging to the point
group 1, therefore, one of the two states is considered
to be obtained by performing the inversion upon the
other. (This does not mean that all ions are actually
inverted through a fixed point in the process of the
state transition.) The crystal constants undergo the
inversion at the state transition; for instance, vec-
torial constants have (only) their sense changed, and
tensors of rank two do not undergo any change.
Hence the s.p.v. has (only) its sense changed; this is
consistent with the definition of the s.p.v. in Sec. 6.4.

The elements of the rotation group which keep the
general monoclinic lattice parallel are 1,1,2, and m;
2 means the 180° rotation about the monoclinic
unique axis, and m means the reflection across a plane
normal to the monoclinic unique axis. We first con-
sider the regular ferroelectric crystal belonging to
the point group m. While the operation m does not
affect the crystal, the remaining operations 1 and 2
have the same effect on it. One of the two states is
therefore considered to be obtained by performing 1
or 2 upon the other. At the state transition, vectorial
constants have (only) their sense changed, since they
are normal to the monoclinic unique axis. We next

571

consider the regular ferroelectric crystal belonging
to the point group 2. While 2 does not affect the
crystal, the remaining operations 1 and m have the
same effect on it. One of the two states is therefore
considered to be obtained by performing 1 or m upon
the other. At the state transition, vectorial constants
have (only) their sense changed, since they are paral-
lel to the monoclinic unique axis. Triglycine sulfate
is thought of as an example.

The elements of the rotation group which keep the
general orthorhombic lattice parallel are

1,1,2,,2,.2, m.,m,, and m.;

z, Y, and z are the three orthorhombic axes; 2, means
the 180° rotation about the x axis, and m, means the
reflection across a plane normal to the z axis. The
regular ferroelectric crystal belonging to the point
group mm2 has the orthorhombic lattice. If z is its
polar axis, then 1,2,m., and m, do not affect it;
while 1,2,,2,, and m, have the same effect on it. One
of the two states is therefore considered to be ob-
tained by performing m, upon the other. Sodium
nitrite is thought of as an example.

The elements of the rotation group which keep the
general tetragonal lattice parallel are

1,i,21,22,23,24,m1,mz,mg,m4,2,m,4,43,§, and ‘13,

4,434, and 4% mean the 90° rotation, the 270° rota-
tion, the 90° rotatory inversion, and the 270° rota-
tory inversion about the tetragonal unique axis,
respectively; 2 means the 180° rotation about the
tetragonal unique axis, and m means the reflection
across & plane normal to the tetragonal unique axis;
m, means the reflection across a plane parallel to one
of the side faces of the tetragonal prism, and m,
means the reflection across the plane resulting from
an (n — 1) X 45° rotation of the m, plane about the
tetragonal unique axis, and 2, means the 180° rota-
tion about an axis normal to the m, plane. In the
regular ferroelectric crystal belonging to the point
group 4 or 4mm, only 1,2, m,4, and 4% change the
sense of the s.p.v. In one belonging to 4mm, these all
have the same effect; one of the two states is there-
fore obtained by performing m upon the other. In
one belonging to 4, operations 1,m,4, and 43 have the
same effect, operations 2,2,,2;, and 2, have the
same effect, while m and 2, have different effects.
Therefore, two kinds are conceivable: In the crystal
of the first kind, one of the two states is obtained by
performing m upon the other, and in the second kind,
one state is obtained by performing 2, or 2, upon the
other. Vectorial constants are parallel to the polar
axis; at the state transition they have (only) their
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sense changed, in either kind. When the z axis is the
polar axis, and the x and y axes are normal to one
another and to the z axis, a tensorial constant of rank
two is generally represented by

a % 0
0 0 ¢

(e, B, are free from any rotation of the x and y axes
about the z axis). In the first kind, this tensor does
not vary at the state transition, but in the second

kind, it varies to
a —y 0
v o 0
0 0 B

(the z, y, and z axes are spatially fixed).

As is well known, in the trigonal system there are
two types of lattice, viz., trigonal R lattice and hex-
agonal P lattice. In the hexagonal system there is
only one type of lattice, hexagonal P. First, the tri-
gonal R lattice is considered. The elements of the
rotation group which keep the lattice parallel are

1,1,2,2",2” m,m’,m' 3,323, and 32;

3,323, and 32 mean the 120° rotation, the 240° rota-
tion, the 120° rotatory inversion, and the 240°
rotatory inversion about the trigonal unique axis,
respectively; m means the reflection across a plane
parallel to both the trigonal unique axis and one of
the edges of the rhombohedron (m’ and m’ are simi-
lar), and 2 means the 180° rotation about an axis
normal to the m plane (2’ and 2’/ are similar). In the
regular ferroelectric crystal belonging to the point
group 3 or 3m, merely 1,2,2',2”, 3, and 3% change the
sense of the s.p.v. In one belonging to 3m, these all
have the same effect; one of the two states is there-
fore considered to be obtained by performing the in-
version upon the other. Potassium nitrate(ferroelec-
tric) may be thought of as an example. In the present
case, the reflection across a plane normal to the polar
axis does not keep the lattice parallel. In one belong-
ing to 3, operations 1,3, 3% have the same effect, and
operations 2,2’,2” have the same effect, while 1 and 2
have different effects. Hence, two kinds are con-
ceivable: In the first kind, one of the two states is
obtained by performing the inversion upon the other,
and in the second kind, one state is obtained by per-
forming 2 upon the other. (The operation 2 is equiva-
lent to the inversion followed by the reflection m.)

The elements of the rotation group which keep the
hexagonal P lattice parallel are

1,1,2,,m.,2,m,6" and 6" (n = 1,2, - - -, 6);
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6" and 6" mean the n X 60° rotation and the n X 60°
rotatory inversion about the hexagonal unique axis,
respectively; 2 means the 180° rotation about the
hexagonal unique axis, and m means the reflection
across a plane normal to the hexagonal unique axis;
m: means the reflection across a plane parallel to one
of the side faces of the hexagonal prism, and m.
means the reflection across the plane resulting from
an (n — 1) X 30° rotation of the m, plane about the
hexagonal unique axis, and 2, means the 180° rotation
about an axis normal to the m, plane. It may be
noticed that 6°and 1, 6% and 1, 6% and 2, and 6° and m
have the same effect, respectively. In the regular
ferroelectric crystal belonging to the point group 3,
3m, 6, or 6mm, merely 1,2,,m, and 6" change the sense
of the s.p.v. In one belonging to 3m, operations 1 and
m have different effects, and each of the rest has the
same effect as that of either 1 or m. Consequently,
two kinds are conceivable; in the first kind, one of the
two states is obtained by performing the inversion
upon the other, and in the second kird, one state is
obtained by performing m upon the other.

In the crystal belonging to the point group 3,
operations 1,62,6¢ have the same effect, operations
m,6,6°; 21,25,25; and 2:,2,, 26 have the same effect,
respectively, while any two of 1,m,2,, and 2, have
different effects. Consequently, four kinds are con-
ceivable; in the first, second, third, or fourth kind,
one of the two states is obtained by performing
1,m,21, or 2; upon the other. We now take the z axis
as parallel to the polar axis, and the x axis as parallel
to the 2, axis, and the y axis in such a way that the
z, ¥, and z axes make a right-handed Cartesian co-
ordinate system. Then a tensorial constant of rank
two is generally represented by

« Y 0
0 0 B

In the first and second kinds, this tensor does not
vary at the state transition, but in the third and
fourth kinds, it varies to

a —y 0
% o 0
0 0 ¢}

A tensorial constant of rank three, ¢ (b =
generally represented by

a —b e —b —a —f d 0 0
(=0 O ) )
0 0 c

where the first, second, and third matrices correspond

t@'kj), is
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to matrices (¢1;x), (f251), and (és;), respectively. At the
state transition, this tensor varies, in the first kind, to

—ab —e b a f —-d 0 O
() () (7 )
0 0 —cC

in the second kind, to

a —b —e —b —a f —d 0 0
—a —f> < b —e> ( —d 0>
0 0 —c

in the third kind, to

a b —e b —a —f —-d 0 0
(=) (5 (C2)
0 0 —c

and in the fourth kind, to

—a —b —e —-ba —f —d 0 0
e ) ()
0 0 —c

As to a tensor of rank one, i.e., a vector, there is no
distinetion among all the kinds; on a tensor of rank
two, there is no distinction between the first and
second kinds, nor between the third and fourth kinds,
but the former kinds are distinct from the latter ones;
on a tensor of rank three, any two kinds are distinct
from one another.

_ In the crystals belonging to 6mm, all the operations
1,2,)m, and 6" are of the same effect, so that there is
only one kind. In the crystals belonging to the point
group 6, operations 1,m,6" are of the same effect, and
operations 2,,2,, - - -, 2¢ are so, while m and 2, have
different effects. Consequently, the crystals are
classified into two kinds.

From the above consideration, it is evident that
one of the two states of a regular ferroelectric crys-
tal is obtained by performing upon the other the in-
version or the reflection across a plane normal to the
s.p.v. or the 180° rotation about an axis normal to
the s.p.v. The first, second, and third types are provi-
sionally referred to as “inversion type,” ‘reflection
type,” and ‘“‘rotation type,” respectively. The re-
flection type appears in every point group, but the
reflection type and the rotation type do not. In some
point groups, there is no distinction among the three
types, and in some other point groups, there is no
distinction between two types while the rest is
distinet from the two. In some point groups there
are two different rotation types, according to differ-
ent orientations in the rotation axis. Table I shows
the classification of the regular ferroelectric crystals
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according to their point groups and their types of
state transition.

6.6. One-Dimensional Regularity of the
Ferroelectric Crystal Plates

We first consider the one-dimensional erystal
exhibiting ferroelectricity. All the elements of the
one-dimensional rotation group are the identity
operation and the inversion operation. A tensor in
the one-dimensional space is either of rank zero or of
rank one, i.e., a scalar or else a vector; the inversion
operation does not affect the former but does change
the sign (alone) of the latter. It may be obvious that
if a one-dimensional crystal is ferroelectric, it is regu-
lar, one of its two states being obtained by perform-
ing the inversion upon the other. At the state transi-
tion, therefore, scalar constants do not undergo any
change, while vectorial constants have their sign
changed.

We next consider the correspondence of a crystal
plate to a one-dimensional crystal. When a crystal
plate having parameters s;;, etc., is present, then
corresponding to it, a one-dimensional crystal having
the same parameters (except ») is imaginable. It is
thought that the one-dimensional crystal correspond-
ing to a ferroelectric crystal plate (species) is also
ferroelectric, and that a constant of the latter is also
a constant of the former. At the state transition,
therefore, a constant of the ferroelectric crystal plate
(species) may either remain unchanged (when scalar)

TaBLe I.  State-transition types of regular ferroelectrics.
Point Number
System group of kinds Type of state transition
Triclinic 1 1 Inversion
Monoclinic m 1 Inversion, Rotation
2 1 Inversion, Reflection
Orthorhombic  mm2 1 Inversion, Reflection,
Rotation
Tetragonal 4 2 (I) Inversion, Reflection
(II) Rotation
4mm 1 Inversion, Reflection,
Rotation
Trigonal 3 2 (I) Inversion
(Tri. R) (II) Rotation
3m Inversion, Rotation
(Tri. R)
3 (I) Inversion
(Hex. P) (II) Reflection
(III) Rotation
(IV) Rotation
3m 2 (I)  Inversion, Rotation
(Hex. P) (II) Reflection, Rotation
Hexagonal 6 2 (I) Inversion, Reflection
(II) Rotation
6mm 1 Inversion, Reflection,

Rotation
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or have its sign changed (when vectorial). Such “one-
dimensional regularity” of the ferroelectric crystal
plate is important. The s.p. defined in Sec. 6.3 had
only its sign changed at the state transition; this does
result also from the one-dimensional regularity. In
the definition of ferroelectricity in Sec. 6.1, we re-
quired the invariability of the thickness of the crystal
plate at the state transition; this is just consistent
with the invariability of the total length of the ferro-
electric one-dimensional crystal at the state transi-
tion. (In the two states, the ferroelectric one-dimen-
sional crystal has the same structure and therefore
the same total length. Thus, the latter follows from
the former and is no independent requirement.)

6.7. Relationship between the Pyroelectric and
the Ferroelectric Spontaneous Polarization

In Sec. 6.4, the s.p.v. of the regular ferroelectric
crystal was defined at null stress, but it is also possible
to think of the s.p.v. at a strain o. (This does not
mean that the crystal is being kept at the strain o
through the process of state transition. We are now
thinking of two states stable at the strain ¢.) The
regular ferroelectric crystal having a phase transi-
tion to a nonpolar phase at a temperature 7';(¢) under
constant strain ¢ and null field possesses the pyro-
electrio s.p.v. and the ferroelectric s.p.v., temporarily
denoted by P? and P, respectively. We investigate
whether they agree with one another in value (though
they have different natures). We select such an
orderly and stationary r.s. as gives zero bk.p.v. in
the nonpolar phase. From (5.9), we have

P’ =P, and P =P’ (6.12)

for the two states S and S*, respectively. (On this
occasion it has been assumed that the two states S
and S* become the same in the nonpolar phase.)
Now, the equation

P — P (6.13)

must hold; for, if the regular ferroelectric crystal
belongs to the point group 1 or m, it is of inversion
type, or if it belongs to one of the polar groups except
1 and m, the pyroelectric s.p.v. is parallel to the polar
axis. From Egs. (6.11), (6.12), and (6.13), it follows
that

P, =P,. (6.14)
From this and (6.12), the equation
P =P, (6.15)

results. Thus, it has been verified that P? and P! are
equal in value, and incidentally that (6.14) is valid
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if we select such an orderly and stationary r.s. as
gives zero bk.p.v. in the nonpolar phase. In (6.14)
and (6.15), o can of course be the strain at null stress.
We next examine, on the crystal plate, whether its
pyroelectric s.p. P2 and ferroelectric s.p. P’ at null
stress agree with one another in value. This crystal
plate is to change from a phase a to a phase 8 at a
temperature T', under null stress and null field, it be-
ing ferroelectric in « and normally nonpolar in 8. It is
assumed that the two states S and S* in a become
identical in 8. If we select an orderly and stationary
r.s. giving zero bk.p. in 8, we obtain, from (5.11),

P’ =P, and P — p* (6.16)

for S and S*, respectively. Because of the one-
dimensional regularity (see Sec. 6.6),

Pt = —pr. (6.17)
From (6.16), (6.17), and Sec. 6.3, it follows that
Pl =P,. (6.18)
From this and (6.16), the equation
P =P (6.19)

results. Thus, it has been found that at null stress
also, the pyroelectric s.p. and the ferroelectric s.p.
are equal in value.

6.8. Pyroelectricity of Ferroelectric Crystals

First, the pyroelectricity of the regular ferro-
electric crystal is investigated; the crystal need not
have a phase transition to a nonpolar phase. An
orderly and stationary r.s. is selected. Since dP,/dT at
constant strain is a crystal constant (see Sec. 3.4), it
is evident that

aPhH /6T = (6P,/aT)" = —aP,/oT . (6.2)
From this and (6.11), it follows that

oP!/oT = oP,/dT . (6.21)
From this and (3.13), the equation
IPLJAT = = (6.22)

results. The (nonzero) ferroelectric s.p.v. may in
general vary with temperature, so that the regular
ferroelectric crystal is generally expected to be pyro-
electric.

We next examine the pyroelectricity of the ferro-
electric crystal plate which need not become normally
nonpolar at a temperature. At null stress we have

aP!/oT = 1{aP/aT — (8P/oT)"}, (6.23)

from Sec. 6.3. Since the pyroelectric coefficient
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dP/dT is ordinarily a constant of the crystal plate
(see Sec. 4.3), the equation

@P/oT)* = —aP/oT (6.24)

may ordinarily hold, from one-dimensional regu-
larity. Substituting this into (6.23), we eventually
obtain

dP/dT = oP/aT . (6.25)

The (nonzero) ferroelectric s.p. may, in general, vary
with temperature, so that the ferroelectric crystal
plate may, in general, be pyroelectric.

6.9. Excepted Regular Ferroelectrics

In Sec. 6.5, the lattice of a regular ferroelectric
crystal belonging to the point group 1, for instance,
was assumed to be a general parallelepiped, and no
reference was made to the case that the lattice is a
rectangular parallelepiped. This special case is now
considered. The elements of the rotation group which
keep a general rectangular parallelepiped parallel are

1,1,2,,2,,2, ,;m.;m,, and m,

(see Sec. 6.5). Any two of them have different effects
on the crystal, so that seven kinds are conceivable.
In Sec. 6.5, only the 1 type was taken into account;
hence the other six types are new. The s.p.v. (ferro-
electric) has only its sense changed at the state
transition, so that the orientation of the s.p.v.,
though being arbitrary in the 1 type, is limited in the
other types; for instance, in the 2, type, the s.p.v.
must be normal to the z axis, and in the m, type, it
must be parallel to the z axis.

On the 2, (or m,) type, for instance, we examine
whether the pyroelectric s.p.v. and the ferroelectric
s.p.v. are equal or not. Equation (6.12) is valid in
this case also. Equation (6.13) might, however, be
invalid since P? might not be normal (or parallel) to
the z axis. Consequently, the validity of (6.14) and
(6.15) is not assured. In general,

P, =1 (P: —PY).
As to the relation between dP,/dT and =, Eqs. (6.21)

and (6.22) might be invalid since (6.20) might not
hold. In general,

OPL/OT = 3 (= — ') .

In Sec. 6.5, we took no account of those regular
ferroelectric crystals of which the lattice belongs to a
different system (of crystal symmetry) from that of
their substance, as above exemplified. It was except
for these crystals that the equalities between the
pyroelectric and ferroelectric s.p.v.’s and between

dP!/dT and = were verified in Secs. 6.7 and 6.8, re-
spectively. For these crystals, such equalities are not
assured. However, it is a question whether they exist
really. At null stress, it is thought quite accidental
that (for instance) the substance is triclinic while the
lattice is orthorhombic. Even though the lattice hap-
pens to be orthorhombic at one temperature, it may
become triclinic if temperature is changed. Hence, it
is thought that there are no regular ferroelectric
crystals except those considered in Sec. 6.5.

7. SUMMARY

(Sections 2.1 to 2.8)

(1) The polarization of a crystal plate consists of
the component of the “bulk polarization vector” in
the normal direction (i.e., the “bulk polarization’)
and the “boundary polarization.”

(2) The concept of “reference structure’ is intro-
duced.

(3) Polarization of a crystal plate is dependent
upon boundaries and independent of reference struc-
ture. Bulk polarization vector is dependent upon
reference structure and independent of boundaries.
Boundary polarization is dependent upon both refer-
ence structure and boundaries.

(4) Except in case boundary polarization is negli-
gibly small compared with bulk polarization, it
should not be conceived that polarization is equal to
bulk polarization.

(5) The concept of “orderly reference structure’ is
introduced. In the crystals without disorder, any
reference structure is orderly.

(Sections 3.1 to 3.6)

(1) The concept of “stationary reference structure”’
is introduced.

(2) A crystal which transforms its phase at a cer-
tain temperature under constant strain and null field
possesses ‘‘polarization difference vector due to the
phase transition,” I, as a crystal constant independ-
ent of reference structure, crystal-plate orientation,
and crystal-plate boundaries. As to a crystal plate,
with arbitrary indices, of this crystal, its polarization
difference due to the phase transition is equal to the
normal component of IL. If an orderly and stationary
reference structure is selected, I is equal to the
difference between the bulk polarization vectors in
the two phases.

(3) The crystal exhibiting pyroelectricity at con-
stant strain possesses ‘‘pyroelectric vector’” = as a
crystal constant independent of reference structure,
crystal-plate orientation, and crystal-plate bounda-
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ries. Pyroelectric coefficient of a crystal plate, with
arbitrary indices, of this crystal is equal to the normal
component of =. If an orderly and stationary refer-
ence structure is selected, the equation = = oP,/dT
holds (where P, is bulk polarization vector and T is
temperature).

(4) A crystal has “‘susceptibility tensor” ¥ at con-
stant strain as a crystal constant independent of
reference structure, crystal plate orientation, and
crystal-plate boundaries. Susceptibility at constant
strain of a crystal plate, with arbitrary indices, of
this crystal is equal to n¥n (where n is the normal
vector of the crystal plate). If an orderly and sta-
tionary reference structure is selected, the equation
Xli; = (1/2) (0P.:/0E; + 0P.,;/dE,) is valid, where
E; and P,; are the ¢ component (z = z,y,2) of electric
field E and bulk polarization vector P,, respectively).

(Sections 4.1 to 4.4)

(1) With respect to the crystal plate at null stress
also, it is convenient to employ the concepts of
“reference structure,” “orderly reference structure,”
and “‘stationary reference structure.”

(2) An ordinary crystal plate (species) possesses,
at null stress, pyroelectric coefficient = and suscepti-
bility x as its constants.

(3) At null stress, there are not generally present
the crystal constants = and % satisfying the equations
7 = n.xand ¥ = nxn over all possible n.

(Sections 5.1 to 5.5)

(1) It is improper to presuppose the existence of
(spontaneous polarization vector) in all the crystals
which exhibit pyroelectricity or which belong to the
polar groups.

(2) The crystals exhibiting pyroelectricity at con-
stant strain belong to the polar groups (because they
possess pyroelectric vector).

(8) It is possible to define pyroelectric “spontane-
ous polarization vector” for those pyroelectric crys-
tals which have a phase transition to a nonpolar
phase at constant strain. If we select such an orderly
and stationary reference structure as gives zero bulk
polarization vector in the nonpolar phase at the
strain, then in the pyroelectric phase, spontaneous
polarization vector is equal to bulk polarization
vector.

(4) It is possible to define pyroelectric “spontane-
ous polarization’ for those pyroelectric crystal plates
(species) which become ‘normally nonpolar” at a
certain temperature under null stress.

KEITSIRO AIZU

(Sections 6.1 to 6.9)

(1) Such a definition of “ferroelectricity’” is im-
proper which presupposes the existence of (spon-
taneous polarization vector). (The definition in this
paper is not such.)

(2) A crystal plate or a crystal belonging to a
nonpolar group is scarcely expected to exhibit ferro-
electricity; but it is not concluded that every ferro-
electric crystal or crystal plate should belong to a
polar group.

(3) It is possible to define ferroelectric ‘“‘spontane-
ous polarization” for a ferroelectric crystal plate
(species).

(4) It is possible to define ferroelectric ‘“‘spontane-
ous polarization vector’” for the “regular ferroelec-
tric”’ erystals. These crystals must belong to the polar
groups.

(5) There are three types of state transition of the
regular ferroelectrics, viz., “inversion type,” ‘re-
flection type,” and ‘‘rotation type.” The regular
ferroelectrics are divided into nineteen subclasses,
according to their point groups and their types of
state transition. The change in their crystal constants
(generally tensorial) accompanying the state transi-
tion is unique in each subclass.

(6) The regular ferroelectric crystal having a
phase transition to a nonpolar phase at constant
strain possesses two different natures of spontaneous
polarization vectors, viz., pyroelectric one and ferro-
electric one. They are equal in value to one another.

(7) The ferroelectric crystal plate (species) which
becomes normally nonpolar at a certain temperature
under null stress possesses pyroelectric spontaneous
polarization and ferroelectric spontaneous polariza-
tion. These are equal in value though different in
nature.

(8) If P{is the ferroelectric spontaneous polariza-
tion vector of a regular ferroelectric crystal (which
need not have a phase transition to a nonpolar phase),
then the equation dP1/dT = = (at constant strain) is
valid.

(9) If P is the ferroelectric spontaneous polariza-
tion of a ferroelectric crystal plate (which need not
become normally nonpolar at a certain temperature),
then dPI/dT (at null stress) is, ordinarily, almost
equal to the pyroelectric coefficient at null stress.
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