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A. BACKGROUND

1. Preliminaries

W HEREAS conformal transformations and con-
formal invariance are well understood in

mathematics, this is not the case in physics. Most
physicists believe that conformal invariance has no

physical meaning and consequently should not play
any role in physics; but very few seem to have
studied the matter.

The present paper exhibits the conformal covari-
ance of certain basic equations of present-day phys-
ics. This covariance is valid generally only when one
relaxes the requirement that rest masses are con-
stants; rather, it is necessary that all rest masses
transform in a certain conformally covariant way.
The fundamental charge e, as well as Planck's con-
stant h, remains constant.

The conformal covariance of these equations leads
to the question of the physical significance of con-
formal invariance and of the concomitant mass
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transformations; the possible experimental detection
of the consequences of conformal invariance becomes
essential.

The present paper is mainly devoted to a discussion
of conformal transformations and to a study of the
covariance of various equations. The questions just
raised will be answered only briefiy (Sec. 10);a more
complete answer is contained in other papers on this
subject (see references 22 and 23 below).

2. Brief History of Conformal Transformations
in Physics

Since the study of conformal transformations of
various basic equations of physics has had a rather
varied history, it is appropriate to note here some
of the important developments in this connection
during the last fifty years.

Conformal invariance was first introduced into
physics in 1909 when Cunningham and Bateman'
showed that Maxwell's equations are covariant not
only under the 10-parameter Lorentz group, but
under the larger 15-parameter conformal group Cc.
It was soon observed that the equations of motion of
charged particles (masses m W 0) are not conform-
invariant.

In 1936 Page' developed a "new relativity" which
was later recognized to be "special relativity" based
on the conformal group C0 instead of the Lorentz
group. ' This meant among other things that not only
all coordinate systems with constant relative velocity
are equivalent, but in fact all those with constant
relative acceleration. To make this physically mean-
ingful, one has to restrict oneself to loca/ measure-
ments, i.e., determine distances by refiecting light
signals from distant points, etc. In Page's electro-
dynamics rest masses are no longer constants.

After Weyl's theory of gravitation and electro-
dynamics (1918) was proposed, interest arose in
extending general relativity by removing the restric-
tion of the invariance of proper differential line ele-
ments ds' y-' 0. An examination of the ideas under-

lying Weyl's theory suggested that light signals
determine only ratios of the elements of the metric
tensor g„„.The determination of g„„itself requires an

object like a clock that is much less fundamental than
a light ray. If one attempts to base general relativity
exclusively on light signals, one is led to "conformal
general relativity, " corresponding to a transforma-

i E. Cunningham, Proc. London Math. Soc. 8, 77 (1909);
H. Bateman, ibid. 8, 228 (1910).

2 L. Page, Phys. Rev. 49, 254, 946 (1986); L. Page and
N. I. Adams, ibid. 49, 466 (1986).

3 H. T. Kngstrom and M. Zorn, Phys. Rev. 49, 701 (1986);
H. P. Robertson, ibid. 49, 755 (1936}.

tion group C which no longer refers only to Bat space,
As was first pointed out by Einstein, ' in such a theory
it is no longer possible to transfer yardsticks from one
space-time point to another and the rate of clocks
will depend on their history. Only local measure-
ments (i.e., local comparisons of space and time
intervals) are meaningful. So far, however, this idea
has not been particularly fruitful in general relativity.
As Pauli' puts it, "This point of view was soon
abandoned by him and others, as it does not seem to
have any physical meaning. " Page's relativity
theory, which was mentioned above, is the special
relativistic analog of these ideas (C, is a subgroup of
C), and kinematic cosmology associated with the
names of Schrodinger, Infeld and Schild, and others,
is closely connected with conformal invariance.

During the last 25 years various equations of
physics were repeatedly proven to be covariant.
However, it was primarily Schouten and Haantjes'
who pointed out the necessity of transforming masses
in a conformally covariant way (viz. , as invariants of
weight —1/2). Also, conform-invariant wave equa-
tions have been constructed' and a conform-in-
variant quantum field theory has been proposed.
We shall return to these attempts in Sec. 9.

B. CONFORMAL TRANSFORMATIONS

AND WEYL SPACE

3. De6nition of Conformal Transformations

Conformal transformations can be formulated in
different ways. It is very important to distinguish
clearly these different formulations, because they
have different physical interpretation in terms of
observer and observed, and because equations be-
longing to different formulations may easily be con-
fused. Such a confusion can lead to mathematical in-
consistencies even when two formulations are equiva-
lent.

(a) Conforma/ Point Transformations

In the following it will be essential to distinguish
between points in a space and the coordinate systems
used to specify them. We shall denote diferent points
by x, x, 9,, etc. , whereas the coordinate systems will

4 A. Einstein, Sitzber. preuss. Akad. Wiss. , Physik. -math.
Kl. 1921, 261.

s W. Pauli, 7'heory of Betativitv(Pergamon Press, New York,
1958), p. 224.

6 J. A. Schouten and J. Haantjes, Eoninkl. Ned. Akad.
Wetenschap. Proc. 43, 1288 (1940).

7 F. Giirsey, Nuovo cimento 3, 988(1956);J. A. McLennan,
ibid. 5, 640 (1957); H. A. Buchdahl, ibid 11, 496 (1959)..
References to earlier work can be found in these papers.

s R. L. Ingraham, Nuovo cimento 12, 825 (1954); J. Wess,
ibid. 18, 1086 (1960).
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x = f"(x) (8 1)

which determines the components of the point x in
S when the components of the point x are known in
the same coordinate system 8. By definition, this
transformation is one to one and analytic in a given
domain D.

Although the following discussion is obviously
considerably more general, we shall assume that we

are concerned with points in a Riemann apace of four
dimensions and with indefinite metric tensor g„„(x)~

This metric tensor is characterized by the require-
ment that in a local geodesic coordinate system it can
be brought into the Minkowski form ri„, with signa-
ture +2.

The line element of a time-like curve is then given

by

be denoted by the indices characterizing the covari-
ant or contravariant components of various quanti-
ties. Thus, x&, x&, etc. , denote components of x
measured in the coordinate systems S, S', etc.' We
shall sometimes write x or x' to indicate that the
point is measured by 8 or 8'.

Consider the point transformation (sometimes
called "active transformation")

1 I

g„, (x')B.x" Bpx" = g.p(x) .

(6) Conformal Coordinate Transformotions

(8.8)

A coordinate transformation 8 —+ 8' (sometimes
called "passive transformation") is a one-to-one re-
lation

x" = h" (x) (8 9)

of the components of the points x of a domain D as
seen by two different observers (coordinate systems).
We again assume it to be analytic. In6nitesimally
close points transform according to

(8.4) and that it can therefore be used aa a de6ning
equation for conf ormal point transformations.

We note that all quantities in all equations above
refer to the same coordinate system. If we identify a
coordinate system 8 with an observer, we can say
that we have here a mapping of the domain D of
points into the domain D of points, both domains
being in the space of the observer 8.

We further note that the structure on the left-hand
aide of (8.7) should be clearly distinguished from a
coordinate transformation 8 ~ 8' in which the same
point P occurs with components x" and x"' corre-
sponding to the two coordinate systems,

dr'(x) = —g„„(x)dx"dx" .

The point transformation (8.1) yields

dX = 8 x dx

(8.2) Qx = 8~x dx

and the metric tensor according to

g.' '(*') = ci.'x ci.'x'g-p(x) .

(8.10)

(8»)
which determines the difference of the components
of the two points x and x + dx into which the two
infinitesimally nearby points x and x + dx are
mapped by (8.1)~

A conformal point transformation is characterized

by the property that the line element dr(x) at the
point x is related to the line element at x by a scalar
function o (x),

These relations imply

dr'(x') = dr'(x) . (8.12)

in contradistinction to (8.4), unless o. = 1.
Equation (8.11) is typical of the transformation of

any tensor field 7 p. . . "" ' ', which proceeds accord-
ing to

r / I
7'a'p' . .. (x ) = cisx Bpx ' ' ' 8~ x Bp'x

dr (x) = Q(o ) dr (x) .
(*) . (8.»)

This property implies

g„,(x)dx"dx" = o (x)g„p(x)dx dx

with the restriction

This relation can be written

g„,(X)cl x"Bpx" = o (x)g p(x) .

In order to determine the definition of a conformal
(8.5) coordinate transformation corresponding to the con-

formal point transformation (8.7), we need to estab-
lish first the general relationship between coordinate

(8.6) transformations and point transformations.
A point transformation can be associated with

each coordinate transformation by requiring the
(8.7) relationship

It can be seen easily that Eq. (8.7) is equivalent to
I

x x or X' =' x (8 14)

~

h h b J A S h t &
. . This means that for a given relation of the compo-

9 This notation agrees with that by J. A. Schouten, Ricci-
Calculus (Springer-Verlag, Berlin, Germany, 1954), 2nd ed. nents of the Point x in two coordinate systems, a
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point x ia associated with x in such a way that the
components of x with respect to S' are the same as the
components of x with respect to S. The "dot equal"
sign in (3.14) indicates that this equality is valid only
in the coordinate systems indicated in the equation.
A definite correlation of the labelings p and y' is thus
established.

By means of (3.14) the relation between the point
transformation (8.1) and the coordinate transforma-
tion (3.9) ia obtained:

z" = h" (x) = h,
" (f(x)) =' x"

which, by means of (3.16), is

A (x') =' B.z"A„(x)

We can therefore define a new field A (x) such that

A„(x',) =' A (x) . (3.20)

For the contravariant components a similar relation
holds.

However, it now follows from (3.7) and (3.20) that
one cannot identify A (x) with A (x) and A (x) with
A (x), but only either

implies that the function h" in (3.9) is the inverse
transformation to (3.1); if (3.1) implies

A (x) = A (x)

A. (z) = 0A. (x) (3.21)

x" = F"(x), (3 1I) ol'

then (3.9) is

x" = Il" (x) = 6" (x) .

These relations can also be written

*"= f"(*) =' f"(*')
from which follows, using (3.14),

Bx"/Bx =' BX"/Bx

(3.15)

(3.16)

Bx Bx
g„„(x) .- s. ——' 0.(x)g.p(z) .

Using (3.11) for x, this gives

g-'s'(x') =' ~(x)g-s(x) .
Therefore, with (3.7),

dr'(x') = o(x)dr'(x) . (3.18)

which shows the consistency of (3.4) and (3.12):

This establishes the relationship between point
transformations and coordinate transformations.

The conformat coordinate transformation may
now be inferred from the corresponding point trans-
formation (3.7). It is given by

x" = f"(x') (3.15')

where f" is the same function aa in (3.1) and is such
that it implies (3.7).

Finally, we note that (3.4) and (8.12) are consistent
equations. Substituting (3.16) into (3.7) we find

A (x) = A (x)
(3.22)

A (x) = (1/0.) A (x) .
Identities (3.21) can be proven by substitution of the
first Eq. (3.21) into (3.7); similarly for Eq. (3.22).

The result (3.21) and (3.22) can be stated as fol-
lows: If the components of a field A(z) transform as
a covariant vector under a conformal point transfor-
mation, then the contravariant components trans-
form like an affine contravariant vector with weight
factor o-',

A"(x) = (1/o)8 x"A (x) . (3.23)

Conversely, if under a conformal point transforma-
tion we have a contravariant vector, then the corre-
sponding covariant components transform like

A„(z) = 0.a„x A (x) . (3.24)

As a consequence, the length of a vector A(x)
transforms under a conformal point transformation
(3.1) and (3.7) aa

A„(z)A"(x) = [1 /o. ( x)] A( x) A'( x), (3.25)

whereas the length of a contravariant vector trans-
forms as

A„(x)A"(x) = o (x)A„(x)A"(x) . (3.25')

These considerations can obviously be generalized
to tensors of arbitrary degree.

(d) Conformal Transformations of the 3IIetric Tensor

Consider the conformal point transformations de-
fined by (3.7). If we use the symbol

dr'(x') = dr'(x) = 0(x)dr'(x) .

(3.26)g~ (x) = &(x)gl (x)

(c) Conformat Transformations of Tensor Fiek&

Consider a vector field A„(x). A coordinate traris-
formation of its covariant components is given by
(3 13) Eq. (8.7) becomes

A (z') = 8.x"A„(x) (3») g'„„(x) = B„x B,X g p(x) . (3.27)
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for

g'„, (x) =' g„, (X') (3.28)

This looks like a coordinate transformation, but x
and x refer to two different points in the same co-
ordinate system rather than to different coordinates
of the same point.

The conformal coordinate transformation charac-
terized by (3.17) can be written, using (3.26),

In the following we shall therefore be concerned
only with C, and coordinate transformations.

4. Riemann Space m.d Weyl Space

(a) Biemann Space and the Groups C, and C&&

The Riemann space R underlying the theory of
relativity is characterized by a symmetric metric
(Riemann) tensor g„„, which is restricted by the
conditions

x =' x'. (3.29)

This indicates that one can give a definition of con-
formal transformations which does not refer to either
point or coordinate transformations, but is consistent
with both of these:

Given a metric manifold characterized by the
metric tensor g„„we define

g:,(*) = -(*)g.,(*), g."'(*) = ~li-(*)tg"'(*),
(3.30)

where 0- is an arbitrary positive differentiable func-
tion of x. We refer to (3.30) as the "conformal
transformation of the metric tensor. "These transfor-
mations form a group C, .

The totality of all manifolds differing from each
other only by elements of C, is called a conformal

space. Elements of length ds' = g„„dx"dx" in such a
space clearly have no absolute meaning because a
comparison of lengths at two different points involves

the arbitrary function o [see also (3.25) j, but the ratio
of two infinitesimal lengths is well defined when both
lengths refer to the same point. Also, angles are well

defined at each point:

dr' = —g„„(x)dx"dx" (4 2)

is invariant under all coordinate transformations.
The latter are defined by"

x'" = h" (x), (4 3)
with h" being a real differentiable functions with a
nonvanishing Sacobian. We are not concerned with
space or time reversal transformations and we shall
admit only such coordinate transformations (4.3)
that leave the properties (4.1) invariant, i.e.,

g'„,(x') = f„')x" c'„)xPg
(p x)

must also satisfy (4.1).
The invariance of proper time under coordinate

transformations must be contrasted to its lack of
invariance under the conformal transformations of
the metric tensor C,. Clearly, g'„„also satisfies (4.1),
but

goo ( 0, g, y g, s$'$ ) 0, (i,k = 1,2,3) (4.1)

for all vectors ~". The element of proper time dr,
defined by time-like dx",

a7c = g~pdx dx = o'(x)dr (4.4)

(g pdx dxP) "'(g,gx'bx')'i' (3.31)

is invariant under C,. This is the reason for the name

"conformal. "
The conformal point and coordinate transforma-

tions are now seen to be combinations of the con-

formal transformations of the metric (3.30), with

equations of the type (3.27) or (3.11) characterizing

the tensor nature of g„„.We shall denote the corre-

sponding group of transformations by C. It has the

group C, and the group of all coordinate transforma-

tions as proper subgroups. We call C the "extended
conforrnal group. "

From these considerations we conclude that when

we deal with equations that are form-invariant (co-
variant) under coordinate transformations, it will be

necessary only to check covariance under C, in order
to assure covariance under C.

The Christoffel symbol in R,

IaPI = s g (~-g~p+ ~pgip —~e-p) (45)
transforms under C, as

In&} '= IaPI + —', (8."sp + BIs. —s "g.p) (4.6)

where

8~ = 8~ ln0 (4.7)

~o The customary notation used in physics is employed here.
In the notation of Sec. 3 which distinguishes between active
and passive transforrnations Eq. (4.3) would be written z"'
= h~'(x). In what follows x" and x'~ refer to the same point
seen by different coordinates (observers) 8 and 8'.

is not invariant under C,. Nevertheless, the space
6V based on the metric tensor g'„„ is as good a RieInan-
nian space as (R. The group C, gives a one-to-one

Inapping of (R onto 6V.
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Correspondingly, the curvature tensor in (R' differs
from that, in (R by terms depending on s„.

The group Cp of special or restricted conformal
transformations is defined as the set of those transfor-
mations in C that transforms flat space into flat
space. This means that the functions 0(x) are no
longer arbitrary, but are now restricted by the condi-
tion that

R"„„=0 implies R'"„, = 0, (4.8)

which requires as a necessary and suKcient condition
that"

2(8„s„—s {pvI) = s„s„——,
' g„„si,s". (4.9)

These equations can be solved for s„; they deter-
mine 0- within a multiplicative constant. The corre-
sponding transformations from Minkowski space
[g„„=q„„, rl„„= 0(p W v); ri;; = 1 = —rtpp] to a flat
space with metric g'„„= o-g„„were classified by
Haantjes. "They constitute the transformation group
Cp, the restricted conformal group.

The group Cp is the 15-parameter Lie group often
referred to as "conformal transformations. " It is the
group considered by Bateman and Cunningham' and

by most physicists writing on conformal invariance.
It consists of the space-time translations

x'" = x" + n", (4 parameters) (4.10a)

the proper homogeneous Lorentz transformations

x'" = A"„x", (6 parameters) (4.10b)

the dilatation (or scale) transformation

(1 parameter) (4.10c)

and the acceleration transformation

x'" = (1 + 2a x + x'a') '(x" + a"x')

(4 parameters). (4.10d)

In the latter x' = x x and a' = a a refer to Min-
kowski space. The 15 parameters are n„, A"„, s, and
a". By an extension to Riemann spaces with non-
definite metric of a well-known theorem due to Liou-
ville, Haantjes" showed that every element of Cp

can be composed from motions and inversions only.
The group Cp is obviously a subgroup of C; whereas

most of what follows will be valid for |., we shall have
occasion to limit our considerations to the important
special case Co.

particular with the group C„ it is desirable to define
quantities whose transformation properties under C,
are explicit. The following concepts will therefore be
useful.

A Weyt tensor of weight r and k indices is a Rie-
mann tensor of A: indices which transforms under
(8.80) as

~c=g ~ ~

Examples are the metric tensor g„„which is a Weyl
tensor of weight +1, dx" (Weyl vector of weight
zero), and dr (Weyl scalar of weight 1/2).

For the formulation of a conform-invariant differ-
ential equation we need a conform-invariant co-
variant derivative. A Riemann space [defined by
(4.1) and (4.2)] has an affine connection which is the
Christoffel symbol (4.5) constructed from the metric
tensor g„„.The covariant derivative of a vector V" is
therefore defined as

V„V" = B„V"+ V {"„} (4.12)

The left-hand side is a Riemann tensor because the
Christoffel symbol is a solution of the transformation
equation of linear connections

L'"p = Bix'"(8'x'8px'L,".+ O'8px ) . (4.18)

The Christoffel symbol satisfies (4.18) under the co-
ordinate transformations (4.8). Obviously, any other
solution of (4.18) when used in (4.12) would also
produce a V, such that V,V" is a Riemann tensor.
Any such choice will make V, a covariant vector.

As is seen from (4.6), the transformations C, pro-
duce

V,'Vv = B,V."+ V.{.",]'
= V,V" + -,'(V"s, + 8",V s —s"V.) (4.14)

where we assumed that V" is a Weyl vector of weight
zero. Thus, V', is not a Acyl vector, because V', V" is
not a Weyl Tensor. If the last term were absent, V,
would be a Weyl vector of weight zero.

Let us attempt to obtain V, as a zero-weight Weyl
vector by use of a connection different from the
Christoffel symbols. We define the symmetric con-
nection

I'"p = {npI ——' (8"Kp+ 8pK —K"g p) . (4.15)

Then we have

(5) Invariance of Derivatives

Since we are concerned with the group C, and in

I~S. Haantjes, Eoninkl. Ned. Akad. Wetenschap. Proc.
40, 700 (1937).

PI'ap = I'ap

provided a„ transforms according to
d

Kv = Ky, + Sv

(4.16)

(4.17)
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under C,. The expression

~„V" =—a.V" + V r„".

will then be a Weyl tensor of weight zero provided
F«P satisfies (4.18).

Now Fg p should be a characteristic feature of the
space. Since we have a metric space, P„"P should

depend only on the metric and its derivatives. To
this end we note that if ~„ is of the form

(4.18)

then (4.15) can be written as

r."P = -', G""(&.RP + ~PA. —~d'. P) (4 19)

where

G""G),„——8„", G„„=g„„/y (4.20)

Therefore, we shall not adopt (4.18) and (4.21) a
priori, but work with (4.15) and derive a dependence
of ~„on the metric which assures the vector properties
of x„, and therefore satisfies (4.18).

(c) Weyt Space

A Weyl space is defined as a space with a real
symmetric metric tensor and a symmetric connection
given by (4.15). In our case we have to add that the
space is 4 dimensional, and that the conditions (4.1)
on the metric will always be assumed to hold. We
shall denote this space by %".

A Weyl space reduces to a Riemann space, (R, if
and only if ~„= 0. However, when ~„ is a gradient it
is equivalent to a Riemann space, as we shall see
later. The most important difference between these
two spaces is that V'„g p

= 0 in (R, while in%
Since lr„must transform according to (4.17), the

requirement that g depend on g„„yields uniquely
(except for a constant factor)

~I g«P rlvg«P I a&Ig&P IPtt I g&«+ ~1 g«P ~

lgl'
' where g —= det g„„

According to a well-known identity, the first three
(4.21) terms on the right-hand side vanish, so that

or
@gap = &vgap (4.24)

G" = g"/lgl'" (4.22)

The fundamental conformal-alone tensor G„.is form-
invariant under C, so that the form-invariance under
G, of I'"

P, Eq. (4.16), is obvious.
However, the choice (4.21) for p is not satisfactory

for the invariance of the covariant derivative under
the general group G, because if P"

P is the Christoffel
symbol constructed from 6„„ it does not satisfy
(4.18). This follows immediately from the fact that
g is not a scalar. The space based on

ds = & GvrdS dx (4.28)

is therefore not a Riemann space, since 6„„is not a
Riemann tensor. Such a space is called a conformal-
afEne space, since ds is conform-invariant and since
the tensors one encounters are in general no longer
Riemann tensors, but afFine tensors of which the
Riemann tensors are a special case.

We shall not work explicitly in conformal-alone
space, but shall follow an equivalent approach in
terms of tensor densities. These are more familiar to
the physicist than the afFine tensors. At the same
time, invariance under coordinate transformations
will appear in the usual well-known form of covari-
ance of equations. '"

~~a A conformal-afFine Riemann space is used for a discus-
sion of Weyl's theory by P. O. Bergmann, Introduction to the
Theory of Relativity (Prentice-Hall, Inc. , Englewood Cliffs,
Neer Jersey, 1946).

A space with this property is said to have a semi-
metric connection.

The geometrical meaning of (4.24) is the following:
Let a vector have the contravariant components V"
and the covariant components V„; then its length is
defined by

E' =—V„V" = g„„V"V". (4 25)

Let 8 be the covariant differential. Then a parallel
displacement of the contravariant vector bV" = 0,
does not imply a parallel displacement of the co-
variant vector. This is of course related to the situa-
tion characterized by (8.21) and (8.22). We have
from bV" = 0,

or

BEv ——V"BV„= Ev~ dx (4.27)

blnEv ——a dx (4.27')

Thus, parallel displacement of a vector changes its
length. This is not the case in R, where ~~ = 0. We
note, however, that null vectors (Pv = 0) remain null
vectors, as is evident from (4.27).

This is of course exactly the same situation as in

5V„= o(g„,V") = V"8g„„= V"dx"~),g„„= V„lr dx

(4.26)
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Weyl's theory" of gravitation and electricity of 1918.
That theory failed, because from (4.27) it follows that
the length of an object depends on its history, which
is physically untenable. To what extent this difficulty
also exists in a conform-invariant theory will be
discussed elsewhere. We note here only the following:
The conformal invariance of the theory implies as
was mentioned earlier [see the remarks preceding
(8.81)], that comparison of lengths at diferent space-
time points is a priori meaningless, whereas (infinites-
imal) lengths at the same point can be compared.
The only comparison of measurements at two points
a Gnite distance apart must therefore be made by
means of .light signals; their invariant nature was
noted above.

An important quantity in Riemann geometry is the
contracted ChristoGel symbol

[ttcrj = B„l nQlgl .
For a Weyl connection

(4.28)

V„b = c)„t) + b I'"„—wl'„h" (4.81a)

V„C„= a„b„—ll.r„„—wr„ll, . (4.8lb)

From these equations the covariant derivative of
tensors of any index number follows. In particular,
for a scalar density of weight m

V„O = cj„o —wI'„6. (4.82)

The determinant g is itself a scalar density of
weight 2,

or

V„ln &lgl = B„ln &lgl —r„. (4.88)

We note that while we adopt the usual convention of

~2 H. %eyl, Sitzber. preuss. Akad. Kiss. , Physik-math. Kl.
1918, 465; Math. Z. 2, 884 (1918);Ann. Phys. 59, 101 (1919);
Space, Time and Matter (Dover Publications, Inc., New York).

= ~ » glgl —2K

(4.29)

In order to express f(:„ in terms of the metric we

recall the notion of tensor density. A. tensor density
of weight w, T(w), is related to the corresponding
tensor T of weight zero by

T(w) = (&lgl) T (48o)

The covariant derivative of a tensor density of
weight w is so defined that it is again a tensor density
of weight m, but with one more index. Thus, for a
vector density ll(w),

g' = J'g, J = det 8„'x" & 0, (4.85)

which follows from the tensor character of g„„.Ex-
pressing the transformation law of tensor densities in
terms of J rather than g one establishes that, when a
metric is defined, affine tensors of weight w and tensor
densities of weight w are identical concepts.

In order to avoid confusion between tensor densi-

ties of weight w and Weyl tensors of weight n, we shall

denote the latter as W„ tensors. Thus, we might have
a W. tensor density of weight w; obviously, the tensor
density transformation properties of a W'. tensor
density are unchanged by a eonformal transforma-

tion, since 0. is a scalar.
Turning now to conformal transformation, we see

that (4.84) implies the transformation property
(4.17) that assures the invariance of the Weyl con-
nection under C,.

We are now ready to study the invariance under

0 of various equations. This invariance can be ex-

pressed in a Weyl space as follows: The laws of

physics are invariant under C if they are invariant

(a) under all coordinate transformations,

(b) under all metric gauge transformations, being

the simultaneous transformations of the metric ('„
C

gpv ~ gpv = Ogpv )

and the gauge transformations on

(8.80)

Kp, +Kg = Ks+ Bpln(T ~ (4.17)

We shall adopt the following procedure for the
study of (; invariance of a given equation:

(a) An equation (or set of equations) is assumed to
be given covariantly in OR, the Minkowski space, de-

6ned as the Euclidean Qat space of four dimensions
whose symmetric metric tensor satisfms (4.1), and

in which it is consequently always possible to trans-
form to the metric g„„with vanishing connection.

(b) Generalization to an equation covariant in any

space 0', with symmetric linear connection and sym-

metric (real) metric tensor satisfying (4.1). This will

be accomplished by replacing the coordinate deriva-

using gothic letters to designate densities, this nota-
tion is not used for the determinant of the metric
tensor. Using (4.29),

K„= —,
' V„ln lgl, (4.84)

which is the desired relation. This equation replaces
(4.18) and (4.21). The important point is that (4.84)
establishes K„as a vector, contrary to (4.18).

Parenthetically, it may be remarked that the
connection between tensor densities and affine tensors
is obtained by noting the relation
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tives by covariant derivatives and the derivatives for a point charge on the world-line z"(r), and is
with respect to parameters (proper time) by co-
variant derivatives with respect to these parameters j"(x) = p(x)u"(x) (5.4)

d 8 dx"——+ -= V„
dr br d~ (4.86)

(c) The invariance of the resulting equation under
C, is studied. This is greatly simplified by specializing
from the space 6, to a Weyl space 'H. The Weyl con-
nection assures the t., invariance of the covariant
derivatives. If C, invariance can be obtained for a
covariant equation in 'K, C invariance is assured.

(d) The C-invariant equation is expressed in terms
of the derivatives covariant in 8, with additional
terms depending explicitly on Kp.

In concluding this section we would like to add the
following remarks. First, it is clear that the use of a
Weyl space to study conformal invariance adds an
essential feature, viz. , the vector K„. The conformal
space has no connection specified, whereas the knowl-
edge of K„determines the conform invariant Weyl
connection. Secondly, we have a more general space
underlying our descriptions than the Riemann space.
However, we can always return to (R by specifying
K„as the gradient of a scalar function. In that case
the Weyl space is equivalent to a Riemann space, as
follows from (4.6) and from (4.18) to (4.20). Specifi-
cally, if we identify K„= s„, then

(4.87)

i.e., the Weyl connection constructed with g„„and
K„= B„lno- is the ChristoGel symbol for the metric
tensor g'„„= og„„. However, in the following dis-
cussion it will be irrelevant whether or not we as-
sume K„= s„.

for finite charge distributions; both are vectors. p is
the invariant charge density and u"(x) the four-
velocity vector at a space-time point x.

For the generalization to 6, we assume first that
F„„is an antisymmetric tensor in general. Then

~) F,.+ ~,F.~ + ~,F~, = 0 (5 5)

&„F""= B„F""+ 1' F "

and, therefore, from (4.88)

(5 &)

&„F""+(&„ln Q~g )F""= B„F""+(B„ln g~g~)F""

(1/& IVI)~. (F""v'lgl) = (1/& Igl)&. (F""&lgl)

(5.8)
Note that differentiations always act only on the
immediately following function unless otherwise
indicated.

Equation (5.6) can thus be written in a form very
similar to (5.2), making use of the tensor density of
weight 1

6"" = &(lgl)g" g"'F-e

and the vector density of weight 1,

(5 9)

g" g"'F-8'. » v'lgl + ~.(g" g"'F-e) = j" (5.6—)

are the covariant generalizations of (5.1) and (5.2),
provided j" is a vector in O', . Since the connection in
8 is assumed to be symmetric, (5.5) reduces to the
form (5.1) and is therefore independent of the con-
nection. For the same reason,

C. CONFORMAL INVARIANCE OF FUNDAMENTAL

EQUATIONS (5.6) becomes

i" = j"&lgI (5.10)

S. Maxwell's Equations"

In 5E with g„„=g„„ the electromagnetic field is
given by an antisymmetric tensor F„„which satisfies
the equations

BAFlyy + l9pFyg + ByFgly = 0

8 IJ,F
where the current density is

(5 1)

(52)

j"(x) = e 6(x —z) dr
dz"

—00 d7 (5.8)

«3 The results of Secs. 5 and 6 were first obtained by Schouten
and Haantjes (references 6 and 14).

dI5' =
1 (5.11)

valid in 6,. This equation is obviously also independ-
ent of the connection.

Equations (5.1) and (5.11) are identical with the
well-known form of Maxwell's equations in general
relativity ((R). However, it is not trivial to point out
that they hold not only in S, but even in 0,.

C, invariance is now very simple. We assume that
F„„is a W&& tensor in the sense of (8.22). Since dx" is
a Ws vector and (5.1) holds in 0', and therefore in
particular in I/', this equation is t., invariant. Simi-
larly, g„„ is a Wc-tensor density with w = 1, and
(5.11) holds in W. Hence, it is also C, invariant, pro-



CONI'OH, MAL IN VAR, IAN CE

X~I pp
= Z I~Pal I s (Z~pKp + Z~pKp Zp~K )

(5.19)f(x) = 8(x —y)f(y)d'y, (d y = dy'dy de de )

(5.12)
The last equation follows from Z"" = Z"" and

vided I isa Wc-vector density with w = 1.To verify puted with a Weyl connection or a Riemann con-
this we define a generalized 8 function. nection, because

Let f(x) be a scalar function; then

defines the four-dimensional 8 function. It is a scalar
density (w = 1), since d'y is a scalar density (w
= —1).This is true in 'N as well as in (R. Therefore,

Q = I"(x)d~„
0- = space-like surface

(5.15)

is a Wc scalar. Here, do„ is a Wc-vector density
(w = —1), as follows from Gauss' theorem (j„=0
for large space-like distances),

(5.18)

is a vector density (w = 1). In OR this equation of
course reduces to (5.8) since vector densities are
indistinguishable from vectors (~g~

= 1). Now the
8 function is W&, as is evident from (5.12).Since e is a
number and &"is t/t/'0, it follows that j" is indeed Wo.

Analogous to the generalization of (5.8) to (5.18)
is the generalization of (5.4) to

i"(*) = &(x)z "(*) (5.14)

where 9 is a scalar density (w = 1), since u"(x)
= d'x"/d r is a vector. Under C„y must be Wz)2, since
8 is W-1/2 and the resulting I" is Wc. The total
charge

(5.20)

Thus, V„Z"„does not depend on a„. It is a Wc-tensor
density (w = 1). The well-known conservation law
which follows from (5.1), viz. ,

(5.21)

therefore does not depend on s„either. Furthermore,
both sides of (5.21) are Wc vectors of weight 1.

In summary, then, we see that Maxwell's equations
in the form (5.1) and (5.11), as well as the conserva-
tion laws (5.16) and (5.21) are C invariant. In addi-
tion they are independent of ~„. Physically, this
means that the validity of these equations does not
depend on whether or not the length of a non-null
vector changes under parallel displacement. Conse-
quently, such a change, if it existed, would never be
observed by means of phenomena described by Max-
well's equations alone.

The Cc invariance of Maxwell's equations, dis-
covered by Bateman and Cunningham, ' is a special
case of our results.

6. The Lprentz Equa, tip'" "
In BK the Lorentz equation is

dv "/dr = (e/m)F""v. (6 1)

v" = dx"/dr (62)

(velocity four-vector). The fields are the retarded
fields due to all the other charges.

The simplest generalization to 0', seems to be

~~I = ~~I = d~~~'5

establishing charge conservation.
The electromagnetic energy-momentum tensor, de-

fined by
(6.8)Sv"/dr = (e/m)g" F.pv,

T," = F""F)„+—,
' 8",F F s (5.17)

where we expressed the right-hand side explicitly in
terms of the 8'0 tensor F„„and the vector v". The
left-hand side involves the covariant derivative
(4 86)

has the divergence

This yields by means of {4.88)

where the constants e and m are the charge and= Q, + B„I"d' . x (rest) mass of a particle whose world-line x"(r) has
The last integrand is a Wc-scalar density (w = 1) and tangent
vanishes identically, because

v„~„"= v'„{T"„~~g~) = g„~„~."r„„.(5.18)

This divergence has the same value whether com-

8v"/dr = dv"/dr + I'"„v v (6.4)

i4 J. A.. Schouten and Z. Haantjes, Physica, 1, 869 (1934).



452 FULTON, H, OHH, I ICH, AND WITTEN

YVhen we apply a conformal transformation on the
metric tensor, we see that v" is a W 1~2 vector,

u" ~ v." = (1/Q~)v",
and one obtains, since 0- is a scalar,

(6.5)

8v", 1 6v"

dr Qo' dr
p cl/ 1

V
dr Qa.

n" =—fgl'"v",

and by (b) assuming m to be a W &(& scalar,

(6.7)

m. = m/Q~. (6.8)
Specifically, we propose instead of (6.3) the equation
in 8"

8n'/dr = (e/m)g" F.pn . (6.9)
The covariant derivative here is, using (4.29) and
(4.81),

sc"/dr = v ~.n" = dn"/d~ y v upi'p. ——,
'

v r.Li"

= dn"/dr + v n IapI —u n (b."~p ——', ~"g.p)

—-', v c"(8 ln Qlgl —2~ )

A comparison between the covariant derivative in
'N and in S is now easily made. From (4.28),

(6.10)

The equation of motion (6.3) then becomes

6v" „d 1 8 p~ p—v in+0' = —
g F pv

( )
which is obviously not form-invariant.

Form-invariance under C, can be obtained, how-
ever, by (c) making the fundamental quantity of
the equation not v' but the W0-vector density of
weight I = 1/4,

many physicists, because rest masses are assumed to
be universal constants. If one excludes the mass
transformation. , the Lorentz equation is not con-
formally covariant and neither are any of the other
equations which we shall discuss for particles of mass
m 4 0. However, a closer examination of the physical
meaning of conformal transformations (see Sec. 10
for further discussion) reveals that —at least for the
group |0—these transformations correspond to the
introduction of static force fields and, in particular,
of a homogeneous gravitational Geld. When m is
looked at as a rest energy (rather than a mass) it
must contain the potential energy associated with
the position of the particle in this field. Since 0-

measures the strength of the field, m must naturally
depend on o-. There is consequently good reason for
the mass transformation (6.8). At the same time, this
interpretation clariGes the origin dependence of the
conf ormal transformations.

Returning to the conformally covariant Lorentz
equation (6.9), we can see its relation to (6.3) by
writing it in the form

d (lgl ) — g -p (69)
In (R hg = 0 and (6.9') becomes identical with (6.3),
but in 'N we have because of (6.10)

(bu"/dr)@+ K"pv v = (e/m)g" F pv . (6.9")
When I'„„=0, this equation is the geodesic equation
in 'H for dr' ) 0 (i.e., for particles with nonzero rest
mass)

+ ({a~PI + K".p)v v = 0 .
(6.12)

The complete dependence on «„ is contained in Z"p,

(6.11),which can also be expressed by"

where the tensor

K."p —= —', (~"g p
—~pb") . (6.11)

&.p), = —&p.x —= g.~p~
= 8 (gp~'7- ln lgl

—g-~~p» lgl) (6»)
Equation (6.9) is manifestly covariant, since both

sides are vector densities of weight 1/4. Under a
transformation of the group |„however, the left-
hand side is 8' &y& because of dr, while the right-hand
side is 8' 1 because of g", as long as m is considered a
number. The assumption (6.8) removes this difficulty
and makes (6.9) C invariant. The W, /, character of
m was first proposed by Schouten and Haantjes. '

At this point we interrupt the formal development
in order to interject a brief remark on the physical
meaning of the mass transformation (6.8). For a long
time such a transformation was c priori excluded by

Obviously, these terms will become important only
when the gravitational field is suKciently inhomo-
geneous (V'„lnlgl is large enough). As a matter of
principle, however, Eq. (6.9) does depend on ~„, and
therefore depends on the change that the length of a
vector experiences under parallel displacement.

7. The Lorentz-Dirac Equation

In special relativity the equation of Inotion of a

~5 We remind the reader that our differentiation always acts
only on the function immediately following the operator unless
otherwise indicated.
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particle of charge e which can be approximated by a
point charge satisfies the equation

dv" e „, 2 e d v" dvq dvF Vp 0
dr m " 3 m dr dr dr

(7.1)
This equation was derived by Dirac" from Maxwell's
equations and the conservation laws. The term pro-
portional to e'/m describes the reaction effects on the
motion due to the particle's own electromagnetic
field. It is essential for a consistent treatment of
radiation eGects." If radiation is negligible, the
Lorentz-Dirac equation reduces to the Lorentz equa-
tion (preceding section).

As in (6.3) we ean formally generalize (7.1) from
5K to a covariant equation in Q, .

3

(7.2)
Such a generalization, however, has 1ittle physical
meaning. It is neither conformally invariant, nor does
it in general have the same relationship to the con-
servation laws as in 5K. For (R it was shown by De-
Witt and Brehme, " that, an additional term on the
right-hand side of the form

v f pv (r)dr
(7 )

is necessary to restore this relationship. However,
this term differs from zero only when the curvature
tensor does not vanish. In Rat space no such term
arises, so that it does not enter into Cc invariance; in
that case the equations are related to the conserva-
tion laws in the sense of Dirac's 1938 paper.

In order to obtain a Lorentz-Dirac type equation
in a curved space which is invariant under the ex-

tended conformal group t. , it would be necessary to
repeat the DeWitt-Brehme analysis in terms of con-
formal general relativity. Such an analysis exceeds
the purpose of the present paper. However, it seems

plausible that it could be carried out with the use of
Wc quantities throughout.

It is obviously suggestive to generalize (7.2) into a
conformally invariant equation by means of the same

procedure which was successful for the Lorentz
equation.

&~ P. A. M. Dirac, Proc. Roy. Soc. (London) A 16'7, 148
(1988).

Iv F. Rohrlich, Lectures in TheoreticaL Physics, Boulder
Summer Institute, (Interscience Publishers, Inc. , New York,
1960) Vol. II, p. 240; Ann. Phys. , 13, 98 (1961);Nuovo cimento
21, 811 (1961).

I8 8. 8. De%itt and R. %. Brehme, Ann. Phys. , 9, 220
(1960).

t& t& (& cfr

If we now use the W'c-vector density (tv = 1/4) ll"

as the basic quantity in (7.2) instead of v", we see that
every term in

2 1 8
ll

6"
dr m 3 m lgl'~' dr dr

g p 8t) 81)

lgl'~' dr dr
13"

(7.4)

has the same transformation property, i.e., it is a
W' i ~& vector density of weight 1/4, provided we again
adopt the mass transformation (6.8). The equation is
therefore manifestly C invariant. For reasons ex-
plained previously, however, only Co invariance is
meaningful in this case.

The same result can also be obtained by introduc-
ing only 8'0 quantities, i.e., by using in addition to
m~,

de = dr/lgl'', m = lgl''m, (7.5)

and the conform invariant metric tensor densities
G„„and 6"" of (4.20). The covariant Lorentz-Dirac
equation (7.2) can now be written in a form contain-
ing only Wo quantities,

6 I'pu

2 e b u" bu bo+3 a 0'~ a
'")

which, upon substitution leads again to (7.4).
In analogy with (6.9'), Eq. (7.4) ean also be

written

~ ~

~ &(~luI ~"))
3 m lgl'" dr dr

g-s 6(lgl''v ) 6(lgl''v') „.
lgl'" dr dr

It reduces to' (7.2) for bg = 0.
(7.4')

From (6.3) and (6.9') we see that in that equation
the conformally covariant generalization of the co-
variant derivative of v„was

&v" 1 ~ Ifs „1
lgl"' d.

Since v„ is W, (& we might expect that the covariant
derivative of db„/dr which is also W'

i~& will be
generalized in the same way. Thus, we try
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F„„=~„A„—~„A„=B„A„—B„A„ (8.2)

independent of the connection, in any 6,.
The Lorentz-Dirac equation apparently cannot be

obtained directly from a variational principle.
Let us next consider brieAy the conservation laws

which arise from C-invariant variational principles.
According to Noether's theorem, to every continuous
transformation of coordinates which makes the varia-
tion of the action zero, there corresponds an invariant,
the generator of this transformation, which is con-
served. For example, the momentum and angular
momentum are the generators of infinitesimal transla-
tions and rotations, respectively, for Lorentz in-
variant Lagrangians.

Formally, we get the same expressions in a C-in-
variant theory as in other theories. For example, an
invariant particle Lagrangian of the form I (x,n;tl),
with the variational principle

52

L(x,n;e)de = 0
1 (8.3)

will lead to the Euler-Lagrange equations

(d/de) (BL/Bn") —(BL/Bx") = 0,
and the conservation laws

(8.4)

d/d5[(BL/Bb")bx"] = 0 . (8.5)
The form of the generator for particular transforma-
tions can be read off from (8.5).

One could easily derive the conservation laws
which arise from (8.1). We won't do this, but will

P. A. M. Dirac, Ann. Math. 3/, 429 (1936); O. Veblen,
Proc. Natl. Acad. Sci. U. S. 21, 484 (1985); L. Infeld and A.
Schild, Phys. Rev. '70, 410 (1946).

8. Variational Principle

To the extent that the equations considered in Secs.
5—7 result from a variational principle, it is clear that
the C invariance of these equations could also be
established by starting with a t.-invariant variational
principle and maintaining 0 invariance throughout
the subsequent calculations.

Thus, the principle

md'% —5 eA„dx" + 5 —,
' 5'""J'„„d'x = 0 (8.1)

produces Maxwell's equations upon variation of A„,
and it produces the Lorentz equation upon variation
of x„(5).The latter variation was used also by Infeld
and Schild. "

All quantities in (8.1) are of W, type. The fields
are related in a W'c-invariant way to the potentials
which play the basic role in (8.1)

This variational principle of course generates the
correct free particle geodesic, Eq. (6.12).

To illustrate the application of Noether's theorem
to conform-invariant theories, we shall consider two
transformations of the group C&&, given in (4.10):
translations and transformations to uniform accelera-
tion.

The generator of infinitesimal translations

(8.7)
is the generalization of the momentum:

I'„=ms„= mv„. (8.8)
It is a W0 vector.

Next, consider the infinitesimal conformal transfor-
mation corresponding to uniform acceleration:

5x" = (2x"xg —x"x„5i,)n (8.9)
where n„ is an infinitesimal four-vector. The corre-
sponding generator, which participates in a conserva-
tion law, is

g„= x x (G pP„—2G„pP ) (8.10)
It is a Wc vector density, ut = —1/2. The associated
conservation law does not seem to have any simple
physical meaning.

9. Conformal Invariance in Quantum Mechanics

The extension of the study of conformal invariance
into quantum mechanics is strongly suggested by the
conformal transformation of mass, obtained in classi-
cal mechanics (Sec. 6), viz. , that the mass is a W 1/2

scalar. This means that m transforms under C, like a
reciprocal covariant length [e.g. , like (dr) ']; it fore-
casts the t/t/'I/'2-scalar properties of Compton wave
lengths with Planck's constant and the velocity of
light remaining constants of type 8'0.

Since conformal invariance is intimately connected.
with relativity, we have in mind here relativistic-
quantum mechanics, and possibly relativistic quan--
tum field theory. The basic equation of interest is
therefore Dirac's equation, and the first theory to be
considered would be relativistic quantum electro-
dynamics first lIl its seDllclassical forIIl, alld the11 lIl a
quantum field theoretical formulation.

The conformal invariance of the Dirac equation.

rather obtain the form of the generators for various
transformations for the particle part of the La-
grangian in (8.1). We thus consider the variational
principle for free particle motion:

5,
md' =8
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has been studied. by many investigators, ""most of
them concerned with |.0 invariance; but Pauli" con-
sidered C invariance.

In order to apply the mathematical techniques
used in the preceding sections to the Dirae equation,
it is first of all necessary to write it in S. This was
done by Schrodinger" and by Bargmann. " The
formalism obtained must then be generalized to a
Weyl space. Having achieved covariance in this
space we can proceed exactly as in Sec. 5 to prove (;
in variance.

However, this invariance proof is greatly simplified
if one restricts oneself to Co invariance, i.e., if one
restricts the proof outlined above to flat spaces. On

physical grounds this restriction is completely ac-
ceptable as long as one is not concerned with the
unification of quantum niechanics with general rela-
tivity. We shall therefore consider only C0 invariance.

We start with the free Dirac equation. In 5R with

g~„= Q~„we have

where
(p"r)„+ m)P = 0 (9.1)

V)y„ = o . (9.4)

Thus, the Dirac matrices are still "constants" in the
sense that their covariant derivatives vanish. It
should be noted, however, that (9.4) is no longer valid
when the space has nonvanishing curvature. "

The Dirae equation (9.1) is now generalized to

(Y"V„+ m)g =0. (9.5)

This is a covariant equation. The covariance proof
proceeds in analogy to the usual proof of Lorentz co-
variance. In particular, the invariance of the anti-
commutation relation (9.8) under similarity trans-
formations is essential.

Since we are restricting ourselves to Rat space the
equation (9.5) can be further simplified. We note that
in Cartesian coordinates

v"v" + v"v" = 2n" . (9 2)
In curvilinear coordinates (fla, t Riemann space) the
last equation must be written

'Y 7 + 'Y 'Y = 2g or 'Yp'Yv + Yv'Yp = 2gpv,

(9.8)
so that the Dirac matrices are now functions of space
and time. Taking the covariant derivative one finds

The form (9.5) of the free Dirac equation is also
valid in a flat Weyl space, the covariant derivative
now containing the Weyl connection. The spinor P
must then be of type Wo. The conformal transforma-
tions C, will leave (9.8) unchanged if the Dirac
matrices transforms as

V.
" = (1/V'~)V", V: = (v'~)Y. (97)

The Dirac equation (9.8) is clearly form-invariant
under this transformation provided the mass trans-
forms according to (6.8). This establishes the invari-
anee of the free Dirae equation under the restricted
conformal transformations (4.10).

In interaction with the electromagnetic field the
Dirac particle satisfies

[~"V(„+ieA„) + mjP = 0. (9.8)

Since A„ is a Wo vector this equation is clearly also
Co invariant.

For the construction of the bilinear covariants we
note the existence of a Hermitian matrix A such that

1" = ieger"p . — (9 9)
It is of type Wo since p is Wo and A" is Wo. It
satisfies

v'„j" = 0, (9.10)
because of (9.8), its conjugate equation, and (9.4).

These results together with Maxwell's equations
establish a C0-invariant relativistic quantum electro-
dynamics.

These considerations can be extended to quantum
field theories of particles of spin zero and of spin one.
In particular, the Klein-Gordon equation for a scalar
field @,

(8„r)" —m')y = 0, (9.11)
can be generalized to a conformally invariant equa-
tion, contrary to some claims. "To this end we erst
generalize to (R:

Il«ause of (9.8) A will also be a function of g. In a
special representation A = iyo so that A will be
Wl /2 like all y„according to (9.7) . We then define

P = /*A
The current density is now defined by

Vuf' = ~A'

and we return to the form (9.1).
(9.6)

or

(1/&Igl) ~.[(&lgl) g""0.K = m'0

2O W. Pauli, Helv. Physica, 13, 204 (1940).
2I E. Schrodinger, Sitzber. preuss. Akad. %iss, Physik-

math. 105 (1982); V. Bargman, ibid. 846 (1982).

g'"VP.y = m'y. (9.12)

This follows from 7'„@ = B„p and V'~g„, = 0. Equa—
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g" P„P,Q = —m Q. (9.14)

Since m is not a Wo scalar, but a W j/2 scalar, a
general conformal transformation does not leave m'

invariant, but permits m' to take on a continuum of
values according to (6.8). Only m = 0 remains in-
variant under (6.8).

10. The Physical Meaning of Conformal Invariance

The result obtained in the last section, viz. , that
P„P"has no nonvanishing discrete eigenvalues, seems
very disturbing. It appears to exclude particles of
6nite mass from a conformal quantum field theory.
However, this conclusion is not correct. As was
pointed out in connection with (6.8), conformal
transformations of Co which are not Lorentz transfor-
mations can be interpreted as apparent gravitational
fields ("apparent" because Co refers to flat space).
The mass m includes the potential energy in such a
Geld. The rest mass of a particle is a relative concept
in this framework. Nevertheless, a special value can
be singled out in much the sa,me way as in general
relativity by measuring the mass of a particle at rest
in a local geodesic coordinate system with Minkowski
metric. We can identify this value with "the" rest
mass (i.e., rest mass in the usual sense).

The interpretation of the mass transformation
given above derives from a detailed study of the
acceleration transformation. "These transformations

22 T. Fulton, F. Rohrlich, and L. Witten, "Physical Conse-
quences of a Coordinate Transformation to a Uniformly Ac-
celerated Frame", Nuovo cimento (to be published).

tion (9.12) can be adopted without formal change
when one uses a Weyl connection rather than a
Christoffel symbol. Furthermore, this equation is also
invariant under conformal transformations (extended
group C) because V'„ is a Wo vector and g"" and m'

transform in exactly the same way under C,.
If one identifies the momentum, angular momen-

tum, and other operators with the infinitesimal gener-
ator of translation, rotation, etc. , in the usual way,
one obtains the corresponding commutation relations
from the structure equations of the group Co which
is a Lie group. Of special interest is the result emerg-
ing from these relations, that the square of the length
of the momentum four-vector, P„P",has no discrete
eigenvalues other than zero, as was shown by Wess. '
We need not follow his proof, because with the usual
coordinate representation of the operator P„,

P„~ (h/i) v'„ (9.13)

his result is obvious from (9.12), which can be written

are exhibited in (4.10). Their physical interpretation
is as follows. When applied to an inertial frame of
reference they transform a particle from rest to uni-
form acceleration (hyperbolic motion). Such a motion
is equivalent to the presence of a constant homo-
geneous gravitational field according to the equiva-
lence principle. Thus, an acceleration transformation
is equivalent to switching on such a gravitational
field. Consequently, the rest energy of a particle
changes from mc' to mo' + mgh (in first order of g)
and its mass becomes

m ~ m. = m(1 + gk/c ) .

It can be shown that this factor is exactly what the
mass transformation (6.8) specifies in much greater
generality. Thus, a conformal transformation corre-
sponds to a change of the (apparent) force field
acting on the particle and the mass transformation
represents the corresponding change in rest energy
which takes account of the change in potential
energy.

A fundamental difference between restricted con-
formal relativity (based on the group Cp) and special
relativity (based on the Lorentz group) appears in
the measurement of lengths and time intervals.
These quantities no longer have an absolute meaning.
The only meaningful comparison of lengths and time
intervals is by means of light rays. As was mentioned
in Sec. 8(d), only a local comparison of infinitesimal
lengths and times is possible, in general. This is not
surprising in view of the presence of accelerating
fields (apparent gravitational fields) which depend
on position and time and which are changed with
every conformal transformation which is not a
Lorentz transformation.

A. detailed study of this physical picture" reveals
that conformal transformations are a special way of
describing certain phenomena which in general rela-
tivity are accounted for by a restricted class of co-
ordinate transformations. A.ll results obtained by
study of the group C0 are in fact equivalent, to certain
special cases of general relativity and no new physical
results are predicted. In some cases no simple physical
Ineaning can be attached to these transformations.

The question of the physical meaning of conformal
covariance of the G.eld equations under 0, i.e., in the
presence of true gravitational fields (curved space),
will be dealt with in a future publication. "

In summary, we can state the physical meaning of
the covariance of equations under conformal transfor-

23 See also F. Rohrlich, T. Fulton and L. Witten, Bull. Am.
Phys. Soc. 6, 346 (1961).
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mations restricted to flat space (group Co) as follows:
A.ny transformation of this type can be regarded by
an inertial observer (Minkowski space) as a change
from one apparent gravitational field to another.
Field free space, of course, is a special case of such a
field. In a Weyl space V7 the form of a Co-invariant
equation is not affected by such a change of Gelds.
All particles freely falling in such a 6eld follow
geodesics in %. However, the basic. physical quanti-
ties are different from the usual ones: Instead of the
rest mass m one has here the conformal mass m
which is the sum of potential and rest energy in the
language of the inertial observer; instead of the
proper time dv one has the conformal proper time
d5 which is associated with m such that md5 = md v.

[Eq. (7.5)]. In terms of these quantities and corre-
sponding derived quantities such as 0' = dx„/d0
instead of v" = dx"/dr, the physical theories based
on Co-invariant equations (classical electrodynamics,
relativistic quantum field theories) are characterized
geometrically by the geodesics in 'N and the angles
of their intersections. Length comparisons have only
local significance, since the metric tensor is known
only within a factor 0 which is a function of position.

For each coordinate system in the Bat VP, an
equivalent Hat H,iemann space can be found when
the vector ~„ is chosen to be a gradient z„= B„lno.

(See the end of Sec. 4.) Two Riemann spaces con-
structed in this way with two different, values of 0.

will have the same linear connections, but diGerent
metric tensors. However, a "conformal Riemann
space" can be dered which is not based on the tensor
g„„and the corresponding Christoffel symbol, but is
defined by the tensor density G„„=g„„/~g~'~' and the
corresponding Christoffel symbol. This conformal
Riemann space is invariant under general conformal
transformations (group C) because G is invariant.
But it is not a metric space, because d5' = G„,dx"dx"

is not invariant even under coordinate transforma-
tion s.

Geodesics of particles with 6nite mass are invariant
under C in a Weyl space or in a conformal Riemann
space (R. This is not so for null geodesics (paths of
particles with zero mass, photons and neutrinos);
these are invariant also in (R. The interpretation of
this result lies in the fact that for an observer in a
Weyl space the apparent gravitational fields are
geometrized and thereby eliminated from explicit
appearance, while for an inertial observer each such
field presents a very different physical situation. This
difference, however, can only be ascertained by
observations on particles with finite rest masses. No
such difference exists when observations are restricted
to measurements by means of light rays only.


