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1. INTRODUCTION

ERY often in current work on relativistic theories
~

~

~

of particle reactions of type

A+P —r C+D, (1.1)

one requires the analysis of the S or T matrix element
in terms of partial amplitudes. In such a situation the
procedure adopted is to restrict attention to the center-
of-mass system and there to use the corresponding
nonrelativistic results. ' Recently, Joos' has discussed
the reaction (1.1) in a fully relativistic manner, based
on the theory'4 of irreducible representations of the
Poincare5 or inhomogeneous Lorentz Group P, and has
obtained the partial wave analysis of its matrix element
in a form valid for a general frame of reference. Of
course, when one specializes his result to the center-of-
mass system of (1.1), one obtains a result differing
from the corresponding nonrelativistic result only in
multiplicative factors due to the use of a diGerent
normalization of states in the two contexts.

It is to be expected that, in the future, relativistic
theories of reactions

A+ J3 —+ 1+2+ +st (1 2)

will be developed, in which case one will require the
partial wave analysis of their matrix elements in
relativistic form. The present paper is designed to
extend the work of Joos in this direction. The procedures
to be followed for the treatment of the general n case
of (1.2) are developed and explicit formulas are pre-
sented for the case with three outgoing particles. One
important conclusion that emerges is that it is essential,
for all production reactions, to adopt a fully relativistic
approach to partial wave analysis. Otherwise the
angular dependence of their matrix elements will not
be exhibited correctly. In particular, the method of
using corresponding nonrelativistic results in the
center-of-mass system of the reaction fails in this
manner.

Since one of the possible fields of application of this
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~ For a general discussion of the theory of P and its represen-
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work is to the dynamical theory of strong interactions,
based on the analyticity and unitarity properties of
partial amplitudes, it is essential to know not only the
partial wave analysis of matrix elements, but also the
reciprocal formulas for projecting partial amplitudes
out of full matrix elements. This problem is tackled
for reactions (1.1) and (1.2), although explicit results
for the latter are given only in the m=3 case.

Mitller's formulas' for the invariant cross sections
for reactions (1.1) and (1.2) are developed into explicit
forms suitable for use in connection with the above
partial wave analysis of their matrix elements. In this
context, some "optical theorems" are proved.

The particles treated in the subsequent work are
relativistic particles of arbitrary (nonzero) masses and
arbitrary (integral or half-integral) spins, but questions
which relate to the identity of particles are not touched
on at all.

Sections 2—4 contain a review of the work of Joos'
together with some minor additions. The basic ideas
of his analysis are as follows. Although each of the
particles of the relativistic state of two particles can
be described by an irreducible representation of P,
their direct product is reducible. The direct integral,
which expresses its reduction into irreducible parts, is
named the Clebsch-Gordon (C-G) series of P for the
direct product. The coeKcients which appear in the
dednition of the basis states of each irreducible represen-
tation of P contained in the series in terms of the direct
product basis states, are called the C-G coeKcients of
P for the direct product. These names are used because
of analogy with the three-dimensional rotation group. ' "
The C-G series of P for the case of the direct product of
two single particle irreducible representations of P is
set up in Sec. 2, and Joos's formula for the corresponding
C-G coeScient of P is derived in Sec. 3. In Sec. 4, this
work is applied to the derivation of the relativistic
partial wave analysis of the S-matrix element for
(1.1).

In Sec. 5, the C-G series of the direct product of two
not-necessarily-single-particle irreducible represen-
tations of P is set up, and is applied in Sec. 6 to the
problem of giving the relativistic partial wave analysis

~ C. Mgller, Kgl. Danske Videnskab, Selskab, Mat. -fys. Medd.
23, 1 (1945).

7 For a discussion of the properties of quantities associated with
the three-dimensional rotation group, see references 8-10.

A. R. Edmonds, Angular Momentumin Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957).

e M. E. Rose, Etementary Theory of Angtdar IrIomentnm (John
Wiley R Sons, Inc. , New York, 1957).

I. M. Gelf'and and Z. Sapiro, Am. Math. Soc. Trans. 2, 207
(1956).
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kv[»o]&

specified by the following properties:

(2 1)

(a) They are eigenstates of the linear momentum
operator P„with

and
P. lk L ])=k.lk L ])

k'= (ko)' —k'= »'.

(b) They are eigenstates of the s component" of the
relativistic spin operator S(k) for the particle, ""with

S,(k) I kv[»o]) = v
I kv[»o])

Sg(k) I kv[«]& —((n~v) (~+v+1))'I kv+1[»0'])

of the S-matrix element for (1.2). The part of the
discussion relating to the general 0 case of (1.2) is of
a qualitative nature, particularly with reference to the
nonuniqueness of possible results. This nonuniqueness
is due to the number of diferent manners in which
6nal particles can be coupled by means of C-G series.
Only for the v=3 case of (1.2) are explicit formulas
presented and briefly commented on. In Sec. 7 the
orthogonality properties of C-G coefficients of P are
developed, and in Sec. 8 they are used to derive pro-
jection formulas for the partial amplitudes of (1.1) and
(1.2). Sections 9 and 10 are occupied with the work
on invariant cross sections and optical theorems,
respectively.

2. THE SIMPLE C-6 SERIES OF P

The simple C-G series of P, which arises in the
reduction of the direct product of two single-particle
irreducible representations of P, is set up in this section.

Irreducible representations of P are referred to by
means of the notation [w,j].The labels w and j, which

up to an equivalence uniquely characterize the irre-
ducible representations concerned, are the eigenvalues
of the invariants of P, which these representations
possess. For example, the irreducible representation
[»,o] can be used to describe a single relativistic
particle of rest mass ~ and spin 0-. To obtain such a
description one introduces into the Hilbert space of
states of the representation [»,o], a canonical system
of basis vectors

(d) They have known transformat;ion properties
with respect to P. These are quoted and used in the
next section.

In order to set up the simple C-G series of P, consider
the direct product-

[K',n']8 [»",o "] (2.3)

of two single-particle representations of P, each of whose
Hilbert spaces is spanned by a canonical system of
basis vectors of the above type. The representation
(2.3) of P is not itself irreducible, but it can be written
as a direct integral of irreducible representations
[w,j]of P. This direct integral is the simple C-G series
of P for the direct product (2.3).

One begins by expressing those basis vectors, which
provide a canonical basis in the Hilbert space of each
[w,j] contained in the C-G series of (2.3), in terms of
the direct product basis vectors

lk' 'L ' '],k" "L"' "]).
The former basis vectors are denoted by

I pm[w j],qn&, (2.4)

I p~[w j],nn&

d'k' d'k"
I
k'v'[»'~'], k"v"[K"o"]&

2p //

X(k' '[»' '],k" "[»" "]Ipm[w~], zn&, (2.5)

the first two labels specifying them within the Hilbert
space of the [w,j] concerned, just as the labels k and v

do for [»,o.] above. Unless o.'=o."=0 there occurs, for
each j-value, a certain multiplicity of equivalent [w, j],
so that g is needed as a degeneracy label to distinguish
them in some manner. The precise nature of the label q
is discussed in the next section. Finally the composite
label n, n —=~', 0-', z", cr", serves to indicate the direct
product which has given rise to the family of basis
vectors (2.4). In agreement with the normalization
(2.2) of single particle basis vectors, the basis vectors
(2.4) have the unitary relationship

where
Sg(k) =S,(k)&iS„(k)

to the direct product basis vectors, whose labels may
be conveniently rearranged to give the notation

(c) They have the invariant normalization'4

(k v'[K'o']
I
kv[»o]&

=2k'(k —k')8(vv')b(K»')8(oo. '). (2.2)
» Throughout what follows an . arbitrarily assigned spatial

direction is taken as 2; axis or axis of quantization.
"For an explicit de6nition of S(k) in terms of the operators

of P, see references 2 and 13:of course, its momentum dependence
is a necessary feature of a relativistic particle theory.

"A. J. Macfarlane: Ph. D. Thesis, University of I.ondon, 1961.
'4 If a composite label x contains n individual labels a, b .h,

then the notation B(xx'), implies the product B(ae')B(bb'} ~ .B(hh')
of e Kronecker symbols.

The coeKcient
I

k'v'k" v",n).

(k'v'[K'o. '],k"v"[»" "]
I pm[Wan ],gn&,

whose labels may similarly be rearranged to give

(k'v k"v"n
I pm[wj ],pn), (2.6)

is the C-G coeKcient of P for the direct product (2.3).
Formally it might seem possible to introduce a more
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general coefficient by setting

I pm[wan], ~p)

then one may de6ne the representations of I' by the
correspondence

{u,L}~ U(u, L),

=ZZ
d'k' d'k"

2kp' 2kp"

with

{u»Li}{u»Lp}= {u»Lp} -+ U(u»Li) U(u»L&)
= U(up, Lp),

X(k'v'k"", rr
~
P~[wQ~P), where

but since one evidently has

(k'v'k"v", rr
~
Pm[wj ],rIP)

=S(np)(k"k"v",~~ pm[wj], ~n), (2.7)

the attempt reduces to (2.5). Hence the label n is
dropped from (2.6) and (2.5) appears in its final form

[ pm[wj ],rln)

d'k' d'k"
~

k/ /kll II )
v " 2k, ' 200"

X(k'v'k"v" iPm[wj], g). (2.S)

As a natural extension of (2.2), one imposes on the
basis vectors (2.4) the invariant normalization

(p'm'[w'j'], g'nt'( pm[wj ],rlrr)
=2ppb(p —p')8(mm')8(w —w')8(jj')8(grt')8(nn'). (2.9)

up ——ui+Iiup, Lp=LiL»

and with U(u, I.) unitary. In terms of the unitary
operators U(u, L), one may give the law of trans-
formation under the general element {u,I.}of P of the
basis vectors (2.1) of the irreducible representation
[a,o] of P. It is"

(kv[~0]~ U(u, L)=exp(ik u) Q„D,„'(R(k, L))

X (L,
—'kp[KO') ~. (3.2)

Herein R(k,L) is a purely spatiaPp rotation, dependent
on the four-momentum k and the Lorentz transforma-
tion L, and D'(R(k, L)) is the usuaii' (20+1)X(20+1)
matrix representative of it with unitary property

Q„D„„(R(k,L))*D„„'(R(k,L)) =5(vv'). (3.3)

A 4X4 matrix representation of R(k,L) is given by

R(k,L)=L(k) L L(L 'k) ' (34)

where I.(k) and L(L 'k) are examples of a notation
strictly reserved for the pure rotation-free Lorentz
transformation that carries the indicated four vector
into its rest system. Explicitly, if k= (z,0), then

In agreement with this, one may now give the inverse
relationship to (2.8) in the form

d p
~

k' kv" vn) = P dw —
~
Pm[w j],re)

g SLrf 2 0 k=L(k) k

k„=L(k)„"k„,
01

X(k'v'k" v"
~
Pm[w j],g)e. (2.10)

L(k)p"=L(k)„=k"/lr k"= (kp, —lr),

L(k),& =8,,+k,kr/[K(p+kp)], i, j&0.
(3 5)

with
Equation (2.10) may be regarded as the C-G series of
P for the direct product (2.3).

3. THE SIMPLE C-6 COEFFICIENT OF-P

The principal aim of this section is to give a heuristic
derivation of Joos' formula' for the simple C-G
coefficient

(kVk''v"
) Pnz[w j],g) (3.1)

of I'. This derivation follows the intuitive approach of
transforming to the center-of-mass system and assumes
that the methods of nonrelativistic angular momentum
theory apply there.

The transformation of the coeKcient (3.1) to the
center-of-mass system can be achieved using signer's
theory'4 of the representations of I'.

If the element {u,L} of P is given explicitly as a
transformation of coordinates

pp„~ pp„'= L„"pp„+u„,

or, in matrix notation by

pp~ pp'=L x+u,

Similarly, since, for each set of values g, n, the basis
vectors (2.4) form a canonical basis for the irreducible
representation [w,j] of P indicated, one ha, s their
transformation law

(pm[wj], r)n~ U(u, L) =exp(ip u) p D '(R(p, L))
X(L 'Pe[wj], itn~. (3.6)

Also, for the direct product states, one has'8

(k'v'k" v",n j U(u, L)

=exp[i(k'+k") u] g D;„"(R(k',L))
pl~/ I

XD„-„""(R(k"L))(L 'k'p'L 'k"p",rii. (3.7)

"cf.reference 4, Eq. (3.24).
'60ne can indeed prove, that for a general Lorentz trans-

formation L, E as de6ned by (3.4) and (3.5) is a purely spatial
rotation. See reference 2."See references 8-10.

' cf. reference 4, Eq. (4.7).
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Applying U(a, 1) to both sides of (2.8), and using Eqs.
(3.6) and (3.7), one may deduce that the coefficient
(3.1) vanishes unless p=k'+k". Hence one may factor
out of it a four-momentum conservation 8-function in
the covariant form

where
2ppb(y —r)b(w —p)

k +k r2 —62

(3.8)

with"
x (L,(p) k'l2'L(p) .k "l2"

I p222[w j],g), (3.9)

R(k', p) =R(k', L(p)),
R(k",p) =R(k",L(p)).

The next stage is the evaluation of the center-of-mass
co scient:

(3.11)(2'pY'ti"
I
p222[w j],2t»

with
v'=L(p) k', v"=L(p) k".

It will be convenient to use a temporary notation

(v'p'v"p, "
I
p222[w j],2t)

=2wb(v'+ v")b(2p'yvp" —w)
X(v'p'v"&

I
0222I wj ]pl) (3 12)

where the 6-function part of the right side has arisen

by specializing (3.8) to the rest system of p. The
coefficient (3.11) appears naturally [cf. Kq. (2.8)],
according to

IP~[w j],~~)

d8
2wb(v +v )b(pp +'vp —w)

2VO' 280"

Since L(p).p=p= (w, o), one may apply U(O, L(p)) to
both sides of (2.8), and use Eqs. (3.6) and (3.7) to
transform the coeKcient (3.1) to the center-of-mass
system, which is uniquely defined because the coefficient
(3.1) vanishes unless p=r. One obtains the result

(kVk"v"
I p222[w j],2l)

= 2 D.'"'(R(k', p))D"'-"'(R(k",p))

for, if one couples l, 0-', 0-" according to the scheme

l+ (o'+o") —+ l+s ~ j, (3.15)

then specification of both / and s is necessary to dis-
tinguish the multiplicity of diferent ways of reaching
any j value, given only &' and cr" initially. Thus, with

g =—l, s

one expects that the coeScient

(v't2'v"p, "
I
0222[w j],2l)

will be proportional to'0

Q c(o'o."sp'l2"s,)c(lsj l,s,222) Y&4(v/I vl). (3.16)
lgsg

At this point, one can say that the essential structure
of the coefFicient (3.1) is determined by Kqs. (3.8),
(3.9), and (3.16), and that the basis vectors (2.4) are
now explicitly defined in terms of the direct product
states by Eq. (2.8) at least up to a normalization factor.
To obtain this factor, one must use the normalization
(2.9) of the basis vectors (2.4). More precisely, one
has to establish the consistency of the results so far
obtained with (2.9), and hence obtain the normalization
factor necessary to complete Joos's formula' for the
coefFicient (3.1). It will be convenient to present the
details of this calculation in Sec. 7 which deals with the
orthogonality properties of the C-6 coefficients of P.
Thus, anticipating the result, (7.12), one may use also
Eqs. (3.8), (3.9), and (3.16) to give Joos's formula:

(k' 'k" "Ip222[w j],2l)

=2wlP. (w' «",«'")]—l2Ppb(p —r)b(w —p)

X g D, „"(R(k',r))D„"„"'(R(k",r))
Il ill I l

X Q C(o.'0."sp'p"s.-)C(lsjl,s,222) Yi4(e), (3.17)
lzsz

where
q=l, s, r=k'+k", r'= p2.

In the normalization factor, the notation used in an
instance of the general abbreviation

X(a b c) =a'+b'+c' 2(bc+ ca+ab). —(3.18)
&& I

v't, 'v"s ",~)(v'«'v"«"
I
Ori2[w j]~» (3 13)

Thus, here, one has

when one seeks to build total angular momentum
eigenfunctions in the space of center-of-mass system
states of two particles of spins a-' and g". Now in this
system one may define the relative orbital angular
momentum of the two particles, just as in nonrela-
tivistic theory, and describe it by a spherical harmonic

Y«. (v/I v
I ), (3.14)

where v=v' —v". One now sees that the / value of the
harmonic will be contained in the degeneracy label p,

9 Subsequent use of the notation R(n, e), where u and v are
four-momentum arguments, is always in the sense of (3.10).

li(w2 «2 «2) [w2 («&+«&~)2][w2 («~ «~~)2

which relates the concise to the familiar form of the
expression. For the unit spatial vector e, one has [cf.
Eqs. (3.11) and (3.14)] the formula

c,= pP. (p2 «" «'")]-'L(r),&(k' k")„, (3.19)—
with X in the sense of (3.18) and L(r) in the sense of
(3 3)

Before passing to the use of the formula (3.17), it is

'0 The summations over /„s, are dummies, but it is very often
convenient to carry them along.
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necessary to discuss several points regarding it. Firstly,
a more concise expression for e is sought. To obtain this,
it is necessary to introduce a certain four vector,
dependent on k' and k", which will be named the rela-
tive four momentum of k' and k" and denoted by the
letter q. This vector, which has previously appeared
in the work of Garding and Wightman, and Michel"
is constructed from k' and k" so as to satisfy

r q=0
q'+1=0.

(3.20)

(3.21)

ep ——0, e'= i. (3.24)

These equations determine that q has the form

q= eP.(",""")j
X{k'—k"—((P—z'")/ p$(k'+k")). (3.22)

Since, by definition r, =L(r),&r„=0, it can be seen, from
(3.19) and (3.22) that

e,=L(r),&q„, (3.23)

which is the required expression for e. Also, from (3.5)
and (3.20), one obtains

ep ——L (r) p&q„= 0.

Of course, the set ev= (ep, e) of components is simply the
four-vector q transformed to rest frame of r, in which
the scalar Eqs. (3.20) and (3.21) become

as a result of the unitary properties of D matrices and
of C-0 coefficients of the rotation group.

Thirdly, by use of a coupling scheme other than that
of (3.15), one obtains an alternative C-6 coefficient to
Joos' coefficient, as given by (3.17). For, if one couples
l, 0', and a" according to

(l+o')+o" ~ h+o" -+j, (3.31)

then specification of both l and h is necessary to dis-
tinguish the multiplicity of different ways of reaching
any j value, given only r' and ~" initially. To obtain
a formula for the coefhcient

where

(k'v'k'Y'~ pre:$w j],f ), (3.32)

one readily sees, from the derivation of (3.17) given
above, that the only change needed on the right side
of (3.17) is the replacement of

The notation (3.28) is adequate if one bears in mind
that the supressed momentum arguments are those
which correspond uniquely to 0' and 0-", respectively.
Its utility stems from the fact that one has

P I'(o'o"svV's, )*I'(o'o"tv-'v" t.)=B(st)o(s, t.), (3.30)
v'v"

Further, one may use (3.5), (3.20), and (3.21) to give
the expression for e: by

Q„C(o'o."stl,'tl, "s.)C(lsj l.s.rN)

Q a, C (lo.'hl, tI, 'h, )C (ho"jh, tI,"m) (3.33)

X(oC'o" p'ps" ),s(3.28)

Y;,(e,s,) =g~, C(lsjl, s.m)Y&&, (e) (3.29)

"See reference 4, Chap. 4.
'~ As before, the summations in (3.27) and (3.29) are dummies.

e=q —
I q,/(e+ro))r. (3.25)

Secondly, some abbreviation of (3.17) is required.
It will be convenient to write

(k'v'k"v" I Pmttwj ],rt)
=2wmP, (w g P g )$ 12Ppb(y —r)6(w —p)

XP(k'k", v'v",jmrt), (3.26)

where P(k'k", vY', jmq) is defined to be the rest of the
right side of (3.17). This is an adequate notation: The
spherical harmonic contained in P(k'k" . .) has.
arguments given by (3.23) with r and q the total and
relative four momenta of its two four-momentum
arguments. It will also be convenient for the statement
of the integral properties of the C-G coefficients of P'.
A further useful notation is"

P(k'k", v'v",jrwrt) =Q„F(o.'o"svV's. )Y; „(e,s,). (3.27)

The two parts of (3.27) are defined by

I'(o'o"sv'v"s, )= g D„„'(R(k',r))D„„~"(R(k",r))

To abbreviate the formula so obtained for the coefficient
(3.32), one may write

(kYk"v"
~
pmLw jj,t )

=2w&p. (w', ~",e'")j—
&2pp5 (y —r)8 (w —p)

XP(k'k", v'v",jm{) (3.34)

Hereafter, the coefficients (3.1) and (3.32) will be
referred to as rt-type and f'-type C-6 coeKcients"of P,
and the labels g and f' will be used strictly in the senses
of Eqs. (3.15) and (3.31).

4. PARTIAL WAVE ANALYSIS OF THE S-MATRIX
ELEMENT FOR REACTION (1.1)

The partial wave analysis of the matrix element

(CD(SiAB),

or, more precisely, of the matrix element

(kovoknvn~ S
~
kgvgkeve),

will be given and discussed here. The character labels of
the initial and 6nal particles are implied by the use of
the particles labels A, I', C, and D as subscripts.

The state
~
k~v~keve) is a direct product state for

the direct product P~,o.~) CSP ,co(eof the initial state
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particles, and from (2.8) one gets its C-G series

d3p
lkAVAkB. B&= 2 ~w —

I pmt wjj, nAB&
gtsgAB (2po)

X&kAVAkBv B
~
p2B(~j j,qAB&*.

Using (3.26) this becomes

~
kAv AkBvB) = 2ElDE (E',KA') KB')7

P(kAkB VAvBj m'QAB)
)'msfA B

X ~ESNtEj j,nAB& (4.2)

where kA+kB=g, E2=E2. One has also a like result
for the Anal state. Since the S matrix in a relativistic
theory commutes with the operators P„(translations)
and M„„(space-time rotations) of P, one has a result
of the type

&&'2V3'E~'j'j, nCDI~I &223L&jj ~AB&

= 2Epb (K—K') 8(223222') b(E—E')8(jj ')

X&~..IS,(E)l~..&, (4.3)
with

E'= kc+kD, E"=E".
The quantities

4E2k.2—X(E2 KA2 KB2)

4E'kf" =X(E',Kg', KD2),

so that (4.5) becomes"

(4.10)

so that e~~ c~g plays the role of the scattering angle.
Since (eAB)o=(ecD)2——0, one has

BAB' ocD eAB' ecD qAB
' qcD = a (4.8)

from the definition of e~~, egD. Thus x is the scalar
variable which provides a generalization of the "bary-
centric scattering angle" to a reference system wherein

~
K

~

&0.This indicates the importance of describing the
kinematics of the reaction (1.1) by the set E, qAB, qcD
of three independent four vectors. Since the latter pair
were constructed so as to satisfy.

+'qAB qAB +1 1~ 'qcD qcD +1 0y (4 9)

it follows that the only pair of scalar variables one can
use are the physically important pair E' and x.

Second, consider the case of E= (E,O), so that

kA= —kB=k,n, , kc= kD=kf—nf

where n,'=nf' ——1. The magnitudes k; and kf are
related to E by the familiar equations

C (rr A&BSA BVA vBSA Bz)

(kcvckDVD
~
S

~
kAV AkBVB)

=4EP,(E' ' ')X(E', ', ')j f

X2Eo&(K—K')b (E—E')

(4.4)
(kcvckDvD

~
S

~
kAvAkBvB&

are the partial amplitudes of the 5-matrix element
(4.1). From (4.2), its final state counterpart and (4.3), =2(k~k;) l2E6(kf)8(kcs+kD2 —E)
one obtains directly the partial wave analysis for (4.1)

X

X p P(kckD, vcvD, ~~rlcD)
J~gA B'LCD

XP(kAkB&vAvB&JM'9AB) (rjcD IIS&(E) I»B& (4.5)

The arguments of the initial and 6nal spherical
harmonics are given by

(eAB);=L (K),"(qAB)„,

(" )'=L(&)."(q. ).,
where q» and q&D are the relative four-momenta of k&

and k&, and of kz and kD, respectively, in the sense of
Eqs. (3.20) to (3.22), and where

K= kA+kB kc+kD. ——

Equation (4.5) is quite a complicated result, when one
bears in mind the meaning LEqs. (3.17) and (3.26)j of
the coefficients P(. ) involved.

First, consider (4.5) in the case o'A=o'B=o'c=o'D=O,
in which case the summation on the right becomes

p Yssl(ecD)~s(E) 1"s3s*(eAB)

=QS D2J+1)/42r]PJ(eCD'eAB)~J(E) (4'7)

~~sfABsfCD

X Fs2rsAB(n $AB ) C(rrcrrD'scDvcvDscD )

X Fs2szon(+f scD*)&ICD ~SJ(E)
~ rfAB) (411)

When (4.11) is compared with the corresponding non-
relativistic results, ' it is seen to diGer from them only
in multiplicative factors, due to diferent normalizations
of states.

5. THE GENERAL C-6 SERIES OF P

In order to generalize previous work to the reaction
(1.2) with I outgoing particles, some further theory is
required. This relates to the study of the direct product
of two not necessarily single particle representations
of I'.

Consider, 6rst, the direct product

Lw', j'j Lw",j"j (5 1)

where the two representations involved are irreducible,
with bases of the type discussed in Sec. 2, i.e.,

(
p'233'Lw'j 'j,g'~'& and

(
p"223"fw"j"jq"(g") (5.2)

where o.', e" indicate the single-particle representa-
tions of P, which have led to fw',j'j and Lw",j"j,
respectively.

~ The notation of (3.29) is here being used.
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They are evidently necessary to indicate how the
LW,J) have been built up from single particle represen-
tations of P. The explicit definition of the states (5.3) is

d3p/ /Pp//

~PMt WJ],& ~)= p ~p'm p" ", 7)
na'm// 2pp 2pp

)&(P'm'P"m"
~
PMPW J],i1), (5.5)

where the right-hand states are direct-product states
with labels rearranged in accordance with (5.4). The
coefFicient

(p'm'p "m"
i
PM pVJ],q) (5.6)

is the C-G coefficient of P for (5.1). All the labels
contained in e, 7 are unaffected by the transformation
(5.5), and the attempt to introduce a more general
coefficient reduces to (5.5) by means of

(p'm'p"m", pb [ PM[WJ],«y)
=b(nP)8(yb) (P'm'P"m" I PM/W J],g). (5.7)

Herein, the notation is somewhat loose, since n contains
the continuous variables m' and m". It may be used
without causing confusion, if it is remarked that delta
functions are implied by Kronecker symbols for con-
tinuous variables, whenever these occur in composite
labels. In terms of the same conventional notation, one
may give the normalization of the states (5.3)

(P'M'PP J'),31ay j PMPW J],«y)
=2Pp&(P P')b(MM')8(W —W')8(JJ')—

&&b(~it)b(/r~)~(~V) (5 g)

The above discussion may be completely generalized
to the case

(5.9)EÃj'] 533/",j"),
where these representations have bases

J
p'm'$33/'j '),p'),

(
p"m"I 33j")/,p"), (5.10)

where P', P" are now those sets of variables, some of
which may be continuous, which indicate exactly how
the indicated representations have been built up from
single particle representations. One may denote the

The direct integral which expresses the reduction
of (5.1) into its irreducible constituents is the C-G
series of P for (5.1).The aim, as before, is to express the
basis vectors, which provide a canonical basis in the
Hilbert space of each (W,J) that occurs in this series,
in terms of the direct products of basic vectors (5.2).
The required new basis vectors can be written as

lPMLWJ] «» (5.3)

where P and M specify the states within the Hilbert
space of DV,J) and g is the degeneracy label distin-
guishing the equivalent $W,J) occurring in the C-G
series of P for (5.1). The composite labels n and y are

is the most general C-6 series of P.
From inspection of the derivation of (3.17), it is

immediate to conclude that the formula for the coefFi-

cient (5.6) is obtained from (3.17) simply by a change
of notation.

In the above work, p defined by the scheme

l+ (j'+j")~1+s~ J' (5.14)

has always been written. It need hardly be mentioned
that the entire discussion can be written for t'-type
coupling, with f defined by the scheme

(&+i ') +i "~ k+i "~J. (5.15)

6. PARTIAL W'AVE ANALYSIS OF THE S-MATRIX
ELEMENT FOR REACTION (1.2)

In this section, the topic to be discussed is the partial
wave analysis of the matrix element

(12" .33[S
f Aa),

or, more precisely, of the matrix element:

(kivikpv3 k„v~
~
S

~
kgvgkiivii). (6.1)

The bulk of the discussion is of the 6nal state, since the
C-G series of the initial state has already been given,
Eq. (4.2).

The 6nal state is the continued direct product of the
states of type

(6.2)(k v), n=1, 2 ~ I,
and familiar questions about the order of coupling them
are immediately raised. For a start, consider a particu-
larly simple mode of procedure.

One first combines (Ki,/Ti) and. LK3,/T3), obtaining,

basis vectors of any PV,J) that occurs in the C-G
series of (5.9), by

~
PM[WJ],«p) (5.11)

with n as given by (5.4) and p—=p', p"; and the C-G
coefFicient of P that arises in their definition is

(p'm'p"m"
~
PM(W J) 3I)

which is the same coefficient as (5.6) regardless of P.
The states (5.11) have normalization containing a
factor 8(PP) in the above conventional sense.

Thus the most general C-G coefFicient of P appears in

g3p/ dpp//

[PM(WJ],& p)= p (
p'm'p"m", p)

2po' 2po"

X (p'm'p"m"
~
PM$W J) 31), (5.12)

and the inverse equation

daP

i
p'm'p"m", /Kp) = g dW

i PM)WJ],«p)
JR' 2PO

)&(p'm'p"m"
~
PM/WJ], rl)* (5.13)
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l2+ (Kl+)r2) ~ 12+$2 ~ J2. (6.4)

The arguments of the spherical harmonic contained in
E(klk2))1))2 j22222$2) are given by

(e2);=L(r2), (q2)„,

where r2 and q2 are the total and relative four momenta
of k~ and k2, the latter term being in the sense of Eqs.
(3.20) to (3.22). Next one combines L42, jlj and

I )lp, )T3).
It is desirable here to use t'-type coupling, correspond-
ing to the scheme

(4+~2) + j2 ~ kp+ j2 ~ jp,

in which case from the work of Sec. 5 one has

Ir22222, kp) p, np)=242 p, (pp', 42', 22') j '

X Q &(rpk2, 2122~2, j22122ip)*
73m@'3

(6.6)

X IrpÃzpLE3j3j $3G2), (6.'/)

where rp ——r2+kp, rp'= 42', and np
—=g2, p2, j2. The argu-

ments of the spherical harmonic contained in
P(r2k2, 2222) 2, j22122t 2) are given by

(6.8)

where r3 and q3 are the total and relative four momenta
of r2 and kp. one now goes on to combine

I pp, jl) and
Lll4, &r4] according to the same procedure, and so on until
all Ll,o jhave been annexed one at a time. Successively
then one forms the states

Ir42224LP4 j4j,|4n4),

I r„222„Lp„j„j,t'„n„),

)24=i 2 p3) JB)Q'8)

42 n =fn—1)&n—1)7n—1)&n—1)

(6.9)

and otherwise obvious notations. This corresponds to
the coupling scheme

l2+ (01+02)~ 12+$'2 ~ j2 ' '92= l2, $2

(4+~2)+j 2 ~ kp+ j2 ~j 2', t 2=—4,kp,

as in Sec. 4

I
kll lk21 2)= 242lp (422, 212,g22))—'

X Q P(klk2 ))1))2j 22128/2)
72854,272

X Ir22N2Lp2 jpj 'g2), (6.3)

where r2 ——kl+k2, r2 =p2' and q2=—l2, $2, according
to the scheme

procedure are dered by

(r„222„Lp„j„j,t „42 ISIX422LEjj,g@A)

=2Zp8(K —r )8(m424 )5(E 2 )8(jj )

X(t n)i n lan —1' '—'
) t 372) $27'2

X IS,( 42) ~ ~ )~p1E)) Iqgl))) (6.11)

with the discrete and continuous labels involved in f,
o.„separated in accordance with usual practice. SuK-
cient discussion has now been given to allow the partial
wave analysis of (6.1) corresponding to the scheme
(6.10) to be written down. To describe the mode of
procedure used above in a pictorial sense, ""one may
say that the hnal-state particles have been combined
into a single increasing cluster by adding particle 3 to
the (1+2) system, then adding 4 to the L(1+2)+31
system, . . . until all m particles are used up. There is
however an abundant choice of alternative procedures
available. Present methods are able to handle them,
as a single further example will show.

Supposing one forms the first p particles into a single
increasing cluster, then one ultimately reaches, in the
manner indicated above, final states for the cluster

I r„m„pe„j,j,i „a„).

Suppose then that one decides to form the remaining
(22—P) particles into a second increasing cluster. It will

be convenient to rename the particles (422+1),
(222+2) I as 1', 2' P' where P'=I P. Then fo—r
the second cluster, one reaches 6nal states

in obvious notation. It only remains to combine the
clusters, i.e., to form fp„,j„js(e„,j„j,which can be
handled by the methods of Sec. 5. The only remark.
to be made regarding this 6nal step of combining
clusters is that it seems desirable to use the p type of
coupling.

One is left with the conclusion that the only diffi-
culties in giving the partial wave analysis of (6.1), for
any clustering of the 6nal particles whatever, are
notational ones.

Explicit formulas will now be given for +=3 case
of reaction (1.2), i.e.

2+8 —+ 1+2+3.

The partial wave analysis of the S-matrix element for
this reaction is obtained directly by combining Eqs.

(1 +0.„)+j„ 1~ k„+j„ l~ j„; f'„—=/, k . (6.10)

Partial amplitudes of (6.1) appropriate to the above

2' The language is taken from the corresponding nonrelativistic
theory, references 25, 26:

2~ L. M. Delves, Nuclear Phys. 20, 275 (1960).
~6 D. Jepsen and J. 0. Hirschfelder, Proc. Nat. Acad. Sci. U. S.

45, 249 (1959).
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and the arguments of the spherical harmonics contained
in the successive coeKcients on the right are given by
(6.5), (6.8), and (4.6).

Equation (6.12) will now be specialized to the case28

when all particles are spinless, and E= (E,O). Then the
summation on the right becomes

I'~~8 8*(es,es) «24 I
5'~(ps, &) I »)

J'Ml gl3

with
X I'z~*(e~B), (6.13)

7 jsrl 8 (es,es)= g C(lslsJ28822883M)
fn2m3

X Vl, ,(es) I"8,„,(es). (6.14)

Herein es and e~88 are unit vectors parallel to rs(= —ks)
and k~(= —k&) respectively. Formula (6.5) must still
be used for es. Thus (6.13) exhibits one feature, the
angular dependence of F83 2(es), wherein it differs
radically from the corresponding nonrelativistic result, "
even though the center-of-mass system is being referred
to.

The conclusion is a perfectly general one for produc-
tion reactions. If one tries to describe an angular
momentum problem in relativistic theory by using
nonrelativistic results in the center-of-mass system of
the situation concerned, then one is certainly following
an erroneous procedure unless only two particle states
are involved. For aside from normalization factors and
possible omission of essential D matrices, one thereby
fails" to find the true angular dependence of the results
sought.

'7. ORTHOGONALITY PROPERTIES

The aims of the present section are: firstly, to exhibit
the consistency of Eqs. (2.8) and (3.17) with (2.9);
secondly, to obtain the normalization factor in (3.17);
and thirdly to derive the orthogonality properties of

"This topic will be treated in more detail in a forthcoming
paper by the author.

'8 R. G. Newton and L. Fonda, Phys. Rev. 120, 394 (1960).
28 V. Ritus, J. Exptl. Theoret. Phys. (U.S.S.R.) 10, 152 (1960).

(4.2), (6.3), (6.7), and the n=3 case of (6.11):

(klvlksvsksvsl Sl kgv~kllvtl)
= 2C2'I lt(es, Kl ~K2 )) '2es*p, (es,es,K3 )]

X2E*'p, (E' Kg Klp)] *'2Ep8(K—rs)b(Z —ps)

XQ P(klksyvlv2y J22832212)P(vsks)8882vs) J~f8)

XQ-3~222I~J(e2)&) l~»)
XP(kgks, vgvl8, JMrlgI8)*, (6.12)

with the summation over j2, 2882, 2)2, t 8, J, M, 2)~88. Also,

f2 =kl+k2, v2'= e2')

rs=r2+ks, vs'= es',

E=kg+kl8 E2=82

the functioris

2pp&(p —r)~(tv —e) I'J (e) (7.2)

where r=k'+k", vs= e', e;=L(r),"q„,and q is the relative
four momentum of k' and k". It is now necessary to
exhibit the consistency of the formula

(k'k" IP~L~Jj&= (~)2Pp~(p —r)~(~—p)I' (e) (7 3)

where rr(tv) is a normalization factor, with the normali-
zation of the states

I p2Nt tvjj,K'K"), obtained from (2.9)
in the form

(p'~'E~'g'j»" Ip~f~J'j K")

= 2Ppb(p —y')b(mm')8(tv —20')B(jj')

d'k'/(2ko') d'k"/(2ko")(k'k"
I p1NI wjj)

X(k'k"
I
p'288'I w'j'7)*, (7.4)

and hence obtain n(w). Inserting (7.3) into (7 4)
leads to

I n(sv) I' d'k'/(2kp') d'k"/(2kp") 2pph (p —r)8(ttt —e)

XI; (e)&;.„.*(e)=&(m~')&(jj'), (7.5)

and, if the integral on the left can be converted into the
orthogonality integral of spherical harmonics, con-
sistency is indeed established. In order to do this, it
will be necessary to introduce into (7.5) a certain
change of variables, similar to that used by Wightman, "
when confronted by an integral like (7.5). It consists of
the replacement of k' and k" by their total and relative
four momenta

r =k'+k", r2= e',

q= eP, (e2 K'2K ")7 1

X(k'—k"—L(K"—K'")/esca(k'+k")), (7.6)

the latter having been constructed I cf. Eqs. (3.20) to
(3.22)) so as to satisfy r q=q'+1=0. The solutions of
(7.6), namely

k'=((es+K'2 —K"2)@+ed (e2 K'2 K"2)jkq)/(2es)
k"= ((e'—K"+K'")r—eP. (e2,K",K'")$ q)/(2e')

P(k'k", vV',jN82)), P(k'k", vV',j288&).

These aims will be approached simultaneously.
Consider 6rst the coefficient

(k'k"
I pmtw jj) (7.1)

which occurs in the reduction of I
K',01LK", 0). In

Sec. 3, it was shown that, as a result of the known
structure of irreducible representations of I', the
formula for the coefficient (7.1) must contain the factors
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spherical harmonics

Yz~*(eAB)Sz(E)

—p, (E2 KA2, KB2)y(E2 KC2 KD )gr/(8E )

and, hence, using the addition theorem of spherical
harmonics, the result

42r P Y;~&.*(e,s,) Y; 1,(e,s,)= (2j+1)8(/l').

Hence, using the addition theorem of spherical har-
monics

42rp (E2 K
2 KB2)g(E2 K

2 KD2) j-,'/(8E2)
Ss(E)=p (E',KA' KB')7 (E',KC', KD') j /(8E')

XQ P(kAkB)PAPBq JJPI'JAB)

X dQ(ecD)P(kckD, vcvD, JM21CD)*
dQ(ecD)P&(ecD e»)(kckD I S(E) I kAkB)

Combining this equation with (3.30) leads to direct
X dQ(«D) Yssr*(«D)(kckD

I S(E) I kAkB) (8 6) proof of (8.9). lay applying (8.9) to (8.8), one now gets
the desired projection formula

—L71(E2 KA2 KB2)y (E2 KC2 KD2) ji/(8E2) X(kcvckDVD I S(E) I kAPAkBPB), (8.10)

d'qcDo(K qcD)o(qcD2+1)Ps(x)
with the summation over v~, v~, vg, v~, and M.

Similarly for the case of (8.2), by applying (7.15)
and (7.16) to the final state, and (8.9) to the initial

X(kc DIS(E)lkAkB) (8» state, onemayprove

where x= —qgD qg~ is the scalar variable introduced
in Sec. 4. The projection formula (8.7) is manifestly
covariant and reduces to a familiar form in the center-
of-mass, III =0.

In the general spin case, a closely parallel procedure
to the above is followed. From the partial wave analysis
(4.5), one obtains, using (7.15) and (8.3), the result

P(kAkB)PAPB) JJlfrIAB) ('gcD ISJ(E) I27AB)
're B

P (E2 KA2 KB2)li (E2 KC2 KD2) 1&/(8E')

X g dQ(ecD)P(kckD, vcvD, JMrlcD)*
vgvD

(2J+1)(tsnsj2IS~(e2, E) I~AB)

42l p (e 2
K

2
K 2)71(E2 e 2

K 2)71(E2 KA2 KB2)l /(16e2'F2)

XQ P (kAkB VA VB JMrlA B) dQ (e2)dQ (e2)

XP(r2k2, 2222V2, JMfs)*P(klks, vlvsj 22222212)*

X(klvlk2P2k3vs I S(E) I kAPAkBvB) (8.11)

with the summation over vg, v~, v~, v2, A&2, , v3, and M.
One may easily obtain a result like (8.11) for a matrix
element with an (arbitrary) 22-particle final state, for
any possible coupling sheme.

X(kcvckDVD I S(E) I kAvAkBVB). (8.8)

Although one could now use (7.15) again to do the
initial state part of the projection, a method which
avoids integration over initial state variables is sought.
To this end, the important result:

9. CROSS SECTIONS

Invariant cross-section formulas for the reactions
(1.1) and (1.2) are developed in this section.

Present work has so far dealt "only with S-matrix ele-
ments but, of course, it applies also to T-matrix elements
where

42r p P(k'k", v'v", j22221)*P(k'k", v'v", j2222i') S=1+iT (9.1)
v'v "m

will be proved. Notations (3.27) to (3.29) are again
useful.

By use of symmetry properties of C-G coefficients of
the rotation group, one obtains the result"

P &(jlj2j22212222222)c(ji'j2j2221 2222222)

m2m

= (2j+1)/(2 jr+1)5(jljl')8(222, 222, ')
"J.M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics

(John Wiley and Sons, Inc. , New York, 1952), p. 791.

In analogy with (8.3) and (8.4), one defines "energy
shell" elements of T by extraction of factors o(K K')—
and 5(K—r„). The invariant cross-section formula for
(1.1) may now be given in terms of the matrix element

(kcvckDPD I
2'(E)

I kAVAkBVB)

&(As~CD)=(2~) —'p (ycD/»B)
x I(kcPCkDVDI 2'(E)

I kAvAkBvB) I, (9.2)
3' J. M. Jauch and F. Rohrlich, Theory of Photons and Electrons

(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1955),p. 163.



A. J. MACFARLANE

(4n-E)'

(2gB+1) X(E2 KA2 KB2)

2J+1
j(ncDj T~(E) j~AB)l' (9.9)

&re DrIA B 47/93
follows. Various partial cross sections may be defined,
e.g. ,

(21r)'pAB 2p——.(E',KA' K ')]l.
The expression for (I(cD is

where P implies a summation over final spin states &(AB~ CD)
and an average over initial ones. The factors (t CD and
pzz are, respectively, the density of final states factor
for the CD system, and incident-Aux factor for the (2(rA+1)
AB system. In consequence of the normalization (2.2)
of one particle states, p» is given by the expression X

(t)CD

d'kg d'kD
s(Ic E'). —

2kcp 2k' o

(9.4)

P.(E',K,',.D')]-:
dQ(ecD),

2

A change of variables may now be introduced into
(9.4) as in Sec. 8. The new variables are E' and qcD,
the total and relative four-momenta of kg and k~. Using
a result like (7.7) and then a result like (7.10) one is
lead successively to

p (E2 KC2 KD2)])
d'q b(E.q )(i (q '+1)

4E

a(AB —. v CD) = Q o g(rlAB —v qcD). (9.10)
~QC DRAB

The cross section for (1.2) is defined by a formula
identical in structure to (9.2), with the density of final
states factor given by

412 ~ n,

d'k
S(lt —r„)

2k p

(9.11)

with r„=ki+k~+ +k„. A more convenient expres-
sion for (9.11) is sought. Suppose the partial wave
analysis of the T-matrix element for (1.2) to be used
corresponds to the formation of final particles into a
single cluster. Then (9.11) ought to be transformed by
means of the following successive changes of variable:

with ecD as previously defined. From (9.2), (9.5), one
obtains the following expression for the differential cross
section

kl k2~ r2 g2

r2, k3 —& rs, q3,
.

rn—lqkn ~ rnqgn j

(9.12)

q2 ~ e2 ~ (e2),= Iv(r2) (q2)

q3~ e3.. (e,)„=L(ra)„"(q3).,

qn ~ en: (e )V=nE(r )v" (nq )v)n
V. (AB CD) (2 )' X(Z', c',vv') )

d&(ecD) &4E X(E',K„',KB')

XQ l (kcvckDPD
l
T(E) lkAvAkBvB) l', (9.6)

with each line governed by equations like (7.7) and
(7.10). In the (n —1)th line, the pair r and q are the
total and relative four momenta of the pair of four
vectors r 1 and k . One has

with P as in (9.2). In agreement with the remarks of
Chew, "one may introduce the physical amplitude for
reaction (1.1) by setting

(kcvckDPD j
P (E) l kAPAkBPB)

= (2~j4E))(kcvckDVD j T(E) jkAVAkBvB), (9 7)

the definition of Ii being unique up to a phase. Into
(9.6), one may insert the partial wave analysis:

r =r +k,=k +k + +k,
and q is constructed out of r 1 and k so that

r q.= (r. 1+k.).q.=q +1=0.
Hence, for a=2, -. m one has

&a

p. (e.', e. 12,K.')]l

(9.13)

(9.14)

(kcvckDPD j T(E) j kAvAkBvB)
—8E2P (Q1 KA2 K 2)g(jg'2 K

2 K 2)]—',

X+ P(kckD)VCPD) JR%CD)(LCD j 2 J(E) jnAB)

XP(kAkB)VAVB) J~riAB) ) (9 8)

with summation over J, M, qgD, and qA~. Then, on
using the results (7.15) and (8.9), the result

12 g2
X .. .-k.— (. ,+k.), (9.»)

2

with r 2= E, provided that r1 and e1 imply k1 and I~:1

where necessary. In the notation of Sec. 6, the lines
of (9.12) correspond to the lines of the angular mo-
mentum scheme (6.10), or

j Kl (vl]3LK2 (r2] ~ Q j e2jn] wltll P(klk2, Plv2 j 2m292)

LE'2 j2]LK3, o.3] —+ p pe3j 3], With P(r2k3, m»3, jarN3t 3),

[en 1)jn 1](3j K )0' ]~Q [en)j n]) with P(rn ik»rwn iv»v(nmnl n))

G. F. Chew, Lectures on Dynamical Theory of Strong Interactions (Les Houches, &960).
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0»- -= II
%=2

(9.16)X dn(e-)
2E

KI )K2 )X (E ) 62 )K2/2)l) X f2)KI) 2 62)K2

16 9.(E2,Kg2, Ks2)&4E) ve knvt) T( )(

(10.3)

&vg

X(kvvvkeve
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(rjABj2 ImT (E) j»B&

= & j&»BjTJ(E)jn»'&j'&rjoDl2ImTJ(E) l»B&

so that orthogonality, expressed explicitly by formulas tudes above work gives
(7.15) and (8.9), gives

Z &~,D j TJ(E) j~«&(», j TJ(E)t j»B& (106)
IAB

+ «2 2 I&»BjTJ(es,E)jisesjs&j, (10.12)

Consider next the case of (10.3), when the value of E
is such that in addition to states of type I'G, states of so that on using definitions (9.10) and (9.19) of partial
type 123 also contribute. Then cross sections, one has the partial optical theorem

CI23 Q $123&kovokDPD j T(E) jkrvlksvsksvs&
V1V2V3

X(k»rksvsk»sj T(E)'I kAVAkBVB& (10 7)

with $»2 given by (9.11) or (9.16). One may insert the
appropriate partial wave analyses and then use (7.15)
and (7.16) to caste (10.7) into the same form as (10.4).
In the case of C»3, the factor contained within curly
brackets is

«2&~oDI TJ(e2,E) lt 2~2j2&

&rjAB j 2 ImTJ(E) jrjAB&

j3J(E) Z &J(»BP»B )
IAB

+ Q «2tlo J (rjAB +fsrj2j 2)/«2, (10.13)

with pJ(E) given by

42I E pJ(F)—L (2o A+ 1) (2o B+1)/ (2Jj1))X(E',KA )KB )

Orthogonality, applied to (10.2), now gives a result j (2oA+1)(2oB+1)) '
like (10.6) with a term (10.8) added to the right side.

It is obvious that such results can be obtained for
any E value whatever. The above discussion of (10.2)
will now be applied to the writing of optical theorems. =p(E2~KA'&KB'))i/(42r')

Such theorems exist for elastic scattering processes X{o(AB —+ AB)+o(AB ~ 123)}., (10.14)

A+B~A+B, '"') ---. (97)
and it will suflice to illustrate the method for the case
of reaction (10.9) at an E value above its threshold
such that the only competing reaction is X Q &kAPAkBPBjImP(E)lkAvAkBvB)

By summing over J, p» and multiplying by a suitable
X&{srjsjsjTJ(e2,E) jrjAB& (108) factor, one converts (10.13) into the optical theorem

A+B —P 1+2+3. (10.10) = (P,(E',KA2, KB')]i/2E)

The desired optical theorem will be a relation between
the imaginary part of the forward physical amplitudes
for (10.9) and the total cross sections

o (AB ~AB), o (AB -+ 123).

From (9.8), one gets

(kAvAkBvB j T(E) j kAvAkBvB&
Vg V~

2J+1

P.(E, '., ))~ .. 4

X(&jABl TJ(E) lrjAB), (10 11)

where the fact that only partial amplitudes with the
same initial and final labellings contribute is a conse-
quence of (8.9). For the imaginary part of such ampli-

P, (E KA, KB ))~/(2E), (10.16)

the result (10.15) will there assume a familiar form. '4

Similarly one can obtain optical theorems for an Evalue
at which many reactions compete with the elastic
channel. At any given E value, the optical theorem for
(10.9) assumes the form as (10.15), the term within
the curly brackets on the pight now being the sum of the
total cross sections of all reactions possible at the Ji
value.

34 N. N. Sogoliubov and V. Shirkov, Introdlction to the Theory
of Qgonjzsed Fields (Interscience Publishers, Inc. , New York,
1959), p. 560.

X{o(AB P AB)+o(AB P 123)}. (10. .15)

Since in the center-of-mass system, the barycentric
three-momentum of the AB system has magnitude
given by
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Finally, result (10.6) will be used to make contact
with the results of Mgller, 6 for the cross section, for the
elastic scattering of spinless particles, in terms of phase
shifts. Since only one channel, the elastic scattering
channel is being considered, one may write (10.6) in
the form

2 ImTg(E) =
i Ts(E) i',

so that TJ (E) can be written as

(10.17)
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GLOSSARY OF NOTATION

rest mass of particle.
cr. spin of particle.

Tj(E)=2 sinbz(E) exp)ibz(E) j (10.18)

where bJ(E) is a real phase shift. Using (9.9) and
(10.18) one then obtains

~(~P, ~~P) = 16~E2D,(E,.2...2))
&&PJ (2J+1) sin'Bq(E), (10.19)

which, when one remembers (10.16), can be seen to be
identical with result (212) of Mgller's paper.

momentum of particle, 2=~2.
p, , v'. s component of spin of particle.
p, P, E, r: 'momentum of system of particles, p'=u',

jP2 +72 Q2 —g2 g
2 —62

q: relative four-momentum.

j, J: total angular momentum.
m, e, M: s component thereof.

orbital angular momentum
s, h: in.termediate angular momenta in j=l+o'+0"

etc.
q—=l, s.

/; h. —
1 / 1f /1 1 '1 11 'lln=~, 0. , z, 0. or zv, j, m, j .
1 / ll flp=g) 6)'g )0

X(a&b&c) =a'+b'+c' 2(bc+—ca+ah).
L(p): 4&&4 matrix describing the pure Lorentz

transformation that carries p into its rest system.
P: p=L(p) p=(~o).
R: a spatial rotation; R(k,L), E(N, v) defined by Eqs.

(3.4) and (3.10).
D&(R): its (2j+1))& (2j+1) matrix representative.
b(ab): Kronecker delta, b(ab)=0 or 1 according as

a/b or a=b.
b: phase shift, bq(E).
o (AB —+ CD) etc. cross sections.
pz. incident Aux factor for the system Z of particles.
pz. density of final states factor for the system Z of

particles.
e: e= (eo,e) = (O,e) =L(r).q, where r, q are the total

and relative four-momenta of the same pair of
momenta.

J'dO(e): integration over the polar angles of e.


