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1. INTRODUCTION

ERY often in current work on relativistic theories
of particle reactions of type

A+B—s C+D, (1.1)

one requires the analysis of the .S or 7" matrix element
in terms of partial amplitudes. In such a situation the
procedure adopted is to restrict attention to the center-
of-mass system and there to use the corresponding
nonrelativistic results.! Recently, Joos® has discussed
the reaction (1.1) in a fully relativistic manner, based
on the theory®* of irreducible representations of the
Poincaré® or inhomogeneous Lorentz Group P, and has
obtained the partial wave analysis of its matrix element
in a form valid for a general frame of reference. Of
course, when one specializes his result to the center-of-
mass system of (1.1), one obtains a result differing
from the corresponding nonrelativistic result only in
multiplicative factors due to the use of a different
normalization of states in the two contexts.

It is to be expected that, in the future, relativistic
theories of reactions

A+B— 142+ +n (1.2)

will be developed, in which case one will require the
partial wave analysis of their matrix elements in
relativistic form. The present paper is designed to
extend the work of Joos in this direction. The procedures
to be followed for the treatment of the general # case
of (1.2) are developed and explicit formulas are pre-
sented for the case with three outgoing particles. One
important conclusion that emerges is that it is essential,
for all production reactions, to adopt a fully relativistic
approach to partial wave analysis. Otherwise the
angular dependence of their matrix elements will not
be exhibited correctly. In particular, the method of
using corresponding nonrelativistic results in the
center-of-mass system of the reaction fails in this
manner.

Since one of the possible fields of application of this
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work is to the dynamical theory of strong interactions,
based on the analyticity and unitarity properties of
partial amplitudes, it is essential to know not only the
partial wave analysis of matrix elements, but also the
reciprocal formulas for projecting partial amplitudes
out of full matrix elements. This problem is tackled
for reactions (1.1) and (1.2), although explicit results
for the latter are given only in the n=23 case.

Mgller’s formulas® for the invariant cross sections
for reactions (1.1) and (1.2) are developed into explicit
forms suitable for use in connection with the above
partial wave analysis of their matrix elements. In this
context, some ‘‘optical theorems” are proved.

The particles treated in the subsequent work are
relativistic particles of arbitrary (nonzero) masses and
arbitrary (integral or half-integral) spins, but questions
which relate to the identity of particles are not touched
on at all.

Sections 2-4 contain a review of the work of Joos?
together with some minor additions. The basic ideas
of his analysis are as follows. Although each of the
particles of the relativistic state of two particles can
be described by an irreducible representation of P,
their direct product is reducible. The direct integral,
which expresses its reduction into irreducible parts, is
named the Clebsch-Gordon (C-G) series of P for the
direct product. The coefficients which appear in the
definition of the basis states of each irreducible represen-
tation of P contained in the series in terms of the direct
product basis states, are called the C-G coefficients of
P for the direct product. These names are used because
of analogy with the three-dimensional rotation group.™
The C-G series of P for the case of the direct product of
two single particle irreducible representations of P is
set up in Sec. 2, and Joos’s formula for the corresponding
C-G coefficient of P is derived in Sec. 3. In Sec. 4, this
work is applied to the derivation of the relativistic
partial wave analysis of the S-matrix element for
(1.1).

In Sec. 5, the C-G series of the direct product of two
not-necessarily-single-particle irreducible represen-
tations of P is set up, and is applied in Sec. 6 to the
problem of giving the relativistic partial wave analysis
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of the S-matrix element for (1.2). The part of the
discussion relating to the general # case of (1.2) is of
a qualitative nature, particularly with reference to the
nonuniqueness of possible results. This nonuniqueness
is due to the number of different manners in which
final particles can be coupled by means of C-G series.
Only for the =3 case of (1.2) are explicit formulas
presented and briefly commented on. In Sec. 7 the
orthogonality properties of C-G coefficients of P are
developed, and in Sec. 8 they are used to derive pro-
jection formulas for the partial amplitudes of (1.1) and
(1.2). Sections 9 and 10 are occupied with the work
on Invariant cross sections and optical theorems,
respectively.

2. THE SIMPLE C-G SERIES OF P

The simple C-G series of P, which arises in the
reduction of the direct product of two single-particle
irreducible representations of P, is set up in this section.

Irreducible representations of P are referred to by
means of the notation [w,7]. The labels w and j, which
up to an equivalence uniquely characterize the irre-
ducible representations concerned, are the eigenvalues
of the invariants of P, which these representations
possess. For example, the irreducible representation
[ko] can be used to describe a single relativistic
particle of rest mass « and spin o. To obtain such a
description one introduces into the Hilbert space of
states of the representation [k,0], a canonical system
of basis vectors

|kvlko ])

specified by the following properties:

(2.1)

(a) They are eigenstates of the linear momentum
operator P, with

Pyl ky[ko])=Fku| kv[xo])
k2= (ko)?—

(b) They are eigenstates of the z component! of the
relativistic spin operator S(&) for the particle,>?® with

S2(k) | kv[ ke 1y=v|kv[ka])
S, (k)| kv[ka]y={(eF») (cv+1)}} kv1[ks])

where

and

Sy (B)=S:(k)£iS, (k).
(c) They have the invariant normalization

BV [K'o" 1| kv[ka])
=2k (k—K)6(»")6 (kx')6(00”). (2.2)

1 Throughout what follows an arbitrarily assigned spatial
direction is taken as z axis or axis of quantlzatlon

12 For an explicit definition of S(k) in terms of the operators
of P, see references 2 and 13: of course, its momentum dependence
is a necessary feature of a relativistic partxcle theory.

13 A. J. Macfarlane: Ph. D. Thesis, University of London, 1961.

“If a composite label x contains # individual labels q, be- -k,
then the notation &(xx’), implies the product 8(aa’)5(bd’)- - B(hh')
of » Kronecker symbols.
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(d) They have known transformation properties
with respect to P. These are quoted and used in the
next section.

In order to set up the simple C-G series of P, consider
the direct product

[K,,O'l]® [K”,O',/]

of two single-particle representations of P, each of whose
Hilbert spaces is spanned by a canonical system of
basis vectors of the above type. The representation
(2.3) of P is not itself irreducible, but it can be written
as a direct integral of irreducible representations
[w,j] of P. This direct integral is the simple C-G series
of P for the direct product (2.3).

One begins by expressing those basis vectors, which
provide a canonical basis in the Hilbert space of each
[w,5] contained in the C-G series of (2.3), in terms of
the direct product basis vectors

I k,V/[K'(Tl:l,k”V”[K,/U”]>.
The former basis vectors are denoted by

| pm[wjIna),

the first two labels specifying them within the Hilbert
space of the [w,j7] concerned, just as the labels & and »
do for [k,0] above. Unless ¢’=¢"=0 there occurs, for
each j-value, a certain multiplicity of equivalent [w,5],
so that 5 is needed as a degeneracy label to distinguish
them in some manner. The precise nature of the label 5
is discussed in the next section. Finally the composite
label o, a=«', ¢’, k', ¢"’, serves to indicate the direct
product which has given rise to the family of basis
vectors (2.4). In agreement with the normalization
(2.2) of single particle basis vectors, the basis vectors
(2.4) have the unitary relationship

(2.3)

(2.4)

[pmwj]na)
z / d3 ' / ds Illk’ ’ r 7 k,/ 17 rn _r
=% o) Lc'e’ LE"v" [« ])

X <k/VI[K’(I,],IZ”V"[K”O'”] l Pmej]yWO‘);

to the direct product basis vectors, whose labels may
be conveniently rearranged to give the notation

I k'y'k”u”,a).

2.5)

The coefficient
Vo LRV [ | pm[w ) ma),
whose labels may similarly be rearranged to give
EVE"Y a| pm{w]]na),

is the C-G coefficient of P for the direct product (2.3).
Formally it might seem possible to introduce a more

(2.6)
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general coefficient by setting

| pmlwj]m8)

&k Pk
—_— rorptr 17
=z 2ko'/2ko”'kyk )

XEVE Y o] pm{w5lnB),
but since one evidently has

(K'V'E"Y" | pm[wjImB)

= 5(aﬁ)<k’l/’k"1/",0l|‘ Pm[wj],’?a>, (27)
the attempt reduces to (2.5). Hence the label « is
dropped from (2.6) and (2.5) appears in its final form

| o[ j]ner)
4
- /
vt ) 2k J 2k
X EVE"Y" | pmlwgln).

As a natural extension of (2.2), one imposes on the
basis vectors (2.4) the invariant normalization

(p'm'[w'§ 1’ | pm[wj]ne)
=2pod (p—p’)8(mm’)s (w—w")8(j5")6(m")6(ec’). (2.9)

In agreement with this, one may now give the inverse
relationship to (2.8) in the form

dskll

l k’V’k”V",C()

(2.8)

ap
wota)= 5 [do [ = pmloiime)
imy 2po
X <k'v'k”y" I ?ml:'w]j,ﬂ>*

Equation (2.10) may be regarded as the C-G series of
P for the direct product (2.3).

(2.10)

3. THE SIMPLE C-G COEFFICIENT OF.P

The principal aim of this section is to give a heuristic
derivation of Joos’ formula? for the simple C-G

coefficient
&R | pmlwilm)

of P. This derivation follows the intuitive approach of
transforming to the center-of-mass system and assumes
that the methods of nonrelativistic angular momentum
theory apply there.

The transformation of the coefficient (3.1) to the
center-of-mass system can be achieved using Wigner’s
theory®* of the representations of P.

If the element {¢,L} of P is given explicitly as a
transformation of coordinates

3.1)

% — %)= L%+ ay,
or, in matrix notation by

x— x'=L-x+}a,

then one may define the representations of P by the
correspondence
{a,L} = U(a,L),
with
{a1,L1}{as, Lo} ={as,Ls} — U(a1,L1)U (a2, L2)
= U((l3,L3),
where

as= 01+L10,2, L3= L1L2,

and with U(e,L) unitary. In terms of the unitary
operators U(a,L), one may give the law of trans-
formation under the general element {a,L} of P of the
basis vectors (2.1) of the irreducible representation
[k,e] of P. It is'®

(kv[ko]| U (a,L)=exp(ik-a) 24 Dy (R(k,L))
X{L kulxa]|. (3.2)

Herein R(k,L) is a purely spatial'® rotation, dependent
on the four-momentum % and the Lorentz transforma-
tion L, and D°(R(k,L)) is the usual? (26+1)X (2641)
matrix representative of it with unitary property

2 Do (R(k,L))*Dyr,? (R(k, L)) =8 (»").
A 4X4 matrix representation of R(k,L) is given by
R(k,L)=L(k)-L-L(L-k)™ (3.4)

where L(k) and L(L'k) are examples of a notation
strictly reserved for the pure rotation-free Lorentz
transformation that carries the indicated four vector
into its rest system. Explicitly, if £= (k,0), then

E=L(E) -k

(3.3)

or -
ky=L(k)y’ks,
with
L(k)ol‘= L(k)l'o: kv/"; k= (koy _‘k);

L(k)i=8i+tkik;/[k(k+ko)], 1, j7O0.
Similarly, since, for each set of values 7, @, the basis
vectors (2.4) form a canonical basis for the irreducible

representation [w,j] of P indicated, one has their
transformation law

<Pm[wj:],"10£ | U(G,L) =€xp (’LP : a’) Zn Dmnl(R(pyL))

(3.5)

X(L1 prfwilnal. (36)
Also, for the direct product states, one has'®
(E'V'E"Y a| U(a,L)
=exp[i(k'+£")-a] X Dy (R(K,L))
“,l‘,'
XDy (R(E", L)L KW' LB w" ] . (3.7)

15 cf. reference 4, Eq. (3.24).

16 One can indeed prove, that for a general Lorentz trans-
formation L, R as defined by (3.4) and (3.5) is a purely spatial
rotation. See reference 2.

17 See references 8-10.

18 ¢f, reference 4, Eq. (4.7).
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Applying U(e,1) to both sides of (2.8), and using Egs.
(3.6) and (3.7), one may deduce that the coefficient
(3.1) vanishes unless p="~k’+%"". Hence one may factor
out of it a four-momentum conservation §-function in
the covariant form

2pob(p—1)3(w—e)
r=k+E", rP=é.

Since L(p)-p=p= (w,0), one may apply U(0,L(p)) to
both sides of (2.8), and use Egs. (3.6) and (3.7) to
transform the coefficient (3.1) to the center-of-mass
system, which is uniquely, defined because the coefficient
(3.1) vanishes unless p=7. One obtains the result

@vE | pmLwgln)
= 5 Dou” (R, p)Dor” (R(H',1))
X HNLE K B, (39
R(,p)=R(,L(p)),
RQE" )= R(E",L(P)).

The next stage is the evaluation of the center-of-mass
coefficient :

(3.8)
where

with'®

(3.10)

(o'W u"” | pmlwj 1), (3.11)
with

V=L(p)-K, v"=L(p)-k".
It will be convenient to use a temporary notation

"W | pmlwg )
=2ws(V'+v"")8 (0o’ + 20" —w)
XVuV'W" [ Om{wilm), (3.12)

where the é-function part of the right side has arisen
by specializing (3.8) to the rest system of p. The
coefficient (3.11) appears naturally [cf. Eq. (2.8)],
according to

| Br[w ] mer)

&y 13,77
- / [ 2w (v e (o o )

21’0, 27)()

X [0 u ) (Vv b | Om[win),  (3.13)
when one seeks to build total angular momentum
eigenfunctions in the space of center-of-mass system
states of two particles of spins ¢’ and ¢”. Now in this
system one may define the relative orbital angular
momentum of the two particles, just as in nonrela-
tivistic theory, and describe it by a spherical harmonic

Yu, (v/|v]), (3.14)

where v=v'—v"’. One now sees that the / value of the
harmonic will be contained in the degeneracy label z,

19 Sybsequent use of the notation }E(u,w), where # and v are
four-momentum arguments, is always in the sense of (3.10).
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for, if one couples /, ¢’, ¢’’ according to the scheme
I+ ('+o"") = 45— 4, (3.15)

then specification of both ! and s is necessary to dis-
tinguish the multiplicity of different ways of reaching
any j value, given only ¢’ and ¢’ initially. Thus, with

n=l, s
one expects that the coefficient
Vv [ Omws1m)
will be proportional to%
¥ (o su'u"5:)C Us jlussom) ¥, (v/ | ¥))-

lzsz

(3.16)

At this point, one can say that the essential structure
of the coefficient (3.1) is determined by Egs. (3.8),
(3.9), and (3.16), and that the basis vectors (2.4) are
now explicitly defined in terms of the direct product
states by Eq. (2.8) at least up to a normalization factor.
To obtain this factor, one must use the normalization
(2.9) of the basis vectors (2.4). More precisely, one
has to establish the consistency of the results so far
obtained with (2.9), and hence obtain the normalization
factor necessary to complete Joos’s formula? for the
coefficient (3.1). It will be convenient to present the
details of this calculation in Sec. 7 which deals with the
orthogonality properties of the C-G coefficients of P.
Thus, anticipating the result (7.12), one may use also
Egs. (3.8), (3.9), and (3.16) to give Joos’s formula:

KR pmlwiln)
= 2wi[A (W% %) I 2pod (p—1)3(w—€)
X 22 Dy (R(E ;1)) Dy (R(R 1))
Ml",,
X 22 C(o'a"su'u""s.)C (Is jlos:m) V1, (€),

lzsz

3.17)
where .
n=ls, r=k'+k", r=é.

In the normalization factor, the notation used in an
instance of the general abbreviation

Aab,c)=a2+b2+c2—2(bc+ca+tabd).
Thus, here, one has
A2 ") =[w?— ('« J[w?— (¢ —«")2],

which relates the concise to the familiar form of the
expression. For the unit spatial vector e, one has [cf.
Egs. (3.11) and (3.14)] the formula

ei= e[ (&) AL (r) (K — k"), (3.19)

with N in the sense of (3.18) and L(r) in the sense of
(3.5).
Before passing to the use of the formula (3.17), it is

(3.18)

20 The summations over I, s, are dummies, but it is very often
convenient to carry them along. :



RELATIVISTIC PARTIAL WAVE ANALYSIS 45

necessary to discuss several points regarding it. Firstly,
a more concise expression for e is sought. To obtain this,
it is necessary to introduce a certain four vector,
dependent on %’ and %", which will be named the rela-
tive four momentum of %’ and %" and denoted by the
letter ¢. This vector, which has previously appeared
in the work of Garding and Wightman, and Michel,2
is constructed from &’ and %’ so as to satisfy

r-q=0, (3.20)
¢+1=0. (3.21)
These equations determine that ¢ has the form
q=e[A(e ) I
X{E —k"—[(2—«"?)/&](k'+E")}. (3.22)

Since, by definition #;= L(r)#r,=0, it can be seen, from
(3.19) and (3.22) that

e.=1L (7) i"‘lm (323)
which is the required expression for e. Also, from (3.5)
and (3.20), one obtains
€= L(I’) o= 0.

Of course, the set ¢,= (eo,€) of components is simply the
four-vector ¢ transformed to rest frame of 7, in which
the scalar Egs. (3.20) and (3.21) become

=0, e2=1. (3.24)

Further, one may use (3.5), (3.20), and (3.21) to give
the expression for e:

e=q—[qo/ (e+ro)]r. (3.25)

Secondly, some abbreviation of (3.17) is required.
It will be convenient to write

VR | pmlwj 1)
=20 (%% k"2) 2P0 (p—1)3 (w—€)
XPEE W'V, jmn), (3.26)
where P(E'k"” v'v",jmn) is defined to be the rest of the
right side of (3.17). This is an adequate notation: The
spherical harmonic contained in P(E’k”---) has
arguments given by (3.23) with » and ¢ the total and
relative four momenta of its two four-momentum
arguments. It will also be convenient for the statement

of the integral properties of the C-G coefficients of P.
A further useful notation is?

P(E'RE" 'Y jmn) =35, T(a'c"sv'v"'s.) Y jmy(e,52). (3.27)
The two parts of (3.27) are defined by
T(oo"sv'v"s:)= 3 Dyy” (R(K' 7)) Dyrryrr™" (R(E" 1))
” XC (o' su'n"’s.),
Y jmn(€,52) =221, C(Usjlasm) Yy, (€).

2 See reference 4, Chap. 4. .
22 As before, the summations in (3.27) and (3.29) are dummies.

(3.28)
and
(3.29)

The notation (3.28) is adequate if one bears in mind
that the supressed momentum arguments are those
which correspond uniquely to ¢’ and ¢”, respectively.
Its utility stems from the fact that one has

> T(d/a"'sv'v"s,)*T (¢'0" tv'v"'t,) =6 (s)8 (5:1.),

prptt

(3.30)

as a result of the unitary properties of D matrices and
of C-G coefficients of the rotation group.

Thirdly, by use of a coupling scheme other than that
of (3.15), one obtains an alternative C-G coefficient to
Joos’ coefficient, as given by (3.17). For, if one couples
1, o', and ¢" according to

U+ 4" — hte” — 4,

then specification of both 7 and % is necessary to dis-
tinguish the multiplicity of different ways of reaching
any j value, given only ¢’ and ¢” initially. To obtain
a formula for the coefficient

VR pm[w]]),

¢=Lh,

(3.31)

(3.32)
where

one readily sees, from the derivation of (3.17) given
above, that the only change needed on the right side
of (3.17) is the replacement of

> C (a'a"su’u".s_’z)c (Usjl.s.m)
by

S, CUo ML 1)C (ho”" jhas'm). (3.33)

To abbreviate the formula so obtained for the coefficient
(3.32), one may write

K'VE"Y"| pmlwj15)
= 2w N (w6 174290 (p—1)6 (w— €)
XPEE" VY jme)  (3.34)
Hereafter, the coefficients (3.1) and (3.32) will be
referred to as g-type and {-type C-G coefficients of P,

and the labels 5 and ¢ will be used strictly in the senses
of Egs. (3.15) and (3.31).

4. PARTIAL WAVE ANALYSIS OF THE S-MATRIX
ELEMENT FOR REACTION (1.1)
The partial wave analysis of the matrix element
(CD|S|AB),
or, more precisely, of the matrix element
(kcvckpvp|S|kavaksvs),

will be given and discussed here. The character labels of
the initial and final particles are implied by the use of
the particles labels 4, B, C, and D as subscripts.

The state |kavaksvs) is a direct product state for
the direct product [k4,04 ]®[«5,05] of the initial state

@.1)
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particles, and from (2.8) one gets its C-G series
&p
X{kavakpvs| pm[wjilnas)*.
Using (3.26) this becomes
|kavakpve)=2E A(E% k4 x5®) ]t
X X P(kaks,vavs,jmnas)*

imnAB
X |Km[Ej:|,’7AB>: (42)

where ks+kp=K, K?=FE? One has also a like result
for the final state. Since the .S matrix in a relativistic
theory commutes with the operators P, (translations)
and M,, (space-time rotations) of P, one has a result
of the type

(K'm'[E'§' Imep| S| Km[Ejlnas)
— 2K o3 (K—K")3 (mm!)8 (E— E)3 (")

[pm[wjlnas)

Xnep|Si(E)|nan), (4.3)
with
K'=k¢+kp, K?=E".
The quantities
{nep|Si(E)|naz) (4.4)

are the partial amplitudes of the S-matrix element
(4.1). From (4.2), its final state counterpart and (4.3),
one obtains directly the partial wave analysis for (4.1)
(kevckpvp|S|kavaksvs)
= 4EI:}\ (Ezy"tizy"liz)x (E2;K02)KD2)]_-}
X 2K (K—K")6(E—E')
X X P(kckp,ycvp,J Mncp)

JMnABICD
X P(kaks,vave,] Mnas)*(ncp|Sr(E)|nan)-

The arguments of the initial and final spherical
harmonics are given by
(ean)i=L(K)#(qaB)u,
(ecp)i=L(K)#(gen)u
where g4z and gcp are the relative four-momenta of &4
and kg, and of k¢ and kp, respectively, in the sense of
Eqgs. (3.20) to (3.22), and where
K=Fka+ks=kc+Ekp.

Equation (4.5) is quite a complicated result, when one
bears in mind the meaning [Eqgs. (3.17) and (3.26)] of
the coefficients P(- - -) involved.

First, consider (4.5) in the case c4=op=0¢=0p=0,
in which case the summation on the right becomes

> Yruleen)Si(E)Y ru*(ean)
I
=Y [(2J+1)/4nx]Ps(ecn-ean)Ss(E),

(4.5)

(4.6)

4.7)
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so that ecp-esp plays the role of the scattering angle.
Since (e4n)o= (ecp)o=0, one has

(4.8)

from the definition of e4m, ecp. Thus x is the scalar
variable which provides a generalization of the “bary-
centric scattering angle” to a reference system wherein
| K|#0. This indicates the importance of describing the
kinematics of the reaction (1.1) by the set K, qus, qcp
of three independent four vectors. Since the latter pair
were constructed so as to satisfy.

K-qap=qa8?+1=K-qep=qcp*+1=0, (4.9)

it follows that the only pair of scalar variables one can
use are the physically important pair E2 and .
Second, consider the case of K= (E,0), so that

€AB*€cD=—€4B'€cD=(4aB'JCcD=—X,

kA= —k3=kim, kc-’——- ——kp=kfn,

where n?=n2=1. The magnitudes k; and %; are
related to E by the familiar equations

4F% 2=N\(F2 k42K BY),
4F% 2=\ (P2 kP kD),
so that (4.5) becomes?
(kovckpvp|S|kavaksvs)
=2(ksk;)22E5(ks)8(kco+Epo—E)

X X C(0aoBS4BYAVBSAB:)
JMnAB1CD

(4.10)

XY satyas(Mi,548.)*Cocopscprevpsens)
XY riep(0s,Senz)mep| Sr(E) [naz). (4.11)

When (4.11) is compared with the corresponding non-
relativistic results,! it is seen to differ from them only
in multiplicative factors, due to different normalizations
of states.

5. THE GENERAL C-G SERIES OF P

In order to generalize previous work to the reaction
(1.2) with # outgoing particles, some further theory is
required. This relates to the study of the direct product
of two not necessarily single particle representations
of P.

Consider, first, the direct product

[,j"Je[@",j"] CRY

where the two representations involved are irreducible,
with bases of the type discussed in Sec. 2, i.e.,

,plml[wljlj,nlal> and l?”m”[m”]‘”],ﬂ”a”) (5.2)

where o, o/’ indicate the single-particle representa-
tions of P, which have led to [w/,5] and [w”,;"],
respectively.

2 The notation of (3.29) is here being used.
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The direct integral which expresses the reduction
of (5.1) into its irreducible constituents is the C-G
series of P for (5.1). The aim, as before, is to express the
basis vectors, which provide a canonical basis in the
Hilbert space of each [W,J] that occurs in this series,
in terms of the direct products of basic vectors (5.2).
The required new basis vectors can be written as

| PMLW T Jnery), (5.3)

where P and M specify the states within the Hilbert

space of [W,J] and 5 is the degeneracy label distin-

guishing the equivalent [W,J] occurring in the C-G

series of P for (5.1). The composite labels o and v are
o n

v=n',d' " " (5.4)

They are evidently necessary to indicate how the
[W,J] have been built up from single particle represen-
tations of P. The explicit definition of the states (5.3) is

"o,
a=w',j’w",j";

dapl daplf
| PM[WITpar)= ¥ f / LA PO
2?0, 2?0"

m'm’?

X{(p'm'p"m” | PMLW T I, (5.5)

where the right-hand states are direct-product states
with labels rearranged in accordance with (5.4). The
coefficient

('m'p"m" | PM[WJ Jn) (5.6)

is the C-G coefficient of P for (5.1). All the labels
contained in «, v are unaffected by the transformation
(5.5), and the attempt to introduce a more general
coefficient reduces to (5.5) by means of

(p'm'p"'m"" 88| PMTWJ Jmery)

=5(ap)3(v3)(p'm'p"m" | PMLWJ Im). (5.7)
Herein, the notation is somewhat loose, since « contains
the continuous variables »' and »". It may be used
without causing confusion, if it is remarked that delta
functions are implied by Kronecker symbols for con-
tinuous variables, whenever these occur in composite
labels. In terms of the same conventional notation, one
may give the normalization of the states (5.3)

(P'M'TW'J" ] 5ay | PMLWJ Jnary)
=2P3(P—Ps(MM")s(W—W")s(JJ")
X3(nm)d(e@)d(v¥). (5.8)

The above discussion may be completely generalized

to the case
[w,7j,]® [w,” j"])
where these representations have bases
[p'm'[w'§18"), |¢"m"[w"5"18"), (5.10)

where 8/, 8" are now those sets of variables, some of
which may be continuous, which indicate exactly how
the indicated representations have been built up from
single particle representations. One may denote the

(5.9)

basis vectors of any [W,J] that occurs in the C-G
series of (5.9), by
| PM[WJ JnaB) (5.11)

with « as given by (5.4) and 8=f’, 8”; and the C-G
coefficient of P that arises in their definition is

(p'm'p"m” | PMLWJ 1),

which is the same coefficient as (5.6) regardless of 8.
The states (5.11) have normalization containing a
factor 6(8B) in the above conventional sense.

Thus the most general C-G coefficient of P appears in

da 7
| PULWI )= 5 / 2| oty m )

m'm’!

X (p’m’p”m” | PMTWJT ), (5.12)
and the inverse equation
a;P
lp'm'p"'m" o)== 3 [ dW [ maf)
J My 2Po
X{p'm'p"'m’" | PUTWJT 1gy*  (5.13)

is the most general C-G series of P.

From inspection of the derivation of (3.17), it is
immediate to conclude that the formula for the coeffi-
cient (5.6) is obtained from (3.17) simply by a change
of notation.

In the above work, 5 defined by the scheme

I (4 ) = I+s— T (5.14)

has always been written. It need hardly be mentioned
that the entire discussion can be written for {-type
coupling, with { defined by the scheme

U+N+7" = htj"— J. (5.15)

6. PARTIAL WAVE ANALYSIS OF THE S-MATRIX
ELEMENT FOR REACTION (1.2)

In this section, the topic to be discussed is the partial
wave analysis of the matrix element

(12---n|S|4B),
or, more precisely, of the matrix element :
<k1V1k2V2' . ann!S| kAVAkBVB>. (61)

The bulk of the discussion is of the final state, since the
C-G series of the initial state has already been given,
Eq. (4.2).

The final state is the continued direct product of the

states of type
|bave), a=1, 2-m, (6.2)

and familiar questions about the order of coupling them
are immediately raised. For a start, consider a particu-
larly simple mode of procedure.

One first combines [«1,01] and [ks02], obtaining,
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as in Sec. 4
| ikeava)=2esi [\ (e, k1% 00%) I
X 2 P(kiks,viva, jomana)*

jamzng

X |roms[ esfa]ime), (6.3)

where ro=Fki1t+-ks, r?=e? and ne=ly, 59, according
to the scheme

I+ (01+0'2) —lytss— j2-

The arguments of the spherical harmonic contained in
P (kikovive, jamans) are given by

(€2)i=L(r2)#(g2)u,

where 7, and ¢, are the total and relative four momenta
of 25 and k., the latter term being in the sense of Egs.
(3.20) to (3.22). Next one combines [z, 72 ] and [k3,05 .
It is desirable here to use {-type coupling, correspond-
ing to the scheme

(6.4)

(6.5)

(Istos) + jo— hstja— 7s, (6.6)
in which case from the work of Sec. 5 one has
, 7’2m2,k3V3,a3>= 2635[)\ (632,622#{32)]—}
X 20 P(roksmovs, jamsags)*
73ms33
X |rsms[ esfs],$aas),  (6.7)

where rs=7914ks, r?=¢s?, and as=mns, €, js. The argu-
ments of the spherical harmonic contained in
P(roksmavs, jsmsts) are given by

(es)i=L(r3)#(gs)u (6.8)

where 73 and ¢; are the total and relative four momenta
of 75 and k;. One now goes on to combine [es,75] and
[k4,04] according to the same procedure, and so on until
all [ka,04 | have been annexed one at a time. Successively
then one forms the states

[74ma[ esfsl,aca),

|72 nl €0 n,E n@n)y
with
Q={3,€3 73,03,

(6.9)
A ={n—1,€n—1, ) n—1,0n—1,

and otherwise obvious notations. This corresponds to
the coupling scheme

lz+<0'1+0'2)‘_)l2+s2__)j2; 772512:52:
(l3+63)+j2’—>h3+j2’—’j3§ $s=lshs,

‘ (nton)t jo1—= Bat fo1— Ju;  $a=lnhn.  (6.10)
Partial amplitudes of (6.1) appropriate to the above
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procedure are defined by

(r"m"[enjﬂ])g‘ﬂan I N [ Km[Ej]mAB>

=2Kod (K—1,,)8(mm)8(E— €,)8 (5 7n)

X(?n,(n—ljn—l; ] ?3].3)772].2
X ISJ'(G% o ';en—hE) I77A3>) (611)

with the discrete and continuous labels involved in {n,
a, separated in accordance with usual practice. Suffi-
cient discussion has now been given to allow the partial
wave analysis of (6.1) corresponding to the scheme
(6.10) to be written down. To describe the mode of
procedure used above in a pictorial sense, 2% one may
say that the final-state particles have been combined
into a single increasing cluster by adding particle 3 to
the (14-2) system, then adding 4 to the [(1+42)+3]
system, . . . until all # particles are used up. There is
however an abundant choice of alternative procedures
available. Present methods are able to handle them,
as a single further example will show.

Supposing one forms the first p particles into a single
increasing cluster, then one ultimately reaches, in the
manner indicated above, final states for the cluster

|75 €pfns§ vtp)-

Suppose then that one decides to form the remaining
(n— p) particles into a second increasing cluster. It will
be convenient to rename the particles (m-+1),
(m+2)---n as 1, 2'---p" where p'=un—p. Then for
the second cluster, one reaches final states

|7y [ep j o 1,E pratn),s

in obvious notation. It only remains to combine the
clusters, i.e., to form [ep, 7, |®[€p,70 ], which can be
handled by the methods of Sec. 5. The only remark
to be made regarding this final step of combining
clusters is that it seems desirable to use the n type of
coupling.

One is left with the conclusion that the only diffi-
culties in giving the partial wave analysis of (6.1), for
any clustering of the final particles whatever, are
notational ones. ‘

Explicit formulas will now be given for n=3 case
of reaction (1.2), i.e.

A+4B— 1424-3.

The partial wave analysis of the S-matrix element for
this reaction is obtained directly by combining Egs.

24 The language is taken from the corresponding nonrelativistic
theory, references 25, 26.

25 L, M. Delves, Nuclear Phys. 20, 275 (1960).

26 D. Jepsen and J. O. Hirschfelder, Proc. Nat. Acad. Sci. U. S.
45, 249 (1959).
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(4.2), (6.3), (6.7), and the n=23 case of (6.11):

<k1V1k2V2k3V3 | S l kAVAkBVB>
=2e’ [ A (e, %) T3 2e8 N\ (e, e2052) T4
XZE%[)\ (EQ,KAz,KBZ) ]—%ZK()& (K'— I'3)5(E— 63)
XZ P(klkz,V11/2,j21%27)2)P(fzkg,?%zVs,ng's)
X{¢amajz| Ss(ex,E) [nan)

XP(kAkB,VAVB,JMﬂAB)*, (612)

with the summation over js, ms, 12, {3, J, M, n45. Also,

fz=k1+k2, roP= 622,
73272+k3, ri=eg,
K=kat+ks, K=P,

and the arguments of the spherical harmonics contained
in the successive coefficients on the right are given by
(6.5), (6.8), and (4.6).

Equation (6.12) will now be specialized to the case?
when all particles are spinless, and K= (E,0). Then the
summation on the right becomes

> Yisa(eses){lals] Ss (e, E)| AB)

IMiyly
. XYV su*(ean), (6.13)
with
Y rais(es,es)= > C(lolsTmomsM)
maom3
XV iymy (e2) Y137n4(e3). (6. 14)

Herein e and e 45 are unit vectors parallel to ry(= —ks)
and k4(=—kg) respectively. Formula (6.5) must still
be used for e,. Thus (6.13) exhibits one feature, the
angular dependence of Yi,m,(es), wherein it differs
radically from the corresponding nonrelativistic result,?
even though the center-of-mass system is being referred
to. -
The conclusion is a perfectly general one for produc-
tion reactions. If one tries to describe an angular
momentum problem in relativistic theory by using
nonrelativistic results in the center-of-mass system of
the situation concerned, then one is certainly following
an erroneous procedure unless only two particle states
are involved. For aside from normalization factors and
possible omission of essential D matrices, one thereby
fails® to find the true angular dependence of the results
sought.

7. ORTHOGONALITY PROPERTIES

The aims of the present section are: firstly, to exhibit
the consistency of Egs. (2.8) and (3.17) with (2.9);
secondly, to obtain the normalization factor in (3.17);
and thirdly to derive the orthogonality properties of

2 This topic will be treated in more detail in a forthcoming
paper by the author.

28 R. G. Newton and L. Fonda, Phys. Rev. 120, 394 (1960).

V. Ritus, J. Exptl. Theoret. Phys. (U.S.S.R.) 10, 152 (1960).

the functions
PEE' VY jmy), PEE' WY, jmg).

These aims will be approached simultaneously.
Consider first the coefficient

k'R | pmlw]]) (7.1)

which occurs in the reduction of [«,0]®[«"”,0]. In
Sec. 3, it was shown that, as a result of the known
structure of irreducible representations of P, the
formula for the coefficient (7.1) must contain the factors

250 (p—1)8(w— €)Y jn(e), (7.2)

where r=k'+E", r?=¢, ¢;= L(r)#q,, and ¢ is the relative
four momentum of %' and %”. It is now necessary to
exhibit the consistency of the formula

(KB pm[wj])=e(w)2pod(p—1)0 (w—€)V jm(e) (7.3)

where a(w) is a normalization factor, with the normali-
zation of the states | pm[w;],k'k’"), obtained from (2.9)
in the form

(o'm'[w' 5 1’ | pmlwj1’c”)
= 2p0d (p—p") (mm)8 (w—w")3(55")

= / ¥/ (2kd) / aE'[ k) K E" | pmw])
X[ p'm' [ 57T,

and hence obtain a(w). Inserting (7.3) into (7.4)
leads to

(7.4)

la(w)]? / &'/ (2k,") / &K'/ (2kd"")2p08 (p—1)5(w—¢)

XY im(€)Y jrm*(€)=0(mm")5(55),

and, if the integral on the left can be converted into the
orthogonality integral of spherical harmonics, con-
sistency is indeed established. In order to do this, it
will be necessary to introduce into (7.5) a certain
change of variables, similar to that used by Wightman
when confronted by an integral like (7.5). It consists of
the replacement of %’ and £ by their total and relative
four momenta

r=k'+k",
g=e[A(ex%") I
X{E' =" —[(*—«")/e1(k'+E")}, (7.6)

the latter having been constructed [cf. Egs. (3.20) to
(3.22)] so as to satisfy 7-g=¢?+1=0. The solutions of
(7.6), namely

B ={(e+x2—")r+ e[ N (&6 Jig}/ (2€),

K= {(@—He ) — DM @ Tay/ 22,

(7.5)

r=e,
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automatically satisfy k?2=«"2 E'"=x"2 if 7 and ¢
satisfy 72=¢, r-q=¢*+1=0. The result of the change
(7.6) of variables is*

PR
/ 2k 2k

1
—)—Z—/de A (&%) Tt

d*r
X/de4q5(r-q)6(q2+1), (7.7)
4

so that (7.5) becomes

4] aae) [T (%) T / d'g8(p-)5(g+1)

XY im(€)Y jrm*(€)=08(mm")o(55"), (7.8)

with e given by e;=L(p)#g.. A further change of
variables

g—e: e=L(p), (7.9)
with

/ dab(p-d(+1) — f dhe3 (wen)3 (1),

=1/(2w) f Q(e), (7.10)

converts (7.8) into

law)? / 02()Y 1m() ¥ yur*(e)

= da]\ (@ 2 ") T4 (mm ) (7). (7.11)

Now, by virtue of the orthogonality property of
spherical harmonics, the required consistency proof for
the case of the coefficient (7.1) is complete, and one
may set

a(w)=2w A (w22 T, (7.12)
in agreement with (3.17).
In the analogous treatment of the coefficient
®YR"Y" | pmlw ) (7.13)

the result
/ acr
2k

still holds good, so that if the functions
P(k/k’,7l’,y,,)]‘m‘n)

"
2 ko”

258 (p—1)6(w—¢) —

D 1 / do(e) (7.14)
4

have the integral property

| dQ(e)P(RE" ", jmn)*P(KE" W'y 5'my)

—5( )0 (mm o), (7.15)
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then the a(w) of the general coefficient is still given by
(7.12), and the general consistency proof is complete.
To establish (7.15), it is convenient to use the notations
of (3.27) to (3.29). One easily verifies the result

2 | d2€)Y jmis*(e,5:) Y jrmrvs(e,ss)
’ —8(77)8 (mm! )3 (1),

by using the orthogonality property of spherical
harmonics and those of C-G coefficients of the rotation
group. The use of this last result and (3.30) now leads
directly to (7.15), as required.

The ¢ analog of (7.15), namely

2 | dQ(e)P(R'E Vv, jmE)*P(R'E WV, 5'm'E")
=58(77)8(mm")s(ss")  (7.16)
can likewise be proved directly.

8. PROJECTION FORMULAS FOR PARTIAL
AMPLITUDES

It is the aim of the present section to derive formulas
for projecting the partial amplitudes

("701) ,l Sr(E) I7IAB>7
<§'37Izj2 ! SJ(62)E) [WAB>)
respectively, out of the energy-shell matrix elements

(chckDVD[S(E) | kAVAkBVB>,
<k1V1k2V2k3V3 I S(E) lkAVAkBVB>.

(8.1)
(8.2)

Energy-shell matrix elements are defined in relation
to those of (4.1) and (6.1) by*

(chckDVDlSlkAVAkBVB>
=3(K—K’)(chckDVD[S(E) [ kAVAkBVB> (83)

and an analogous equation extracting the factor
S(K—ry)
out of (6.1). As before
K=katks, K'=kc¢tkp,
ra=kitkot - +ka

Before treating the general case of (8.1), it is helpful to
consider the case with cis=op=c¢=0p=0. In this
case, from

(kckp|S(E)|kaks)
=8B N (B2 kA% k8N (B k) 1
X2 s Yiu(een)Ss(E)Y sa*(ean),

one obtains, using the orthogonality property of

(8.4)

(8.5)

% One can write §(K—K')= (Ko/E)§(K—K")§(E—E’).
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spherical harmonics
YViu*(ean)Ss(E)
=[Nk 4’k )N (EP kc*k0) 1Y/ (8E2)

X/dQ(CCD)YJM*(CCD)<kckDIS(E)lkAkB>. (86)

Hence, using the addition theorem of spherical har-
monics

Sr(E)=[ME%ka’ ks )N (B kp?) ]Y/ (8E?)
X/dﬂ(ecp)PJ(ecp . eAB)<kckD l S(E) I kAkB>
= E>‘ (Ez,KAZ:KBZ)k (E27K02:KD2)]%/ (8E2)

></d“qcpé(K-qop)6(9092+1)PJ(x)
X{kckp|S(E)|kaks) (8.7)

where ¥=—qc¢p-qap is the scalar variable introduced
in Sec. 4. The projection formula (8.7) is manifestly
covariant and reduces to a familiar form in the center-
of-mass, |K|=0.

In the general spin case, a closely parallel procedure
to the above is followed. From the partial wave analysis
(4.5), one obtains, using (7.15) and (8.3), the result

2. P(kaks,vave,J Mnap)*(nen|Ss(E)|nas)

NAB

= [)‘ (E2;K42:KB2)>\ (EZ’KCZ’KDZ)]%/ (8E2)

X X

vevD

dQ(ecp)P(kckp,vevp,J Mycp)*

X{kevckpvp|S(E)| kavakpvs). (8.8)

Although one could now use (7.15) again to do the
initial state part of the projection, a method which
avoids integration over initial state variables is sought.
To this end, the important result:

dr > P(/e'k",v'v",jmn)*P(k’k",v'v",jmn’)
= (27+1)s(m"),

will be proved. Notations (3.27) to (3.29) are again
useful.

By use of symmetry properties of C-G coefficients of
the rotation group, one obtains the result®

(8.9)

2> C(j1jagmmam)C (41 jojmy'mom)

= (274+1)/(251+1)8(5171")8 (mum,)

31 J. M. Blatt and V. F. Weisskopf, T'heoretical Nuclear Physics
(John Wiley and Sons, Inc., New York, 1952), p. 791.
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and, hence, using the addition theorem of spherical
harmonics, the result
dr 30 Vimis™(€,5:) Vimvs(€,5.)= (25+1)8 (it').

msz

Combining this equation with (3.30) leads to direct
proof of (8.9). By applying (8.9) to (8.8), one now gets
the desired projection formula

(2]+ 1)(’700 l SJ(E) I’?AB)
= 47"[)\ (EZ;KAZ)KBZ))‘ (E27KCZ)KD2)]%/ (8E2)
X3 P(kakp,vave,JMnan)

X/dﬂ(eCD)P(kaD,VC’VD,]MﬂC’D)*

X {kcvckpvp|S(E)|kavaksvg), (8.10)

with the summation over v, vg, v¢, vp, and M.

Similarly for the case of (8.2), by applying (7.15)
and (7.16) to the final state, and (8.9) to the initial
state, one may prove

(2T +1)(¢ 72| S (e2,E) [nam)
=4a[ N (e o )N (B 657 k"IN (B2 4%k 5) 11/ (16 €2 E2)

XZ P(kAkB,VAVB,JMnAB)/dQ(83>dQ(e2)

X P(roks maovs,J M 3)* P(kika,v1ve, jamans) *
X <k11/1/€21/2k31/3 I S(E) I kAVAkBVB> (811)

with the summation over vg4, vg, v1, v2, M, ¥3, and M.
One may easily obtain a result like (8.11) for a matrix
element with an (arbitrary) s-particle final state, for
any possible coupling sheme.

9. CROSS SECTIONS

Invariant cross-section formulas for the reactions
(1.1) and (1.2) are developed in this section.

Present work has so far dealt’only with S-matrix ele-
ments but, of course, it applies also to 7-matrix elements
where

S=1+44T. (9.1)

In analogy with (8.3) and (8.4), one defines “energy
shell” elements of T by extraction of factors §(K—K’)
and 8(K—r,). The invariant cross-section formula for
(1.1) may now be given in terms of the matrix element

(kCVCkDVDl T(E) [kAVAkBVB>,
by6,32

7(4B— CD)= (2m)~* % (¢cn/pan)
X [{kevckpvp|T(E) | kavaksvp)|?, (9.2)

3 J. M. Jauch and F. Rohrlich, Theory of Photons and Electrons
(Addison-Wesley Publishing Company, Inc., Reading, Massa-
chusetts, 1955), p. 163.
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where Y implies a summation over final spin states
and an average over initial ones. The factors ¢¢p and
pag are, respectively, the density of final states factor
for the CD system, and incident-flux factor for the
AB system. In consequence of the normalization (2.2)
of one particle states, p4 s is given by the expression

(2m)%p a5 =2[N(E k4% k5" J%

The expression for ¢¢p is

ke

dcp= /
Zk(}o
A change of variables may now be introduced into
(9.4) as in Sec. 8. The new variables are K’ and gcp,
the total and relative four-momenta of £¢ and £p. Using

a result like (7.7) and then a result like (7.10) one is
lead successively to

[}\ (EZ,KCZ:KD2)]%/‘
4F

9.3)

d*kp
—8(K—K').
2kpo

(9.4)

d*qepd (K- ¢c¢p)8(gen+ 1)

dcp

E2 kc?kp? 3
_D@rewn’) J / 9(eon), ©.5)

8E?

with ecp as previously defined. From (9.2), (9.5), one
obtains the following expression for the differential cross
section

do(4B—CD) ( 2#)2[)\ (E2,K02,,<D2)]a

aQ (egp) 4E A (E2,KA2,KBZ)

XZI (kcllckz)vpl T(E) lkAVAkBVB>I2,

with > as in (9.2). In agreement with the remarks of
Chew,* one may introduce the physical amplitude for
reaction (1.1) by setting

<chckDVD l F(E) IkAVAkBVB>
= (27r/4E)<chckDVD[T(E)IkAVAkBVB>, (97)
the definition of F being unique up to a phase. Into
(9.6), one may insert the partial wave analysis:
(kcvckpvp| T(E)|kavaksvs)
=8E N (E% ka2 ks?)N (F2kctip?) T
X2 P(kckp,vevp,JMncp){nen| Ts(E) [nas)
XP(kAkB,VAVB,JM’nAB)*, (98)

with summation over J, M, n¢p, and n4p. Then, on
using the results (7.15) and (8.9), the result

9.6)

[r1,01]®@[k9,00] — 2 [er,j2 ],
[62:]'2]@[@,'.73] — 2 [es, 75,

Lent ji]® Dknon] = 3 Cemind
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¢(AB — CD)
- 1 (4nE)?
 (2044+1) Qos+1) MNEE ki cs?)
+1
X 2 [(nen| Ts(E)[nam)|? (9.9)

JnCDNAB 78

follows. Various partial cross sections may be defined,

e.g.,
by

JnCD14B

«(AB — CD)= (9.10)

0'.](77AB - 77(;’D)~

The cross section for (1.2) is defined by a formula
identical in structure to (9.2), with the density of final

states factor given by
ks
/ ————]6([(—-7,,) (9.11)
Zkao

P12 n= [ H
o=l
with 7,=Fki+ke+ - -+k, A more convenient expres-
sion for (9.11) is sought. Suppose the partial wave
analysis of the T-matrix element for (1.2) to be used
corresponds to the formation of final particles into a
single cluster. Then (9.11) ought to be transformed by
means of the following successive changes of variable:

(62)n= L("Z)uy(q?) vy
roks—rags; et (e)u=L(ra)w’(g0)s,  (9.12)

ki,ks— 15,025 g2 e€s:

Tn1,kn—> YnyQn; Gun=—>€n: (en)u=L(7n)#v(qn)V:

with each line governed by equations like (7.7) and
(7.10). In the (a—1)th line, the pair 7, and ¢, are the
total and relative four momenta of the pair of four
vectors 7—1 and k.. One has

ra:ra——l'i—ka: kl+k2+ D +ktx, (9.13)
and ¢, is constructed out of 7,1 and %, so that
Ya' Qo= (ra—-1+ka) ‘o= qa2+ 1 = O. (9 14)
Hence, for a=2, - - -z, one has
€x
Qo=
D\ (66!2; 60—12;’{&2) :lf
(éa-lz_Kaz)
X ra—l_ka——-;_—-(ra—l"_ka) Py (9-15)
€

with 72=e?, provided that 7; and e imply %1 and «;
where necessary. In the notation of Sec. 6, the lines
of (9.12) correspond to the lines of the angular mo-
mentum scheme (6.10), or

with P (kiks,v1vs, jomans),
with  P(roks,mavs, jsmss),

with  P(ra—1kn,Mn—1Vn, Jatndn),

3 G. F. Chew, Lectures on Dynamical Theory of Strong Interactions (Les Houches, 1960).



RELATIVISTIC PARTIAL WAVE ANALYSIS 53

which contain spherical harmonics whose arguments
are given by
€1 e9,=L(r2),"(¢2)s

€3: €3 = L (’3)15" (93) 2]

€n: = L (rn)p.v(Qn) Ve

As in (7.7) and (7.10), one finds that the successive
lines of (9.12) are governed by

d3k1 d3k2 [)\ (622,K12,K22)]% d31’2
P[Pl [ DS [ [
2km kao 462 27’20

d37’2 d3k3 [)\ (632,622,K32)]% d37’3
/__/_H/dea—————/——/dﬂ(ea
27’20 2k30 4:63 27’30

and so on. Hence one obtains

i [)‘ (€a?s€a 27"042)]%
¢12...7,= H [/déa——‘————‘———l
a=2 45‘1

Oy L R

the energy conservation delta-function being left for
the sake of conciseness of notation. The transformation
of (9.11) to be used along with different partial wave
analysis of the T-matrix element of (1.2) can be achieved
by quite similar methods.

For the case of #=3, with final particles coupled
according to (1+2)-3, one has

do(AB — 123)
de;
2\ N (e e N (2 e i)
=(E)[ 166\ (E2 .2 x57) }

X / dQ(e,) / dQ(e;)

X I <k1111k21/2k31/3l T(E) l kAVAkBVB> l 2, (917)

with 3 used in the same sense as in (9.2). Inserting into
(9.17) the partial wave analysis of

(kywikovoksvs| T(E) | kavakpys)

as obtained from (6.12), (9.1), and (8.3), one can use
(7.15), (7.16), and (8.9) to verify that

do(AB — 123)
de;
_ 1 (4rE)>
" (2041) Qo5+1) MEr ki)

XX L@T+1)/4n]

X |{¢siome| Tr(es,E) [ nas)|?  (9.18)

Partial cross sections are defined by
do(AB— 123)/dey=7_ dos(nap— ¢3jme)/des,

with the summation, as in (9.18), over J, n4s, {3, je,
and N2.

(9.19)

10. OPTICAL THEOREMS

The object of this final section is to derive optical
theorems and partial optical theorems, which are
simply concise ways of expressing the requirements of
unitarity on certain matrix elements and partial am-
plitudes, respectively.

In terms of the T matrix, the unitarity equations
SST=S5tS=1 of the S matrix become

2ImT=TT".

For a value of the total energy above the physical
threshold of (1.1), the element of (10.1) for this reaction
can be written in the form

(chckDVDIZ ImT(E) I kAVAkBVB>
=ZN 5(K—KN)<kCVCkDVD[ T(E) [N>
X{(N|T(E)t|kavaksvs), (10.2)

with K=ks+kp=Fkct+kp. Here > n involves a sum
over a complete set of real particle states. Of course,
only states with threshold energies below the value of
E in question in (10.2) actually contribute to the
equation.

First consider an E value such that the only type
of state which contributes to the right side of (10.2) is
the two particle state FG. Of course, if the states 4B,
CD, and FG are not the same, AB and CD themselves
will also contribute, by assumption, but this will be
disregarded.

One can write the FG contribution to the right of
(10.2) as

Cro= Y ¢ralkevckpvp| T(E)|krvrkeve)

VFV@
X{krvrkave| T(E)t|kavaksve) (10.3)

with ¢re given by (9.4) or (9.5). One may insert into
(10.3) results of type (9.8) and use (7.15) to give
Cre=S8E\(E? ka2 x 2N (E2 i kp?) I

X Y P(kckpycvp, Mucep)

JMnAB1CD

X P(kakpwave,JMnas)*{ 3 (eo| Ty (E)|nre)

X{nre| Ts(E)t|[nan)}. (10.4)

For the E value in question, Cre provides the entire
right side of (10.2), whose left side, from (9.8) is

8E2D (EZ,KA27K32)>‘ (E2)KC'2,KD2)]—}
X Y P(kckp,yovp, Mncp)

JMnAaB1CD

XP(kAkB,VAVB,JM"IAB)*
X{nep|ImT 7 (E) |n48),

(10.1)

(10.5)
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so that orthogonality, expressed explicitly by formulas
(7.15) and (8.9), gives

(nep|2ImT 4 (E) n45)
= X (1en| Ts(E) [nre)nre| T (E)|nas).

1FQ@

(10.6)

Consider next the case of (10.3), when the value of E
is such that in addition to states of type FG, states of
type 123 also contribute. Then

Cin= Y ¢u2s{kevckovp| T(E)| kwikavaksvs)

vivavs

X<k1V1k2V2k3Vsl T(E)f l kAVAkBVB>, (107)
with @123 given by (9.11) or (9.16). One may insert the
appropriate partial wave analyses and then use (7.15)
and (7.16) to caste (10.7) into the same form as (10.4).
In the case of Cigs, the factor contained within curly
brackets is

2 | delnen|Ti(ex,E)|$amage)

$anedz
X <§'3’72j2l TJ(GZ,E>f l 77AB>- (10-8)

Orthogonality, applied to (10.2), now gives a result
like (10.6) with a term (10.8) added to the right side.
It is obvious that such results can be obtained for
any E value whatever. The above discussion of (10.2)
will now be applied to the writing of optical theorems.

Such theorems exist for elastic scattering processes
A+B— A+B, (10.9)

and it will suffice to illustrate the method for the case
of reaction (10.9) at an E value above its threshold
such that the only competing reaction is

A+B— 14243, (10.10)

The desired optical theorem will be a relation between
the imaginary part of the forward physical amplitudes
for (10.9) and the total cross sections

0(AB— AB), (4B — 123).
From (9.8), one gets
Y. (kavakpve|T(E)|kavakpvs)
"4"" 8E? 2J+1
B A(E kst ks ] J%B 4r

Xmag|T5(E)|n48),

(10.11)

where the fact that only partial amplitudes with the
same initial and final labellings contribute is a conse-
quence of (8.9). For the imaginary part of such ampli-

MACFARLANE

tudes above work gives
(nap|2 ImT;(E)|nas)
= 2 | (48| Ts(E)|n4a8")|?

4B’

+/dez 2 (14| Ts(es,E)|amage)|?

$anzd2

(10.12)

so that, on using definitions (9.10) and (9.19) of partial
cross sections, one has the partial optical theorem

(148|2 ImT ;(E)|n45)

=m(E>{

Z O'J("TAB - 77ABI)
148’

+ X

$an2dz

desdos(nap— {mafe)/deap, (10.13)

with 87(E) given by
4w B85 (E)=[(2oa+1) 2o5+1)/ QT+ 1) INE ka2 52).

By summing over J, 545 and multiplying by a suitable
factor, one converts (10.13) into the optical theorem

[(204+1) 20+
X Z (kAVAkBVBI ImT(E) l kAVAkBVB>

=[N(E ks’ 5*) 1t/ (4a%)

X{o(4B— AB)+c(4B—123)}, (10.14)

or, on using (9.7)
4 (20441) Qo +1) T
X Z <kAVAkBVB]ImF(E)’kAVAkBVB>

= ([)‘ (EZ:KA27KB2)]%/2E)

X{o(AB— AB)+o(AB— 123)}. (10.15)

Since in the center-of-mass system, the barycentric
three-momentum of the 4B system has magnitude
given by ’

[N(E ka?s?) 1/ (2E), (10.16)

the result (10.15) will there assume a familiar form.3

Similarly one can obtain optical theorems foran £ value
at which many reactions compete with the elastic
channel. At any given E value, the optical theorem for
(10.9) assumes the form as (10.15), the term within
the curly brackets on the right now being the sum of the
total cross sections of all reactions possible at the E
value.

3¢ N. N. Bogoliubov and V. Shirkov, Iniroduction to the Theory
of Quantized Fields (Interscience Publishers, Inc., New York,
1959), p. 560.
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Finally, result (10.6) will be used to make contact
with the results of Mgller,® for the cross section, for the
elastic scattering of spinless particles, in terms of phase
shifts. Since only one channel, the elastic scattering
channel is being considered, one may write (10.6) in
the form

2 ImTs(E)=|Ts(E)|, (10.17)
so that T'7(E) can be written as
T;(E)=2 sind;(E) exp[:6.;(E)], (10.18)

where 67(E) is a real phase shift. Using (9.9) and
(10.18) one then obtains

(4B —> AB)=16rE[\ (s e5) T
X> s (2J+1) sin%;(E), (10.19)

which, when one remembers (10.16), can be seen to be
identical with result (212) of Mgller’s paper.
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GLOSSARY OF NOTATION

k: rest mass of particle.
o: spin of particle.
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k: momentum of particle, B2=#2

u, v: 2z component of spin of particle.

p, P, K,r: momentum of system of particles, p>=w?
P:=W? K*=FE r*=¢é.

q: relative four-momentum.

4, J: total angular momentum.

m, n, M : 2z component thereof.

l: orbital angular momentum

s, h: intermediate angular momenta in j=I4o'+o"

S~S~ e
~ le]
Nl

Qv s
L

2

K, o, Kn’ o' or W, ]-/’ w//, j”.

-’7’: o, "7”1 o

A a,b,c) = @+b*+c2—2(bc+ca+ab).

L(p): 4X4 matrix describing the pure Lorentz
transformation that carries p into its rest system.

p: p=L(p)-p=w)00).

R: a spatial rotation; R(k,L), R(u,v) defined by Egs.
(3.4) and (3.10).

Di(R): its (2j41)X(2j+41) matrix representative.

8(ab): Kronecker delta, 8(ab)=0 or 1 according as
a#b or a=b.

8: phase shift, §;(E).

oc(AB— CD) etc. - cross sections.

pz: incident flux factor for the system = of particles.

¢z: density of final states factor for the system 2 of
particles.

e: e=(en,e)=(0,6)=L(r)-q, where 7, ¢ are the total
and relative four-momenta of the same pair of
momenta.

J'dQ(e): integration over the polar angles of e.



