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I. INTRODUCTION

&HIS review is concerned with the elastic and
inelastic (excitation, pickup, or ionization) colli-

sions of slow electrons or positrons with hydrogen
atoms. The purpose of this paper is to present a sur-
vey of the experiments that have been reported to
date and to review the many theoretical attempts to
calculate the relevant cross sections within the frame-
work of nonrelativistic wave mechanics.

Most of the theoretical techniques discussed here
may be generalized to more complex physical sys-
tems. For example, the collisions of electrons with gas
molecules, collisions between atoms, the collisions of
mesons with molecules, etc. For detailed discussions
of these processes the reader is referred elsewhere. ' '

We follow Massey" in the de6nition of a "slow"
collision. A collision is said to be "slow" when the
relative velocity of the incident particle and target
hydrogen atom is not great compared with the
velocity of the atomic electron. When this criterion
is not satisfied, the collision is said to be fast and the
erst Born approximation4 provides a satisfactory
theoretical description of the collision process.

The importance of the collision problems con-
sidered here is twofold. First, they are the simplest
collision problems that can be treated by wave me-
chanics (nucleon-nucleon scattering involves fewer
particles, but the interaction is unknown); even then,
mathematical approximations must be developed to
solve these problems. Currently, experimental infor-
mation is becoming available on the electron-
hydrogen atom problems and so it is becoming
possible to evaluate the merits of the various theo-
retical approximations in those problems for which

& N. F. Mott and H. 8. W. Massey, Theory of Atomic Colli-
sions (Clarendon Press, Oxford, England, 1949), 2nd ed.

2H. S. W. Massey, Handbuch der Physik, edited by S.
Fliigge (Springer-Verlag, Berlin, 1957), Vol. 86.

s H. S. W. Massey, Revs. Modern Phys. 28, 199 (1956).
s W. Eohn, Revs. Modern Phys. 25, 292 (1954).
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no mathematical estimate of the error incurred in the
approximations exists. As soon as the range of va-
lidity of these approximate methods is established,
they can be used with somewhat greater conMence
in other problems of physical interest. Secondly, the
scattering of electrons by hydrogen atoms has appli-
cations in astrophysics, ' and the results of such
investigations probably bear directly on the under-
standing of controlled thermonuclear devices.

In connection with the development of approxi-
mate methods for the treatment of collision problems,
we are justified in examining, theoretically, the scat-
tering of slow positrons by atoms. Furthermore, the
recent developments of experimental technique as-
sociated with the study of positronium formation
focusses additional interest on the fate of a stream of
positrons in a gas.

In Sec. II we summarize the current experimental
situation, which is completely dominated by the
work of Fite and his co1laborators. Four experiments
have been performed on the elastic scattering of
electrons by hydrogen atoms, at energies below the
threshold for excitation. There is reasonable agree-
ment among the results of three of these experiments.
Two experiments have been performed on the relative
cross section for the production of metastable H(28).
The two sets of results differ quite substantially in
magnitude, probably due to the different normaliza-
tion procedures. This discrepancy is considered in
detail in Sec. VII. One experiment has been carried
out to measure the relative total cross section for
the observation of Lyman-0| radiation. The ionization
cross section has been measured in four experiments,
two of which were normalized to the Born approxi-
mation whereas the remaining two were absolute
determinations. The results of the latter differ by
25% at 100 eV, the lowest energy where comparison
is possible.

In low-energy positron or electron scattering from
atomic hydrogen, it is to be expected that the atomic
charge cloud will be appreciably distorted due to the
impinging particle spending a great deal of time in
its vicinity. The basic theoretical problem is to make
adequate allowance for this distortion. In Sec. III
we develop the eigenfunction expansion approach to
this problem, basing the formulation on a variational
principle. Qualitatively, for bombarding energies be-
low the first excitation threshold (Ic' ( 0.75) distor-
tive effects are allowed for by assuming virtual
transitions to the higher atomic states. The results
of calculations performed in this approach are given

s T. L. John, Monthly Notices Roy. metron. Soc. (London)
121, 41 (1960).

in Sec. IV. Since the technique of expanding in terms
of orthonormal functions is the method most often
used in wave mechanical collision problems, one of
the major tasks of this review is to investigate the
rate of convergence of such expansions.

In Sec. V we summarize the principal results of
recent work in developing rigorous minimum, or
maximum, principles rather than the stationary
principles of Sec. III.These important results, besides

giving more practical meaning to variational com-
putations, elucidate the relative importance of the
various physical effects contributing to the distortion.
The importance of these extrema principles cannot
be stressed enough since they provide the first mathe-
matical estimate of the error incurred in wave me-

chanical scattering calculations. Therefore, it is
possible to make statements about the "goodness"
of a theoretical result urithout appealing to experi-
ment. This has particular significance in the present
class of problems, where the experimental results re-
ported to date make liberal use of various theoretical
estimates both for normalization purposes, and for
allowance of background processes.

In Sec. VI we survey other theoretical methods
currently in use in electron or positron-hydrogen
atom collisions, some of these still based on a varia-
tional principle. These methods, with the exception
of the impulse approximation and the Born approxi-
mation, have been used only in calculations for
incident energies below the first excitation threshold.

Atomic units are used throughout this article, that
is, energies (labeled k' for the pro3ectile) are quoted
in Rydbergs, cross sections in units of s-a~&&, and phase
shifts in radians.

II. EXPERIMENTS

Although calculations on the scattering of slow

electrons by hydrogen atoms have been performed
continuously since the early 1930's,' there has been
very little experimental data' to compare with the
theoretical predictions until recently. The principal
reason for the lack of data is due to the diS.culties
encountered in performing scattering experiments for
those elements that are not monatomic at room
temperature. For such elements, the Inolecule must
first be dissociated; the dissociation process is accom-
panied by the formation of excited states of the atom,
free electrons, and ions, which in turn give rise to
effects that are dificult to allow for.

The key to the solution of the experimental difG-

6 H. Maecker, T. Peters and H. Schenk, Z. Physik 140, 119
(1955); A. A. Kruithof and L. S. Ornstein, Physics 2, 611
(1935).
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culties was found in the use of modulated beam tech-
niques. These methods were developed for the e—H
problem independently and simultaneously (1954—55)
by Bederson and his co-workers at New York Uni-
versity, and by Boyd, Fite, and Green at University
College, London.

The recent developments of experimental tech-
nique' associated with the study of the collision
processes of a stream of positrons in a gas justifies as
detailed a theoretical analysis as possible of the
various reactions involved. Unfortunately, no experi-
ments have been carried out, as yet, on the collision
of positrons and hydrogen atoms.

(a) Elastic Scattering

Bederson et at. ' have used an atomic beam ap-
paratus to measure the total elastic scattering cross
section for the scattering of low energy (below 14.5
eV) electrons by hydrogen atoms. In this experiment,
the molecules of hydrogen were dissociated by a
microwave discharge, and the beam was modulated
by a mechanical chopper. Charged. particles were re-
moved from this beam (mixture of H and H, ) by
electrostatic deflection, while the ratio of atomic to
molecular content in the beam was determined by a
Stern-Gerlach experiment. An electron beam was
produced by an electrostatically focused electron
gun and crossed the atomic beam at right angles. The
scattered electrons gave rise to a signal, which oc-
curred at the beam modulation frequency, and were
collected by a Faraday cage. Absolute values for the
atomic cross sections were obtained by normalizing
to the molecular cross sections, which were in turn
normalized to a curve of Normand. ' Bederson's
results are reproduced in Fig. 1.

The results of Bederson's measurements disagree
with all calculations that have been performed to
date. This disagreement between the theoretical pre-
dictions and experiment led Brackmann et ct." to
remeasure the total elastic scattering cross section,
using a modulated atomic beam, produced by thermal
dissociation in a tungsten furnace. In this experiment,
the only electrons detected were those which were
scattered into a con.e of s./4 half-apex angle whose

~ M. Deutsch, Progr. in Nuclear Phys. 3, 181 (1958); W.
B. Teutsch and V. W. Hughes, Phys. Rev. 103, 1266 (1956);
S. Marder, V. 7V. Hughes, C. S. Wu, and W. Bennett, ibid.
103, 1258 (1956);F. F. Heymann, P. E. Osmon, J.J. Veit, and
W. F. Wiiiiams, Proc. Phys. Soc. (London) '78, 1088 (1961).

8B. Bederson, H. Malamud, and J. Hammer, Bull. Am.
Phys. Soc., 2, 172 (1957); College of Engineering, Research
Div. , NYU, Tech. Rept. No. 2, Electron Scattering Project,
Contract No. ONR-285(15) (1958) (unpubhshed).

9 C. E. Normand, Phys. Rev. 35, 1217 (1980).
Io R. T. Brackman, W. L. Fite, and R. H. Neynaber, Phys.

Rev. 112, 1157 (1958).
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FIG. 1. Total experimental cross section vs energy for e H,
reference 8.

axis lay in the equatorial plane of the scattering
sphere. In this way about 10% of the total number
of scattered electrons were collected.

In the General A.tomic experiments, the relative
proportions of atoms and molecules in the mechani-
cally chopped atomic beam are determined by a mass
spectrometer. In this way, measurements were made
of the ratio of cross sections of the hydrogen atom and
the molecule for scattering into the observation cone.
The molecular cross section was obtained by inte-
grating the differential cross section measured by
H,amsauer and Kollath. " Hence, the elastic atomic
cross section can be determined as absolutely as were
the measurements on the molecule. The results of
Brackmann et ct." are reproduced in Fig. 2; the
authors attribute the large scatter of points to be due
to uncertainties in the energy of the electrons.

In order to relate the results of Fig. 2, which are
only for those electrons scattered into the cone of
observation, to the total scattering cross sections,
Brackmann et at."devised the approximate formula

Qt,.t.g
= 6.85 Q....+ 0.6 Q), (II.1)

where Q& is the t = 1 partial-wave cross section (see
Sec. III). Thus, the total cross section inferred from
this experiment depends on assumptions concerning
the angular distribution: For an isotropic distribution
Qi ——0; for the various theoretical values for Q& [see
Sec. VII (b)], Q,.„& varies; if d waves and higher

rr C. Ramsauer snd R. Koilath, Ann. Physik 12, 529 (1932).
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partial waves contributed, then the above formula
would be inadequate. However, if this formula is
used, together with any of the calculated values for
Q&, the resulting total cross sections are considerably
smaller than those of Bederson et cl.'

One reason for the disagreement between these
two experiments was thought to be the possibil-
ity of strong forward scattering, which would be
missed in the General Atomic experiment. In order
to test this, the General Atomic group of Gilbody et

at."measured the angular distribution of electrons
elastically scattered by atomic hydrogen in the
energy range from 3.8 to 10 eV for angles from 30 to
120'. Their results are reproduced in Fig. 3,"' and
again were normalized to the molecular data of H,am-
sauer and Kollath. In this experiment, the scattering
at different angles was effected by rotating the elec-
tron gun rather than the detector system. Their re-
sults (where the error in determining the absolute
value of the cross section may be ~20%) indicate
that the angular distribution tends to become hori-
zontal over the observed angular range with decreas-
ing energy, giving support to the results of reference
10.

Neynaber et ct."have remeasured this cross section
&2 H. B. Gilbody, R. F. Stebbings, and W. L. Fite, Phys.

Rev. 121, 794 (1961).
& 'K. Smith, R. P. McEachran, and P. A. Fraser, Phys.

Rev. 125, 558 (1962).
b P G Burke and H. M. Schey, Phys. Rev. 126, 147

(1962); McEachran and Fraser are extending this work using
the numerical method described in reference 57.

~3 R. H. Neynaber, L. L. Marino, E. W. Rothe, and S. M.
Trujillo, Phys. Rev. 124, 185 (1961).
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values of references 10 and 12, rather than Bederson's
results.

A comparison of the above experimental results
with theory is given in Sec. VII (b).

rd E. Briiche, Ann. Physik 82, 912 (1927).

with an experimental arrangement (again of the
modulated atomic beam type) designed to collect
most of the scattered electrons (actually their angular
resolution was about 25'). The atomic cross sections
were calculated again from the atomic to molecular
ratio, whereas the molecular cross section8 were
taken as the arithmetic average of Normand' and
Briiche. '4 The total cross sections measured in this
experiment are given in Fig. 4, and support the lower
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(b) Inelastic Scattering

Fite and hi.s collaborators" have performed an
experiment to measure the cross section for excitation
of Lyman-alpha radiation on electron impact. This
radiation corresponds to a transition from the n = 2
to the n = 1 state. In this experiment, a highly dis-
sociated () 90%) modulated hydrogen beam was
crossed by an electron beam. The region of interaction
of the two beams was viewed by a Lyman-alpha
photon counter. Since the beam is not wholly dis-
sociated, then the signal at the photon counter arises
from both molecules and atoms; therefore, it is
necessary to determine the ratio of atomic to molecu-
lar cross sections for excitation of the countable ultra-
violet radiation (Lyman-n).

Since Lyman-a radiation is electric dipole radia-
tion, the cross section per unit solid angle for photon
emission q(0), is related to the total cross section Q by

q(8) = BQ(l —P cos' 8)/(B —P), (II.2)

where 0 is the angle between the direction of photon
emission and the direction of the incident electron
beam and P(k') is the polarization fraction. " The
signal strengths are proportional to q(e) and, there-
fore, to the total cross section, at cos'0 = 1/B. Rela-
tive total cross sections were measured by observing
photons emitted at 54.5' (cos'0 = 1/B) from the
direction of the electron beam. These measurements
agreed, to within experimental error, with relative
measurements for the total cross section made at
90 and 45 . The problem of calculating P is discussed
in Sec. III (b).

Whereas several processes" might lead to the
emission of the observed Lyman-0. radiation, it is
probable that the major contribution at energies
greater than 100 eV, comes from 18-2P excitation.
Those atoms which are excited to the 2P state, life-
time of the order of 10—' sec., decay with emission of
Lyman-o. radiation while still in the collision region.
Furthermore, since an ionization experiment (see
below) had given con6dence in the Born approxima, —

tion, Fite et ct."I6 normalized their curve of the
relative total cross section to that of the Born ap-
proximation values for the excitation cross section
Q(18-2P) over the energy range 200—700 eV. Their
results are reproduced in Fig. 5. The Born approxi-
mation values for this cross section are compared
with other approximations in Sec. VII.

I5 W. L. Fite and R. T. Brackmann, Phys. Rev. 112, 1151
I'1958).

I6 %.L. Fite, R. F. Stebbings, and R. T. Brackmann, Phys.
Rev. 11~, 356 (1959).

~ J. A. Smit, Physica 2, 104 (1935).
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FIG. 5. Experimental cross section vs energy for the excita-
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~s W. I ichten and S. Schnltz, Phys. Rev. 116, 1132 (1959).
Io See reference 2, p. 354.

The excitation function for the metastable 28 state
of atomic hydrogen, Q(28), by electron impact has
been measured from threshold (0.75 ry) to 45 eV by
Lichten and Schultz. "At incident electron energies
below (8/9 ry) 12.1 eV, the metastable H(28) atoms
(with a lifetime of several msec) are produced only
by excitation of the 28 state. At higher electron
bombarding energies, the population of the 28 state
also results from cascade from higher atomic states,
which have been excited in the collision region.

In this experiment, an electric field was applied
between the detector (an untreated platinum surface)
and the electron gun in order to quench the H(28)
atoms. The Lyman-0. photons so produced caused
electron ejection at the platinum surface, which was
measured by a conventional electrometer circuit.
Lichten and Schultz normalized their results in two
independent ways. First, at 11.7 eV, they used a value
of the yield of the detector to obtain a maximum total
cross section o.p(28) = (0.28 & 0.14)7raas. Secondly, by
subtracting the contribution of the cascade processes
from Q(28), they normalized their subtracted results
to the Born approximation for Q(18-28) at 45 eV. A.

discussion of their subtraction procedure as well as
the validity of the Born approximation as 45 eV is
given in Sec. VII. Their subtraction procedure uses
the following approximate formula for the cross sec-
tion for production of metastable H by all atomic:
processes:

o p(2$) = O'T(28) + 0.2lo'(BP) (II.B)

where 0& is replaced by 0-&... at the normalization.
energy and o(BP) is an estimated cross section for
Q(18-BP) obtained by normalizing the Q(18-2P) re-
sults of Fite and Brackmann" to the Born values for
Q(18-BP)."The Born normalized results for Q(18-
28) are shown in Fig. 6.
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"

have used their modulated atomic beam apparatus to
measure the excitation function for metastable
H(28). In this experiment an iodine-vapor-filled
I yman-o. photon counter was mounted on a movable
trolley so that it could be positioned to view either
the region of interaction (photon intensity due to
excited 2P atoms) of the crossed beams or the "quench"
region (where an electrostatic field quenched the
metastable H). The lifetimes of the two states allow
this separation to take place. By comparing the
intensity of the photons emitted from the interaction
region with the intensity from the quench region it
was possible to measure the excitation function for
the metastable FI(28) state relative to that of Q(2P).
Using the Born normalized values for Q(2P)," Steb-
bings et al. obtained the cross sections for production
of 28 metastable atoms as plotted in Fig. 7 (including
the correction factor of 3/2 pointed out by Lichten").
These results are seen to be considerably below those
reported by Lichten and Schultz, although the struc-
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FIG. 6. Experimental cross section vs energy for 1s —28
excitation for e H collisions. IS

tures of the two curves are very similar. Thus, the
question of normalization appears to be of crucial
importance (see Sec. VII). In Fig. 8 we give the
measured" angular distribution of 28 atoms, as a
function of electron energy, at fixed angles.

(c) Ionization

rite and Brackmann" have used the modulated
crossed beam techniques, described brieQy in earlier
paragraphs, in order to measure the cross section of
ionization of the hydrogen atom on electron impact as
a function of electron energy. The positive ions,
formed by ionization of the atomic beam, are taken
into a mass spectrometer, where the alternating cur-
rent, at the beam modulation frequency, is used to
study the ionization process. Two types of observa-
tions were made.

In the erst experiment, the ratio of the cross sec-
tions for ionization of the atom and the molecule was
determined. The absolute atomic cross sections were
determined by multiplying this ratio by the known
molecular ionization cross sections, as measured by
Tate and Smith. "In the second experiment, Fite and

I
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~~s ~4 %0'A
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Fro. 8. Angular distribution of H(2s), showing dependence
on electron energy at axed angles. o

Brackmann made use of the fact that the number of
ions produced per second, when an electron beam
crosses a gas of fixed number density of neutral parti-
cles, is proportional to o(E) and I. Here o(E) .is the.
cross section for ionization at the particular electron
bombarding energy E, and I is the electron current.
Hence, the ratio of the cross sections at two electron
energies, o.(E&)/o. (Es) is given by the ratio of the
positive ion-signal strengths divided by the re-
spective electron currents at the two energies. These
relative cross-section curves were normalized to the
values calculated in the Born approximation at 500
eV. The results from both sets of data are presented.

~0 R. F. Stebbings, W. L. Fite, D. G. Hummer, and R. T.
Brackmann, Phys. Rev. 119, 1939 (1960).

sr W. Lichten, Phys. Rev. Letters 6, 12 (1961).

~2 W. L. Fite and R. T. Brackmann, Phys. Rev. 112, 1141
(1958).

ss Z. T. Tate and P. T. Smith, Phys. Rev. 39, 270 (1982).
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(III.4) we have used r to denote the position vector
of the atomic electron in order to avoid specifying
which of the two identical electrons is in the atom,
and r to denote the position of the emerging particle.
If the expansion (III.2) is substituted into the right-
hand side of (III.4), then we obtain the system of
equations

P'+k'„jF„(r.) = [g„+ dv'] U„„F„(r.),
(

where

large values of r&, it might be possible to replace all
the coupling terms, Q„.U1„.(r2)F„(r2), in Eq. (III.5)
by a single diagonal potential term U, (r2)F100(r2),
say. Here U„represents the induced potential energy.

These authors" show that, for n 4 1,

(r2) ~ U, 100(r2)F100(r2)/(kl k ) + 0(r )

(111.9)
and so Eq. (III.5), for v = 100, becomes at large
distances

U„(r.) = a2 drat„*(r)
1

ro!

1
r " (III.6) (

2 2 Ulv Uv 1
~2 + k1 F100 (r2) 2 g 2 2 F100 (r2)',~, 1CI —k„'

k'„= (6 —0„). (111.7)
The wave number A:„ is measured in units of ao '.

The expansion Eq. (III.2) and the method for ob-
taining the systems of equations (III.5), was sug-
gested by Massey and Mohr" and has formed the
basis for most wave mechanical scattering calcula-
tions for the last thirty years. For a review of the
different approximations to Eq. (III.5) see reference
3.

The physics of the collision is inserted by obtaining
only those solutions of Eq. (III.5) which satisfy
certain prescribed boundary conditions. For ex-
ample, when particle 2 is incident on the atom and
neglecting long range forces (see Eq. III.9) below)

F.'(r2) e" " 5„„+e'""'"f„„(~2)/r2, k'„) 0
r,

e '"'"g„',(i2)/r2, k.' ( 0, (m.8)

where the initial state of the target atom is denoted
by v. The amplitude f„.„(i )2is related to the cross
section for a transition from state v to state v' (see
reference 2, pp. 278—289). The normalization is
chosen such that the incident plane wave has unit
amplitude.

Castillejo, Percival, and Seaton" have used Eq.
(III.5) as the basis for a quantum-mechanical deriva-
tion of the polarization potential. As the impinging
particle approaches the atom from a large distance,
the first force to become effective, between the atom
and the projectile, is that due to the distortion
(polarizability) of the electron charge distribution of
the atom by the incident particle. For particles in-
cident on the ground state of atomic hydrogen, and
which do not possess enough energy to excite the
atom, F„decays exponentially for n & 1. Thus, for

+ O(r ') —U, (r,) I'„,(r.).
Hence, the polarization potential is given by

(III.10)

n+I

00 2

P., (r') r'P, D (r') dr'

(s~ —01) = 4.5 for hydrogen.

P.1 /r are the radial eigenfunctions of the hydrogen
atom. %e note that the LI ——0 contributions to U„1
vanish because of the orthogonality of the hydrogen
wave functions. The form of the matrix element im-

plies that this approximation is equivalent to the
incident particle inducing a dipole moment in the
atom. The contributions from higher multipoles has
been considered by Temkin. "Using the matrix ele-
ments tabulated by Green, Rush, and Chandler, "
Castillejo et at. showed that the 2P state contributes
65.8'Po of the polarizability. The importance of this
long-range interaction becomes more apparent when
we discuss details of calculations carried out at inci-
dent energies close to k' = 0.

If we expand I', in terms of surface harmonics

F (~) = ~ ~ f
l~=0 tn, z=-lz

and substitute this expansion into Eq. (III.5) we ob-
tain systems of an infinite number of coupled second-
order differential equations

+ k'„—
dr2

I2(4 + 1)
r2

= r dr"P~), , (r) Q U„,'F, ', (III.13)

' .~, (k1' —k. )
'

. (III.ll)
where, for n 0 1, and t1 = 1

26 H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc.
(London) A136, 289 (1932).

27 L. Castillejo, I. C. Percival, and M. J. Seaton, Proc. Roy.
Soc. (London) A254, 259 (1950).

20 A. Toxin, Phys. Rev. 116, 358 (1959);see also 10'7, 1004
(1957).

2' L. C. Green, P. P. Rush, and C. D. Chandler, Astrophys.
J. Suppl. 3, No. 26, 37 (1957).
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where f„,~ c=si, s the s-partial wave for the impinging
electron when the atom is in the state i; f„,~ &=, is
the p-partial wave, etc. For k„' ) 0, the solutions to
Eq. (III.18) have the asymptotic form

f„, A„,,„,sin (k„r —12s/2 + 5, i, .),
where 8 is the partial-wave phase shift.

Thus, in effect, we have expanded + in a basis
(ri) Y& (rs). Including the spin of the two

electrons o-& and o-2 gives the complete basis to be

Therefore, the expansion of the over-all wave func-
tion is

@(r„r.;o-, ,c.,) = Q, +,(r, ,r"„o.,c.,)f,(r, )/r, . (III.15)

In practical calculations, it is impossible to solve
Eq. (III.18) exactly, since only a finite number of
terms can be included in the expansion (III.2). If a
truncated expansion is used, then 0 t,„., is not a solu-
tion of the Schrodinger equation (III.1).This ques-
tion is discussed in Mott and Massey' (pp. 141, 217,
260). We merely note that this difhculty arises be-
cause of the possibility that the incident electron may
be captured into an atomic state and the atomic
electron ejected; or the possibility of the incident
positron capturing the atomic electron to form
positronium. In both problems, the approximate +
will fail to satisfy necessary orthogonality relations.

Furthermore, even if we disregarded this orthogo-
nality problem, Eq. (III.18) would still be an infinite
coupled system if we included any nonspherical state
of the hydrogen atom in the truncated eigenfunction
expansion. Castillejo et at." have raised another
objection to using Eq. (III.2). They have shown that
when the incident particle has kinetic energy too
small for inelastic collisions to occur, then the inte-
grand in the integral over the continuous spectrum
contains a singularity.

An alternative procedure is to assume that the
total wave function 0 satisfies Hartree-Fock equa-
tions. Although this method is not entirely satis-
factory [see Mott and Massey' (p. 218)], it has
enjoyed great popularity.

(b) Cross Section Formulas

Before deriving the form of the continuous-state
Hartree-Fock equations, we shall introduce the most
convenient representation for describing this class
of problems. %e shall assume that the effects of the
spin-orbit interaction can be neglected. Therefore,
both the total orbital angular momentum, @lith

quantum numbers L and Ml, , and the total spin, 8
and 3fs, are separately conserved during the collision.
Furthermore, the over-all parity of the system will be
conserved. Thus, a convenient representation to de-
scribe the collision will be one which is diagonal in
LM&S3IIsrr. This representation will be labeled
1' = ~k.&lilsL~L, S~svr), where (k„nls) can be identi-
fied with the channel index n of Blatt and Bieden-
harn. " The channel index specifies the type of in-
coming particle (electron, positron, positronium) and
the quantum state of the target (hydrogen atom or
proton). The state of the system (electron + hydro-
gen atom or positron + hydrogen atom) before the
collision is described by the channel index (k. n'l&ls)
= n', which we note includes the channel orbital
angular momentum t&, and the state after the col-
lision. is described by (k„nl&ls) —= o..

The method for deriving the cross section formulas
has been given by Blatt and Biedenharn. %e shall
present the outline of the argument here. The most
general wave function in channel (k„nl&l, ) with total
quantum numbers 13f1,83f8 consists of the super-
position of an ingoing and outgoing spherical wave:

1 AIL MS
lys 8Ll~t, Xsre A

y IA™'"'exp [—i(k.r. ——', l,s-)]
—B '"~ s exp [i(k r ——,

' 12s.)]I, (III.16)

LM Sll (rl r2 o1 c2)

8 ' —= P S,A, ', (III.17)

where the matrices 8 '„are independent of 3fl, and
3IIs (see reference 80). The sum over n in Eq. (III.17)
is taken over all the incident channels. Substituting
Eq. (III.17) into (III.16) gives

+ I.asm (1/r k')'JJr. t, t, xs

)& Ih. exp [—i(k r. —-', 4s.)]
—S." exp [i(k r. —-,'l, s-)] I . (III.18)

The asymptotic form of the total wave function

30 S. M. Blatt and L. C. Biedenharn, Revs. Modern Phys.
24, 258 (1952); also see the correction pointed out by R.
Huby, Proc. Phys. Soc. (London) A6'7, 1103 (1954). .

where the incident beam is normalized to unit gum,
and where p is the product of the wave function of
the target and the internal state of the incident
particle. For positronium incident on protons, r is
identified with R =—(r& + r&)/2. If the amplitudes
A of the ingoing waves are known, then the ampli-
tudes B of the outgoing waves are determined
uniquely by the wave equation. The relation between
A and B defines the scattering matrix
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of the system, %' —= Pr%'r for the system initially in its Z component are diagonal, the scattering ampli-
state n'l& is tude can be written

@(e $, ) g g (1/ ky/2
)

Mr, Ms g
I MrBMs

X I5 exp [ i(—lc r —-', l&s.)]
—8.". exp [i(k.r. —-', l,m-)]} .

(»I.lo)

Equation (III.19) suggests that the wave function
for the whole system, initially in state I", be taken
to be of the form

~(8~) = —:[3F(8~) + G(8~)]

+ —.'[F(8~) —G(8~)] d ', (I»»)
where c~ and o& are the usual Pauli spin matricea for
electrons 1 and 2, respectively, and the outer product
of the 0- matrices is taken in the second term on the
right-hand side. The functions F(8P) and G(8g) are
the triplet, 8 = 1, and singlet, 8 = 0, amplitudes,
which in the case of an atomic transition from level
&'~&'m' to nl&m are given by

where the new expansion coefficients have the
asymptotic form

we write

8 —= (1 + i(R)/(I —i61), (III.22)

where

Fr (r ) Cr" I (1/k ) sin (lc r —-', her)

+ (R
' (1/k. ) cos (k r ——,

' l&s-) } (III.23)

Cr = —2ik A . ' '/(1 —i51 '') . (III.24)

In the case of electrons incident on hydrogen
atoms, the 8-matrix elements for the total spin zero
and one states are different. This difference is due to
the requirements of the Pauli principle, which de-
mands that the wave function of the electron hydro-

gen system be antisymmetric in the coordinates of
the bound and free electrons. The spin symmetric
state has associated with it, therefore, an antisym-
metric space wave function; the spin antisymmetric
state has associated with it a symmetric space wave
function. For this reason the electrons will, on the
average, move in different regions of the potentials
in different spin states and consequently experience
different scattering.

It was shown by Burke and Schey" that in the
representation in which the spin of each electron and

sr E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947);
J. M. Blate MId V. F. Weisskopf, TheoreticgL XucLear Physics
(John Wiley &I Sons, Inc. , New York), 1952.

as P. G. Burke and H. M. Schey, Phys. Rev. 126, 163 (1962).

Fr (r ) ~ A."""'
f 5. exp [—i(k.r. ——,

' l2s.)]
—8". exp [i(k.r. —-', l.7r)] } . (III.21)

Since it is more convenient to work with the real and
symmetric (R matrix" than the 8 matrix in numerical
calculations, where

P (8) = Tr(pfo&)/Tr(p~)

I"."(8) = Tr (pf~')/ » (p~)

0' (8) = » (pi~'~')/ » (pf) (»1.29)

and can then be expressed in terms of the corre-

sponding quantities before scattering together with
the triplet and singlet amplitudes.

The differential cross section is given by.(8) = T (. ) = l [1/(2l +1)]Z-„,
x [3[F(84)[' y [G(84)[']. (III.30)

We now observe that at each energy and scattering
angle, a transition from level n'l& to level nl1 can be

s3 U. Fano, Revs. Modern Phys. 29, 74 (1957).

g, (8y) = — g [~(2l,' + 1)]'(l,'l,'m'0[Lm')
2' '

L l, I, '

X (l, lsm m' —m[Lm') T 'Y~, „' (8+), (III.26)

where 8 = I —i T. In the case of positrons incident
on hydrogen atoms, F(8&) = G(8P) and the scatter-
ing amplitude M(8,&) becomes spin independent.

We introduce the density matrix of the system
discussed in detail by Fano" by

p = —,
' (1 y g, P!"~', y g; Pc"~l + Q;, q;,c,'~l ),

(»1.27)

where the polarization vectors P and I' are the
expectation values of the splns of electrons 1 and 2
respectively, and the correlation tensor Q;, is the
expectation value of the product of the spins of
electrons 1 and 2.

The density matrix pf after scattering is related to
the density matrix p; before scattering by

w = [1/(2l + I)] Z-'&I(84)pf'~&(84) .

(III..28)

The polarization and the correlation tensor, after
scattering, are given by
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expressed in terms of three parameters, the magni-
tudes of the triplet and singlet amplitudes and their
relative phase, for electron-hydrogen atom scattering;
and one parameter, the magnitude of the triplet or
singlet amplitude, for positron-hydrogen atom scat-
tering. In order to specify the scattering completely,
therefore, three independent experiments at each
energy and angle must be carried out with electrons,
whereas only one, the differential cross section, will

su%.ce with positrons.
The explicit derivation of the cross section formulas

of interest here follows that given in Blatt and Bied-
enharn with the necessary changes made. The ex-
plicit forms have been given by Percival and Seaton"
and we quote their results below. The total cross
section for transitions from level n't,' to level nl1 is
(in units of s.a'p)

Q( l l ) g {2L+1){28+I)
~y4k'. (2l, g + i)

(III.81)

The differential cross section for transitions between
the two levels is (in units of crap)

I(n'l', —+ nl, ;0) = QP, (cos 0)
X

X Z(»+I) Z, Z, Z,
X Z(1.Lp.L';1,X) Z (1,'Lp,'L', 1,'X)

(I.U.82)

%here the Z coeKcients are defined in reference 30.
We note that (nl&) in the above formulas can

designate either the states of atomic hydrogen or
positronium. Therefore, it is possible to calculate the
following from these formulas:

(a) the elastic-scattering cross sections of electrons
and positrons on hydrogen atoms, as well as
positronium on protons,

(b) the excitation and de-excitation cross sections
among the levels of the two atomic systems,
and

(c) the cross section for positronium formation and
quenching.

At this point it is convenient to present the ex-
pressions for Q(ls -+ 2pm&) which Percival and Sea-
ton" have shown to be related to P, the fractional
polarization of Lyman-n radiation emitted perpen-
dicular to the direction of the incident beam. It is
recalled that P is important for measuring Q(ls-2p).

34 I. C. Percival and M. J. Seaton, Proc. Cambridge Phil.
Soe. 53, 654 (1957).

35 I. C. Percival and M. J. Seaton, Trans. Roy. Soc.
(London) A251, 118 (1958).
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FIG. 11.Polarization fraction for Lyman - n radiation from
e H collisions. Lines with error bars are experimental determi-
nations 15 circles60 and crosses66 are preliminary theoretical es-
timates; more recent values are given in Table XV.

Fite and Brackmann" have measured I' as a function
of the incident electron energy; their results are given
in I"ig. 11.Percival and Seaton show that

P = 8(1 —x)/, (7 + llx), (III.88)
where x —= Q(ls ~2p & 1)/Q(ls —+ 2p0) and, in units
of 7I QO)

Q'{18~2pm) = —, g [{2L+1)(2I.'+ I)]' '
~1 /, L,L

I

X &211;lpLT21l;1pL (1lm —m~LO) (1lm —m~L'0)

(III.84)

(c) Hartree-Fock Equations

I' = %*r(r,P, ;o,a.,) (H —E)%'(r,r, ,o,(r, )drgdrs ——0 .

(III.85)
36 L. Hulthen, Kgl. Fysiograf. Shllskap. Lund, Forh. 14,

No. 21 (1944); Arkiv. Mat. Astr. Fys. 35a, 25 (1948).
s7 W. Kohn, Phys. Rev. '74, 1768 (1948).

The importance of the Hartree-Fock equations is
due to their connection with variational principles
for the parameters required in the calculation of cross
sections, see Hulthen" and Eoh~~.37%e shall demon-
strate this connection in the following paragraphs,
but we shall defer a detailed discussion on variational
principles to Sec. V. We merely remark here that the
method is of particular importance when there is no
bound state of the over-all system (projectile plus
target atom), since the calculations then yield an
upper bound on the scattering length 2, from which
a bound on the cross section can be deduced if A & 0.
Even if a composite bound state does exist, provided
some variationally determined information is availa-
ble on the wave function and energy of the composite
bound state, then its contribution may be subtracted
and a bound on the scattering length still obtained.

To find the required variational principle, it is
noted that the exact wave functions have the
property that



8I = —-', ds F(r) 8F(r) —8F(r) F(r)
8

Bs t9'Q

5e(II —E)5+dv,

where n is normal to the surface s (—= r'dr) over
which the integral is performed. Hence,

BI = C I)(R/2k + N'(II —E)&Mv . (III.88)

Neglecting the term in M ', then

5(I —C'(R/2k) = 0 (III.89)

provides the basis for a variational principle since
the quantity (I-O'S/2k) is stationary with respect to
the variations considered. Writing "oI = I, —I and
b(R = (R& —S, then up to second order in the error
in the wave function

(R = (R( —2I(k/C (III.40)

In the eigenfunction expansion approach, the trial
functions F&(r) are chosen such that I, = 0. Hence,
the true value of the elements of the (R matrix are
given by (R, up to (5+).' The question of the error
involved will be discussed in See. V.

In the electron problem, Percival and Seaton have

The approximate calculation of the total wave func-
tion is based on the following considerations.

I et us assume that we can construct approximate
trial functions +&, which satisfy the true boundary
conditions. In particular, 0 & has the desired asymp-
totic form (III.20) and (III.28), although the co-
eKcients (R may be in error. Since the Hamil-
tonian II is diagonal in IMLSM~, it is possible to
consider the individual terms of Eq. (III.85):

L MLS MS +r(II E)+a'I.ML,susdr)drs = 0 .

(III.86)

For small arbitrary variations of the type
I

5e =—e, —e = er(r, r".;,~,)e'r" (r„)/(k.r.)

~er Cr cos (k r —l,s./2)I)R, '/(k r )

(III.87)

about the true total wave function +, the first varia-
tion of I is given by

5I e(H s)IIM=v+ Jhe-(H s)N du, -

where dv = dr(dr, . Using Green's theorem to reduce
the erst term on the right-hand side of this equation
we obtain (see reference 2, p. 259 for the one-dimen-
sional case)

assumed an antisymmetrized linear combination of
Eq. (III.20), namely,

= (I/V2) (1 —P)2) gr +r(r, r;(ri(r2)Fr (r )/r
(III.41)

where P12 interchanges all the coordinates of the
incident particle and atomic electron. This explicitly
symmetrized function, which formally still involves
an integral over the continuum states, does not have
a singularity in the integrand. "

We should like to make a few remarks about the
continuum in Eqs. (III.2) and (III.41). Since the
former is a precise mathematical expansion, it in-
ctudea allowance for the physical processes of electron
exchange in the e H problem and positronium for-
mation in the e+II problem. Mathematically, these
processes are "constructed" from those terms in Eq.
(III.2) for which k„' ( 0, including the continuum.
However, due to the unresolved technical difhculties
in handling the continuum, Eq. (III.2) is not a con-
venient expansion for examining the rearrangement
processes. The simplest way to include these processes
is to rewrite Eq. (III.2) as the sum of two terms. The
first term is a finite sum of discrete states, while the
second term B(r&,r,), is the remainder. This remainder
can then be expanded in terms of the eigenfunctions
with argument r2, (or p in the e+H problem)! The
amplitudes of the expansion coeKcients are related
directly to the cross sections for the rearrangement
processes. Even though only a few of the discrete
states may be retained in this second expansion, by
including them we have made some allowance for the
continuum. In practical applications of Eq. (III.41),
no attempt has been made to include the continuum
other than implicitly as described above.

In the positron problem, Smith" has assumed Eq.
(III.20), where the sum extends over the discrete
states of positronium as well as those of the hydrogen
atom. To avoid confusion in notation in the positron
problem, Eq. (III.20) can be written

r'
r ~ . Fr (r2)~ +r (rlr2~(rl(r2)

r r2

* Gg(B)+ Q @g(PBa.,cs) (III.42)

where 6 = (k„mp, p,AMr, SMs) and mp( represents
the principal and orbital quantum numbers of the
states of positronium. The asymptotic forms of F and
G are given by Eq. (III.28).

If the variations in the functions F and G are

ss K. Smith, Proc. Phys. Soc. (London) '78, 549 (1951).
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allowed to be completely arbitrary apart from the
boundary conditions (III.28) and the continuity re-
quirements of the functions and derivatives, then Eq.
(III.85) leads to Euler-Lagrange equations which are
a set of ordinary coupled second-order integro-differ-
ential equations which the F and 6 functions must
satisfy. For the electron-hydrogen atom scattering
problems these equations are

been done at zero energy, it is important that the
various approximations used in scattering problems
give scattering lengths within the estimated bounds.

The eGective range theory" has proved useful in
the analysis of low-energy nucleon-nucleon scattering
data. According to this theory, k cot 5s (where 5& is
the s-partial wave phase shift) can be expanded, in
powers of k', as follows:

d l. (l2+ 1) ~ k. pis( )r r
k cot 5&&

———1/A + k'rc/2 + 0(k'), (III.45)

where 2 is the scattering length and ro is the effective
range. Borowitz and Greenberg" were the first to

(111.48) apply this theory to atomic collision problems. Its
applicability to the scattering of an electron (or

where all the quantities are defined by Percival and positron' by an atom has been examined in detail
Seaton. '4 In the positron problem they are

12(l2+ 1) theory is that of the optical model, see Sec. VI (d),
+ k„' I'„"(r) which asserts that the projectile-atom problem can

be simulated by an equivalent one-body problem.

p2(@2+ 1) + ks gis(~)

[d'/dr'+ k' —L(L + 1)/r' —V(r)]u(r) = 0.
(III.46)

If V(r) is a short-range optical potential, then u(r)
must tend, asymptotically, to a linear combination
of the "free" solutions

(111.44)

where all the quantities are defined by Smith. "
These equations are the Hartree-Fock equations

for the scattering problem. Since the form of these
equations is independent of the boundary conditions,
we have omitted the incident index F' in writing
these equations. From a complete set of solutions to
these equations an appropriate linear combination
can be taken and any element of the (R matrix
evaluated. It is obvious that any solution to these
equations satisfies the Eohn variational principle
(III.40) with the integral term zero.

Most of the methods which have been tried in the
low-energy scattering problem can be related to each
other within the framework of the above discussion.
In particular, the various approximations are usually
different truncations of Eqs. (III.48) and (III.44).
These are discussed in Sec. IV.

(d) Effective-Range Theory

The purpose of inserting this subsection here,
rather than in Sec. VI, is to introduce the concept of
scattering length, which will play an important role
in this review. In Sec. V (b) we discuss the problem
of estimating rigorous upper and lower bounds on the
elements of the (R matrix. Since most of this work has

u(k, 0) = 0; u(k, r) [krj, (kr)] —(R [km&(kr)j,

(HI.47)

where j and n are the spherical Bessel and Neumann
functions, respectively. 4' For k = 0, u(0, r) should
approach a linear combination of the k = 0 free
solutions, rL+' and r—L, for example

u(0, r) — r' + (2L, + 1)—!!(2L—1)!!g'r '
(III.48)

which it does, provided

~ L 2L+1 L

(III.49)

Here A~ is defined to be the scattering length for the
Lth partial wave.

If the scattering length can be defined by Eq.
(III.49), then expanding about zero energy, it is
possible to derive the identity (for L = 0)"

—tR/k = A + k (vve —uue)dr, ,
)0

» J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949);
H. A. Bethe, ibid. '76, 88 (1949).

4o S. Borowitz and H. Greenberg, Phys. H,ev. 108, 716
(1957).

4& T. It'. O' Malley, L. Spruch, and L. Rosenberg, J. Math.
Phys. 2, 491 (1961);Phys. Rev. 125, 1800 (1962).

4' L. I.Schiff, Quantum Mechanics (Mcoraw-Hill Book Corn-
pany, Inc. , New York, 1955), 2nd Ed.
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where u and vp are the solutions of the free Schrodin-
ger equation for k' and k' = 0, respectively. How-
ever, the effective range, r0, as defined by

rp
—= 2 (vp —Qp)dr

0 (III.51)

(8/p) = (Bp/p) + k (v„v„p —uup)dr,
0

(III.54)

where the suKx p denotes the solution to the polariz-
ability equation, see Eqs. (III.10) and (III.ll), and

lim (R =——A = p/8 p .
k~0 (III.55)

The modified form of (III.37) becomes4' for t = 0

k cot i) = —1/A + 7rp'Ic/3A' + O(k'ink),

(III.56)

while the total cross section is given by

a = 4s-A + (8/ )3's'pAk+ . (III.57)

In conclusion, we note that for P' = 4.5, the approxi-
mation is limited to energies below 1.5 eV.

In order to avoid confusion with respect to the
sign of the scattering length, we shall adopt Schiff's4'
convention. That is, for repulsive forces (V ) 0),

has been shown by O' Malley et Ol. to be infinite for
potentials which are of interest here, see Eq. (III.ll).
Hence the usual expansion (III.45) breaks down.

If V(r) has a long range term, p„'/r", say, then Eq.
(III.46) has the two independent solutions

I/2 1/2r J&Qr+g)/( p) (x) and r iV&, r+»)&„» (x), (III.52)

where x = 2p„r—'"-'& '/(n —2). For n ) 2I + 3, the
leading terms in the asymptotic form are the same
as (III.48), but for n ~( 2L + 3, other terms appear
in the asymptotic form and A~, as de6ned by Eq.
(III.49), does not exist.

O' Malley et al. modify the effective-range theory
by taking out the long-range tail from V(r) by
writing

V(r) =— A V(r) —P'/r", (111.53)

where hV is a short-range potential which vanishes
asymptotically faster than any inverse power of r.
Then, the asymptotic form of u(r) is taken to be a
linear combination of the solutions (III.52). The
relative amplitude of these two terms, denoted B,
which is fixed by the requirement that u(0) = 0,
determines the N. matrix (i.e., tan r)).4' Following
Bethe's" analysis, the modified form of (III.50) is
readily found to be

which "push out" the wave function, we shall define
the resulting phase shift to be negative (5 ( 0) and
the scattering length to be positive. For an attractive
potential, the sign of the scattering length will de-
pend on the existence of bound states.

IV. APPROXIMATION SCHEMES

(a) Static Approximation

When only the 18 state of atomic hydrogen is
taken in the expansion (III.41), the radial equations
for the electron problem (III.43) uncouple and reduce
to the following integro-differential equation,

[d'/dr —l(t + 1)/r + k jF"(r)
= 2[~ V (r) —W ]F"(r) . (IV.1)

This approximation is called the static exchange
approximation. In the positron problem, Eqs. (III.44)
reduce to the second-order differential equation
(lower minus sign)

[d'/dr' —l(l + 1)/r + k' + 2(1 + 1/r)e "]
y F'(r) = 0. (IV.2)

If the electron exchange is neglected, then Eq. (IV.l)
reduces to (IV.2) with the upper plus sign. This ap-
proximation is called the static or one-body approxi-
mation.

ELectrons: MacDouga114' has solved Eq. (IV.2) for
l = 0 and k ~& 5; Chandrasekhar and Breen44 have
solved Eq. (IV.2) for t = 0 and t = 1 with k' ~( 1.75;
Smith, Miller, and Mumford4' have solved this
equation for A: = 1.0, 1.2, 1.5, and 2.0 for all signifi-
cant partial waves; John4P has solved Eq. (IV.2) for
l = 0, 1, and 2 for k' ~& 1.0. The phase shifts are
given in Table I. All phase shifts in this review are
given in radians.

The first solutions to the integro-differential Eq.
(IV.1) were obtained by Morse and Allis. "However,
Seaton" has pointed out that incorrect equations
were used in the l = 0 calculations of reference 47.
Ochkur" has solved Eq. (IV.1) for t = 0 and k

~& 2.0; John" has carried out careful numerical
calculations in this approximation, having solved
this equation for l = 0, 1, and 2 for k' ~& 1.0. The

4P J. MacDougall, Proc. Roy. Soc. (London) A136, 549
(1988).

44 8. Chandrasekhar and F. H. Breen, Astrophys. J. 103,
41 (1946).

5K. Smith, W. F. Miller, and A. J. P. Mumford, Proc.
Phys. Soc. (London) 75, 559 (1960).

4P T. L. John, Proc. Phys. Soc. (London) '76, 582 (1960).
4r P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1988).
4s M. J. Seaton, Proc. Roy. Soc. (London) A241, 522 (1957);

see also J. Uretsky, M.S. Thesis, M.I.T. (1952).
4P V. I. Ochkur, Vestnik Leningrad Univ. 4, 58 (1958).
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TxsLz II. Electron-hydrogen atom partial wave phase shifts
in the singlet and triplet spin states. Rows a, b, and c have the

same significance as in Table I.
l = 0 and 1 phase shifts have been calculated also
by Omidvar"; and t = 2 by McEachran and Fraser. 51

The phase shifts are given in Table II.
%henever a single atomic state is assumed in the

eigenfunction expansion, one has to solve equations
of the form of (IV.1) and (IV.2). Smith et a/. 4' have

0.745 c 3.8751
—0.0155 0.0395a 0.6087 1.541 —0.1159

b 0.7318 1.540 —0.111
c 3.8560 . . . 0.904

0.3362
0.42
3.5380

0.74

0.1329 0.0624

0.0388TxsLz I. Electron-hydrogen atom partial wave phase shifts 073
(neglecting exchange). Row a, : static approximation; row h:

strong coupling; row c: 18-28-2p.

a 0.6124 1.548 —0.1160
b 0.7004 1.5493
c 3.8192

0.3349 —0.0154

c 1.2396 1.5846 -0.0496 0.4159 0.0770 0.0594

0.0327
0.0366
0.0230
0.0444

0.70
—0.0139—0.0138

0.321
0.3608

0.64 a 0.651 1.614 —0.116
b 0.698 1.616 —0.114

a 0.7370 1.739 —0.1084
c 0.8101 1.7568 -0.0585

a 0.8248 1.849 —0.0778
c 0.8876 1.870 —0.0511
a 0.9488 1.987 —0.0811
c 1.0084 2,0108 —0.0374

0.5 0.2866
0.3565
0.2500
0.3208

—0.0108
0.04240.80

0.74
0.09240.9856

0.9711
4.0858
0.9521
8.9082

0.9481
0.9527
1.1244

0.9202

0.9688
0.8962

0.8881
0.9909
0.8605
0.8071
0.7194
1.0210
0.5887
0.2805
1.0448
0.0288
0.0405

1.0575
2.4960
1.0458
2.2640

0.9781
2.8172
2.8868
0.721
2.6015
2.6789
2.715
0.484
2.845

8.080

(9.45)
(6.185)
(5.086)

04
0.0332 0.0366

0.2000
0.2696

0.1692
0.2105

0.3
0.78 0.0249 0.0283

0.0070
0,0081

a 1.031 2.070 —0.0702
b 1.046 2.0704 —0.0646
c 1.0820 2.0956

—0.0039—0,0038
0.25

0.7225

0.7 —0.0017 0.0029

—0.0005 0.0008

0.105
0.142

0.0818
8.2881

0.16 a 1.239 2.257 —0.046
b 1.257 2.2575 —0.038

a 1.508 2.461 —0.024
b 1.519 2.461 —0.0162

0.0680
0.052
0.0771

0.0166
0.0281

0.090.6912
0.64 0.0752

0.0927
0.0087
0.0095

0.04 a 1.871 2.679 —0.0084
b 1.8776 2.680 —0.0040
c 1.9742 2.715

0.522

0.5
0.0022
0.0040
0.0079

0.01 a 2.396 2.908 —0.0012
b 2.404 2.901 —0.0003
c 2.491 2.9355 0.00410.0584

8.2282
0.0056
0.0865

0.0009 0.0009

a 8.095, 2.350
b 8.05 2.33
c 6.7418 1.8931

0.0
0.49
0.4191
0.86

0.0558
0.0406
0.0464

0.0089
0,0260
0.0294
8.0402

0.0147
0.0168
0.0066

0.0080
0.0082b

b solved the equivalent to (IV.1) for s waves (t = ())

f»28, 2P, 38, 3P, 3D, 48, and 4D.
Posi&rons: Massey and Moussa" have solved Eq.

(IV.2) for t ='0 for k = 0.2, 0.5, and 1.0. These results
have been checked by Smith et at. ,

4s who solved this
equation for k = 1.0, 1.2, 1.5, and 2.0 for all signifi-
cant partial-wave contributions to the elastic scat-
tering cross section. These latter authors also solved
the analogous equation to (IV.2) for 28 and 38
states. The phase shifts are given in Table III.

Equations (IV.1) and (IV.2) represent scattering
in a single channel. Therefore, we require those
solutions which satisfy the boundary conditions, see
(III.S),

0.2794

0.25 0.0014

0.0005
0.0006

0.16

0.09

0.0021
0.0028

0.04

0.0008
0.0008
0.0055

0.01

0.0056
0.0025

0.0001
0.0

F'(0) = 0.
7'(r) ~i'(2l + 1) sin (kr —ts/2)/k + c,e'"",

(IV.3)
where c~ ——(2l + 1)(e"5, —1)/2ik. The partial-wave

solved the equivalent to Eq. (IV.2) for the 28 and 38
states, for all significant l, whereas Ochkur" has

sc E.Omidvar, Research Report No. CX-87 (1959),Division
of Electromagnetic Research, New York University.

&~ R. P. McEachran and P. A. Fraser, Can. J.Phys. 38, 817
(1960).

52 H. S. W. Massey and A. H. A. Moussa. Proc. Phys. Soc.
(London) '72, 88 (1958).
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The cross section formulas Eqs. (III.31) reduce to
the more familiar forms (reference 1, p. 24)

Q (ls —+ 1s) = (4/k') Q (2l + 1) sin' 5, ,
l=o

ancl

Txsrz III, Positron-hydrogen atom partial-wave phase shifts.
Rows a, b, and c refer to the same approximations as those of
Table I. Row d: static approximation, including the induced
dipole-polarization potential; rows e and f present the results
for coupling between ls(H) and ls(positronium) with and

without polarization, respectively.

I(1s —+ ls, g)
00 2

g (2l + 1) (e
' —1)P,(cos 0)

l=o

2

(IV.5)
0.74

0.6972

0.25

[d'/dr' —l(l + 1)/r' + kl + Vl, , l.] Flol(r)
l&Vls, ss +2ol(r)

[d'/dr' —l(l + 1)/r' + ks W Vs@,ss] Fsol(r)
= aVs. , l. Kol(r) (IV.7)

In this approximation, it is possible to calculate
four cross sections, namely, Ql, l„Ql, s„Qs, l„and 0.01

0.04

2s—2s ~

In the positron problem, if the two states to be
coupled together are 18 atomic hydrogen and 18-
positronium, then one must solve the following pair p p
of coupled integro-differential equations:

d
~ + kl—

K (r„R)6'(R)dR

(1) Strong-Coupling Approximation

In this review, we shall give the name "strong
coupling approximation" when any two s states, for
example 18 and 28, of atomic hydrogen are taken in
the eigenfunction expansions (III.41) and (III.42).
The system of radial equations in (III.43) reduces to 0.49

two coupled integro-differential equations (for elec-
trons). For example, for 18-28 coupling

~
—+ kl &lol(r)

d l(l + 1) s ls

dr r
= g [V,'o,„—Wj~o, , ]j',"(r)

ls, 2s

d' l(l+ 1) ks ~ls
( )

(gr r
= Z [V'.„-IV"„]F."(), (,V,.)ls, 2s

which is called the strong coupling ezchange approxi
slQtzon.

When the exchange terms of (IV.6) are neglected,
we obtain the strong coupting approximation for 0.09

either electrons (upper sign) or positrons (lower sign):

—0.8712—0.8414
—0.8685—0.8867
—0.881—0.8678—0.8815
—0.8718—0.8569—0.8228
—0.1467—0.2864
—0.8048—0.2986—0.2461—0.0989—0.2879

0.0950
—0.264—0.2547—0.1990—0.0476—0.186

0.1588
—0.2181—0.2110—0.1472

0.0048-0.1889
0.2228

—0.168—0.168—0.0981
0.0528

0.2754
—0.1145—0.1109—0.0426

0.0858—0.0465
0.2929

—0.058—0.0562—0.0054
0.0808

0.2260

0.582
0.564

~ ~ ~—1.267
0.1704—8.06

—0.0625—0.0284
—0.0610—0.0800
—0.068—0.0594—0.0187
—0.0584—0.0549—0.0148

—0.0822—0.0805
0.0101

—0.020—0.020
0.0188

—0.0121—0.0114
0.0217

—0.0055—0.0058
0.0201

—0.0017—0.0017
0.0127

0.002

—0.0098
0.0284

—0.0094
0.0225

—0.009—0.0089
0.0220

—0.0082—0.0077
0.0214

—0.0028—0.0028
0.0188

—0.0018—0.0014
0.0152

—0.0005—0.0006
0.0112

—0.0008
0.0070

—0.0002
0.0081

d s l(l+ 1)dR-+"- R

= 2 K(r, )R)E (r, )drs
0

Electrons: Bransden and McKeeos have solved
Eqs. (IV.7) for l = 0 and k = 0.919, 1.0, 1.2, 1.5,

5 B. H. Bransden and J. S. C. McEee, Proc. Phys. Soc.
(IV.S) (London) A6'7, 422 (1956).
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Tanza IV. Electron-hydrogen atom partial wave excitation cross sections for Q(ls-2s); the sum
column includes an estimate of higher L contributions. The spin weighting factors of 8/4 (triplet)

and 1/4 (singlet) have been included.

Spin
k2 State

Approxi-
mation L =0 L=l L=2 L=8 L=4 L=5 L =6 Sum

0.81
Singlet

Triplet

18-2s
ls-28-2p
ls-28
18-2s-2p

0.038
0.0529

0
0.0012

0.008
0.0045
0.1736
0.0709

0.0
0.0581
0.006
0.0028

0008 0

0.0175 0.002

0.119

0;094

1.0
Singlet

Triplet

ls-2s
1s-28-2p
18"28
ls-2s-2p

0.0714
0.0766
0.0027
0.0086

0.051
0.0144
0.161
0.1219

0
0.0822
0.046
0.0211

0.0108
0.002
0.0208

0.0018 0.0003

0.0071 0.0012

0.1858

0.1757

1.21
Singlet

Triplet

ls-28
18-28-2p
18"2s
ls-2s-2p

0.070
0.0588
0.0044
0.0051

0.0524
0.0246
0.105
0.1001

0.0003
0.0645
0.0262
0.0316

0.0281 0.0054 0.0014

0.0069 0.0113 0.0042

0.1779

0,1592

2.25

Singlet

Triplet

Singlet

Triplet

18-2s
1s-28-2p
18-2s
ls-28-2p

ls-2s
18-28-2p
18-28
18-28-2p

0.0547
0.0880
0.0061
0.0055

0.0238
0.0123
0.0078
0.0045

0.053
0.0256
0.0735
0.0716

0.0383
0.0809
0.0358
0.0355

0.0053
0.0245
0.0577
0.0858

0.011
0.0015
0.040
0.0802

0.0247 0.0082 0.0028 0.0010 0.1255

0.0086 0.0108 0.0065 0.0029 0.1880

0.0040 0.0051 0.0037 0.0022 0.0624

0.0070 0.0045 0.0054 0.0046 0.0978

40
Singlet

Triplet

ls-28
18-28-2p
ls-2s
18-28-2p

0.0073
0.0049
0.0046
0.0030

0.0157
0.0153
0.0162
0.0154

0.0068

0.0175

0.0021
0.0143
0.0100

0.0010 0.0010 0.0010 0.0354

0.0045 0.0025 0.0021 0.0641

and 2.0; Smith et a/. 4' have solved this system of
equations for all significant partial waves and k
= 1.0, 1,2, 1.5, and 2.0. It is emphasized that these
calculations were carried out at energies above the
excitation threshold. Smith and Burke'4 have calcu-
lated the elastic-scattering cross section for k ( 0.75
and l = 0, 1, and 2; the numerical methods required
to take into account virtual excitations are somewhat
more sophisticated than for real excitations. The
results of these calculations represent only approxi-
mations to the more elaborate computations to be
quoted here. Therefore, we do not reproduce the non-
exchange results but refer the reader to the original
papers. The most significant fact to emerge from
these calculations was the indication that l & 0
partial waves are much more important than had
been accepted previously. 4'

Marriott" was first to solve the coupled system of
integro-differential equations given in (IV.6). He
calculated the zero-order partial-wave cross sections
(l = 0) for /c = 0.9, 1.0, 1.1, 1.2, 1.5, and 2.0. Mar-
riott's work, i.e., above excitation thresholds, was ex-
tended by Smith" to include all significant partial
wave contributions to the cross sections. The partial-

s4 K. Smith and P. G. Burl~e, Phys. Rev. 123, 174 (1961).
Gs R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).
~s E. Smith, Phys. Rev. 120, 845 (1960).

wave cross sections for Q(18-28) are given in Table
IV. Smith and Burke, "and Smith et a/. "have per-
formed extensive calculations for / = 0, 1, and 2
below excitation thresholds. The phase shifts are
reproduced in Table II.

Poeitrons: Smith et a/. 4' have solved Eq. (IV.7) for
the same ranges of /c and l that they used for the
electron problems and the partial-wave cross sections
are given in Table V. while Smith and Burke'4 have
calculated the s, p, and d waves including virtual
excitation to the 28 state. The phase shifts are given
in Table III. The explicit form of the kernels in Eq.
(IV.S) have been derived by Cody and Smith" and
numerical solutions for k' ( 0.5 (the threshold for
positronium formation) have been obtained" and
are quoted in Table III.

It should be pointed out that the distorted-nave

approximation is derived from the above by setting
the coupling terms in one of the pair of equations
equal to zero; this approximation is the simplest
[other than Born approximations, which will be
discussed in Sec. VI(g)] for calculating excitation

See reference 12a.
8 W. J. Cody and E. Smith, Argonne National Laboratory

Report, ANL-6121 (1960) (unpublished); see also W. J. Cody,
Argonne National I.aboratory Report, ANL/A. MD-21 (1961)
(unpublished).

~9 H. S. W. Massey, J. Lawson, %. J. Cody, and E. Smith
(unpublished).
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Txsr z V. Positron-hydrogen atom partial-wave cross sections. Rows b and c have their usual meanings.

QI. 2. Q2s —2s

4.0 b 0.2205 0.0985 0.0248
c 0.2182 0.0849 0.0204

0.81 c 0.5855

1.0 b 0.6082 0.0760 0.0047
c 0.5406

1.21 c 0.4957 0.0814

1.44 b 0.4866 0.0898 0.0087
c 0.4529 0.0427

2.25 b 0.8568 0.0990 0.0155
c 0.8484 0.0705

0.0070

0.0098
0.0070

0.0091 0.0845

0.0192
0.0124

0,0209
0.0171

0.0125
0.0116

0.0207
0.0408

0.0282
0.0427

0.0218
0.0279

0.0074

0.0158

0.0170
0.0279

0.0077 0.0015

0.20

5.71
0.76

2.58
1.29

1.11
0.87

6.68

9.01
4.20

4.64
2.86

1.95
1.62

21.85

15.04 18.17
0.56

8.21

5.00

8.68

1.80
1.51

0.005

0.011

0.018 0.040

0.012 0.048

0.005 0.042

0.001 0.020 0.050

cross sections. Oehkur4' has used such an approxima-
tion to calculate a single partial-wave contribution to
the excitation cross sections from the 18 state to the
28, 2P, 3S, 3P, 3D, 4S, and 4D for 1.0 ~& k ~& 2.23.
Khashaba and Massey" have also used this approxi-
mation to calculate a partial-wave cross section for
Q&, 2„ for k = 1.0, 1.2, 1.5, and 2.0.

The boundary conditions to be imposed on the
solutions to the pair of equations in the strong
coupling approximation depend on k,'. If k,' ) 0, then
Flsd and Fssi, which we shall label F„', n = 18 or 28,
must satisfy [see Eq. (111.8)]

F.'(0) = 0,
F„'(r) 5.;i'(2l + 1) sin (kr —hr/2)/k + c„',e"",

(IV.9)
where j represents the initial state of the system. The
numerical solution of Eq. (IV.7—9) will have the
asymptotic form A„sin (k„r —lm/2 + g). For a pair
of coupled second-order ordinary differential equa-
tions it is necessary to obtain two linearly independ-
ent solutions. Let 8„' and g„' be the parameters of the
second solution. Then the total excitation cross
section Q, . s. is given by"

4k, (2l + 1) sin' (5,
' —g, )

~=0 ki[(Ai/A2) + (B&/B,')' —2(A&B&/A&B2) cos (5& —52 —
g&

—g2)] (IV.10)

The elastic-scattering cross section is given by

4 ~ (2l + 1)[A' sin' 5I + sin' gI —2A sin 5I sin gI cos (52 —q,')]
~=0 A + 1 —2A cos (5, —5, —q, + q, ) (IV.11)

where

A —= AiBs/AsB& .
The explicit formulas (IV.10) and (IV.ll) are re-

duced forms of Eq. (III.31).
The cross sections Qs —2 and Qs ] are given by the

same expressions as (IV.11) and (IV.10) with (k&, 5&,

A 1 'gl BI) ~ (ks, 5s, As, qs, Bs). An IBM-704 code
for calculating the various elastic and inelastic cross
sections for any number of 8 states is given else-
where. "

60S. Khashaba and H. S. W. Massey, Proc. Phys. Soc.
(London} 'll, 574(1958}.

6~ E. Smith, Argonne National Laboratory Report, ANL-
6095 (1960}(unpublished}.

If kf ( 0.75 (for electrons), then F& is required to
have the asymptotic form given in Eq. (IV.9),
whereas I'2 must be asymptotic to a decaying ex-
ponential,

F2 esp exp( —
~
k& jr), (IV.12)

since the incident projectile no longer has sufFicient

energy to excite the hydrogen atom. In this case,
there will be only one real phase shift and the cross
sections will be given by Eqs. (IV.4) and (IV.5).

It should be pointed out that the approximations
considered so far in this section only involve 8 states
in the eigenfunction expansion. As shown in Castillej o
et O,t.,"these 8 states do not contribute to the polari-
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zation potential, U, . Hence, the above approxima-
tions cannot make any statement about the effect, of
atomic polarizability in scattering problems. In this
connection see Sec. VI (a). 1,0 2,0 21 3,0 3)1 3)2

TanLE VI. /q values in the electron- (or positron-) hydrogen
atom problem in the p representation, where parity ( —I)"+'

=(—1)~.

(c) Close-Coupling Approximation

In the previous section a description has been
given of the work done using the strong-coupling
approximation involving just 8 states in the eigen-
function expansion. This approximation suA'ers from
two main defects. Firstly the dipole polarization
potential U„ is completely neglected, and secondly,
as has been noted by several workers, ""in calculat-
ing excitation cross sections, it is important to include
all degenerate eigenfunctions, in the initial and final

states, in the expansion. We may thus, for example,
expect the 2p state to play an important role in the
calculation of the Q„-s, cross section. The neglect of
the dipole polarization is expected to give results
most in error for energies near thresholds and for the
higher angular momenta. Near a threshold the wave
function in the threshold channel is, in the asymp-
totic region, close to a straight line and, therefore, the
long range effect of U, is not canceled by oscillations
in the wave function. For high angular momenta the
centrifugal barrier causes only the asymptotic region
in the wave function to be signi6cant.

The obvious and most useful extension to the
strong-coupling approximation is the inclusion of the
ls, 28, and 2p eigenfunctions of hydrogen in the
expansion. This will first allow a more accurate
evaluation of Q„„and second will automatically
include, by virtue of the 2p state, 65.77% of the
correct hydrogen atom polarizability. "The values of
v required in Eq. (III.43) are obtained using the tri-
angular inequality for (l&lsd). In Table VI we give
tl1e /2 values for various tI and L.

The set of coupled equations corresponding to
(IV.6) now become, in general, four in number for
each spin and total angular momentum. As before,
the 1s and 2s states each couple to the l2 ——I com-
ponent of the scattered electrons and give one
equation each. The 2p state, however, gives two equa-
tions, being coupled to the t2 ——L —1 and t2 ——L
+ I component of the scattered electron. When
L = 0, the t2 = L —1 channel drops out and we are
left with a set of three coupled equations. The term
involving the 2p state coupled with the l2 = L
component of the scattered electron has opposite

62 D. G. Hummer and M. J. Seaton, Phys. Rev. Letters 6,
471 {1961).

63 N. A. Kroll and E. Oerjuoy, Second International Con-
ference on the Physics of Etectronic and Atomic Coltisions (W.
A. Benjamin, Inc. , New York, 1961},23.

Tanzx VII. Electron-hydrogen atom I = 0(singlet) partial-
wave phase shifts in the close-coupling approximation includ-

ing various hydrogen atom eigenstates.

States Included k2 = 0.55 k2 = 0.60

1S
1S-2S
1S-2p
1S-2S-2p
1S-2S-2p-3S
1S-2S-2p-3p
1S-28-2p-3d
1S-2S-2p-3S-3p
Schwartza

0.7004
0.7352
0.7352
0.7846
0.7894
0.7920
0.7841
0.7975
0.908

0.6704
0.7115
Q.7040
0.7707
0.7738
0.7770
0.7694
0.7814
0.894

' See reference 93.

See reference 12b.

parity to the above set of equations and therefore
does not itself add to their number in the representa-
tion in which parity is diagonal. Instead it forms a
single equation which need only be solved if Qss —s is
being calculated. We have, therefore, that in this
approximation it is possible to calculate nine cross
sections namely Ql —1 Ql —2 Ql —2 Q2 —1 Q2 —2

Qs.-.„,Q.„ i., Q.. .., and Q...,.
In the positron problem the same approximation

is valid provided the exchange potentials are dropped
and the direct potentials have their sign changed. Of
course, in order to include real or virtual positronium
formation, eigenstates of positronium must be added
to the expansion which couples in extra equations. "

Etectrons: Burke and Schey" have solved the 1s,
2s, and 2p approximation equations for L = 0, 1, 2
and 3 and for a series of energies less than the second
quantum excitation threshold. Their phase shifts are
presented in Table II.They also solved, for the L = 0
singlet state and for k' = 0.55 and 0.60, the coupled
equations resulting from the inclusion of the 3s, 3p,
or 3d states as well as the ls, 2s, and 2p in the eigen-
function expansion. This was in order to gain infor-
mation on the convergence of the hydrogen eigen-
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function expansion. These phase shifts are presented
in Table VII.

Above the 1V = 2 threshold, preliminary work by
Burke, Burke, McCarroll, and Percivals' including
the 18, 28, and 2p states has been extended by
Burke, Schey, and Smith" to include all significant
partial waves for k = 0.9, 1.0, 1.1, 1.2, 2.5, and 2.0.
Cross sections for Q(ls-28) and Q(ls-2p) are given in
Tables IV and VIII, respectively.

TABLE VIII. Electron-hydrogen atom partial wave excitation
cross sections: row a Q(ls-2p), in the close-coupling approxi-
mation ls-2s-2p; row b Q(ls-3p) in the strong-coupling ap-
proximation 1s-3p. Contributions from L & 5 are included in

the sum.

L=O I =1 L=2 L=8 I =4 L=5 Sum

Dg&e&
a 0 088 0 075 0 109

a 0.00 0.07 0.007 0.051

0.2884

0.1265

4.0

a 0.086 0.110 0.2530 0.0358 0.0098 0,0025 0.4481
b 0.0036 0.0152
a Oo00 0+080 Oo 0458 Oe 1671 Oo0488 Oo0098 Oe3518
b 0.0 0.044

a 0.086 0.1105 0.840 0.0868 0.080 0.0112 0.6212
b O~ 0059 0&0086
a 0.007 0.068 0.0548 0.1881 0.1046 0.088 0.4727
b 0.0004 0.0208

a 0.084 0.081 0.2895 0.1256 0.0508 0.023 0.6243
b 0.0025 0.0074 0.07?8
a 0,009 0.042 0.0587 0.1740 0.1404 0.078 0.5558
b 0,0007 0.0104 0.0014

a 0.0171 0.0176 0.0942 0.0999 0.0695 0.045 0.4275
b 0.0004 0.0081 0.0191 0.0240
a 0.0106 0.0188 0.0357 0.1076 0.1842 0.115 0.6636
b 0.0008 0.0016 0.0024 0.0186

a 0.0035 0.0024 0.0169 0.0302 0.0347 0.0329 0.2640
b 0.0 0.0006 0.0088 0.0065 0.0078
a 0.0052 0.0038 0.0189 0.0894 0.0624 0.0728 0.6076
b 0.0003 0.0002 0.0015 0.0068 0.0126 0.0156

P. G. Burke, V. M. Burke, R. McCarroll, and I. C. Perci-
val, Proc. Phys. Soc. (London) (to be published); V. M. Burke
and R. McCarroll, ibid. (to be published).

ss P. G. Burke, H. M. Schey, and E. Smith (unpublished);
this problem is also being solved by Omidvar and by Danburg
and Peterkop.

Positrons: Burke et at."have solved the 18 28 2P--
equations neglecting positronium formation for all

significant partial waves and for a series of energies
below and above the second quantum excitation
energy. Their phase shifts and cross sections are given
in Tables III and V, respectively.

The only significant numerical change from the
methods used by Smith and Burke'4 in the 18-28
strong coupling approximation is that made necessary
by the long range of the dipole interaction. A more
involved asymptotic expansion must be used to ob-
tain the phase shift or (R-matrix elements in terms of
the asymptotic form of the solution of the coupled

equations. Details of this asymptotic expansion are
given in the next section.

(d) Numerical Methods

In this section we shall describe the numerical
methods that we have used to solve the systems of
equations derived in the preceding sections. Different
methods have been developed by other authors to
solve particular cases of the problems which are posed
here for numerical solution. In particular, we refer
the reader to the integral equation method of Fraser, "
the algebraic noniterative method of Percival, " the
matrix method of H,obertsonss for a single integro-
differential equation and of Pennell and Delves" for
two coupled equations and the method proposed by
Drukharev. "

We shall begin by sketching the problems to be
considered, in order of increasing diKculty. The
simplest problem is posed when we neglect either
electron exchange, or positronium formation, and
atomic distortion. That is, we are interested in the
solution of a single equation of the type (IV.2),
satisfying the boundary conditions (IV.9). A numeri-
cal method for solving such an equation is described.

The method is extended to treat the solution of the
set of coupled second-order ordinary differential
equations that arise when spherical distortion of the
atomic electron charge cloud is allowed for by the
inclusion of a small number of hydrogen 8 states in
the eigenfunction expansion. In this latter problem,
there can be one or more open channels satisfying the
propagating asymptotic boundary conditions (IV.9),
whereas the remaining channels are closed and are
characterized by the decaying asymptotic boundary
conditions (IV.12). The exact number in each cate-
gory depends on the number and type of states in-
cluded in the original expansion, and also on the
incident energy. The presence of the closed channels
requires special numerical consideration.

The inclusion of either electron exchange or posi-
tronium formation introduces integral terms into the
diA'erential equations and we present numerical
methods that have been developed to deal with these
terms.

Finally, nonspherical atomic distortion is allowed

6& P. A. Fraser, ScientiGc Report, No. 4, Department of
Physics, University of Western Ontario, London, Ontario,
Canada; see McEachran's extension of this method in ref-
erence 57.

68H. H. Robertson, Proc. Cambridge Phil. Soc. 52p 538
(1966).

69 M. M. Pennell and L. M. Delves, Math. Comp. 15,
243 (1961).

70 G. F. Drukharev, J. Exp. Theoret. Phys. U.S.S.R. 19,
247 (1949).
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for by including nonspherical hydrogen states in the
eigenfunction expansion. This entails a more so-
phisticated treatment of the asymptotic boundary
conditions, owing to the presence of long range inter-
:actions. The modifications required here will be
brieQy reviewed.

The solution of a single second-order ordinary
differential equation of the type (IV.2) is completely
specified by two constants. One of these constants is
used to satisfy the physical requirement that we take
the solution which is regular at the origin. The other
provides an over-all normalization, which, of course,
does not affect the phase shift and cross section.
Therefore, we can expand the solution of (IV.2)
about the origin as follows:

F'(r) = r"' g c„'r',

where cp is the arbitrary normalization constant and

al, for i &~ 1, can be obtained in terms of acb by sub-

stituting (IV.13) into (IV.2) and equating the co-
eS.cients of successive powers of r. If we are given
F'(rc), F'(r )'c, and F'(r&)" as starting values at some
value of r = rp, then the differential equation can be
numerically integrated step by step using standard
techniques (for example, the Runge-Kutta method,
see Gill"). For equations of the type (IV.2), the
numerical integration is started at some small pp and
continued out to a region where the potential term
is negligible.

For / = 0 and 1, rc can be taken to be zero since

F'(0), F'(0)', and F'(0)" uniquely define the solution.
For t &~ 2, however, these three quantities are all
zero and it is necessary to give rp some small nonzero
value and to determine the relation between F'(ro),
F'(ro)', and F'(rc)" using Eq. (IV.13).

In the asymptotic region, where the potential is
effectively zero, we can fit our numerical solution to
the analytic form [see Eqs. (III.23) and (III.47)].

F'(r) = g[krj, (kr) —tan 5, (krnb(kr))]
A' sin (kr ——', tm + 5b) . (IV.14)

This G.t is effected by using either the value of the
function and its derivative at one point, or the func-
tion at two points. Thus, the phase shift 8~ and the
asymptotic normalization constant c can be deter-
mined. At zero energy, the solution is fitted to the
analytic form (III.48) and the scattering length A~

evaluated.
For n coupled second-order ordinary differential

equations it is necessary to specify 2n constants in
some way before the numerical solution can be ob-

&& S. Gill, Proc. Cambridge Phil. Soc. 48, 96 (1951).

tained. At the origin, n of these constants are de-
termined by requiring all the functions F, (1 ~( i
~( n) to be regular. Of the remaining n constants, n,
are fixed, since the logarithmic derivative F';(r) '/F,'(r)
in the n& closed channels is asymptotically equal to
(—k~). The remaining n. constants, corresponding to
the n. open channels (n. + nb ——n), allow n. linearly
independent solutions of the differential equations
to be evaluated. In each of the n. open channels, the
functions automatically satisfy the asymptotic bound-

ary condition. s (IV.9). The n. linearly independent
solutions allow all the elements of the A and B
matrices, Eq. (III.16), to be evaluated and conse-

quently the 8, matrix and cross sections to be deter-
mined "

As in the case of a single equation, each function
can be expanded in the form (IV.13) about the origin,
and it is thus possible to de6ne n linearly independent
solutions satisfying the boundary conditions at the
origin. For an incident electron energy less than that
required to excite all the states included in the eigen-
function expansion, the numerical solutions obtained
in the outward integration will contain some of the
positive exponential solution in the closed channels.
This solution will dominate the required decaying
exponential more and more as r increases. In order to
avoid the appearance of the exp(~k;~r) term, the as-
ymptotic conditions are imposed at the outset. That
is, the outward solution of the system of equations is
stopped at some point rp, say, which is not in the
asymptotic region. The numerical solution is re-
started in the asymptotic region, imposing the
boundary conditions (IV.12) for all nb closed chan. -
nels, and a backward, or fnicard numerical integration
to rp is performed.

Since n + n. constants can be specified arbitrarily
in the asymptotic region, it is necessary to extract
n+ n. linearly independent solutions in the outer
region. The n outward solutions and the n + no in-
ward solutions, and their erst derivatives, are
matched at r&& by requiring the continuity of F,'(r)
and F,'(r)'. The matching condition isb4

F,'(ro) ~ F,'(ro)
F,'(ro)' . c, F,'(r )' 0p

' (IV.15)
where u and my are 2n + n. arbitrary coeKcients to
be determined from these 2n equations. The n. de-
grees of freedom are used to impose n. integral condi-
tions as the n. open channel functions. These integral
conditions are taken (quite arbitrarily) to be

n r 0
n+n~ rm

Qu. .F,'(r)dr+ pion pF,'(r)dr = C, ,
a 1 0 P=l re

(IV.16)
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where r can be chosen arbitrarily, usually within the
first loop of Fl.

The real coefFicients C; (i = 1 ~ n.) can be chosen
arbitrarily. Each linearly independent vector
generates a linearly independent solution, F;(r).
Thus the complete set of solutions to the differential
equations satisfying the boundary conditions (IV.9)
and (IV.12) are obtained by using any set of n.
linearly independent vectors C; which span the
appropriate n.-dimensional space. We may take, as a
linearly independent choice of the vectors C;, the set

('+l l '+1', +1
+1 ]

C, = +1 C, = +1, , C„= +1
+1

, +1, , +1, —1

(IV.17)
It should be noted that when all n channels are

open, e.g. , when just the 1S and 2S hydrogen states
are coup1ed and &21 & 0.75, it is not necessary to use
such an elaborate procedure as implied by Eqs.
(IV.15) and (IV.16). It is then possible, owing to the
stability of the solution, to carry the formard integra-
tion from the origin into the asymptotic region, as in
the case of the solution of a single equation. The re-
quired n linearly independent solutions are then ob-
tained by imposing n linearly independent boundary
conditions, consistent with (IV.13),at the origin, and
the (R matrix and cross section are obtained by
matching the solutions in the asymptotic region to
boundary conditions of the form (IV.14). This was
the method used in reference 45.

%hen either electron exchange or positronium for-
mation is taken into account, then systems of integro-
differential equations, of the type (IV.1), (IV.6), and
(IV.8), must be solved. If all the channels are open
then a straightforward iterative technique can be
used. In the first iteration, the integral terms are
neglected and a first approximation to the asymptotic
parameters 'A'; and 'b~„ is obtained for the function
'7'. This approximation to the function, 'Fl, is used
in the integral terms and the resulting system of in-
homogeneous differential equations is solved using
the same starting conditions as in the first iteration.
A second estimate to the true asymptotic parameters
is obtained: 'A,' and 'b,'. The iterative scheme is con-
tinued until the asymptotic parameters in successive
iterations differ to within a specified epsilon. This
procedure is repeated for each of the n linearly inde-
pendent solutions which are required. "

%hen some of the channels are closed the above
iteration procedure must be modified. In the first

iteration a matched solution is obtained as described
above, using the conditions (IV.15) and (IV.16).
This matched solution is substituted into the integral
terms and the resulting system of inhomogeneous
equations is solved once in the inner region, r ~& r0,
and once in the outer region, r &~ r0. The matching
condition is now

~0 in a 1 ~i ~0 a +i ~0 out

j- (:,;:,), (IV.18)

and the integral conditions for i = 1 —+ n. are
t0

r.'(r);. + Q u.F,'(r) dr
a+1

n +n Qm

r,'(r).„,+ Q mpF,'(r) p dr = C;,
"0 P+I

(IV.19)

where 7 are the particular solutions to the inhomo-
geneous equations. Our new continuous solution is
then the sum of the particular solution plus that
linear combination of the complementary functions
given by the solution of (IV.18) and (IV.19). This
new matched solution is substituted into the integral
terms and the iteration process continued until the
required degree of convergence is attained.

In certain circumstances, convergence by the above
methods may be extremely slow or even nonexistent.
For instance, the iterates may oscillate about some
sort of average solution and the amplitude of the
oscillation decrease only slowly or even increase.
Even worse, the solution may monatonically diverge
away from the correct solution and no starting value
will give convergence. These dificult circumstances
are exceptional for reasonable choices or r, which is
usually taken to lie within the first loop of the prop-
agating functions [in order to avoid cancellation in
the integrals (IV.16) and (IV.19)].However, they do
occasionally occur.

One quite powerful technique which often gives
convergence in these cases is to replace the pth

iterate, "I', by a linear combination of the p&h and

(p —1),h iterates, X "F + (1 —X) " 'F, where X can-
assume any predetermined real value. This new func-
tion is then used to evaluate the integral terms and
the iteration process continued. The standard method
described above corresponds to taking X = l. Giving
X some value between 0 and 1 is usually sufhcient to
avoid the oscillatory difhculty. Taking A, & 0 helps
to avoid the monatonically diverging iterations,
while taking X ) 1 tends to speed slow monotonically
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converging iterations. The choice of X may be made,
for instance, by looking at the asymptotic form of the
iterates and may of course be varied from iteration to
iteration.

Another method for obtaining rapid convergence
has been used with success by Saraph and Seaton" in
the case of a single integro-differential equation. If
'I' is the zero-order solution and "I" is the pth iterate a
new solution is defined by "F' = "F + a 'F. The con-
stant a is determined by substituting "F' into the
Kohn variational principle (III.39) and allowing a
to vary. The new function obtained in this manner is
used as the basis for the next iteration and the process
continued until convergence is obtained. The method
can obviously be extended to treat n coupled integro-
differential equation. The n. equations (IV.19) are
replaced by n. equations obtained by adding onto
some continuous solution, defined by (IV.18), arbi-
trary amounts of the n. linearly independent homo-
geneous solutions obtained using (IV.15) and (IV.16).
This new function is substituted into the Eohn varia-
tional principle and the n. parameters determined.
It is important that the continuous solution, defined

by (IV.18) at each step of the iteration, should be
selected so that it obeys the same boundary condi-
tions, in some sense, as the previous Eohn-determined
iterate. This can be achieved, for instance, by using
(IV.19) as a subsidiary condition in de6ning the con-
tinuous solution. The C;, however, are now modified
from iteration to iteration and are chosen to have the
value given by the previous Kohn-determined iterate.

A further difhculty sometimes appears in the solu-
tion of the integro-differential equations occurring in
the electron case. This arises from the nonuniqueness
of the solution. For example, it was found in the
numerical solution of Eq. (IV.6), in the triplet state
for k' & 0.75, that the s-partial wave phase shift,
5c, did not vary smoothly with energy. An extra z. or
two appeared occasionally. This eGect had been ob-
served previously by Swan, " who explained it as
being caused by the appearance of A;-independent

components in the solution of the integro-differential
equations. In the triplet state, the spatial wave func-
tion can be written as

+(, ') = V ( ')6( ')j F& (r)/r

F~ (r')/r'
I4'&( )A( )l F ( I)/ t (IV 20)

7'2 M. S. Seaton (private communication).
73 P. Swan, Proc. Roy. Soc. (London) A228, 10 (1955).

The numerical solution can be written in the form

rP, F,dr, 5 —= rP, F,dr and

00

c = rP,F,dr .
(IV.22)

The triplet phase shifts calculated from this
"orthogonalized" vector F did indeed vary smoothly
with energy. These are the values presented in the
tables.

A similar situation can occur in the singlet state.
Here the spatial wave function can be written

+ (r,r') = (4 (r')4' (r')l F, (r)/r

+ (4 (r)A(r)l F',F, (r')/r'

and the numerical solution has the form

(IV.23)

F) (k,r)/r 5'& (1c,r)/r
F, (k,r)/r S,(k,r)/r

(IV.24)

where a can be chosen so that F2/r is orthogonal to f&
In general, if n terms are retained in the close-

coupling approximation, then n(n+ 1)/2 such or-
thogonality conditions can be imposed in the triplet
state and n(n —1)/2 conditions imposed in the
singlet state. It is convenient to use these conditions
to orthogonalize each F„/r to all f„,where m ~( n in
the triplet state and m ( n in the singlet state. We
assume that the atomic states have been ordered
according to increasing principal quantum number.
The ordering of states within each principal quantum-
number level is left arbitrary. The orthogonalized
wave function is now unique and has a well-defined
phase shift although, of course, owing to the finite
range of the A:-independent solution, the cross section
is not altered by this orthogonalization process. The
orthogonalization, as defined above, now implies that
the range of the exchange potential in each channel

I"I kIr r SI A:Ir r I r
F, (k,r)/r S.(k.r)/r 0

(g. (r)) (p, (r)) ' cv21)
where the last three terms on the right-hand side are
&independent and satisfy the equation + = 0. Hence
4'(F) =—+(S), where the functions F do not contain
any hydrogen atom contributions. The arbitrary
constants a, 6, and c can be chosen so as to make
P,/r orthogonal to P& and f2 and F2/r orthogonal to

That . is,
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does not exceed the range of the atomic wave function
in that channel. This corresponds to the physical re-
quirement that exchange cannot occur until the
incident electron penetrates the atomic cloud. The
problem of the definition of the phase shift in the
elastic scattering of a particle by a compound system
has been investigated in detail by Temkin'4 and
Rosenberg and Spruch. "

The orthogonality that can be imposed in the
triplet state between F,/r and f& has been used by
Seaton" and John" in speeding the convergence of
the solution of a single integro-differential equation.
The arbitrary amount of I[;-independent solution
which can exist at any stage of the iteration can, in
some cases, numerically overwhelm the required
solution in the region of small r. Thus, even if con-
vergence is obtained the phase shift may be inac-
curate. The orthogonality condition imposed after
each iteration removes this difFiculty.

Finally, we come to the modified treatment of the
asymptotic region required when nonspherical hy-
drogen states are included in the eigenfunction ex-
pansion. The potential interaction then contains
terms which behave asymptotically as inverse powers
of r. In a region where the exchange terms are negli-
gible the coupled equations can be written

d'F~/dr' = Q", , V;, (r)F, (r) ij = l, ,n .
(IV.25)

Here V;, includes the direct potential, the centrifugal
barrier and the energy terms as follows:

m ~

V;, (r) = g x—„", + ' ', S;, —k'g, ,r'
(IV.26)

In Eq. (IV.26) we use the fact that each element of
the direct potential can be written as a finite sum of
inverse powers or r, starting with a power no higher
than —2. Thus, for example, the direct potential
coupling of the 1s and 2p states of hydrogen is
asymptotic to r '.

The solution of (IV.25) is now no longer expressible
in terms of the usual spherical Bessel functions but
must be written generally as

F;(r) = g g [sin (k„r)n„'"r '+ cos (k„r)P„'"r "]
y 0 g=l

rn b

+ Q exp (—~

(kr)y„"r
'

(IV.27)

&4 A. Temkin, J. Math. Phys. 2, BM (1961).
rs L. Rosenberg and L. Sprnch, Phys. Rev. 121, 1720 (1961).
rs M. J. Seaton, Proc. Roy. Soc. (London) A218, 400 (1958).

We assume in (IV.27) that there are m. different
wave numbers k„, ~ = 1 to m. , above threshold, and
m~ different wave numbers ~k, t, r = I to m~, below
threshold.

Substituting (IV.26) and (IV.27) into Eq. (IV.25)
and equating the coeKcients of the powers of sin

(k„r) r ~, co-s (k„r) r ~, an-d exp (—~k, ~r) r ~, for -all

relevant f(:, 7, p, and i, recursion relations for the o.,
P, and 7 can be derived. These relations are given
explicitly in Burke and Schey. '4 A particular solution
of (IV.25) satisfying these relations is uniquely speci-
fied by the (n + n.) parameters

o.o'"", Po'"" wherei = l to n,

wherei = n. + I to n, (IV.28)

where we mean by the notation s(i) [or r(i)j, that
s (or r) which is determined by the channel i. These
(n + n.) parameters are used to define (n + n.)
linearly independent solutions in the outside region.
These, when combined with the solutions in the inner
region, as described previously, give n. linearly inde-
pendent continuous solutions. The (R matrix is related
in the usual manner to the coefIicients of the sine and
cosine terms in the asymptotic expansion. That is,
the (R matrix is given in terms of the 2n'. parameters
rr "('), P,'"(') for the n. linearly independent solutions.

V. VARlATIONAL METHODS

(a) Principles

In the preceding section we have seen that current
applications of the eigenfunction expansion approach
are based on a variational principle, see Eq. (III.39).
In that section, the trial functions were restricted to a
special class of functions constructed from products
of knotvn functions (the atomic eigenfunctions) and
functions which are solutions of certain one-dimen-
sional second-order differential equations. However,
no estimate of the error in the approximate wave
function so constructed was attempted in Sec. IV. !

In the present section, we shall discuss those
methods that do not assume, necessarily, "separable"
trial functions. That is, some correlation between the
projectile and atomic electron is included in the trial
function. Until recently, no mathematical criterion
was known for deciding whether the "separable" re-
sults were better or worse than the "correlation"
results, That is, it was believed" that scattering
phases calculated by variational methods were, in
general, neither an upper nor a lower bound to the
correct value. This fact caused a great deal of con-
fusion, since it was' not certain that the method im-
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proved when the number of variational parameters
was increased.

Fortunately, some progress is currently being made
on the problem of obtaining rigorous bounds on the
error incurred in variational calculations due to the
pioneering work of Kato" and the subsequent de-
velopments of Spruch and his collaborators. In this
review, we shall attempt to summarize the principal
results on the construction of minimum and maxi-
mum principles (rather than mere stationary princi-
ples), particularly those relevant to the scattering of
electrons and positrons by hydrogen atoms. Such
extremum principles substantially increase the useful-
ness of variational methods in scattering problems,
since one merely compares the bounds obtained from
the diferent approximations. Thus, ignoring the
necessity for understanding which physical phe-
nomena should be allowed for, one simply introduces
a large number of parameters into the calculation and
varies them until the best bound is found. This is a
standard technique for the Schrodinger eigenvaIue
problem "

Equation (III.39) provides the basis of a varia-
tional principle which will allow any elastic or re-
action cross section to be calculated. Suppose we as-
sume for F some trial analytic form F„which con-
tains X adjustable parameters p1,p2, pN. %e can
calculate a value I& for I using F& rather than the un-
known true value. An approximation to R, and there-
fore to the cross sections, can be obtained using the
stationary property (III.39); this allows us to take

aI/ap„= 0, r = 1,2, . N,
r)I/r)N=(". /2k, .

giving N + 1 equations from which p, and (R may be
determined. Let this value of the element of the
derivative matrix be $.(t). A correction to this value
is given by Eq. (III.40) to be

These equations form the basis of the Kohn" varia-
tional method, which gives (R(k) correct to second
order in the error in the wave functions.

A slightly different method has been suggested by
Hulthen, " who demands that the trial functions
satisfy the condition I, = 0.

The problem of estimating the error incurred in

~~ T. Kato, Progr. Theoret, Phys. (Kyoto) 6, 894 (1951).For
the L & 0 partial waves, see L. Spruch and M. Kelly, Phys.
Rev. 109, 2144 (1958).

~s C. L. Pekeris, Phys. Rev. 115, 1216 (1959).

variational calculations lies in estimating the residual
term

of Eq. (III.38). In the following paragraphs, we shall
outline the steps by which progress has been made
on this problem.

Kato" took the initial step in solving the problem
of estimating the error incurred in the application of
variational methods to collision problems. Kato de-
veloped a method for estimating upper and lower
bounds on the elements of the (R matrix in variational
methods applied to one-dimensional problems. (We
recall that the electron-hydrogen atom problem can
be reduced to three independent variables, for ex-
ample r&, r2, and i&.i& —= p in Hylleraas ' coordi-
nates. ) Spruch and Rosenberg" have also considered
the one-dimensional problem. They have shown that
for k = 0, and for static potentials not attractive
enough to form bound states of the overall system,
both the Kohn and Hulthen variational principles
provide upper bounds on the scattering length. "

Spruch and Rosenberg"" generalized Kato's re-
sult to apply to scattering by a compound system,
for example, the hydrogen atom. For k = 0, and no
composite bound state of the projectile plus target
system, they were able to show that the Kohn varia-
tional principle provides an upper bound on the
scattering length. For k ) 0, they were not able to
obtain a bound on the phase shift. However, when

they replaced the true problem by a fictitious prob-
lem, with cutoff potentials, they were able to obtain
an upper bound on g.

The extension of the preceding result for k = 0, to
the case where one or more composite bound states
do exist for the scattering of one compound system by
another, has been carried out by Rosenberg, Spruch,
and O' Malley. "'4 Ohmura" has also shown that
Hulthen's method guarantees the minimum nature of
the scattering length in the e H problem. However,
in the singlet state, the trial function must be con-
structed orthogonal to the bound state wave func-
tions.

rs E. A. Hyllerass, Z. Physik, 54, 847 (1929); see also P.
M. Morse and Feshback, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York), p. 1725(1958).
For L ) 0, the Schrodinger equation reduces to sets of three-
dimensional coupled partial differential equations.

sc L. Spruch and L. Rosenberg, Phys. Rev. 116, 1084 (1959).
L. Spruch and L. Rosenberg, Phys. Rev. 11'7, 143 (1960).

s2 L. Spruch and L. Rosenberg, Phys. Rev. 11'7, 1095 (1960).
83 L. Rosenberg, L. Spruch, and T. F. O' Malley, Phys. Rev.

118, 184 (1960).
84 L. Rosenberg, L. Spruch, and T. F. O' Malley, Phys. Rev.

119, 164 (1960).
s5 T. Ohmura, J. Math. Phys. 1, 27 (1960).
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TABLE IX. Summary of the present status of theoretical work in developing extrema
principles for single-channel processes

Problem

Composite
Bound
State Bound

Refer-
Restriction ence

)0 one-dimension

0 one-dimension

0 e+-H
&0 e+-H

0 n-d

P e -H (singlet)

0 e=H
(singlet, triplet)

no

no

no
no

no

yes

yes

upper and lower
on cot q

upper on A

upper on A
upper on q

upper on A

upper on A.

upper on A

80

cutoff V(r) 81

)0 one dimension

&0 e -H (triplet) yes

upper on —1/(k cot g); cutoff V(r)
upper and lower on g.

upper on —1 /(A cot g) cutoff V(r) 75

Rosenberg and Spruch" extended the above results
to k & 0 for the one-dimensional problem, taking
into account bound states. They were able to give an
upper bound to —1/k cot r) for the problem with cut-
off potentials. An ilppei' bound oil —1/k co ti 7j in tile'
scattering of one compound system by another, again
with cut off potentials, has been given by the same
authors. "

All of these results can be seen at a glance by look-
ing at Table IX. Basically, the method simply con-
sists of expressing the scattering length as a varia-
tional estimate plus an error term which is of second
order in the error in the wave function, and then
calculating a bound on the error term.

(b) Bounds on the Elements of the pl. Matrix

In this section, we shall be concerned mainly with
incident energies too low for excitation of the target
hydrogen atom, k' & 0.75, and too low for posi-
tronium formation, I ' & 0.5. At these low energies
only elastic scattering can occur, i.e., a single channel
process. Before going on to discuss those results rele-
vant to physical problems of interest here, we shall
outline Kato s basic ideas in the one-dimensional
problem. "

The starting point in Eato's paper is the one-
dimenaional analog to Eq. (III.38). That is, for the

0 partial wave, the derivative matrix is given by
(~' = 1)

(H —E)SF(r) = (H —E)F,(r)
bF(0) = 0

oF(r) ~ const X cos kr (V.4)

and examines the properties of the eigenfunctions
and eigenvalues of the following eigenvalue problem,

[—H + E + ~.p(r)j&. (r) = o (V.5)

where u„(r) satisfies the same boundary conditions as
8F and, where p(r) ia some suitably chosen weight
function. The eigenvalue spectrum is discrete and
denumerably infinite. If n and p are the smallest, in

magnitude, positive and negative eigenvalues, re-
spectively, then

—1/P ~( 1/p„~( I/o. , for all n . (V.6)

This equation is basic to determining upper and
lower bounds on the error term.

Using the inequality (V.O), and substituting the
functions 5F and 1/p( —H + E)8F into the Parseval
identities, which hold for any pair of functions, leads
in a straightforward manner to

where H —= —d'/dr' —P(r). Eato's i'mportant con-

tribution was his ability to calculate upper and lower

bounds for the error term. He begins by noting the
following information about the error function 6F;

(R/k = (R /k — F,(r) (H —E)F (r)dr

8F(H —E)8Fdr,
&(

—H + E)F,)'«/p .
(V.7)

0 (V.3) The inequality (V.7) gives a prescription for com-
ss L. Rosenberg and L. Spruch, Phys. Rev. izo, 474 (19sp). puting upper and lower bounds on the error term.
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In another interesting paper, Kato" has shown
that the various variational principles of Hulthen,
Kohn, and others, are essentially related to one
another through the choice of the asymptotic normal-
ization of the functions.

It should be remarked that the Kato method can
only be applied to scattering problems in which the
various angular momenta are uncoupled and if the
scattering for a particular angular mon1entum can
be completely characterized by one real phase shift.
This essential requirement of the method remains in
later applications. ""

In their first paper, Spruch and Rosenberg" con-
sider Eq. (V.B) in the limit as k —+ 0. Then, lim A: ~ 0
51/Is —+ —A, the scattering length, and Eq. (V.B)
reduces to

F(r) ~ r + 51/A: = r —A . (V.9)

In this problem, Spruch and Rosenberg do not use
the associated eigenvalue technique of Kato in order
to obtain a bound on the error term. They note that
since H is a positive definite operator on the space of
square-integrable functions (L ) 0), or for functions
that approach some finite, possibly nonvanishing,
constant at infinity (L = 0), then we have the im-
portant result

and therefore

8F(H)5Fdr ~& 0 (V.10)

or

Il,IIF,dr ~& 0,

A ~( A1+ F,HF, dr . (V.l 1)

Therefore, we obtain the result that any choice of the
paran1eters in the trial function will yield an upper
bound on A. The Kohn and Hulthen variational
principles are two prescriptions for optimizing the
choice of these parameters.

Spruch and Rosenberg" generalized Kato's" as-
sociated eigenvalue technique to apply to the scatter-
ing of a particle by a compound system. In this paper
they treated low-energy positron scattering from
atomic hydrogen. In Hylleraas" coordinates the

A = A1 + F1(H)F,dr — 8F(H)5Fdr,
0 0

while the asymptotic form, Eq. (III.2B), for the
l = 0 partial wave reduces to (with C = 1)

Hamiltonian is H = T + V, where for hiero total
orbital angular momentum,

1—2T = —
2

~1

t9 2 8 1 8 2 Pl
r1 —+ —.—rs-

BT1 f2 Bf'2

8 2 r) 1 8 2 8
rl 2 r2

r)rl r)rl r2 r)r2 r)r2

and

2 2 2
r1 r2 + r12

2 2 2
r1 + rl

f 2P12

8 8
8P1 l9f'12

8P2 tent'12 (V.12)

V/2 = —a (
—— ),

where the upper plus sign is for electrons, and the
asymptotic form of the wave function is given in Eqs.
(III.20) and (III.2B). The identity (III.BS) for the
first variation in I still applies with the volume
integral

2
dg = df'y f'2 (&2 dP = f'y (&y &2 &2 &y2 &].2

The bound on the scattering length so obtained is
justified only if (i) the eigenfunctions of the associ-
ated problem form a complete set; (ii) Levinson's
theorem" is valid for scattering by a compound sys-
tem; and (iii) no three-body bound state exists for
the e + H system. " In another paper, " they were
able to extend the method they had developed in the
one-din1ensional problem" to scattering by a com-
pound target, to show that f 8+(II)N dv ~( 0. Thus,
the scattering length is given by the three-dimen-
sional analog to (V.ll). Spruch and Rosenberg" as-
sumed two types of trial functions. The first class of
trial functions is of the separable form, g(rs) )& f(r, ),
which leads to the static approximation. They showed
that the scattering length for the static problem A„
say, provides an upper bound on the scattering length
for the true problem. However, since this number
turned out to be positive, it does not provide either
an upper or lower bound on the cross section, see Eq.
(III.57). In the second class of trial functions, they
chose functions that depended on r», as well as rl
and r2. Since the scattering length satisfies a mini-
mum principle, they simply varied their variational
parameters and kept those parameters which gave

sr T. Esto, Phys. Rev. 80, 475 (1950).

N. Levinson, Egl. Danske Videnskab. Selskab, Mat. -fys,
Medd. 25, No. 9 (1949).

22 C. Fronsdal and A. Ore, Physica 19, 605 (1958).
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TxnLE X. Positron-hydrogen atom scattering lengths (units
of co) as computed in several approximations.

A Bound Approximation

Infor-
Refer- mation
ence on g

+0.5823
+0.582
+0.564

0.1704—0.78—0.92—1.397—2.10—3.06

upper
upper
upper
upper
upper
upper
upper
upper

static 81
static
strong coupling 54
ls(H)-1s(positronium) 59
variational 97
p-wave distortion 110
distortion included 81
variational 93
1s(H)-ls(p), including 59
dipole polarization

lower
lower
lower
lower

9o E. A. Hylleraas and B. Undheim, Z. Physik 65, 759
(1980); and J. K. L. MacDonald, Phys. Rev. 43, 880 (1988).

the least value. They obtained a negative scattering
length. Since it is an upper bound, this immediately
yields a lower bound on the cross section. Further-
more, A & 0 implies that the positron is on the whole
attracted to the hydrogen atom in contrast to all
previous calculations, which had predicted an over-
all repulsion. Their results are given in Table X.

The extension of the above results, on deriving
upper bounds on the scattering length, to the case
where one or more composite bound states may exist,
has been given by H,osenberg et al." The essential
problem is to estimate the error term, hopefully
something as simple as the inequality (V.10). If such
bound states exist, then the error function, M'(r„r;),
might contain components of the bound state wave
functions, u, (r),rs). This implies that Hu, = —e u„
where e ) 0, which would give a posi tive contribution
to the l.h.s. of (V.10) and possibly make the whole
error term positive. However, if the error function is
orthogonal to u„ i.e., J 5+u,dv = 0, then this positive
contribution does not occur. Since 5@ =—@, —@,an.d
the scattering states 4' will be already orthogonal to
u„ then to effect (5%,u, ) = 0, we must construct trial
functions which are orthogonal to u, .
. The orthogonalization process can be carried out

formally on 5@and leads to (V.10) being replaced by
2

8@(H)8@dv & F fe,u,d , U(V. 18)

where c is the bound state energy, i.e., & 0. This in-

equality allows us to calculate rigorous upper bounds
on A. The diKculty with this inequality is that u, is
not known in general. This can be circumvented by
using the Schwartz inequality, which unfortunately
often leads to a considerable overestimate of the
error term.

Using two theorems due to Hylleraas and Und-
heim, "H,osenberg et al."were able to give an alterna-

A ~( 2 g + 2 4&H%'&dv +
2

ue,H%'&dv /s& .

For a given form of the trial functions, 0, and u, „
the best choice of the variational parameters is such
as to minimize the r.h.s. of (V.16) subject to s, ( 0.

Rosenberg et al." carried out an analysis of an
earlier calculation by Borowitz and Greenberg" and
obtained the erst rigorous upper bound on the scat-
tering length in the singlet state, see Table XI(a).

Assuming no composite bound state in the triplet
state, the bound on the error term is given by the
three-dimensional analog to (V.10).Hence, the upper
bound on the triplet scattering length is given by the
analog to (V.ll), that is

'2 & '2, + 2 f 0, (T + V —v.„')'%,du .

(V.17)
9~ H. A. Bethe and E. E. Salpeter, Hcndbuch der Physik,

edited by S. Flugge (Springer, Berlin), 240 (1957), Vol. 35.

tive method for calculating rigorous upper bounds on
A. This method does not require either knowledge of
the exact composite bound state function or use of
the often crude Schwartz inequality.

In the problems of interest here, the only known
composite bound state is that of the singlet state
electron-hydrogen system, " i.e., the negative hy-
drogen ion H—.Therefore, we shall be interested in
the existence of a single composite bound state.

Let u, , be a ground state trial function suKciently
accurate that its eigenvalue s, & 0 and (formally)
orthonormal to 6%'. Furthermore, let H;; be a 2 )& 2
matrix whose elements are defined by f u, ,Hu, ,dv,

f u, ,H5+dv, etc. It then follows, from the Hylleraas-
Undheim" theorems, that the eigenvalues of the
matrix H;; satisfy the relation

8182 ~+ 0 )
or

2

u, ,Hu, ,dv 8+H8%'dv — u, ,HB+dv (.0,
(V.14)

since the product of the eigenvalues of a matrix is
equal to the determinant of the matrix. This in-
equality is valid even if 5@ is not orthogonal to u, ,
which leads to the inequality

2

5+HM'dv ~& u, ,H+,dv /s &,

which in turn replaces (V.13) and so provides an
upper bound on the scattering length,

2

, ,H%',dv /s, ,

ol
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TABLE XI. Summary of electron-hydrogen atom scattering lengths. The bounds quoted
in these tables depend on the assumption that there is only one bound singlet state and
no bound triplet state. Since these values are positive upper bounds, then no bound on
the cross section can be given. Those results marked with an asterisk are not strict upper

bounds since the contribution from H —was neglected.

Bound Approximation Reference

(a) Singlet

(b) Triplet

8.14
7.68

7.8

8.095
8.05
6.742
6.872
6.28

upper
upper

upper

5.965 + .008 upper

5.7
5.6

2.85
2.88
1.998
2.888

upper
upper
upper

1.91 upper

1.898
1.7

1.768 + .0002 upper

1.76

variational, no distortion
variational, distortion in-
cluded
spherical symmetric part
of S-wave equation
1s, exchange
1s-2s exchange
1s-2s-2p exchange
1s, exchange adiabatic
variational, distortion in-
cluded
eA'ective range expansion
about H —in bound state
variational, distortion in-
cluded
polarized orbital
S-wave equation

1s exchange
1s-2s, exchange
1s, exchange adiabatic
spherical symmetric part of
S-wave equation
variational distortion in-
cluded
1s-2s-2p, exchange
polarized orbital
variational, distortion in-
cluded
S-wave equation

88 (using 40)
83 (using 40)

106

46
54
64
101
84

129

108 (s,nd 106)
106

46
54
101
106

64
103 (and 106)
98

106

The right-hand side of this inequality is the Kohn-
Hulthen variational estimate of 'A. Thus, the Eohn-
Hulthen calculations" "" that have been per-
formed, represent rigorous upper bounds on 'A. as
well as variational estimates. This important fact,
that (V.17) represents a bound on 'A, gives much
more meaning to any calculated estimate. Its practi-
cal significance for variational calculations is im-
mediately apparent since that set of parameters
which gives a lower value to '2 than other sets is the
best set. Rosenberg et at. '4 have used these methods to
obtain significantly smaller positive upper bounds
than those estimated previously, see Table XI(b).

Until now, the discussion in this subsection has
been concerned with zero-energy scattering (with the
exception of the brief description of Eato's method).
Several very important results on rigorous upper
bounds on the scattering lengths for e H and e+H

systems have been quoted. In the remainder of the
subsection we shall turn our attention to positive-
energy scattering, """That is, we attempt to ob-
tain bounds on the error terms of Eq. (V.3) and hence
a bound on (R/k = tan r)/k. Since the initia, l kinetic
energy k' ) 0, then there will be a continuum of
solutions of the Hamiltonian ivith energies below A,",

in addition to the composite bound states of the
system. Therefore, if we follow the methods de-
veloped for k' = 0, a bound on (1/k cot rI)

' may be
obtained by performing an infinite number of sub-
tractions!

At the moment, no rigorous method has been given
for calculating bounds for finite energies. Spruch and
Rosenberg"" seek to make the number of subtrac-
tions finite by considering a Pctitious scattering prob-
lem with cutoG potentials. For small A,", one would
obtain few "positive-energy bound" states in the
associated bound state problem. However, one would
expect that the cutoff would have to be made at large
distances in order not to neglect too much of the tail
of the polarization potential. As the incident energy
increases and the importance of the polarization po-
tential decreases, one might expect to decrease the-

cutoff radius, but this gain would be "compensated"
by having to subtract out more "positive-bound
states. " In any case, the bounds so obtained are not
for the true problem.

(c) Applications

The important fact to emerge from the previous-
sub-section is that Kohn-Hulthen variational calcu-
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lations provide rigorous upper bounds on the scatter-
ing lengths. As stressed earlier, this valuable piece of
information means that the best trial function is the
one which predicts the least upper bound. Spruch and
his collaboratorssI, s3, s4 have used this criterion and
their results are given in Tables X and XI.

Schwartz" has carried out calculations of the
elastic scattering of electrons from hydrogen atoms
for I = 0. Schwartz bases his calculation on Eq.
(III.40), writing 8, = tan 5, which yields an upper
bound on (R/Ic in the limit as k -+ 0, and a trial func-
tion

TABLE XII.Electron-hydrogen atom partial-wave phase shifts
calculated by a variational method, 3 row b and by Temkin's

method, ~«row a.

0.0

0.0001

0.0025

0.01

0.04

0.09

0.16

0.25

0.86

0.64

Singlet

5.6
5.965

8.086

2.86

2.59
2.558

2.11
2.0678

1.74
1.6924

1.45
1.4146

1.28
1.202

1.041

0.85
0.886

Triplet

1.76
1.7686

8.1287

8.046

2.942
2.9888

2.728
2.7171

2.516
2.4996

2.801
2.2988

2.112
2.1046

1.9829

1.647
1.648

Hara et a/."have also carried out a Hulthen varia-
tional calculation, in the limit of zero energy, for

ss C. Schwartz, Ann. Phys. 16, 86 (1961).
ss C. Schwartz, Phys. Rev. 124, 1468 (1961).
94 Y. Hara, T. Ohmura and T. Yamanouchi, Prog. Theoret.

Phys. (Kyoto) 25, 467 (1961).

@, = P+g;c;X;, (V.18)

where P has the desired asymptotic form and where
the localized trial function has the formI, = e

"'"'+"'
rig(r~17s & T~lrs)/4srV'2, (V.19)

with srt + n + p ~( X. Compared with Burke and
Schey, '4 his triplet phase shifts differ by less than one
percent, whereas the singlet phase shifts dier from
three to ten percent for k' & 0.25. The scattering
lengths" are quoted in Table XI and his phase shifts
in Table XII.

eight- and five-parameter trial functions. Their up-
per bounds are above those quoted by Schwartz.
Saraph ' has applied the Schwinger variational prin-
ciple to the static exchange approximation" in order
to compute estimates of the scattering lengths. For
three-term polynomials, As coincided with John' s
result, " whereas A, was above the upper bounds
quoted in Table XI (b). Geltman" has also used the
Hulthen-Kohn variational method in e H atom
collisions allowing for virtual S-state excitation. His
triplet phase shifts are very close to those of John, "
while the singlet results differ slightly to give 2&
= 8.220 compared with 8.095 from the static ex-
change approximation.

Allison et c/."have applied the Eohn and Hulthen
variational methods to calculate the e+H scattering
length. They allowed for the dipole polarizability of
the target atom by using a trial function which in-
cludes a term corresponding to the first-order pertur-
bation of the atom due to the electric field of the
positron. Their best result is quoted in Table IX and

'

indicates over-all attraction between the positron
and the atom at zero energy.

Moiseiwitsch" has generalized Hulthen s varia-
tional method to apply to the inelastic scattering of
electrons by atoms. Since the variational calculations
performed to date for inelastic processes have been
exploratory and are approximations to the 18-2s
coupling method of Sec. IV (b) we shall not comment
on the results.

We conclude this section by remarking that Rosen-
berg and Spruch" have generalized their techniques
for estimating upper bounds on the elements of the
(R matrix for a fictitious problem with cut-oG poten-

" tials.

VI. OTHER METHODS

(a) Adiabatic Theory

In the introduction, we remarked that the crucial
theoretical problem is to make proper allowance for
the distortion of the charge distribution of the atomic

ss H. E. Saraph, Proc. Phys. Soc. (London) 7'7, 827 (1961).
ss S. Qeltman, Phys. Rev. 119, 1288 (1960).
97 D. C. S. Allison, H. A. J. McIntyre, and B. L. Moisei-

witsch, Proc. Phys. Soc. (London) 78, 1169 (1961); B. H.
Bransden, ibid 79, 190 (1962.) using a perturbation method
also computed a negative scattering length.

ss B.L. Moiseiwitsch, Phys. Rev. 82 758 (1951), see also H.
S. W. Massey, and B. L. Moiseiwitsch, Proc. Phys. Soc.
(London) A66, ~406 (1958); R. J. Huck, ibid. A70, 869 (1957);
and N. Lynn, ibid. 73, p. 515 (1959).

99 L. Rosenberg and L. Spruch, 2nd International Conference
on the Physics of Electronic and Atomic Collisions (W. A.
Benjamin, Inc. , New York, 1961), p. 184; Phys. Rev. 125,
1407 (1962).
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electron produced by the projectile. In Sec. IV,
spherical distortions and nonspherical distortions
were introduced in a systematic way by including
8 states and P states, respectively, in the eigenfunc-
tion expansion of the total wave function. The ques-
tion of convergence of the eigenfunction approach is
deferred to Sec.VII. In the adiabatic theory, the at-
tempt is made to allow for distortion using a simple
physical picture.

This picture consists of two parts. In the erst part
we compute the quantum state of the atomic electron
when under the inhuence of the external charge of
the colliding particle. The fundamental assumption
of the adiabatic theory is invoked at this stage of the
method. It is assumed that the velocity of the im-

pinging particle is so small that the distortion of the
charge distribution of the atomic electron may be
calculated by treating the projectile as a point charge
at rest."' If the unperturbed atomic electron is i.n the
ground stage il (r&), say, then, using first-order pertur-
bation theory, the atomic wave function will be

That is, the atomic wave function depends, para-
metrically, on the position r& of the incident particle.
The prime denotes n W 1.

In the second part, the problem is to calculate the
function which describes the motion of the projectile
(the asymptotic form of this function yields the ele-
ments of the N. matrix and hence the cross section)
scattered by the target in the perturbed quantum
state. This can be done, for example, by modifying
the trial function in the exchange approximation, see
Sec. IV (a), by replacing f(r&) by Eq. (VI.1) and
deriving Euler-Langrange equations which would re-
place Eq. (IV.l). The principal feature of this ap-
proximation is that when the target and projectile are
far apart, a dipole moment is induced in the atom.
Thus, the colliding particle moves in an induced
dipole potential V„n/r4, where n is the atomic
polarizability, n& ——4.5. As outlined earlier [Sec.
III(a)], Castillejo et al.s7 have shown that this theory
can be applied for incident energies which are too
small for inelastic collisions to occur and for large
separations.

Martin, Seaton, and %aHace'" have used the

~ 0 N. F. Mott and I. N. Sneddon, 8'ave Mechanics and its
Applications (Oxford University Press, New York, 1948).

V. M. Martin, M. J. Seaton, and J. B.G. Wallace, Proc.
Phys. Soc. (London) 72, 701 (1958); see also B. H. Bransden,
A. Dalgarno, T. L. John, and M. J. Seaton, ibid. 71, 877
(1958).

adiabatic theory in electron-hydrogen atom collisions.
They observe that since W" and V' in Eq. (IV.1) go
to zero exponentially for large r, the function F", in
the exchange approximation, does not satisfy the
polarizability equation (III.10) at large r. In the first
part of their paper, they introduce V„ad A,oc into Eq.
(IV.l). The resulting differential equations cannot be
derived from a variational principle. Therefore, the
values of the scattering length computed in this so-
called "exchange-adiabatic approximation" do not
provide a bound on the true scattering length.

Martin et al. have also followed the second part of
the procedure outlined above and substituted Eq.
(VI.1) into the variational principle (III.39). How-
ever, they did not solve the resulting Euler-Lagrange
equation. Instead they derived an expression for the
scattering length which they evaluated using the
functions from the exchange approximation. Their
upper bounds are quoted in Table XI. It must be
pointed out that these values are upper bounds to the
true e—H problem only if the adiabatic assumption is
valid.

Dalgarno and Lewis'" have shown that in the limit
as r& —& ~ and r& ) rs, the second term in Eq. (VI.l)
is given by

tO lg1

l+1
Pt (cos ft)

l (4s)& ' (VI.2)

&ss A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London)
A233, 70 (1955).

&03 A. TeInkiII and J. C. Lamkin, Phys. Rev. 121, 788 {1961}.

where cos 9 = i& i2. The associated Euler-Lagrange
equation (neglecting those terms which are quadratic
in the perturbation) has been derived and solved by
Temkin and Lamkin"' retaining the l = 1.terms in
Eq. (VI.2). They solved the resulting second-order
ordinary integro-differential equation using the non-
iterative technique of Omidvar" and Percival (see
Marriott" ). Their scattering lengths are given in
Table XI.

The induced dipole potential strength n is shown
by Temkin and Lamkin to have the form

n = 4.5 —exp (—2r) [2r'/3 + 3r' + 3r'/2

+ 9r /4 + 9r/4 + 9/8], (VI.3)

that is, it is a function of r.
The connection between the method of perturbed

stationary states' and polarized orbitals" is now
clear. The former is characterized by the formal ex-
pression, Eq. (VI.l), and the calculation of Martin
et cl. is an application of that method, retaining only
the first term of the infinite sum. The latter is charac-
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terized by taking the first term of Eq. (VI.2), which
can be regarded as an infinite sub-sum of (VI.1).

Massey et a/. "have carried out calculations on the
e+II problem in the spirit of the adiabatic approxi-
mation. They have introduced, ad hoc, the induced
dipole polarization potential u/r' [where o. is given by
Eq. (VI.3)] into both Eq. (IV.2) and (IV.8). The
phase shifts of these calculations are given in Table
III and the scattering lengths are quoted in Table X.

]. " 2
sill (5 —6P) = —

~ g (2) ~ 1)i drs

l
0 ~1

X C'p i~i %(ri, rp)
r2 (VI.4)

Io4 A. Telnkin, Phys. Rev. Letters 4, 566 (1960}.
rPP A. Temkin, Phys. Rev. Letters 6, 854 (1961).
iPP A. Temkin, Phys. Rev. 126, 180 (1962).
~0~ P. J. Luke, R. E. Meyerott and W. W. Clendenin, Phys.

Rev. SS, 401 (1952); see also G. Breit, ibid. 36, 888 (1980).

(b) The S-Wave Equation

It has been observed in Eq. (V.12), that the Hamil-
tonian for I = 0 total orbital angular momentum has
a particularly simple form. That is, the 8-wave
Schrodinger equation reduces to a aingte three-
dimensional second-order partial differential equa-
tion. This fact has been exploited by Spruch and his
collaborators in deriving rigorous upper bounds on
the scattering length. Temkin"4-'" has also studied
this equation for the e

—H problem for A,
" ( 0.75. His

method is an extension of that due to Luke ef, at."'
Temkin'" expands the total wave function for the

e H system, @(r,,r, ,p), where p = r& rp in terms of
Legendre polynomials with argument p. In this way,
he replaces Eq. (III.5) with a different infinite set of
coupled equations. '" For k' ( 0.75, the scattering
can be characterized by a single real parameter, the
phase shift 8, which enters the problem via the asymp-
totic boundary condition as r2 —+ ~. The require-
ment that the total wave function must be either
symmetric or antisymmetric under the exchange of
the two electrons imposes the same requirement on

C~(r~, rp), which implies that the problem need only
be solved in the region r2 &~ r1. The different sym-
metries of the singlet and triplet states is manifest in
different boundary conditions along r, = rp. Finally,
the condition that C,(0,r,) = 0 concludes the specifi-
cation of the problem, which is to be solved in some

approximate way.
Temkini04, io6 defines a zero prder approximation

by considering the equation for t = 0 only and
neglecting the coupling terms. The solution to this
truncated equation he labels CpP(r&, r&), with a phase
shift I4, which is related to the true phase shift 5 by

Starting from this result, Temkin"' has derived an
expansion for k cot b which has precisely the linear
term in k given by O' Malley et ct.4' for the idealized
problem of a particle scattered by a n/r' —potential,
see Eq. (III.56) . Furthermore, the quantitative effect
of the long range tail on the scattering length is given
by

A. = A(B) —n(l/8 —A/B') + 0(1/8'),
(VI.5)

where A (8) is an approximation to A.
The connection of Temkin's approach to the

I = 0 problem, with the eigenfunction expansion
approach developed in Secs. III and IV can be
demonstrated by restricting the sum over I in Eq.
(III.20) to the I = 0 term and noting that

$0l l (rl r2) = ( 1) (2tl + 1) ' 'Pi, (ri "rp)/4'

(VI.6)
Hence the expansion (III.20) becomes

r f

(rl r2) Q Pl (rl ' r2) Q + l (rl)+ 1 (r2)
~1~2 l i n

(VI.7)
which is identically the form used by Temkin if we
expand his 4 in terms of the radial hydrogen eigen-
functions. Thus, it is immediately clear that those
calculations discussed in Sec. IV (a) and IV(b) which

only include 8 states (l, = 0), are approximations to
Temkin's bo.

It has been stressed repeatedly in this review that
8 states do not contribute to the long range inter-
action between atom and projectile. Hence, bo, con-
sidered as a function of r2, will quickly assume its
asymptotic form in contrast to 8, which will have
contributions from the l1 & 0 terms. We refer the
reader to Temkin's original paper'" for his technique
for solving the zero-order problem and evaluation of
the multipole corrections l & 0, as well as the con-
nection with the corresponding terms in the adiabatic
approximation. Temkin's scattering lengths and
phase shifts are given in Tables XI and XII, re-
spectively.

It is worth noting that the expansion of 4& in
terms of the hydrogenic wave functions in Eq. (VI.7)
is only one of many possible expansions. Any con-
venient complete set of functions could be used. In
the next subsection we consider such an alternative-
Sturmian functions.

(c) Sturmian Functions

We should like to emphasize that the principal
advantages of the system of integrp-differential
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equations, (III.43) and (III.44), obtained by expand-
ing the total wave function in terms of the eigen-
functions of the atomic systems, is in the physical
interpretation of the solutions to these equations, see
Sec. III (b). However, we could perform a separation
of variables, such as (III.2) or (VI.7), by using any
complete set of functions. In general, therefore, the
expansion coefFicients would not be related in a simple
manner to the cross sections for the various possible
physical processes. Therefore, it would be necessary
to re-expand in terms of the eigenfunctions of the
atomic systems. For such an expansion to be useful,
we would have to know that its convergence was
faster than the corresponding eigenfunction expan-
sion.

Rotenberg'" has looked into the possibility of
using Sturmian functions'" as an expansion basis; he
obtained a negative scattering length in the e+H prob-
lem. Rotenberg proposes to replace Eq. (111.20), for
a given I JIIII,, by

where the Sturmian func'tions 8„& satisfy an equation
analogous to the radial equation of the hydrogen
atom. The difference is that the binding energy
(chosen to be that of the ground state of the target)
is kept constant while the coupling strength is varied.
Thus 8,&&(r)

=—B&e(r) of the hydrogen atom; no other
8„& corresponds to a physical wave function. Each 8„&

is identified with a solution to the radial equation
with (n —1) nodes, hence the set of functions is de-
numerably infinite.

Qualitatively, we can imagine that the continuum
of the atomic expansion has been absorbed in the
Sturmian functions for n ) 1. From a practical point
of view, due to the finite size of computing machines,
it will be possible only to include a few terms even
from the denumerably infinite set. Hence, so far as
the atomic-scattering problems are concerned, we
can again expect to allow only partially for the effect
of the continuum. In order to make further allowance
for the continuum, H,otenberg proposes to antisym-
metrize the total wave function, which is equivalent
to expanding the "remainder terms" as discussed in
Sec. III (c).

Substituting (VI.S) into the Schrodinger equation
(III.1) results in systems of second-order diA'erential

or integro-differential (if one antisymmetrizes or in-

res M. Rotenberg Ann. Phys. (N. Y.) (to be published).
res E.L. Ince, Ordinary Differential Equations (Dover Publi-

t:ations, Inc. , New York 1956) Chap. X.

eludes positronium formation) equations for the ex-
pansion functions 6„« .

%e shall conclude this subsection by describing
yet another expansion for N~~L, which has been
proposed by Ruffine and Borowitz"' for the e+H

problem. The principal aim of this method is to con-
struct a total wave function which includes the
multipole distortive effects discussed previously.
These authors write either Eq. (III.42) or Eq. (VI.S)
in the form

JJLOL$100(r)+10L(ra) + Q JJLl, t,, 8nl, Gnl, lr

nlrb

l 2

and approximate the radial part of the second term
by a product of two unknown functions, say, u(r&)
and u(rs). They use this approximate total wave func-
tion in the variational principle (III.39), and deduce
Euler-Lagrange equations involving F, u, and v.

Numerical calculations have been carried out for
L = 0 = tc' and t& = 1 only, that is allowing for
p-wave distortion. Ruffine and Borowitz obtain a
negative scattering length indicating that there is an
overall attraction between the incident positron and
atom. Their result is given in Table X.

(d) Optical Model

The basic assertion of the optical model method is
that there exists an equivalence between a many-
body problem and a one-body problem. '" This
equivalence is represented by the optical potential
which is inserted into a single-body equation to yield
the phase shift and cross section in the usual manner.
The major part of the work is thus concerned with
the evaluation of the optical potential. In the region
of large r the optical potential is given exactly by the
adiabatic approximation. For small distances the
potential becomes nonlocal and extremely difFicult to
evaluate. Usually, therefore, some physically reason-
able cutoff of the potential, such as suggested by
Buckingham, '" is used. The resultant phase shift can
then be improved by a variational technique. This
method has been used by I ippmann and Schey"' and
also by Mittleman and Pu'" to calculate elastic t. H

0 R. RuKne and S. Borowitz, 2nd International Conference
on the Physics of Electronic and Atomic Collisions (W. A.
Benjamin, Inc. , New York, 1961), p. 144.iii K. M. Watson, Phys. Rev. 105, 1888 (1957); M. H.
Mittleman and K. M. Watson, ibid. 113, 198 (1959); B. A.
Lippmann, M. H. Mittleman, and K. M. Watson, ibid. 116,
920 (1959).

ii2 R. A. Buckingham, Proc. Roy. Soc. (London) A160, 94
(1987).

II3 B.A. Lippmann and H. M. Schey, Phys. Rev. 121, 1112
(1961).

»4 M. H. Mittleman, Ann. Phys. (N. Y.) 14, 94 (1961);
M. H. Mittleman and R. T. Pu (private communication).
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scattering below about 12 eV. It is interesting to note
that the calculations of Martin et aLim and Temkin"
have also been carried out within the framework of an
optical model. The optical potential becomes complex
above the threshold for inelastic scattering. The
imaginary part can be used to evaluate the excitation
cross section. "'However, a better method of treating
the excitation cross sections is to use an optically
modi6ed close-coupling approximation. It can be
shown"' that the unmodifmd close-coup1ing approxi-
mation is the lowest order approximation to a suita-
ble optical-potential set of equations.

By definition, the optical-model wave function is
the projection of the total wave function %' in Eq.
(III.2) onto the ground-stage hydrogen wave func-
tion

P, (r, ) =—[P, (r, ),+(r,r, )] (VI.9)
and the optical model potential U is defined

U(r, )F, (rg) —= (f, (r, ),V+(r,r, )) . (VI.10)

If exchange is neglected we can write the optical
potential (VI.10) in the form

Ull (r2) —Vl1 (r2)
1+ Qv, „g ~ E ~

—. V.&+

(VI.11)
where E is the total energy of the system, T2 is the
kinetic energy of the scattered electron, and E„is the
energy of the nth hydrogen level. V. is given by Eq.
(III.6). The first termV»(r, ), in (VI.ll) is just the
screened Coulomb interaction of Eq. (IV.2), while
the second term gives asymptotically the long range
dipole interaction n/r. '. The problem of estimating
U~, (rz) for large r, has been discussed in Secs. IIIa
and VIa in the adiabatic limit E —72 E&.

The presence of exchange can be taken into ac-
count by replacing V in (VI.11) by BV(l & P»)B.
Here 8 is an ordering operator among the hydrogen
states, and I'&~ is the space-exchange operator for
electrons 1 and 2. The orthogonality of the triplet
wave function to the hydrogen-atom ground state is
automatically ensured by the (1 —P») operator.
The details of the calculation of U&i(r2) in this case
have been given by Mittleman. "4 His triplet phase
shifts are in good agreement with those obtained by
the close-coupling method. Lippmann and Schey, "'
in their work, did not introduce the (1 & Pi2) opera-
tor. Instead they obtained &he required orthogonality
by the novel" technique of introducing an inhomo-

»5 M. H. Mittleman and R. T. Pu, Phys. Rev. 120, 370
(1962).

&„(r.) ~ — " dr.'exp (—zk r.')exp (ik„r.)
4xr

dr&*„(r)M (r,r') .
(VI.18)

For the e H problem, if electron 2 is incident, then
the direct scattering amplitude f„ is obtained by as-
signing r& to r and r2 to r, while the exchange scat-
tering amplitude g is obtained by assigning r& to r
and rg to I.

The basic assumption of the impulse approxima-
tion is that the interaction between the bound parti-
cles can be "turned oB" during the collision. This
assumption can be incorporated into Eq. (VI.18) by
assuming that %(r,r ) represents the interaction of
the incident particle with a free electron, whose mo-
mentum distribution is given by the Fourier trans-

& 6 See reference 24a.

geneous term representing the exchange interaction,
in the differential equation. The strength of this term
was adjusted to give the orthogonality. Having calcu-
lated Fi, Lippmann and Schey used this function to
construct a trial function which they put in the
variational principle (III.89). Their result for the
triplet scattering length is larger than those given
in Table XI (b).

If X hydrogen states are closely coupled then,
neglecting exchange, we obtain a set of equations
corresponding to (III.4). It can be shown'" that if
the potential U in this equation is defined analogously
to (VI.ll), i.e.,

U-(r) = ~-(r.)+ ZI'.; I ~ E
1

X V; + . n,m(X, (VI.12)

then the resultant set of equations is exact. V„ is the
usual close-coupling potential while higher order
terms in (VI.12) allow for transitions to states not in-
cluded in the closely coupled set. No results for this
method have been reported yet.

(e) Impulse Approximation

Akerib and Borowitz'" have applied the impulse
approximation to the e H problem at the low energies
of interest here, although on general arguments one
would not expect it to be accurate for incident elec-
trons under 150 eV. The central idea is to derive ap-
proximate expressions for the full scattering ampli-
tudes.

We begin by converting Eq. (III.4), together with
the asymptotic boundary condition (III.S), into an
integral equation and considering the scattered part
of the wave function only,
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form of the ground-state wave function of hydrogen,

=1'P(r, r ) =; dk, g, (k, ) exp {i(k& + k, ) R}

X f-;(j i-&s)p, (VI.14)

where R = (r, + r,)/2 and p = r, —rs. Substituting
(VI.14) into (VI.13) gives explicit expressions for
the amplitudes f„and g„ from which it is possible to
calculate the cross section for elastic scattering"'
(m = 1) as well as excitation to the state m from

a- = (k-/k )[-'If-+ g-i'+ 4If- ——g-i'] . (VI 15)

Ke refer the reader to Akerib and Borowitz"' for the
technique of evaluating the integrals appearing in the
scattering amplitudes. The results of calculations
carried out in this approximation are discussed in Sec.
VII.

The ionization cross section, see Eq. (VI.22), has
been computed by these authors using the impulse
approximation values for f and g. This calculation is
of particular interest, since it is the only theoretical
estimate of the total-ionization cross section, with the
exception of Born approximation values.

(f) Dispersion Relations

Dispersion relations are expressions which relate
the real and imaginary parts of a scattering ampli-
tude.

It should be remarked at the outset that dispersion
relations have not been used to date in the same role
as the other theoretical methods described in this re-
view. That is, they have not been used to compute a
purely theoretical estimate of some quantity which
can then be compared with experiment. Instead, they
have been used to analyze the results of two con-
victing experiments. ' "

Gerjuoy and Erall'" have conjectured dispersion
relations for the direct and exchange amplitudes, see
Eq. (VI.13), in the e H problem. The assumptions,
from which the dispersion relations are deduced, are
consistent with what is known about the Green's
function for the one-body problem. "' It is consumed'"

that the Green's function of the complete Hamilton-
ian, (H —k' + 1 —ie)—' (see reference 120 for nota-
tion), (a) has one pole, at a negative real energy, cor-

nr R. Akerib, 2nd InternationaL Conference on the Physics of
Electronic and Atomic Collisions (W. A. Benjamin, Inc. , New
York, 1961), p. 147.

iis E. Gerjuoy and N. A. Krall, Phys. Rev. 119, 705 (1960);
N. A. Krall and E. Gerjnoy, ibid. 120, 148 (1960).

iis A.. Klein and C. Zemach, Ann. Phys. (N. Y.) 7, 440
(1959).

»0 B. A. Lippmann and J. Schvinger, Phys. Rev. '79, 469
(1950); see also M. Gell-Mann and M. L. Goldberger, ibid.
91, 898 (1958).

(I/2ir ) o, (k)dk ( 7.500,
0

where r& is the measured total cross section.

(VI.18)

(g) Born Approximation

We conclude this brief survey of the various
theoretical methods currently being used on the
e H and e+H problems with some remarks on the
most famous of all collision-theory approximations.
We shall not attempt to summarize the results of all
the calculations, on the problems of interest here,
which have been carried out in this approximation.
In the following paragraphs we discuss, in a qualita-
tive way, the region of validity of the approximation;
the calculation of Q(IS-2P) and a Coulomb modified
Born approximation calculation of the ionization
cross section.

The Born approximation"' is an approximation
which assumes weak coupling between pairs of states.
That is, in calculating transition probabilities, the
initial and Anal scattered wave functions can be ap-

isi I . I. Schiff, Prog. Theoret. Phys. (Kyoto) 11, 288 (1954).
M. Born, Z. Physik 38, 808 (1926).

responding to the known bound singlet state of the
hydrogen ion; (b) has branch points at each energy
A'2& corresponding to the threshold of a new reaction
(for example, at k' = 0, the threshold for elastic scat-
tering, A,

" = 0.7G the threshold for excitation of the
n = 2 state, etc); (e) is single valued and analytic
(except at the pole and branch cut along the positive
real axis) over the complex k' plane.

These assumptions lead to dispersion relations for
the foriaard (0 = 0) scattering amplitudes, f'(O, k'),
where i distinguishes direct (i = d) and exchange
(i = e) scattering. o, the total cross section is related
to these amplitudes (using the optical theorem, see,
for example, Schiff'") by

Im lf"(O,k ) —f'(O, k )/2j = ko (k )/4ir . (VI.16)

From the dispersion relations for f', we can construct
the dispersion relation

«(f" —f'/2) = (f' f'/2—)"-—~/2

+ — dk" Im (f" —f'/2)/(k" —k'),
4m 0

(VI.17)

where 5' denotes the principal value of the integral,
and R is the residue at the pole.

The relation (VI.17), together with the assumption
of positive scattering lengths in the e H problem has
been used to deduce
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proximated by plane waves. In general, this approxi-
mation is not valid at low energies, where the scat-
tered particle spends an appreciable time near the
atom. At low energies more sophisticated approxima-
tions, allowing for distortions both of the atom and
of the scattered wave function, are. required. How-
ever, in certain circumstances, the Born approxima-
tion may be used at these energies, with accuracy,
and a considerable saving of machine time. For ex-
ample, it can give accurate partial-wave cross sections
for transitions involving high angular momentum
states of the scattered particle that is far from the
atom during the whole collision time and consequent-
ly both its potential and exchange interactions are
small. This is just the criterion for the validity of the
Born approximation.

Perhaps the most important application of this
method is the calculation of high angular momenta
partial wave cross sections in optically allowed
transitions (e.g. , ls-2p). Here the long range of the
interaction potential which is proportional to r—', see
Eq. (VI.2), implies that many partial waves are of
importance in the collision. Seaton and co-workers"'
used this method to calculate partial wave (R-matrix
elements and cross sections involved in transitions
between the 1s, 2s, and 2p states of atomic hydrogen
induced by electron impact. These results, supple-
mented by more accurate estimates of the low partial
waves, such as that given by the close-coupling ap-
proximations, are expected to provide accurate
theoretical values for the cross sections.

The second Born approximation for the full scat-
tering amplitude may be expected to give accurate
cross sections in an intermediate energy region,
where too many partial waves are involved to make
feasible, numerically speaking, the usual close-
coupling approximation and where the first Born
approximation for the full amplitude is still inaccu-
rate. For hydrogen, this energy range is approxi-
mately 50—200 eV. The method has been used, allow-

ing for virtual transitions to the la, 28, and 2p inter-
mediate states, by Kingston et al."' to estimate the
18-28 electron hydrogen transition cross section in the
energy range 13.6—216 eV. Agreement was obtained
with the close-coupling approximation for energies
in excess of 100 eV.

The modiGcation of the Born approximation to
allow for electron exchange, suggested by Oppen-

&is M. J. Seaton, Proc. Phys. Soc. (London) /'7, 174 (1961);
'7'7, 184 (1961); J. Lawson, W. Lawson, and M. J. Seaton,
ibid /'7, 192 (1961.); V. M. Burke and M. J. Seaton, ibid. /'7,
199 (1961).

A. E. Kingston, B. L. Moiseiwitsch, and B. G. Skinner,
Proc. Roy. Soc. (London) A.258, 254 (1960).

heimer, "' has not been of corresponding value. This
is probably because for those energies and angular
momenta where exchange becomes significant, the
scattered electron must penetrate the atom enough to
invalidate, as a ru1e, the main criterion of the Born
approximation, that is, that the distortion both of the
atom and of the scattered wave is negligible.

In deriving the Born approximation partial wave
cross sections in electron hydrogen atom scattering,
Seaton et aL"' write for the Born 61-matrix elements

L 1/2 LM—2 (k 4') [+i„.~, t, (roars),

X (1/r&, —1/r s)@a„.„'i, 4 (r,r,)], (VI.19)

where %&~M~
~ ~, , ~

are the basis functions in the
summation in Eq. (III.20), omitting the spin function
and approximating the radial functions by

Il (r) = (~r/2)' '
J~,+&/&(k~r) (VI.20)

The corresponding cross section contribution is ob-
tained by substituting the value obtained for (R from
Eq. (VI.19) into Eqs. (III.31) and (III.32) after using

Seaton et al. define another approximation in which
the 7 matrix is defined by T = 2i{R. This latter ap-
proximation corresponds to the usual Born approxi-
mation for the full amplitude and using it (III.32) can
be summed to give the Born cross section formula
(See reference 1, p. 119).However, the first method
has the advantage that unitarity is satisfied. Further-
more, if all (R-matrix elements connecting a closely
coupled set of levels (e.g. , ls, 2s, and 2p) are evalu-
ated using Eq. (VI.19) and the T matrix is calculated
using Eq. (VI.21) (assuming that all other 61-matrix
elements are zero), then some allowance is automati-
cally made for second- and higher-order transitions
between the closely-coupled levels. In practice, it is
found that the first method gives better results for
lower angular momenta than the second, but both
reduce to the same approximation for high angular
momenta.

Massey and Mohr"' have calculated the direct
amplitude for ionization using the Born approxima-
tion. Geltman"' has developed a modified form of the
Born approximation to calculate both the direct f and
exchange g amplitudes for ionization. He has calcu-
lated only the 8-wave contribution to the cross
section.

The differential cross section for an ionizing colli-

iss J. R. Oppenheimer, Phys. Rev. 32, Ml (1928).
6 H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soe.

(London) A140, 618 (1988).
rs7 S. Geltman, Phys. Rev. 102, 171 (1956).
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sion in which the ejected electron is moving with
momentum in the range k to k + dk, while the scat-
tered electron has momentum in the range c to c
+ dc is116

I»dk« = —hlf + gl'+ llew
—Vl']dkdc

g

(VI.22)

where q is the momentum of the incident electron.
The transition cross section into a final state in which
the energy of the electron, no matter whether scat-
tered or ejected since they are indistinguishable, is
within the interval dG is"'

o(o,E —8).dg —= I„dkdc dF, (VI.23)

where E is the total energy. Since the maximum
energy an electron can take away is E/2, then the
total ionization cross section

~(s,E —e)de = —,
' ~(s,E —e)de,

0 0

(VI.24)

having used"' o(s,E —. E) = o(E —s,s).. Since Gelt-
man"r omitted the factor of I/2 in Eq. (VI.24), then
his results must be divided by two.

In Geltman's method, the scattering amplitudes
involve radial integrals over functions A ~ defined by

(VI.25)

where P„are the continuum wave functions of the
hydrogen atom. The Born approximation is intro-
duced by approximating the over-all wave function
4 by the initial state (product of ingoing plane wave
and wave function for the hydrogen atom in a 18
state).

An improved approximation would be to substitute
for + (r,r') the values computed by the methods of
Sec. IV. Such a calculation would provide further
information on the convergence of the eigenfunetion
technique by examining the effect of including more
and more excited states in +.

VII. DISCUSSION OF RESULTS

(a) Scattering Lengths

The concept of scattering length is of considerable
importance in the class of problems of interest in this
review. The rigorous theorems on extrema principles

iss R. Peterkop, Proc. Phys. Soc. 1London1 F7, 1220
(1961).

for scattering lengths, discussed in Sec. V, allow us to
state which is the better of two approximate calcula-
tions. It is stressed, that this definitive assessment of
the relative merits of different theoretical results can
be made without appeal to experiment.

These theorems have established the very im-
portant role of the long-range induced dipole polari-
zation potential a/r4 at very low energies. Further-
more, when this potential is taken into account, the
scattering length can be defined only for the L = 0
partial wave; the scattering length for L &~ 1 does not
exist! Under these conditions, we recall that the
S-wave phase shift is given by Eq. (III.56) and is
seen to contain terms in A; and k' log A;.

However, if an approximate solution to the scat-
tering problem is considered, which neglects the
polarization potential [see Secs. IV (a) and IV (b)],
then a scattering length can be defined for all partial
waves [for l = 0, see Eq. (III.49)].

Positron'. The positron scattering lengths calcu-
lated by different methods are collected together in
Table X. At the time of the Boulder Conference in
June, 1961, there existed the basic question as to
whether low energy positrons were attracted (nega-
tive scattering length) or repelled (positive scattering
length) by the target hydrogen atom. Furthermore,
if the interaction was attractive, .what was the precise
mechanism producing this effect? Calculations based
on the eigenfunction expansion approach4''4 sup-
ported the repulsive interaction, while the variational
calculation of Spruch and H,osenberg" showed that
the interaction must be attractive; "must, " since the
latter calculations gave a lower upper bound for the
scattering length than the former. However, it was
not clear which terms in the variational trial function
were responsible for the attraction. Subsequent calcu-
lations by Massey et al.as showed that neither virtual
positronium formation into the 1S-state, nor virtual
excitation of the 2P state of atomic hydrogen could.
produce a negative phase shift (attractive force) at
low energies. However, all calculations, whether
static, strong-coupling or virtual positronium, which
included the dipole polarizability, yielded positive
8-wave phase shifts. That is, there exists an over-all
attraction between positrons and hydrogen atoms at
energies below a few volts.

The results of Table X are strong evidence in favor
of including dipole polarization in very low energy
atomic collision problems. These results also indicate
that a straightforward application of the eigenfunc-
tion expansion method may yield results which are
even qualitatively incorrect.

Eleetrong. The singlet and triplet scattering lengths,
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defined either by Eq. (III.49) or by Eq. (111.56) and
calculated in different approximations, are listed in
Table XI. Probably the best values are those of
Schwartz, " who used a Eohn variational method
with up to fifty trial functions of the type given by
Eqs. (V.17) and (V.18), with appropriate modifica-
tions to allow more naturally for the dipole polariza-
tion of the hydrogen atom.

These results support the conclusions of the posi-
tron results. Namely, the induced dipole polarization
potential is the most significant physical phenomenon
involved in very low energy atomic scattering and
the eigenfunction expansion eonverges too slowly to
yield reliable values for the scattering. It cannot be
stressed enough that these statements owe their
importance to the existence of the recently estab-
lished rigorous extrema principles.

In order to give a somewhat more detailed ap-
praisal of the results collected in Table XI, it is
necessary to correlate the principal features of the
different approximations. To begin with, if we con-
sider only the spherically symmetric part of the total
8-wave equation [i.e., setting li ——0 in Eq. (VI.7)]
then the 18, 18-28, and Temkin's 60 results are in
reasonably close agreement for both spin states. The
results of such approximations differ markedly from
those obtained by Temkin'" (I egendre polynomial
expansion of the 8-wave function) and Schwartz"
(variational approach using the Hamiltonian in its
nonseparable form), which are in substantial agree-
ment with each other. Lying between these two sets
of results are those calculations" '" which make some
allowance for the dipole polarizability by including
the 2P state of hydrogen. This is to be expected, since,
as pointed out in Sec. III (a), only 65.77/o of the in-
duced polarization potential is included in these ap-
proximations.

In Table XI we include the result of an interesting
calculation carried out by Ohmura and Ohmura, "'
who used the Pekeris"' H ion 161- and 203-parame-
ter wave functions together with an effective range
expansion [given by Eq. (III.45)], about the H ion
bound state, to predict a value for the singlet scatter-
ing length. Although the use of (III.45), rather than
(III.56), is not strictly justified, it turns out that the
nonlinear terms in (III.56) are suKciently small, ow-

ing to the relatively large value of the singlet scatter-
ing length, not to introduce much error mto this
calculation.

i29 Y. Ohmura aud H. Ohmura, Phys. Rev. 118, 154 (1960);
see also T. Ohmura, Y. Hara, and T. Yamanouchi, Prog.
Theoret, Phys. (Kyoto) 22, 152 (1959), 20, . 82 (1958); Phys.
Rev. 121, 2 (1961).

i30 C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
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Plots of k cot 8 against k' for the singlet and triplet
states are drawn in Figs. 12(a), and 12(b), respec-
tively. The singlet results all show nearly linear
behavior for small I{,', which implies that the non-
linear terms in Eq. (III.56) are not important in this
spin state. These results can be used to justify the
assumption of Ohmura et ci.i2' using Eq. (III.45).
On the other hand, the triplet results show strong
evidence of large nonlinear terms in the effective
range expansion when the induced dipole polarization
potential is taken into account. These nonlinear terms
are seen to be significant only for k' ~ 0.03. Above
this energy, we see that the eigenfunction expansion
results of Burke and Schey'4 agree with the triplet
results of Schwartz, "which restores some eonMence
in the eigenfunction approach away from the elastic
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scattering threshold. However, in Fig. 12(a), we see
that the results of the above two calculations actually
diverge slightly as k' increases I A possible explanation
of this "breakdown" of the eigenfunction approach
may be due to neglect of the hydrogen ion.

We concur with Gerjuoy"' in his assertion that the
most important advance in atomic collision theory
in recent years has been the development of methods
for obtaining bounds, due mainly to Spruch and his
collaborators although others" "'" have made con-
tributions.

In conclusion, we note that no experimental results
have been reported, to date, at suKciently low

energies to make direct comparison with the above
electron or positron scattering length calculations.

I~~ I ~

a
C

e 09

o. .

o.7-

FIG. 13. S-wave
phase shifts calcu-
lated in the ls 46

1s - 2s, 57 1s - 2s
- 2p64 approxima-
tions and by
Schwartz93 and. Temkin. Io6

(b) Elastic Scattering: Electrons

The low-energy elastic scattering of electrons by
hydrogen atoms has been the subject of the most de-
tailed theoretical and experimental investigation of
any of the processes considered here. Unfortunately,
for nonzero incident energies, we no longer have at
our disposal rigorous mathematical criteria for decid-
ing which is the best theoretical result. In the absence
of rigorous extrema principles for the elements of the
N. matrix, our attempt to evaluate both the merits of
the various theoretical methods and the accuracy of
the experiments will be somewhat inconclusive.
Nevertheless, we hope that certain guiding principles
for the different approximations will be discovered.

Most of the theoretical methods used on this prob-
lem have been discussed in Secs. IV—VI. The most
accurate results for I = 0, over the energy range
0 & k' & 0.75, areprobably theresultsof Schwartz, "
and Temkin '" In Fig. 13 we compare the singlet 8-
wave phase shifts calculated in several approxima-
tions.

Assuming that Schwartz' results are correct, then
we see that including virtual excitation to the 28 and
2I' states only, allows for about one half of the short
range correlation force effective in this spin state.
The triplet I = 0 phase shifts for the different ap-
proximations agree quite well.

In Table VII we give the results of including fur-
ther bound hydrogen states in the eigenfunction ex-
pansions for I = 0 (singlet). It is seen that the phase
shift is hardly improved and we believe that the
hydrogen ion a,nd/or continuum hydrogen sta, tes must
be included to obtain the correct result. We conclude

r3~ E. Gerjuoy, Revs. Modern Phys. 33, 544 (1961).
~32 I. C. Percival, Proc. Phys. Soc. (London) A'VO, 494

(1957);Phys. Rev. 119, 159 (1960);Proc. Phys. Soc. (London)
75, 206 (1960); V. Risberg, Arch. Math. Naturvidenskab 53,
1 (1956); T. Ohrnura, Phys. Rev. 124, 180 (1960).
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that in those states where correlation effects are
strong the close-coupling approximation including
only bound states is liable to be up to ten percent in
error.

In the I = 0 singlet state the ls-2s-2p approxima-
tion phase shift appears to resonate above k' = 0.7.
Unfortunately, in this energy region neither Schwartz
nor Temkin has evaluated phase shifts. Burke and
Schey" have analyzed this resonance and found its
position at 9.61 eV and its full width as O. l09 eV.
This resonance appears to arise at a slightly higher
energy in the ls-2s approximation. " Further reso-
nances appear to exist in the ls-2s-2p approximation
for higher angular momenta, see Fig. 14. These also
lie near the second quantum-level threshold. It is a
very interesting question to decide whether these
resonances exist in nature, or are a manifestation of
the close-coupling approximation.

The P-phase shifts calculated by various approxi-
mations are shown in Fig. 14. The long-range polari-
zation potential n/r4 plays a larger role away from
threshold here than in the S states. It seems proba-
ble, however, that it is still the short range correlation
in the singlet I' state that causes most of the error in
the ls-state exchange approximation. The triplet
phase shift, which gives by far the larger of the two
contributions to the total cross section, is probably
quite accurately given by the ls-2s-2p results or the
polarized orbital results.

For higher partial waves, arguments were given
by Burke and Schey'4 that the n/r4 potential domi-
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nates the scattering up to A,
" = 0.5 for the D wave

and up to k' = 0.75 or higher for the I', 6, waves.
In these regions the first term in the expansion

tan 5t = [em/8(f + 3/2) (t + 1/2) (t —1/2)]k' +
(V11.1)

given by O' Malley et at. ,
"will give a good approxi-

mation to the correct phase shift. Of course, the
1s-2s-2p approximation gives results for these states
which are in error by a factor of 2/3 since only 2/3 of
the correct cx is effectively included by the 2p state.

In Figs. 3 and 4 we present a comparison of theory
and experiment for the differential and total cross
sections, respectively. The agreement for the total
cross section between the two sets of experiments and
the various theoretical calculations is good within the
experimental errors except for the results of Bransden
et al.'" Here their triplet I'-phase shift seems to give
too large a cross section; an indication that the adia-
batic method, which they used, tends to overestimate
the effect of the polarization potential. The singlet
8-state resonance produces a small wiggle in the
ls-2s-2p curve at k' = 0.7. The differential cross
section results are also in agreement with experiment
apart from an over-all normalization at the lowest
energy. The difference in the P-phase shifts between
the ls-2s and the ls-2s-2p results is important only at
small scattering angles, where there are no experi-
mental measurements for comparison.

In Fig. 15 the spin-Hip differential cross section,
predicted in the ls-2s-2p close-coupling approxima-
tion, " is presented for four energies. The angular
variation is more pronounced than for the corre-
sponding differential cross sections, Fig. 3. Therefore,
experimental measurements of this quantity may
provide a more sensitive test of the corrections of the
higher partial wave phase shifts.

(0 0 50 60 90 I 20
SCATTERING ANGLE IN DEGREES

I'zG. 15. Spin-Qip cross section as a function of scattering
angle for four incident electron energies. 3~

Finally, in Table XIII, we give the ls-2s and the
ls-2s-2p approximation partial and total elastic cross
sections for six energies above the second quantum-
level excitation energy. The addition of the 2p state
only modifies appreciably the low energy P- and
D-state contributions, leaving the 8-state contribu-
tion relatively unaltered. Also, as expected, the space
symmetric singlet state is affected to a larger extent
than the space antisymmetric triplet state. The effect
on the total cross section is small. It is probable that
the ls-2s-2p total cross section results are accurate to
within a few percent. Unfortunately, there is no ex-
perimental work in this energy region for comparison.

(c) 1s-2~ Excitation: Electrons

The ls-2p cross section has been measured by Fite
and Brackmann" and extended to low energies by
Fite, Stebbings and Brackmann. " Their results are
presented in Fig. 5 and a description of their experi-
ment given in Sec. II (b). Theoretical estimates of
this cross section have been made using the Born
approximation"'; the distorted wave approximation
for the low angular momenta, the Born-Oppenheimer
approximation for the high angular momenta, "and
the ls-2s-2p close-coupling approximation for the
low angular momenta with the Born approximation
for the high angular momenta" Lace Sec. VI (g)]. A
comparison of experiment and theory for the experi-
mentally measured quantity Q~, is presented in Fig.
16. This quantity is obtained by counting photons
emitted perpendicular to the electron beam and as-
suming an isotropic photon distribution. The agree-
ment between experiment and. theory is very poor,
particularly at the lower energies 20 eV. In view
of this discrepancy, it is necessary to consider in more
detail the probable ranges of validity of the theoreti-
cal approximations made.
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TABLE XIII.Partial wave and total elastic e-H cross sections calculated in the 18-2855 56 and 18-28-2p66
approximations for A; & 0.75. Spin weighting factors are included.

Spin
State

Approxi-
mation L=O L =1 L=2 L =3 L=4 L =5 L=6 Total

0.81

1.21

1.44

4.00

Singlet

Triplet

Singlet

Triplet

Singlet

Triplet

Singlet

Triplet

Singlet

Triplet

Singlet

Triplet

18-28
18-28-2p
18-28
1s-28-2p

18-28
ls-28-2p
18-28
18-28-2p

ls-28
18-2s-2p
18-28
18-2s-2p

18-28
1s-28-2p
18-28
18-2s-2p

18-28
18-28-2p
18-28
ls-28-2p

18-28
18-28-2p
1S-28
ls-2s-2p

0.486
0.447
3.687
8.687

0.046
0.0098
1.377
1.731

0.047 0.005

0.081 0.019

0.509

5.517

0.286
0.264
2.895
2.906

0.0333
0.0101
1.157
1.372

0.0014
0.0654
0.057
0.093

0.0081 0.0019 0.0006

0.0168 0.0059 0.0019

0.350

4.396

.186
0.172
2.297
2.297

0.0133 0.0580 0.0102 0.0025 0.0009

1.086 0.095 0.0160 0.0068 0.0026

0.256

3.504

0.140 0.0107
0.127 0.0105
1.829 0.815
1.827 0.885

0.088
0.0836
0.971
0.966

0.0012
0.0020
0.486
0.515

0.0005
0.0351
0.068
0.0938

0.0049
0.0718
0.0843

0.0100 0.0028 0.0011 0.0005 0.187

0.0153 0.0069 0.0031 0.0014 2.832

0.0039 0.0022 0.0011 0.0006 0.098

0.0143 0.0058 0.0029 0.0016 1.589

0.065
0.0579
0.412
0.398

0.0089 0.0014 0.0008 0.0007 0.0005 0.0004 0.071

0.241 0.0631 0.0140 0.0040 0.0018 0.0011 0.724

When the (R-matrix elements calculated in the
Born approximation"3 are compared with those pf
the 18-28-2p close-coupling approximation, "we see
that the Born approximation only becomes valid
(relative to the more sophisticated close-coupling
approximation) at quite high angular momenta at all
the energies considered. For example, for L = 5 and
k' = 1, the R&&-matrix element, which dominates the
{R» element in its contribution to the 1s-2p cross
section, still differs by 15% in these two approxi-
mations. However, the total contribution to the
18-2p cross section from this and higher angular

momentum states is 2%. For L = 7 and 1P = 4.0
the two approximations differ by only 3%. Here,
however, the total contribution to the cross section
from this and higher angular momentum states is

40 —50%. It would seem valid, therefore, to
use the Born approximation for angular momenta
larger than these quoted explicitly above, but not
valid to try and extend its application to lower angu-
lar momenta, particularly at the lower energies
k' ~ 1.0. The question of the accuracy of the low

TABLE XIV. 18-2p partial cross section contributions. BO,
Born-Oppenheimer approximation; ED%, distorted wave ap-
proximation allowing for exchange (Ehashaba and Massey~c);
cc, close-coupling 18-28-2p approximation. The singlet and
triplet partial cross sections contain the appropriate spin
weighting factors. The values of k2 quoted are those for the
incident, electron. Part a: contribution from the state with the
angular momentum of the outgoing electron t2 = 0, i.e., total
angular momentum L = 1.Part b: sum of contributions from
states with /2 = 1, i.e., I = 0 and 2.

Singlet
BO ED%'

Triplet
BO ED% CC

20

Eiectron Energy (ev)

40
1

50 60

1.0
1.44
2.25
4.0

0.00575
0.040
0.080
0.00825

=1
01.16
0.271
0.0502
0.0098

at, =O, L
0.0855 0.110
0.0040 0.081
0.00021 0.0176
0.000018 0.0024

0.168 0.080
0.0888 0.0416
0.0091 0.0188
0.00144 0.0038

FIG. 16; Experimental and theoretical results for the cross
section Q+ (ls-2p). Curve —~ — is experimental's; curve———was calculated using the close coupling approxima-
tion66,' curve - are the distorted wave results60; while the
full line curve was calculated using the Born approximation.

1.0
1.44
2.25
4.0

0.827
0.297
0.122
0.0275

bl 2

0.878
0.402
0.092
0.0118

1, L=
0.289
0.824
0.111
0.0204

0 and 2
0.0067
0.0218
0.0828
0.0210

0.0045
0.0167
0.0204
0.0067

0.0491
0.0634
0.0468
0.0191
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TsnLE XV. Cross sections in units of ~a) and polarization fractions of the impact radiation for 1s-2p
excitation calculated in the 1s-2s-2p close-coupling approximation. «The singlet and triplet partial
cross sections contain the appropriate spin weighting factors. The values of A;2 quoted are those for

the incident electrons.

0.81 0.0584
1.00 0.0735
1.21 0.0918
1.44 0.0878
2.25 0.0871
4.00 0.0740

0.1266
0.3011
0.4386
0.4487
0.2583
0.1160

Singlet
Q(&) Q(o)

Triplet
Q(+) Q(o)

0.0149 0.0968
0.0262 0.2994
0.0482 0.3768
0.0758 0.4052
0.1378 0.8890
0.1655 0.2767

Total Cross Sections
Q( + ) Q(O) Q Q~

0.0683 0.2234 0.3599 0.3858
0.0997 0.6005 0.7909 0.8820
0.1895 0.8149 1.0989 1.2047
0.1631 0.8539 1.1801 1.2984
0.2244 0.6428 1.0911 1.1596
0.2395 0.8927 0.8716 0.8968

Polarization of
the Impact Radiation

0.2009
0.2835
0.2799
0.2667
0.1800
0.0855

partial wave contributions in the close-coupling ap-
proximation still remains.

In Table XIV a comparison is presented between
the close-coupling approximation cc, the distorted
wave approximation including exchange EDW, and
the Born-Oppenheimer approximation Bo, for /&

equal to 0 and 1 (lz is the angular momentum of the
outgoing electron) . In general, the agreement is better
for /2 ——1 than for /& ——0. It seems reasonable to
assume that the agreement would be better still for
ls & 1 where the distortion is smaller. In general, for
those terms where the agreement between the EDW
and the cc approximations is poor, their contribution
to the total cross section (given in Table XV) is small.
Finally, we expect the cc approximation, because it
allows for the long range 2s-2p coupling and also
treats the distortion more correctly, to give better
results than the EDW approximation, where the two
methods disagree.

The above arguments lead us to believe that the
close-coupling results are the best theoretical results
available to date.

We see from Fig. 16 that, as the theoretical ap-
proximations improve, the excitation cross section
18-2p tends toward the experimental result. We have
seen in Sec. VII(a) that the eigenfunction expansion
approach can converge slowly, see Fig. 12(a), and
Table VII. We were able to assess this slow con-
vergence by applying extrema criteria to calculations
on the scattering length. Unfortunately, no equiva-
lent rigorous criteria are known for the multichannel
problem, although some work on a related problem
with cutoG potentials" has been reported. Therefore,
we are unable to state, conclusively, that the cc re-
sults have converged to the true cross sections, and
therefore the cross section should be remeasured.

In Table XV we present the close-coupling results
of Burke, Schey, and Smith" For ir,' = 10 144
2.25, and 4.0, the Born approximation results of
Seaton et a/. "' for I &~ 6, 7, 7, and 8, respectively,
were used to determine the total cross section. For

k' = 1.21, where the Born results were not available,
reasonable interpolations from neighboring k' and I
values were used for L = 6 and 7. Similarly the
L = 4 and 5 contributions for k' = 0.81, where the
Born approximation is invalid, were found by inter-
polation. This procedure was valid at both energies
since the added contribution did not amount to more
than a few percent of the total cross section. A few
percent correction due to contributions from I &~ 14
was also added to the k'.= 4.0 result by means of an
extrapolation procedure. The results given in Table
XV are probably accurate, within the 18-28-2p ap-
proximation, to better than 1 jo.

Q(&) and Q(0) are the cross sections for the excita-
tion of the 2@m&

——+1 and the 2pm& ——0 levels, re-
spectively. The polarization of the impact radiation,
emitted at right angles to the electron beam, is given
in the last column of the table. The polarization
fraction can be written" as

Ii i
—Ii

I, i+ Ii'
where I„and I~ are the intensities of the radiation
with an electric vector parallel and perpendicular to
the beam. P, at right angles to the beam, can be
written in terms of Q(&) and Q(0), see Eq. (III.33).
For large energies, P ~ 0, while as A,

" —+ threshold
(k' = 0.75), Q(a)/Q(0) —+ 0 and P —+ 3/7.

Using these results together with Eq. (II.2) we
derive

Qi = 0.918Q + 0.246Q(0),
where Q is the total 18-2P excitation cross section.

We conclude this commentary on Q(18-2P) by re-
marking that Akerib and Borowitz'" have estimated
the scattering amplitude for this process. Their com-
puted cross sections are in qualitative agreement
with experiment.

(d) ls-2s Excitation: Electrons

The total cross section for the excitation of hydro-
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gen atoms from the ground state to the metastable 2s
state has been computed in the ls-2s strong-coupling
approximation"" and in the ls-2s-2p close-coupling
approximation. ""Earlier work, such as the dis-
torted wave approximation"' and the nonexchange
calculations, ""will not be discussed since they pro-
vide only approximations to the results presented
here.

The most remarkable feature of these results is the
quite good agreement, of the 13-2s and ls-2s-2p ap-
proximations both with regard to individual partial
cross sections, see Table IV, and total cross sections,
see Fig. 18. In particular, we note that the 2p state
has very little effect in the triplet spin state, except
close to threshold. In the singlet state, the effect of
including 2p is to reduce slightly the cross section at
higher energies and increase it near the threshold.
Further we see that, in general, the highest angular
momentum, where comparison. is possible (I = 3), is
modified to a larger extent than the lower angular
momenta. The effect on the total cross section is,
however, small from these higher angular momentum
states. The above effects can be understood qualita-
tively as follows. Because the inclusion of the 2p state
allows for some nonspherical distortion of the atom,
then certain long range interactions are automatically
included in the 1s-28-2p approximation. These inter-
actions play their largest role in the higher angular
momenta states and near the threshold. Actually,
using the probably correct Born results from L = 7
to 14 at 50 eV, accounted for 20% of the total cross
section. Again we expect that distortion of the atomic
wave functions, partially allowed for by the inclusion
of the 2p state, to be of greater importance in the
singlet (space symmetric) where the electrons can
approach closer together than in the triplet state.

This cross section has also been computed by
Akerib and Borowitz"' but their results do not agree
even qualitatively with those of Fig. 18.In particular,
the impulse approximation predicts a broad maxi-
mum in the total cross section vs energy curve around
60 eV compared with a narrow maximum around 14
eV predicted by the eigenfunction expansion methods
and experiment. Furthermore, the magnitude of the
maximum is considerably below experimental and
other theoretical results. In view of the reasonable
success of the impulse approximation in calculating

Q (ls-2p), see the previous subsection, and the ioniza-
tion cross section, its failure here is somewhat sur-
prising.

%e see from Fig. 18 that the 1s-2s-2p results agree

&33 G. A. Erskine and H. 8. W. Massey, Proc. Roy. Soc.
(London) A212, 521 (1952).

better with the Born approximation than the second.
Born '"

As remarked in Sec. II(b) and illustrated by Figs.
6 and 7, the two experimental measurements by
Lichten and Schultz" and by Stebbings et ut. 20 are in
poor absolute agreement. From an experimental point
of view, the normalization procedure adopted by
Stebbings et aL seems to be preferred, although there
does exist the possibility that errors may be over-
looked by normalizing too far from the region of
interest. If we renormalize the results of I ichten and
Schultz to have the same maximum value as Steb-
bings et at. at about 13 eV (which is allowed by their
quoted experimental errors), then the shape of the
two curves agree very well. "However, it is of great
importance for as accurate as possible a theoretical
estimate to be made of this cross section in order to
throw further light on this normalization problem, as
well as to provide criteria for the goodness of various
approxlmatlons.

Direct comparison with experiment is made difB-

cult by the fact that the 2s state is also populated
by electromagnetic transitions from the higher atomic
states which are also excited in the collision. Assum-

ing that the 3p state gives the largest contribution,
we can write the production of metastable II by all
atomic processes"' as

a„(2s) = ar(2s) + 0.21a (3p)

where or(28) corresponds to the theoretically calcu-
lated quantity Q(ls-2s). Both sets of experimental
results are corrected using for o.(3p) the experimental
results of Fite et aU' for a(2p) renormalized at high
energies to the Born a (3p). We present the compari-
son of theory and experiment in Fig. 18. In Table
VIII we present some preliminary calculations on
Q(ls-3p) in the strong-coupling approximation; we
compare these results with I ichten's estimate in Fig.
17. The total cross section at 50 eV, for I ~& 4 is 0.04
~c,' which is only 1/5 of the Born value. ' However,
the strong-coupling results had not converged and. it
seems likely that very high I values will be required.
This point is currently being investigated. "

It is difFicult to understand how the theory can be
made to agree with the experimental results of Steb-
bings et at. Unfortunately, in the absence of rigorous
extrema criteria we have no way of assessing objec-
tively the error incurred in the calculations. However,
another piece of experimental information is availa-
ble; namely, the exchange cross section as measured

~34 H. A. Bethe, IIandbuch der Physik, edited by Geiger and
Soheel (Verlag Julius Springer, Berlin, 1933), Vol. 24, pt. 1,
p. 508.
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Fxo. 18. Electron-hydrogen atom excitation cross section
1a - 28. Curves I and II are the experimental results of
Stebbings et al. 0 and of Lichten and Schultz, Is respectively.
The theoretical curves were calculated as follows: A—Born ap-
proximation; B—second Born approximation;~24 C—1s - 2a
strong-coupling approximation;56 D—ls - 2s - 2p approxi-
mation. 66

by Lichten and Sehultz. This cross section is one-half
the spin-flip cross section, IA, —A. I'/4, where A,
and A, are defined in Eq. (III.26). Burke et al."have
computed this quantity and at A,

" = 1.0, they obtain
that this cross section is 0.11 map which agrees very
well with the result quoted by Lichten and Sehultz.

(e) Ionization

Calculations of the ionization cross section have
been of an exploratory nature only. Indeed, the total
cross section has been computed only in the Born
approximation"' and Impulse approximation, '" see
Fig. 10.

Close to threshold, i.e., k'1 ——1, Geltman"' has de-
veloped a modified form of the Born approximation
and shown that the total ionization cross section de-
pends linearly on the excess incident energy. This
result has also been obtained by Akerib and Boro-
witz. '" However, Wannier"' has derived a threshold
law for single ionization which has the form 8' "',

.02-
I 1 1 t

l0 20 30 40. 50 60 70 80 90 l00
Electron Energy (ev)

Fzo. 17. e H excitation cross section 13-3p. Dots—Born
approximation;2 crosses —strong-coupling approximation;66
open circles —experimentalis Q (ls-2p) normalized to the
Born values for 1s - 3p.

where 8 is the excess incident energy. Wannier's re-
sult was obtained by an approximate solution of the
classical three-body problem, coupled with statistical
mechanical arguments. Massey' (p. 372) has pointed
out that Wannier's result is in convict with experi-
ments on helium, which predict a linear dependence
on g.

We see in Fig. 10 that the various experimental
determinations of this cross section differ most in the
energy region of interest here. In particular, the re-
sults of Rothe et al. '4 lie about 25% (i.e., 0.2 z.c2) be-
low those of Fite and Brackmann" at 100 eV, the
latter being in reasonable agreement with the calcu-
lated values of the Impulse approximation. In view
of the general failure of this approximation to predict
the location and magnitude of the excitation cross
sections 1s-2s and 1s-2p, it is not possible to say
which experimental result is supported by this calcu-
lation.

The need for additional absolute measurements at
energies below 100 eV and for more accurate calcula-
tions is apparent. As remarked in Sec. VI(g), Gelt-
man's method"' could probably be developed in
conjunction with the close-coupling approximation,
Sec. IV(c).

(f) Inelastic Scattering of Positrons

Cross sections for the excitation of hydrogen atoms
from the ground state level 18to the 28 and 2P levels
have been calculated in the strong-coupling4' and
close-coupling" approximations. The partial wave
cross sections are given in Table V. Where compari-
son is possible, except for Q(28-28) at l = 0, the two
sets of results agree reasonably well, the agreement
improving with increasing energy and L. A tentative
conclusion indicated by these results is that the
eigenfunction expansion converges very quickly.
However, it is recalled that the effect of virtual
positronium formation was of major importance at
the elastic threshold. It is conceivable, therefore, that
the results of calculations which include real posi-
tronium formation might be appreciably different
from those given in Table V. Such calculations are
now being performed, '" and will yield the cross
sections for positronium formation into the 18 and
28 states.

At the present time, the only calculations reported
for the cross section for positronium formation are
those of Massey and Mohr"' and are reproduced in

&» G. H. Wannier, Phys. Rev. 90, 817 (1953).
&3~ W. J. Cody (private communication).
&37 H. S. W'. Massey and C. B. O. Mohr, Proc. Phys. Soc.

(London) A67, 695 (1954).
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Fig. 19. These calculations were carried out in the
Born approximation.

VIII. CONCLUSIONS

The rigorous extrema principles at zero incident
energy are of crucial importance since they provide
the first mathematical criteria for deciding which is
the better of two approximations. Applying these
principles, we have seen that the eigenfunction-
expansion approach converges very slowly near to the
elastic threshold. %e have pointed out that a calcu-
lation which took H—into account might help the
convergence considerably. In any case, such a calcu-
lation is desirable in order to get a bound on the scat-
tering length. These principles have established the
dominant role played by the induced dipole polariza-
tion potential at k' = 0. This fact corroborates
signer's observation'" that long range forces de-
termine the nature of the scattering parameters at
threshold s.

The absence of extrema criteria away from A,
" = 0

make it impossible to assess, definitively, the merits
of theoretical approximations and experiment. One
would hope that if one expanded about the inetcstic
thresholds in the effective range theory then it might
be possible to define analogous quantities to the scat-
tering length. Rigorous bounds on such quantities
would certainly help in clarifying the disagreement
which exists between theory and experiment for the
inelastic cross sections. '" From experience gained at
the elastic threshold, it is desirable to isolate the long
range interactions at the inelastic thresholds.

The narrow resonances in the total e—H cross sec-

iss E. P. Wigner, Phys. Rev. 73, 1002 (1948).
iss See for example, R. G. Newton, Ann. Phys. (N. Y.)

4, 29 (1968); M. Ross and G. L. Shaw, ibid. 13, 147 (1961);
Phys. Rev. (to be published).

Fxt . 19. Cross sections for capture of electrons from hydro-
gen atoms by positrons. Ia and Ib are the Born approximation
and distorted positron wave approximation, respectively, for
capture into the 1s state of positronium; II—capture into the
2s state, multiplied by 5.

tion" pose an interesting problem. Massey'" has in-
vestigated the formation of such resonances within
the framework of the strong-coupling approximation.
Since A,,' ( 0, in the energy region. where the reso-
nances appear, the second equation in (IV.6) re-
sembles an eigenvalue problem. Massey has neglected
the inhomogeneity in this second equation and solved
the eigenvalue problem for a variety of potentials.
He has used his derived eigenvalue A;„and eigenfunc-
tions to generate resonances in the scattering func-
tions I"&. The possibility that these resonances are
mere anomalies in the ls-2s-2p approximation rather
than physical states cannot be overlooked. Indeed,
evidence that this might be the case is furnished by
the approximation itself. In the no-exchange ap-
proximation, there appears an L = 1 resonance at
A.
" = 0.225 which does not appear in either the singlet

or triplet phase shifts. Such peculiar results are not
uncommon in the eigenfunction-expansion method.
Smith and Burke'4 observed a pronounced minimum
in the elastic scattering cross section in the 18-2a ap-
proximation, neglecting exchange. Nevertheless, fur-
ther theoretical work is required before discarding
their possible existence.

The disagreement between theory and the Born
normalized experimental measurements for the exci-
tation cross sections pose a problem which should be
resolved. An absolute measurement of Q(28), below
k' = 8/9 in order to avoid complications from the
cascade processes, accurate to about 0.01 s.a,', would
definitely tell us whether or not the eigenfunction-
expansion approach can be used to compute excita-
tion cross sections. However, as indicated by Smith
et ct.45 and corroborated by later work" "the partial-
wave approach converges extremely slowly for suc-
cessive L values. Because of this slow convergence,
it is certainly worthwhile to examine carefully those
theoretical proposals which avoid the partial-wave
expansion.
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