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to the nucleon. Therefore, we have plotted the co spec-
trum for events with momentum of the secondary-
proton greater than 550 Mev/c (Fig. 10).The zeta is
still not apparent.

We are indebted to the Bubble Chamber Group
and the Cosmotron Department of the Brookhaven

National Laboratory, for generous technical assist-
ance in producing the bubble chamber pictures for
this study, to the technicians of the Yale high-energy
group for scanning the pictures and measuring the
interactions, and to the other physicists of the Yale
high-energy group for many stimulating discussions.
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l. INTRODUCTION

&HE radiation emitted during encounters of
electrons with ions in a fully ionized gas of low

density is called bremsstrahlung. The term "free-
free transitions, " which is customary in the astro-
physical literature, refers to the same process. This
radiation has proved to be of importance in cosmic-
ray studies, in radio astronomy, in gas discharges, in
thermonuclear experiments, and in other physical
and astrophysical problems. The wide range in
energy and frequency met in these applications
necessitates different approximation formulas. This
fact, combined with the fact that the relevant litera-
ture is spread over a long time interval, from Eramers
(1923)' to now, makes it diKcult to obtain a clear
survey of the literature for practical purposes.

The aim of this paper is to collect in a concise
manner the most important approximations that
permit the rapid calculation of numerical results in
the entire energy and frequency ranges with an
accuracy of one percent.

The discussion, which can be naturally divided
into a part dealing with incoming electrons of one
velocity only (Secs. 2—5) and a part dealing with a

* Present address: Duke University, Durham, North
Carolina.

~ See the list of references at the end of this paper.

gas having a Maxwellian velocity distribution (Secs.
6—9), is limited to nonrelativistic energies, i.e., ener-
gies smaller than 104 eV or temperatures lower than
10' 'E, approximately. The restriction to low energies
means that the formulas for dipole radiation suflice.
Screening effects, arising from penetration of the
electron into the electron shell of an atom (for very
low energies), have also been omitted [cf., Guggen-
berger (1957), Hettner (1958)].

Theory and numerical data for bremsstrahlung at
higher (relativistic) energies were reviewed by Heitler
(1954), J. Stickforth (1961), and in great detail by
Koch and Motz (1959).The latter authors state that
"The nonrelativistic cross-section formulas derived
in the dipole approximation by Sommerfeld with
Coulomb wave functions have a complicated form
with hypergeometric functions and are difFicult to
evaluate, "and omit from their review a discussion of
this topic, which is the exclusive topic of the present
paper. Hence, only one formula [their 3 BN(a), our
(12)] is common to the two papers.

In Sec. 2, rigorous formulas for electrons of one
velocity are reviewed. In Sec. 3, a general division is
made of the energy and frequency ranges into
regions where different basic assumptions hold. A.

list of approximation formulas with their domains of
validity is given in Sec. 4. In Sec. 5, we discuss the
numerical results that are available in the literature.
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'The formulas for the bremsstrahlung by a Maxwel-
j.ian distribution of electrons are given in Sec. 6. The
explicit integration over the Maxwellian distribution
and the domains of validity of the results for the
free-free transitions are presented in Sec. 7. In Sec. 8,
the contributions from the free-bound transitions are
given. Finally, in Sec. 9, the combined free-free and
free-bound continuum is discussed.

2. RIGOROUS FORMULAS FOR ELECTRONS
OF ONE VELOCITY

Let a gas contain X; fixed iona of charge +Ze and
X, electrons of charge —e, traveling in random direc-
tions but all with the same speed v, the radiation
emitted is then isotropically distributed. %e call
e(v) the energy emitted per cm' per sec per sec ' fre-

quency bandwidth, and e(v)/(4~) the same per stera-
dian. The general formula is

e(v) SZ'e' ~ ~ L
4m- 3m'wc'

Here, c is the velocity of light, m the mass of the
electrons, and L is a, function of two variables,
namely, the energy E = —,'mv' of the electrons before
the encounter and the frequency v, which is emitted.
The factor

g= ~ '~81, (2)

which measures the deviation of L from the classical
short-wave limit ~/~8 (see below), is traditionally
called the Gaunt factor. Usually, L is expressed in
terms of two parameters g and q', where q is a modi-
fied quantum number (Sommerfeld number) defined

by the energy value of the initial state E = Z'xo/r12

(analogous to the energy E = —Z'xo/n' for a bound
state), whereas g' is the corresponding number for
the final state. X0 ——me'/(2A, ') is the ionization

energy of hydrogen. The parameters q and g' ha,ve
been de6ned positive for our case of attracting
charges.

The parameter g may variously be expressed as

g = Z(x,/E)'~' = Ze'/(hv) = Zo.c/v

= Z/(1t:ao) = kp, ,

where A, = 2vrh = Planck's constant, c = velocity of
light, o. = fine structure constant, ao ——Bohr radius,
1c = mv/1i = wave number of free electron, pi
= Ze'/(mv') = impact parameter for a classical orbit
in the form of an orthogonal hyperbola.

The frequency is expressed in terms of p and q' by

v = Z'p. (g
' —g' '),

where vo
——xo/h = frequency of the hydrogen ioni-

zation limit. Other combinations occurring in the
theory are

x = —4rlg'/(g' —g)'

1 —x = [(~'+ v)/(n' —n)}'

(negative),

v, = —', mv'/1i = Zip/g'.

The rigorous quantum mechanical expression for
I derived by Sommerfeld and Maue (1985) and given
by Sommerfeld (1989) is

(,)
vr'x (d/dx) I ~

F(irj,ig', 1;x) ~'}

(
""—1) (1 — -""') ' (8)

where F(n, p, y; x) is the hypergeometric function

F(n, p, y;x) = 1+
~(~ + 1)P (P + 1) x'

v(v+ 1)

This series converges only for ~x~ ( 1, i.e., v/v,) 0.9706, so that in almost all applications the ana-
lytic continuation for ~x~ ) 1 has to be used (see e.g.
Magnus and Oberhettinger (1948), Erdelyi [(1958),
Vol. I, Ch. 2]).

Menzel and Pekeris [(1985),Eq. (1.22)] state with-
out proof that another rigorous formula is

7r'gq'
~

6 (ig,irl')
~"""'= (""-1)(1— -""') ''-. (4)

where

S(ig,i~') = [I'(—iq y 1, —i~', 1;x)}'
—[F(—irl'+ 1, —ig, l;x)}'.

In fact, they introduce the Sommerfeld numbers g
and g' in a formula derived by McLean [(1984), Eq.
(26)] for the bound-bound transitions, substituting
z = iq a,nd n' = ig' and normalizing properly.

Formal proofs of the identity of these results were
given by H. C. Brinkman (unpublished) and by
Grant (1958), to which paper we also refer for a clear
review of the quantum mechanical derivation.

3. APPROXIMATION FORMULAS —A PHYSICAL

DISCUSSION

The fact that L, or the Gaunt factor, depends on
two parameters, makes it possible to display the do-
mains of va, lidity of various approximation formulas

(positive) .

The maximum frequency emitted by free-free radia-
tion for a given velocity v is
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in a two-dimensional plane. Throughout this section
and the next, reference is made to Fig. 1, where fre-
quency is plotted vs energy of the incoming electron,
both in logarithmic scales.

The borderlines of our diagram are based on the
following considerations:

(a) The free-free and free-bound domains are di-
vided by the diagonal AOF, equation i = p, . The
rigorous formula for I at this short-wave limit is
simple [see below, Eq. (5)]. However, the values for
x = 1, i.e., in points where v = 0.9706 v„may strongly
deviate from this formula.

(b) The energy limit, below which the nonrela-
tivistic treatment is permitted, is given approxi-
mately by the horizontal line III', equation g = 0.03,
or E = 13.6 keV. Approximations valid at and above
this limit have been discussed, e.g., by Heitler (1954),
by Wandel, Hesselberg Jensen, and Eofoed-Hansen
(1959), by Koch and Motz (1959), and by Stickforth
(1961).

(c) The left border of the diagram, IIIA, should be
put at the frequency where the theory based on bi-
nary encounters begins to fail. This frequency de-
pends on the density and will be discussed below.

Within the domain defined by these border lines,
two order-of-magnitude dividing lines may be drawn:

(d) The horizontal line I'0, equation 2I = 1, or
E = 13.6 eV, may be said to separate approximately
the classical domain (below) from the quantum me-
chanical domain (above). Well above this line, the
Born approximation for the electron wave function
holds, i.e., the electron passes along the ion with little
change in direction or phase, even in the orbit of
lowest angular momentum. Classically, this corre-
sponds to an almost rectilinear orbit.

Well below this line, the classical orbit which cor-
responds to the lowest angular momentum is nearly
a parabola. Classically, a parabolic orbit gives neg-
ligible dipole radiation at low frequencies. Hence, the
existence of a quantum mechanically defined lower
impact parameter is unimportant and the approx-
imation formulas for I suitable in this domain do not
contain k.

(e) The sloping line ZO, equation v = I6, where

r = v/(4~@, ) = mv'/(4vrZe') = Z'2, /2I' = v,/2I,

separates, approximately, the domain in which
nearly-straight-line encounters give the major con-
tribution to the emitted energy (above ZO) from the
domain in which the major contribution comes from
the nearly-parabolic encounters (below ZO). Here,
we use the term "nearly-straight-line" encounter for
an encounter with p & p&, total deviation ( 90, and

we use the term "nearly-parabolic" encounter for an
encounter with p ( p2, total deviation ) 90', in the
classical model.
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FIG. 1.Domains where diferent approximation formulas are
valid within a 1% error in L and domains covered by numeri-
cal data.

A Note On The Density Deyendence

It is clear that the concept of independent en-
counters fails, if we approach the plasma frequency

v, = {Xe'/(arm)}'',
so that all formulas reviewed in this paper hold only
for v )) v„. However, it is not obvious that this condi-
tion should be sufficient to make I independent of
the density, and hence make the emission per unit,

volume strictly proportional to the square of the
density.

The correctness of this assumption may be made
plausible by referring to the Born approximation,
Eq. (12). If the derivation in made ab initio, using
classical theory and nearly-straight-line encounters,
the result reads

&s/u = »(p/p)
where p. is the upper impact parameter and p~ the
lower impact parameter electively contributing to
the integration. When this formula was 6rst used in
radio astronomy, some confusion arose, which was
soon clarified Burckhardt, Elwert, and Unsold,
(1948)].

Figure 2 illustrates the situation. There is a choice
of two lower impact parameters, p = 1/k, correspond-
ing to the electron of lowest angular momentum and

p = p1, corresponding to an orthogonal hyperbola.
The upper value should be used. The ratio is g, and
we shall, for simplicity, assume that g ( 1, so that
p = 1/A'.
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log p
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radius

domain of Fig. 1 each approximation formula is cor-
rect within a one percent error.

The formulas are consecutively numbered (5) to
(20) and are divided into groups according to the
basic assumption made in the derivation.

First Group, Formulas (5)—(10),
Short-Wavelength Limit

In the short-wavelength limit, v = v„x = 0,
~, the rigorous formula assumes a

simple form.

(a) Entire Line AOF
log

For v = v„g arbitrary, Biedenharn and Thaler
Fra. 2. ExPlanation of density cutoff in the Born aPProxi- [(1956) Eq (26)] and Guggenberger (1957) give

Further, there is a choice of two upper impact
parameters. A distant encounter is slow, duration

p/v, so that the highest Fourier component of the
emitted radiation is of the order of v = v/(i'). This
gives at low density p. = v/(m. v). The resulting Born
approximation, illustrated by the dotted line 1 in
Fig. 2, is L = ln [kv/(harv)], in agreement with (12). It
was also argued that p. could not become higher than

This gives the situation (2) with L= ln

(kX 't'), which would apply to any frequency to the
left of A in Fig. 2.

However, it has since become generally accepted,
although not strictly proven, that the cutoff para-
meter in problems of this kind should be the Debye
radius p = [ kT /(4 iNr', e') ']'nowhere k' is the Boltz-
mann constant. For frequencies between A and 8 in
the figure this restores the original formula, see line 3
of Fig. 2. By order of magnitude, we may put O'T
= mv' and G.nd that the frequency of point 8 does
not contain the velocity and equals 2v, .

The same argument may be repeated if g & 1,
which means that the lower impact parameter is p&.

Hence, we may conclude that probably no density
corrections to I are needed for any frequency satis-

fying v )) v~.

4. APPROXIMATION FORMULAS —A LIST
OF THE VALIDITY DOMAINS

More than twenty approximation formulas for
L(rt, rt') may be found in the literature. Most of them
(not all!) have a domain in Fig. 1, in which the ap-
proximation is quite good. The approximate position
of this domain follows from the assumptions made in
the derivation. In this section we have set the task,
however, to determine, by comparison with rigorous
numerical results, as well as possible in what precise

L = 2irFO( —
rt, 2rt)FO( r1,2rt) .— (5)

The values of the Coulomb wave function, F0(—if,p),
and its derivative with respect to p, Fc'(—rf, p), have
been tabulated by Abramowitz and Rabinowitz
(1954) for p = 2'.

Forg) 1

(b) Subcase of (a). Line AO

0.1728 0.0496 0.0172
2/3 4/3Q3

(6)
The error is 0.2% in point O. The exact value in 0 is
L = 2.0024 (this approximation: 2.0061).

(c) 8ubcase of (b). Line AB

For rt ) 70 we have within 1%

L = ir/+3 = 1.8138. (7)
This formula [Kramers (1923), Eq. (71)]is known as
the "soft approximation. "

(d) Subcase of (a). Line DF
For q & 0.2

Sir rt
1

10 2 196 4
2wy 1 3

ri 45 it

(8)

(e) Subcase of (d). Line EF
For g ( 0.055

2 28~ g
e (9)

(10)

(f) Subease of (a). Line CF

For ii ( 1.7 the formulas (5), (8), and (9) can be
replaced by the simpler expression

I = 2(1 —e '"") .
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This formula is found, if one takes the short-wave
limit g' —+ ~ of the Born-Elwert approximation
[formula (ll)] and can be verified directly by com-
parison with formula (8), if one expands

2(1 —e "")(e"" —1) = 8~'q'

2 4

X

(g) Subcaee of (e)

For it ( 0.008, the preceding formula would be ap-
proximated within 1% by L = 4zit. However, this
brings us outside the nonrelativistic domain, so that
this simple formula is never a good approximation.

Second Group, Formulas (11)—(13),High Electron
Energies, Born Approximation

Application of the Born approximation to the elec-
tron wave functions automatically conies the do-
main of validity to the upper part of Fig. 1. The
Born-Elwert approximation [formula (11)] is a for-
mula derived by Elwert from the Sommerfeld formula

by taking only the first two terms in an expansion of
the hypergeometric function in powers of 1/x. This
approximation has a larger domain of validity than
the straightforward Born approximation [formula

(12)].The Sommerfeld approximation [formula (18)]
is essentially the first term of an expansion in powers
of g.

The formula

(h) Domain CFH JKC

(known in the literature as Born-Elwert or Sommer-
feld-Elwert formula) has been derived by Elwert
(1989) with the restriction $ « l. Elwert also con-
jectured that this restriction would not be necessary

and that the approximation could be used in the
whole above-mentioned domain.

This conjecture is verified with a fair degree of
certainty by Fig. 3 which shows the loci for 1, 2, and

8% error. The full-drawn parts of the curves were
taken from Berger's exact numerical data (see Sec.
5), the end points at v = v, from formula (5) and the
dashed curves show the probable interpolation. The
1% curve corresponds to the curve KC in Fig. l. In
the limit it' -+ ~, one obtains formula (10).

(i) Subcase of (h). Domain GH JIM
The following formulas are known in the literature

as the Born approximation [Sauter (1988), Heitler
(1954), Sec. 25, Eq. (18)].They have been erst de-
rived by Gaunt (1980) and Maue (1982).

g'+g
1

4v,
p

= -', ln ~x~ = ln , = ln
2 = 2g

1 —n/n'

(12)

The five expressions are not identical, but they are all
suitable only in the long-wavelength limit and have
very nearly the same domain in which they are cor-
rect within 1%.

(j) 2 Further Subcaee of (h)

The formula
I

L = 4m'/(1 —e
""

)

would be correct within 1%, if it & 0.002 and
it/it' ( 0.15 and, hence, does not have any domain of
validity in Fig. 1. The same is true for the formulas

L = 47rit and L = 2'/it', which follow from it under
even more extreme conditions.

(h) Domain EFHIE
The older formula of Sommerfeld (1981) holds for

~ & 0.055

{136eV)-0.5-&1--

(13.6eV)0-- 0--

I t t I I t I I t
I I I I I I I I I

(
""—1) (1 — ""') ~' —~ (»)

This formula may be considered as a modi6cation of
the Born approxim. ation. In the limit p' ~ ~ one
obtains formula (9).

(1.36eV)4,5--1,
0s as a'I oa os is=+

II tog g

Fra. 3. Boundary of the domain of validity of the Born-
Elwert formula for low' electron energies.

Third Group, Formu1as (14)—(15)
Long-Wavelength Expressions

Several attempts have been made to utilize the fact
that p and. p' are nearly equal in the long-wavelength.
limit, in order to derive simplified expressions for L.
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YxsLz I shows that for very long wavelengths, where p = z X,
the corrections to the Born approximation given by (14) and
(15) are almost identical. The validity of (14) extends towards
somewhat shorter wavelengths as the correction is made de-
pendent on g'. On the other hand, the asymptotic expression
for very low velocities in (14) is not quite exact, especially
if & is not su%ciently small.

Such attempts are interesting only if they are not
limited to very small or very large p, and, hence,
may serve to bridge the gap between the domain of
the Born approximation and the classical domain.
Two such formulas are discussed here [(14) and (15)].
In the limit of q « 1, they reduce to the Born ap-
proximation (12). In the opposite limit, (15) reduces
exactly and (14) reduces very nearly to the classical
long-wavelength expression (16).

C' (v)
[see (15)j

0.5772 + 1n g
[see (16)]

2X
[see (14)]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
3.0
4.0
5.0

0
0.0124
0.0482
0.1039
0.1745
0.2549
0.3406
0.4280
0.5146
0.5989
0.6799
0.7572
0.8306
0.9002
0.9661
1.0287
1.0880
1.1444
1.1981
1.2492
1.2981
1.6913
1.9749
2.1961
0.5833 + 1n q

0
0.0119
0.0465
0.1005
0.1693
0.2483
0.3330
0.4199
0.5063
0.5906
0.6718
0.7494
0.8231
0.8929
0.9591
1.0218
1.0813
1.1379
1.1916
1.2428
1.2917
1.6850
1.9686
2.1898
0.5772+ 1n q

—1.7254—1.0322—0.6268—0.3391—0.1159
+0.0664
+0.2205
+0.3541

0.4719
0.5772
0.6725
0.7595
0.8396
0.9137
0.9827
1.0472
1.1078
1.1650
1.2191
1.2704
1.6758
1.9635
2.1867
0.5772 + 1n g

(l) Domain GHQRXG

For g & 1, $ & 0.01r) (i.e., v/v, &0.02) and for
1 & i) ( 5, $ ( 0.01, Kummerer (1957) obtained the
formula

L= 1 ln, —p
~'+ ~

1 —ir (ii' —ii) ii' —ii
' (14)

where

2

p = x -'*—(n —v)' (&'» ",

I = ln [4v,/([r)v)] = ln (4v,/v) —(G + ln r))

= ln (2/P) —G, (16)(m) Domain GHTKG

Let pc ——vi)/(2v, ). For v/v, « 1 and po « 1 (or
g « 1) Elwert (1948) has derived, starting from the
Sommerfeld formula,

where ln l = C = 0.5772 is the Euler constant.
The values of C + ln i) have been tabulated in Table
I for 0 ~( q ~& 5. The domain of validityis limited at
the lower end, because the formula is essentially based
on straight-line encounters.L = ln (2r)/P) —C (ii) = ln (4v, /v) —C (ii),

(15)

y = ln (1 + ii') + rl'/(1 + i)') + 1/6

+ (.' —I)/[6(1 +.')']
Values of -', x have been tabulated in Table I

(0 ~( i1 p 5). For rl ( 0.2, we may omit p and the
(n) Domain TPJVL

first factor of I, whereby the Born approximation is
In the low-energy (classical) limit (rl )) 1), formula

first factor, for this hardly extends the domain of
validity over that of the Born approximation.

where

C(&) = C+ Re [r'(i~)/I'(i~)]
= P&=& i)'/[k(k' + i)')]

and I"(z) = (d/dz) I'(z) represents the derivative of
the gamma function I'(z) and G = 0.5772. . . is the
Euler constant. This formula has been given also by
Huby and Newns [(1951),Eq. (23)] and Alder, et al.
[(1956), Eq. (IIE.66b)]. For ii &( 1,C (il) = 0, this is
again the Born approximation (12) and for i) )) 1,
C(il) = G + in', the Eramers formula [see formulas
(16) and (19)].A table of the function C(ii) in the
interval 0 ~( rl ~( 5 is given below (Table I).

Fourth Group, Formulas (17)—(20),
Low-Energy Encounters, Classical Theory

(o) Domain ABSPML
For slow electrons, i.e., g )) 1, we obtain the clas-

sical approximation. The de Broglie wavelength
lt/(2irmv) must be small compared with the

"size" of the Coulomb field Ze'/(mv'), which means

g )) 1. Taking in the exact quantum mechanical
Sommerfeld formula for L the limit rl

—+ ~ and f
finite, one finds (see e.g. Alder et al. [(1956), Eq.
(IIE.58)], Biedenharn [(1956), Kq. (13)]),

L = ( '/4)iW. "i'('~)H'. ~' ('~), (»)
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where

pp
—=2vrvZe'/(mv') = vg/(2v, ) .

A. complete derivation of this formula is given by
Landau and Lifshitz (1959).Apparently, this classical
formula —where the inhuence of the radiation loss on
the velocity of the particle has been neglected —must
by symmetrized by replacing pp by $ = p' —rt. This
symmetrization has been discussed by Wentzel (1924)
(cf. case o), Ter-Martirosyan (1952), Alder, et al.
[(1956), Sec. IIA.5], and Biedenharn and Thaler
(1956). The quantities pp and $ are related by

Sp = &[1 —3k/(2~') + k'/(2~") ]
= Pn(1 + n/n')/(2n'),

so that the unsymmetrized Eramers formula can be
used only if

f/rt' « 1 or v/v, « 1 .

(Il) Subcaee of (p)

In the domain TPII/IL, where g = pp « 1, we ob-
tain the expression that is usually called "the
Kramers formula"

L = (1+ p.) 1 [2/(lp )I (19)
where ln l = C = 0.5772 is the Euler constant.
This formula coincides with formula (16), because of
the restriction po (( 1. In this domain the ratio of the
exact quantum mechanical formula and the classical
limit can be derived from formulas (15) and (16)
[Biedenharn and Thaler (1956), Eq. (25)]

~exact

Ltclassical

ln rt —4 (g) + C
ln (2/() —C

With the use of this formula the upper 1% bound-

where the derivative of the Hankel function of the
first kind is denoted by

II.'" (z) = (d/dz)II."'(z) .
This expression may be obtained also by directly cal-
culating the matrix elements for the bremsstrahlung
with the WEB approximation for the Coulomb wave
functions (see e.g. Alder et al. (1956), Secs. IIB.6 and
IIE.5). Wentzel [(1924), Eq. (36)] derived this for-
mula from classical radiation theory, using the cor-
respondence principle.

(p) Kramere' Formula

Eramers [(1923),footnote on P. 860] derived from
classical radiation theory for a hyperbolic orbit the
formula

ary of the classical domain can be determined and
it is seen that for extremely small values of $ (i.e.,
outside Fig. 1) the boundary is given by log q
= 0.01 log (v/vp) —0.25. The fact that this line
(Lll/I in Fig. 1) somewhat deviates from the hori-
zontal direction has no practical importance.

(r) Subcaee of (o); Domain ABSU

The classical limit has the asymptotic expansion
for large values of $ [Watson (1958), p. 247]

pr 0.21775
~3

0.01312
(4/p

(20)

As has been shown by Grant (1958), this formula
equals formula (17) within 1/o for values of P as low
as 1. For p ~ ~ the "soft approximation" (7) i»e-
covered.

I. Domo, 26 po'v u

Eirkpatrick and Wiedmann [(1945), Table II and
Fig. 7] have computed L for about 60 points with
values of g from 0.16 to 2.14. They employ the strict
Sommerfeld formula as transformed by Weinstock
(1942). Moreover, they find for each point by plani-
meter integration one further integral needed to com-
pute the polarization of the emitted radiation.

Their quantities W )& 10", V/Z' and v/v, are
numerically equal to our 38.45rPL, 1/(22.07'') and
v/v„respectively. They claim an accuracy better than
one percent.

II. Domain left of p il/

Berger (1957) has made machine computations on
the basis of Sommerfeld's formula in this domain,
with the exclusion of a region in the vicinity of the
short-wave limit. The ordinate W,E/(Adv) of his
Figs. 1 and 2 and the ordinate W,/(Adv) of his Fig. 3
are numerically equal to our 1.378 J and x-'g'L, re-
spectively. The abscissa of all his figures equals
v/v, . The computation refers to 327 incident electron
energies and to about 50 frequencies per incident
energy, so that a fine grid is available for interpola-
tion. The short-wave boundary of his domain is

S. NUMERICAL RESULTS AND THEIR DOMAINS

The approximation formulas given in the last sec-
tion do not suttee to compute I for all values of g
and v, as can be seen from Fig. 1. They must be
supplemented with the results of numerical calcula-
tions based on the exact Sommerfeld formula. The
following tables and diagrams can be found in the
literature.
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given by v/v, = 0.70 near pand by v/v, = 0.999 near

These results show resonance phenomena for
energies near the ionization energy xo of hydrogen
and i/ig & 0.1. We have not been able to decide
whether these are brought about by a physical
resonance or by a spurious effect in the numerical
computations. No such resonance phenomena are
seen in the curves of Karzas and Latter (see below).
Berger claims that the error in the results is deter-
mined solely by the uncertainty of the fundamental
ato~ic constants.

tog —,
p. z

-6 -5 "I -3 -2 -1
-3--+6 I I I I I

I I I

-2—-a4-

(13.6keV)—+3-

+1—

(13.6eV)0-- 0-

+1—--2—

(QN36eV) —-3—

+2---4—

0 +1 i2 +3 i4 +5 &6
Log ~z

I I I I I I 0

III. Domain nPyG

Grant [(1958),Table I] transformed the numerical
results computed by Thaler, Goldstein, McHale, and
Biedenharn (1956) for tike charges into Gaunt fac-
tors, g = vr '+3L, for unlike charges. The accuracy
claimed is a few tenths of a percent. Approximately
200 tabulated values cover the a,rea defined by 0.001
~( iI ~( 40 and 1.01 ~& iI'/iI ~& 1.8. His definitions of

q, ij', and $ differ in sign from ours. The table is com-
pleted in a small triangle near P (see Fig. 1) by values
computed from the classical formula (17), which
differ in these regions from the exact values by less
than 0.4 jo. Again, the underlying material is a ta,ble
computed for like charges by Alder and anther
(1956).Tables based on the Born-Elwert approxima-
tion [our Eq. (11)]and on our Eq. (20) are also given.

-5-

+3--%-

E
l,og

t
'

-3—+6 I I 1 1 1 I
'

I I
I I I I I I I I

-2—-+4--

(136 g V) +3 L =40 I 23 25 24 2.2 2D 1.8 S 14 12 1'jI 0.8 M

-1—-&2—

(13.6eV)0-- 0—

I'ra. 4. Survey diagram showing the values of L for rela-
tively long wavelengths.

IV. Domain AI' 'Ap

Earzas and Latter [(1957),Figs. 1 and 2] give values
of the G-aunt factor over almost the entire domain of
Fig. 1. The computations are based on the exact
Sommerfeld formula as transformed by Biedenharn
(1956) but no details on accuracy, numerical meth-
ods, and number of points calculated are given. The
results are presented in two graphs, from which g
may be read within a few percent as functions of the
frequency (v/(voZ') = 10 ' to 10+') and the final
energy of the electron in the emission process, which
is the initial energy in the absorption process (q' '
= 10 ' to 10+').

Survey of Results

We wish to compile the results over the entire
domain of Fig. 1 in a convenient form. This is done
in Figs. 4 and 5, which are based both on the ap-
proximation formulas from Sec. 4 in their proper
domains and on the numerical data from Sec. 5.
The coordinates of Fig. 4 correspond precisely with
those of Fig. 1; this figure may be used for v/v, & 0.1.
In Fig. 5 the a,bscissa is v/i„' it may be used for

+1---2-

(0.0136eV)—-3-

I I I

GQ 0.1 02 Q3 G4 G G6 0.7 G8 09 1Q~
9

lag q

Fxe. 5. Survey diagram showing the values of L for rela-
tively short wavelengths.

i/i, ) 0.02. The curves approach the asymptotic
direction, v/i, = constant, at the top of these figures
(small iI); at the bottom they virtually coincide with
the curves P = const.

6. AVERAGING PROCESS FOR THE MAXWELLIAN

DISTRIBUTION

LetE = —,'mv'betheinitialenergyand E' = E —hv

be the final energy of the free electron and g(E,i)
the corresponding Gaunt factor. The free-free emis-
sion per unit volume of a thermal gas is obtained
by integrating a quantity proportional to g/u over a
distribution function proportional to e ~/'~v'dv, where
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k denotes the Boltzmann constant. ' It is thus found
that the weighted average of g for a Maxwellian
distribution may be expressed in two ways as

-ovt z ef 0
a e fi.zey, ,~ Ie
t

~ mtv) n'

60-

g((T,v) = e""" g(E,v)e "'d
kT 25-

CQ
/

g(E'+ hv, v)e
' "d

kT
.

(21)

The complete equation for the energy emitted in
free-free encounters per cm' per sec-' band width per
steradian is

2 6 I/2
W, f (T,v) 8Z e 2mm . . .„(„

2 3 3I~, ' eg( )&)& ~

(22)

These formulas sufFice for computing the free-free
emission. However, we shall show that it is necessary
to consider also the free-bound transitions. The ex-
ponential factor in Eq. (22) arises from the fact that
free-free emission of frequency v cannot occur un-
less the initial electron energy exceeds ks. However
bremsstrahlung in a broader sense can be emitted by
electrons of any initial velocity. It includes free-
bound radiation, in which the electron is captured
by the ion. In any emission experiment these two ef-
fects will be measured together.

The free-bound radiation differs from the free-free
emission by the quantization of the final energy The.
qualitative reasoning given above suggests that the
inclusion of the free-bound emission will approxi-
mately cancel the exponential factor in Eq. (22).
This reasoning simply reverts that of Eramers (1923),
who first derived the formula for free-bound radia-
tion by means of the correspondence principle from
the classical radiation formula,

We shall first illustrate the situation by a graph
of the combined continuum based on Kramers'
original equations [(1923),Eq. (56)], i.e., by a compu-
tation where g = 1. Lumping all factors which do
not depend on F or v into a factor A, we obtain

—3 8/n' 1/2
n e

(23)

Here 8 = h,v0Z'/(kT) = 2~'me4Z'/(h2kT) and m(v) is
the principal quantum number of the lowest bound
level to which emission at the frequency v can occur

m(v) —1 ( (v/voZ')' ' ( m(v) .
The quantity a = W~,/(4~A. ) has been plotted

2 Confusion with the wave number k is not possible from
here on.

2.0-

1.5q-2

1.0=——

05
S=Q1

9=00t

Fre. 6. Emission spectrum from a thermal gas at various
temperatures according to Eramers' formulas. Upper curves:
combined continuum; lower curves: free-free emission only.

against log (v/voZ') in Fig. 6 for four values of the
temperature. It is seen that the successive entry of
more free-bound continua defines a saw-tooth curve
which remains horizontal on the average, so that the
exponential drop of the free-free emission (dashed
curves) is canceled quite well by the free-bound
contributions. The teeth become invisible at low fre-
quencies (the radio domain) or at high temperatures
(small 9). In those situations the free-bound con-
tribution is negligible.

Insertion of the relevant Gaunt factors now gives
the rigorous expression

[W(T v)/4vrjdv = N;N. Rye
"" ""

X I g(T,v) + f(T,v) }d(hv/kT) .

(24)

Here, R = 4wZ'e'/(3'~'mhc') = 1824 X 10 "Z'erg
cm'; V = (8kT/mm)'~', g(T, v) has been defined above
and the new term is

f(T,v) = 28 Q n e' "
g.(v),

n=m(v)

where g.(v) is the Gaunt factor for the transition
from the free level E = —hvoZ'/n'+ hv to the
bound level E' = hv, Z'/n' . —

'j. AVERAGE GAUNT FACTORS FOR
FREE-FREE EMISSION

(a) Analytical Integration

The expression for the Born approximation (12)
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can be integrated analytically over the Maxwellian
distribution. Starting from the form

g = vr '~81n (4v,/v)

Elwert (1954) Ands [cf. Erdelyi (1953), Vol. II, Eq.
9.7(5)]

y(T,v) = z. '+sin (4kT/(hvar)) . (26)

This formula has been discussed recently by Oster
[(1961),Eq. (152)].Starting from the form

g = 'V»n [(~'+ ~)/( ' —~) }

Greene (1958) Ands [cf. Erdelyi (1954), Vol. I, p. 149,
Eq (»)]

y(T,v) = z. '+Re"" '"
Ko(hv/2kT) . (27)

Here ln 1 = C = 0.5772 is Euler's constant and
Ko(z) is the modiAed Bessel function (e.g. Watson
[(1958), pp. 78, 698]).

It might seem that Greene's expression is more
general than Elwert's, because Elwert's expression
derives from it in the limit hv (& kT. However, the
validity domains (within 1ge) of the original formulas
practically coincide and are limited to the long-wave
limit hv/E ( 0.01. Hence, the validity of the aver-
age formulas is similarly limited to hv/kT & 0.01,
say, and the more complicated form with the Bessel
function has no advantage (see Fig. 7).

Eulsrud (1954) has integrated the Born approxi-
mation numerically for 1 ~& hv/kT ~( 7. For these
frequencies, however, the Born approximation is not
suitable.

Another approximation formula suitable for ana-
lytical integration is the low-energy (long-wave-
length) limit of g, coinciding in its domain of validity
with "the Eramers formula" [(16) and (19), re-
spectively]. The integration yields [cf.Erdelyi (1953),
Vol. II, Eq. 9.7(5)]

+3 3 kT P 0
y(T,v) = —ln, —In . ——C

~&pZ 4vpZ 2

(28)

where C is again Euler's constant. This result has
been discussed by Scheuer [(1960),Eq. (7)] and Oster
[(1961), Eq. (134)]. These authors investigated the
derivation of this expression from the one-velocity
formula.

(b) Numerical Integration

Grant (1958) has suggested a rapid method for
integrating over a Maxwellian distribution by a
quadrature formula [Chandrasekhar, (1950)], in
which the integrand should be computed in only a few

points, i.e., at the zeros of Laguerre polynomials in
E'/kT. Several examples are given.

Berger (1956) has computed average Gaunt factors
both from his numerical evaluation of the exact
Sommerfeld formula and from numerical data based
on the Born-Elwert approximation (11).Both aver-
ages are given for eight temperatures between 0.5
eV and 100 eV and 20 wavelengths between 500 A
and 10 000 A (for Z = 1).

This work has later been extended by Green. e
(1958), who, as a by-product of a calculation of the
total power, computed the ratio and diGerence be-
tween the exact value of g and the value g& based on
the Born approximation [our Eq. (12)].The work is
based on Berger's tables and on asymptotic formulas
for very small and very large hv/kT The res. ults are
given in the form of graphs of g, g/g~ and g~~ plotted
against hv/kT as well as separate graphs showing the
dependence on T (ranging from 10' to 10"E) for
the three wavelengths: 12.4 A, 3000 A, and 1 cm.

Earzas and Latter (1957) have also computed the
average Gaunt factor by numerical integration of
exact values. Their results, which cover the intervals
hv/kT = 10 ' to 30 and xo/kT = 10 ' to 10' are pre-
sented in the form of graphs in which g is plotted
against one of these quantities with the other as a
parameter.

Eazachevskaya and Ivanov-Eholodny (1959)have
computed the average Gaunt factor for 17 values of
the wavelength between A. = 1A and A. = 10"A and
temperatures 10"Eand 2 )& 10"E, with a view to
application to the continuous solar emission. They
give no details on the calculations of the average
Gaunt factor, which they consider exact. For com-
parison results from the Born-Elwert formula and the
Born approximation are tabulated.

(c) Domains in the Temperature-Frequency Diagram

In analogy with the energy-frequency diagram for
electrons of a given velocity (Fig. 1) we have con-
structed a temperature-frequency diagram which
permits a quick survey of the availability of values
or formulas for the average Gaunt factor.

In this diagram (Fig. 7) Berger's (1956) results
form a ladder-like structure of horizontal dotted
lines B.

The intervals G, covered in Greene's graphs, are
rather widely spread over the diagram.

Earzas and Latter's (1957) data cover the largest
domain, the circumference of which has been marked
KL.

The line BII at kT = hvpZ' represents the data of
Table II and part of Fig. 9.
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kT
hv, z

~ ~ 4~G

/ G

classical

'~

X= 1remieI'

-9 -8 -7 -6 -5
E

-3 -2 0 + + t +

Log vZ
FIG. 7. Numerical results available in the literature: Berger's results are denoted by the dotted lines . . . . . . ; Greene's by.—.——;Karzas and Latter's by the solid lines marked EL; Eazachevskaya and Ivanov-Eholodny's by the solid lines marked

KI. The line BH represents the data of the present work (Table II and part of Fig. 9). The boundaries of the domains of 2
per cent accuracy of the Born and the Born-Elwert approximations and the classical limit have been indicated by

In the same Fig. 7 the boundaries of the domains
of validity of some approximations have been ini3i-

cated by broken lines. The upper left domain belongs
to the Born approximation, for which either the
expression containing a modified Bessel function or
the even simpler logarithmic expression may be
used.

The lower left domain is the domain of the classi-
cal limit of the Gaunt factor.

From Berger's (1956) results we determined the
2% boundary for the Born-Elwert approximation.
This boundary is the sloping line in Fig. 7, crossing
Berger's intervals B. This approximation, however,
still requires numerical integration.

The conclusions reached in Sec. 2 for the density
independence of the one-velocity formulas, may, of

course, be taken over into the case of a Maxwellian
velocity distribution. Hence in this paper we have
not discussed expressions for the average Gaunt
factor that are density dependent, like the ones, e.g. ,
given by Smerd and Westfold [(1949),Eq. (3.31)j and
Oster [(1959),Eq. (39)](for these expressions the upper
impact parameter is taken to be p. = X-'~' and the
emitted frequency is assumed to obey ~ & v„, re-
spectively) .

8. FREE-BOUND EMISSION

The Gaunt factor for the transition from the free
level, E = hvoZ%' to the bound level, E' =
—AvoZ'/n', has been discussed in detail by Menzel
and Pekeris (1935). The exact expression is very
similar to that for free-free transitions. However, the
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available approximation formulas, also given by
Menzel and Pekeris, cover only a very restricted
domain of validity.

The function f(T,v), defined in Eq. (25), contains
this Gaunt factor but is not itself an average Gaunt
factor. In order to determine this function, the values
of g.(v) for a fixed frequency v and for n ranging from
m(v) to ~ are required. Using formula (1.36) by
Menzel and Pekeris, we have computed' the values
of g.(v) for the frequency interval 10 ' ~( v/vpZ' ~( 10'
and n ranging from 1 to 10. The results are given in
Fig. 8.

The summation, necessary to calculate the func-
tion f(T,v), may be split into two parts, the first part,
P' „,to be performed by adding the separate terms.
For the second part, P„" p, an interpolation for g„(v)
must be made between n = 5 and n = ~ . This may
be done without great loss of accuracy by

g- = g-+ (»/n') (g —g-),

+ 508(gp —g.) g
n=6 (29)

The infinite sums g" p can readily be evaluated,
either by replacing them by integrals from 5.5 to ~
or (more accurately) by developing the exponentials.

Two examples may serve for an illustration:

e = 1, v/(vpZs) = 1.26 8 = 1, v/(vpZs) = 0.316

gl
g2
g3
g4
g5
gpa

first term of f
second term of f
third term of f

0.855
1.049
1.080
1.091
1.095
1.099
5.128
0.037
0.000

f = 5.165

0.915
1.015
1.048
1.063
1.090
0.430
0.037
0.000

f = 0.467

At very low frequencies (v ( 0.04vpZ') we cannot
compute f by this method, because m ) 5. Generally,
however, the free-bound contribution to the average
Gaunt factor is small for these frequencies and we

3 The authors are indebted to Dr. T. A Griffy for program-
ming this expression for the IBM-704.

where gp and g„have to be taken for the same v. We
may remark here that for n = g' = ~ the free-
bound and the free-free Gaunt factors coincide, so
that the formulas (5) to (10) can be used. Thus, we

get

5 8ln2 g/n"-

f(T,v) = 28 g g„, + 28g„g
n=m n n=6

&In

L„(v) g„(v)
l.2

I.O-

$0.7-

0.6-

--0.5-

0.4

0.3

0.2

O. I

o.o--0.0 i—-
-4

t

+2 +3 +4~ log~s
VpZ

Fra. 8. Gaunt factor g„(v) versus frequency for free-bound
transitions (L = ~8 r~sg„). The intersection of the n = 20
curve with the q = ~ limit has been indicated by a dot.

may put g„(v) = 1 within one percent error (cf. Fig.
8) and replace the sum by an integral.

9. THE COMBINED FREE-FREE AND

FREE-BOUND CONTINUUM

We may now return to formula (24) which gives
the intensity of the combined continuum for an
ionised gas with a Maxwellian distribution of the
electron velocities. The values of g + f are given in
Table II for 0 = 1, which means T = 158 000'K in
the case of hydrogen. This function has been plotted
on a logarithmic scale in Fig. 9, where it is seen that
from v/vpZ' = O. l on, i.e., from )I, = 1 micron down
to shorter waves, the free-bound continuum becomes
increasingly important.

Figure 9 also shows the values of g for the tempera-
tures 10', 10', 10', 10' 10', and 10"E in the fre-
quency range in which they can be calculated. from
the classical limit or Born approximation within

2% error.
The product b = e ""/"'(g + f)8'/' is proportional

to the energy emitted per unit frequency band. It
has been plotted, again for 0 = 1, in Fig. 10. The
function b differs from the function c plotted in Fig.
6 only by the inclusion of the Gaunt factor and the
graphs are directly comparable with the same
(logarithmic) frequency scale and the same (linear)
ordinate scale. For instance, the ratio of the linear
magnitudes of the first jump (the Lyman discon-
tinuity) in the two figures is 1.60/2. 00 = 0.80 = the
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1. INTRODUCTION

N the treatment of both one-particle and many-
~. particle systems, the constants of motion play an

important role in studying the time-dependent phe-
nomena and the stationary states. In the classical
theory, the constants of motion were physical quanti-
ties like the energy, the momentum, the angular
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Culture, Enut and Alice Wallenberg's Foundation, The
Swedish Natural Science Research Council, and in part by
the Wright Air Development Division of the Air Research and
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pean OfFice.

momenta, etc. In quantum theory, the list of the
constants of motion has been considerably extended
and includes, not only the spin and the total angular
momentum, but also such operators as the permuta-
tions, the translations, the crystal symmetry opera-
tors, etc. The physical quantities are represented by
Hermitian operators, whereas the latter quantities
correspond to another type of operators, the so-called
normal operators, which may be considered as a
generalization of the Hermitian operators. The
normal constants of motion are essential for classify-
ing the energy levels, and we will here give a short
outline of their theory by means of a projection
operator formalism.


