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Had we known of hyperfine structure in the early
days of atomic physics, however, it would have been
a mistake to insist that any theory should explain
the effect. Historically, att dynamical theories in
physics have had limitations on their domain of
validity, no matter how general they seemed when

they were proposed W. e must not be too greedy.
Tote added: After preparation of this manuscript I

became aware of an article by V. N. Gribov, J.
Exptl. Theoret. Phys. (U.S.S.R.) 41, 667 (1961),
which discusses the importance of the Pomeranchuk
trajectory in high energy scattering.
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1. MOTIVATION AND PURPOSE

N the last few years considerable attention has been
devoted to the study of the general aspects of

field theory. Currently there are actually several
rather different approaches. One approach is based

* Work supported in part by the National Science Foun-
dation.

t Now at the State University of New York, Long Island
Center, Oyster Bay, Long Island, New York.

on the notion of local field operators; general princi-
ples such as relativistic invariance and local com-

mutativity are assumed. On this basis an extensive,
mathematically precise theory may be developed.
Initiated by Wightman [1],' this approach through
the work of Jost [2], Haag [3], Lehman, Symanzik,
and Zimmerman [4], and many others (see the ex-
tensive bibliography in Schweber [5], has led to a
considerable deepening of the mathematical basis of
field theory and to specific results of physical interest,
such as proofs of the TCP theorem (Jost [6]) and the
connection between spin and statistics (Burgoyne

[7]).Another approach described most explicitly by
Chew [8), also utilizes the principle of relativistic
invariance. The notions of the "local field" and field

operators, so essential in the abstract approach, are
eliminated as far as possible in this approach. In fact
the ultimate hope of this general philosophy is that
the relevant physical principles may be expressed ex-
clusively in terms of the analytic properties of S-
matrix elements. If, according to this attitude, a
particular assumption about the analytic character
of the S matrix, such as the Mandelstam representa-
tion, cannot be proven, using the general principles
of field theory —this is yet another indication that
Geld theory is incorrect, inconsistent, and irrelevant.
Thus using the assumed analytic properties of S-
matrix elements as given by the Mandelstam repre-
sentation (for two incoming and two outgoing parti-
cles), together with the requirements of unitarity and

relativistic invariance, a detailed theoretical frame-
work has been constructed, which has been successful

I The references are to be found at the end of this paper.
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in correlating a large amount of empirical material
(Chew [9];Chew and Mandelstam [10]).

Many studies of course, do not adopt either one of
these extreme viewpoints. Very often- results ob-
tained by abstract methods are used, although the
postulates in which these results were based are not
necessarily accepted.

One of the difhculties in using the abstract form of
field theory is the often mentioned circumstance that
in spite of the general and broad character of the
basic postulates, no nontrivial examples of such field
theories appear to exist' (Lehman, Symanzik, and
Zimmerman [ll]). There are no (nontrivial) finite
Lagrangian theories, with canonical commutation
rules, satisfying all the usually accepted principles of
quantum field theory. In dispersion theory the La-
grangian formulation of field theory is used as a
heuristic tool to obtain, for example, expressions for
the residues of the poles. Just as in quantum (or
classical) electrodynamics, speci6c models of the
electron were at one time employed in order to obtain
the "model independent" features of the theory; in
dispersion theory one hopes to obtain from a study
of certain Lagrangians at least some of the features
that are in fact independent of the Lagrangian.
Symmetry principles and the substitution law are
cases in point.

Whereas the mathematical formulation of the
abstract field theory is in principle completed once
the postulates are written down, the mathematical
framework of dispersion theory requires, in principle,
statements about the analytic character of all the
8-matrix elements. The analytic properties of the
8-matrix elements as conjectured by Mandelstam
refer to reactions where one has two incoming and
two outgoing particles. Hence, one needs nontrivial
extensions of the Mandelstam representation. The
guide of perturbation theory and conventional field
theory in this context is of doubtful value. The ex-
tension of the Mandelstam representation to more
complicated 8-matrix elements appears extremely
dificult. In fact it was shown by Landshoff and
Treiman [15]that for the simplest production process
(X + ~ ~ X + ~ + ~) the amplitude as a function
of only one variable (with the other four variables
needed to describe the process, fixed at physical
values) exhibits a complicated analytic behavior.

2 Several examples of especially simple nontrivial Geld
theories have been studied. A particular one, a modification
of Thirring's model [12] is described in the Northwestern thesis
of one of us (PBK) (Dresden, McGlinn, and Kahn [13]).The
only nontrivial theory obtained was one where the charge
superselection rule was violated. If one demands the customary
symmetries, the S matrix turns out to be unity.

(This result depends on the choice of variables; the
ones picked were the scalar products of four-momen-
ta.) This illustrates that the analyticity properties
of the more complicated 8-matrix elements cannot be
conjectured as extensions of the results obtained in
perturbation theory. In principle the abstract form
of field theory can make contributions to the study
of these questions, for the 8-matrix elements in
question can be expressed in terms of the Wightman
functions. Through study of theWightman functions,
and investigations of the domains of analyticity of
these functions (Kallen and Wightman [16]), some
properties of the 8-matrix elements can be obtained.
So far, however, the properties actually proven are not
sufhcient to deduce or suggest the Mandelstam repre-
sentation, let alone possible extensions. Instead of
deriving the general analytic character of the 8-
matrix elements from such general principles, one
can attempt to obtain information about the location
of the singularities of certain amplitudes by studying
the Feynman graphs corresponding to these ampli-
tudes (Landau [17]).The rules so derived (Cutkosky
[18])may be considered as the basis of a theory. The
validity of this theory of course depends ultimately
on its power to predict experimental results. In
addition, it is desirable that such a theory —perhaps
in an approximate sense only —should elucidate the
reliability as well as the limitation of such notions as
Lagrangians, field equations, and field operators.

The general motivation for the present study stems
from the desire to gain a more detailed understanding
of the relationships between the three forms of field
theory: the abstract version, utilizing general princi-
ples only; dispersion theory which postulates the
analytic properties of the 8-matrix elements; and the
conventional or Lagrangian approach which operates
with specific Lagrangians, definite equations of
motion, and definite commutation rules. It would be
unreasonable to expect that one type of approach
could rigorously be deduced from another, but they
certainly should have something to do with one
another. One might hope that such a study would
throw some light on the reasons for the apparent
validity (in a formal sense in any ease) of perturba-
tion theory in situations where the very notion of a
local field operator would be of doubtful significance.
In addition, if the interrelation were better under-
stood, the various forms of field theory might possibly
be combined to obtain a more satisfactory theory
which would combine the mathematical precision of
the abstract theories with the predictive power of the
dispersion relations. Such a combined theory would
be of a somewhat hybrid character; it would un-
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doubtedly have features of its own. Although this is
the general idea behind the present study, this work
unfortunately makes practically no contribution to
the specific problem outlined so far. Actually the
problem studied i8 the relationship between these
three approaches to field theory, but a significant
alteration (and simplification) has been made; the
theories considered are to be invariant with respect to
just space and time translations, and space rotations.
Thus invariance is assumed with respect to the
Euclidean group, not the Lorentz group. There are of
course several advantages in considering nonrela-
tivistic theories:

(a) Within nonrelativistic quantum field theory it
is a fairly easy matter to construct examples, this is
in striking contrast with the relativistic situation.
Some of these examples can be discussed in detail and
so yield a possibility of testing general principles and
specific conjectures.

(b) The significance of bound states in a non-
relativistic theory is reasonably well understood. In
relativistic theory this is a rather tenuous point, al-
though there is in principle no difhculty in introduc-
ing stable bound states within the abstract frame-
work (Zimmerman [19]).In nonrelativistic theories
the situation is certainly much better understood
(Barut and Ruei [20]).

(c) In relativistic and nonrelativistic theories the
unitarity of the S matrix is expressed in much the
same manner. Actually certain simpliGcations occur
in the nonrelativistic situation (Sec. 3) which makes
the unitarity conditions much easier to handle and
thus more useful.

(d) There are now several proofs of the validity of
the Mandelstam representation in potential scatter-
ing, provided that the potentials satisfy certain regu-
larity conditions (Elein [21]; Blankenbecler, Gold-
berger, Ehuri, and Treiman [22]; and Bowcock and
Martin [23]). Although these proofs are of great
interest, they refer to potential scattering only. Some
typical field theoretic features such as the creation
and annihilation of particles, are not included in the
description. Part of the purpose of the theoretical
ideas, developed here, was to provide theories which
will be Qexible enough to allow the creation or
annihilation of particles, yet simple enough to be
handled mathematically.

(e) It is sometimes possible within nonrelativistic
quantum mechanics to establish relations between
various type descriptions. Recently Martin [24]
showed how the discontinuity across an unphysical
cut in the complex energy plane, which is a notion
typical of the dispersion theoretic approach, is di-

rectly related to the inverse Laplace transform of
the potential (which obviously belongs to the La-
grangian description).

If—as seems rather likely now —the physical
description of strong interaction processes can be
more effectively carried out in a dispersion theoretic
framework than in the framework of abstract field

theory, many questions of Geld theoretic character
remain. Many of the field theoretic notions have
some, perhaps only approximate or limiting, signifi-

cance. Such concepts as states represented by vectors
in a Hilbert space or that of Geld operators probably
will keep some such meaning. To guess at those inter-
relations can sometimes be done, more simply within
the context of rather contrived theories. It is with
these kinds of theories, that the present paper is con-
cerned.

There are, of course, obvious disadvantages in

using nonrelativistic considerations exclusively. Most
serious perhaps is the fact that in general one can con-
clude very little about a relativistic theory from the
behavior of a corresponding nonrelativistic one. In-
deed several examples will be presented in this work,
where the nonrelativistic theory leads to strikingly
different results from the relativistic one. Physically
one loses the important particle, antiparticle relation-

ship in a nonrelativistic framework. This relation is of
extreme importance in dispersion theory —it has no
obvious counterpart nonrelativistically, again dimin-

ishing the importance of the discussion. In many non-

relativistic theories one has no vacuum polarization
effects, ' so this feature too is lost from the relativistic
theory. It is perhaps well to explain why the invari-
ance group considered in most of this paper is the
Euclidean group and not the Galilean group. The
basic reason for this choice stems from the following
circumstance: in most of this paper, the interactions
scattering of just one kind of scalar neutral particle
is considered. If one were to demand invariance
with respect to the Galilean group, one knows from
the work of Bargmann [25], that in that case the
number of particles is necessarily conserved. Inas-
much as one of the purposes of this paper is the de-
velopment of Geld theoretic models for production re-
actions and other field theoretic processes, it would be
pointless to exclude such processes by requiring
Galilean invariance. If just Euclidean invariance is
demanded, one retains the possibility of constructing
particle nonconserving theories. On the other hand if

3 It is possible to construct Euclidean invariant theories,
which do exhibit vacuum polarization effects. An example will
be given in Sec. 5, but these theories will not be discussed
extensively in this paper.
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a variety of particles of different masses can interact,
one may still require Galilean invariance, without
implication of the conservation of the total number
of particles. ' Nonrelativistic field theory has been
studied in a paper by Redmond and Uretzky [26].
The methods used as well as the motivation for that
study are similar to those of the present paper. But
it would be well to state the basic difference in ap-
proach. These authors assume the Schrodinger equa-
tion (in a second quantized form) and deduce from
it the asymptotic properties of certain Heisenberg
field operators, which are then shown to agree with
the requirements usually made in abstract Geld

theory. In this paper, by contrast, the asymptotic
properties are assumed; the Schrodinger equation is
not. But the purpose of this paper is precisely to in-
vestigate how far these (and other) general properties
specify the theory in question. Thus, the starting
point for the present considerations is similar to that
in the abstract theories. Additional assumptions are
made as they are needed, but an attempt is made to
keep the discussion as general as possible, consistent
with the goal of yet obtaining specific results. In this
connection it is probably worth observing that one of
the mathematical complications of field theory, the
existence of nonequivalent representations of the
commutation relations, is common to both relativistic
and nonrelativistic theories. The assumptions made
about the kind of representations allowed have actu-
ally profound dynamical consequences. One of the
purposes of this paper is to exhibit some of the
dynamical consequences of such general (nondynami-
cal) appearing principles.

The general philosophy underlying this paper is,
therefore, to see how far one can come—just what
specific results may be obtained from an appropriate
adaptation of the known principles of field theory. In
the course of the discussion, it became evident that
there was another general assumption which could,
in this nonrelativistic framework, be made in a rather
natural manner. This assumption is the persistence of
one-particle states. Physically this means that the
state vector describing a state of just a single particle
is independent of the time —this state persists for all
times. One describes stable particles. The physical and
bare particles are always the same. Even though in
such theories there can be no vacuum polarization,
no self energy effects for a single particle, if states
involving more than one particle are considered,
virtual (reactive) effects can occur and they do have

4 This point was clariQed in an interesting discussion anth
Dr. M; Peshkin.

observable consequences. As one might anticipate,
certain of the mathematical features of these persis-
tent theories are a good deal simpler than those of
other theories. Still, a large class of quite complicated
physical systems is included among these persistent
systems, and their mathematical description is far
from trivial. The number of particles need not, and in
general is not, conserved in such theories. All of
ordinary quantum mechanics (also the theory of
potential scattering) is contained in this persistent
framework.

One of the important and interesting questions in
current Geld theory is the extent to which the analytic
properties of the 8 matrix are determined by, or in
turn determine, the dynamical character of a theory.
For instance, one might attempt —within the frame-
work of such persistent theories —to prove the Man-
delstam representation. This should be easier than in
general field theories —but more difIicult than in the
pot, ential scattering case. Conversely, one could at-
tempt to just add the analytic properties as inde-
pendent assumptions and investigate to what extent
the character of the theory is fixed by these assump-
tions. The main purpose of this paper is to provide a
setting in which these questions may be conveniently
studied. This paper is devoted to the development of
a formalism for such persistent theories. One limita-
tion should be mentioned. One of the important
features of the Mandelstam representation is the fact
that the amplitudes of different reactions in which a
number of particles may participate are all described
by the same analytic function. This becomes a trivial
statement in the case of nonrelativistic potential scat-
tering, and almost as trivial in the persistent particle
theories, when the participating particles are all
identical. %hen different kinds of particles —with the
possibility of the formation of bound states between
them —are involved the restrictions imposed by the
Mandelstam representation are much more severe.
Thus the proper type of theory to study in this con-
nection is a many channel theory. Most of the dis-
cussion of these theories is given in a succeeding
paper.

Section 2 contains a fairly leisurely discussion of
the assumptions made. In Sec. 2(a) the usual as-
sumptions are noted; Sec. 2(b) contains an extensive
discussion of the persistence assumptions together
with some immediate consequences.

In Sec. 3 the various elementary consequences of
these assumptions are described. In 3(a) it is demon-
strated that such theories do exist and some examples
are given. In 3(b) the character of the two-particle
states is investigated. Section 3(c) contains a number
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of remarks and some speculations about the general
character of persistent theories.

In Sec. 4 the formal structure of these persistent
theories is described. In 4(a) the reduction formulas,
which are very similar to the relativistic ones, are
derived. Section 4(b) contains an extensive discussion
of the restrictions imposed on the r functions (the
vacuum expectations values of time ordered prod-
ucts) by the persistence requirement. Section 4(c)
contains a derivation of additional asymptotic identi-
ties. In 4(d) the information these identities yield
about the r functions is analyzed.

The final section contains a number of somewhat
disconnected comments and remarks. The fact that
Lagrangian, Galilean invariant theories (for one parti-
cle type) necessarily conserve the number of particles
is demonstrated in 5(a). The extensions of the theory
to many particle types is indicated in 5(b). An ex-
ample of a nonpersistent theory is described in 5(c).
Some comments about unsettled or partially settled
questions are made at the end.

It is perhaps of interest to note, that even though
the formalism set up here was primarily intended for
discussion of problems in field theory, there might
well be other in fact more realistic physical situations
to which the formalism is applicable. The only physi-
cal requirement is really that the entities participat-
ing in the processes can asymptoticaHy be described
as nonrelativistic stable entities with mell defined
masses. This would include a certain part of nuclear
reaction theory as well as portions of the theory of
chemical reaction.

There are other problems, especially in supercon-
ductivity, to which this formalism (by chance) might
be applicable. There one deals with a Galilean in-
variant theory of persistent particles (electrons and
phonons); the number of individual particles is not
conserved. Unfortunately it does not appear that the
persistence notion, which is certainly intuitively ap-
pealing, can be incorporated into a relativistic frame-
work. In such a relativistic theory, the requirement
of persistence (as formulated here) causes the theory
to be free (Sost's theorem).

In nonrelativistic theories, however, the notion
appears to be useful; perhaps some appropriate rela-
tivistic modification will in time be found.

2. ASSUMPTIONS

a. Usual Assumptions'

The following formal description is to be applicable
to systems consisting of uncharged particles of mass
m. These particles can interact with one another;

they can scatter; in the interaction processes, parti-
cles of the same kind may be created, or annihilated.
In this present section it is assumed that only par-
ticles of one kind are involved; certain, not altogether
trivial, modifications need to be made when diferent
kinds of particles are described. (See Sec. 4.) The de-
scription given is in terms of a quantized Geld theory.
In harmony with the program outlined in Sec. 1,
the speci6c dynamical assumptions will be kept to a
minimum. Several of the more general appearing
assumptions have profound dynamical consequences—these will be noted in the sequel. The statement
that the theory describes particles of mass m, is to be
understood in the sense that whenever the particles
are separated by large spatial distances, the particles
behave as nonrelativistic particles of mass m (de-
scribed by a nonrelativistic Schrodinger equation).
Measurements of the momenta and the energy of
these particles can be made in this asymptotic limit.

The first part of the discussion is an adaptation of
the treatment of Lehman, Symanzik, and Zimmer-

man [4] to this nonrelativistic situation. The notation
and method of exposition follows a previous discus-
sion rather closely (Dresden [14]).In this section the
assumptions usually made wi'll be briefly stated, with
a minimum of discussion and motivation. In Sec. 2(b)
the special assumptions characterizing the present
study will be considered in more detail. The assump-
tions are as follows.

I. The field in the sense of quantum field theory
is described by field operators P(x, t) and Pt(x, t).
Operators will generally be written in the Heisenberg
picture. These operators can act on states, written as
N or ~4). These states are elements (rays) in some

appropriate Hilbert space. The domains of the opera-
tors are presumably the complete Hilbert space; in
any case P and Pt shall possess domains which are
everywhere dense in the Hilbert space.

II. The theory is invariant with respect to the
operations of the Euclidean group, ' i.e., with respect
to space rotations, space translations, and time
translations.

The invariance requirement may be expressed in

5 One reason for discussing these well-known axioms once
again is to give partial answers to the criticisms of Stapp [27]
leveled against these axioms. Whereas the axioms are to some
extent arbitrary (as all axioms are bound to be), reasonable
justifications exist; they are not altogether capricious.

6%hen dealing with situations in which diferent kinds of
particles with different masses are considered, it is possible to
require invariance with respect to the Galilean group instead
of the Euclidean group (Hamermesh [26j). In that case one
can have particle nonconserving theories as well as invariance
with respect to the Galilean group. If only one kind of particle
is considered, as in the present section, one cannot have both
such invariance and particle nonconservation. (See Sec. 6.)
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[PI„P] = i a&/r)x, . (2a)

[H,P] = i r)Q/B—t, (2b)
where I'I„. and II are Hermitian operators. Their
Hermitian character follows from the unitary char-
acter of U. (I& rom the existence of an operator U, as
given by (2), no signs ean be inferred. The signs in (2)
are picked in such a manner, that in theories de-
scribed by a Lagrangian, where specific forms for I &

and H in terms of f and Pt are available, II as defined

by (2b), coincides with the energy. ) It is a typical
feature of the abstract Geld theories, that the exist'-

ence of the operators I'& and H is guaranteed by the
invariance requirement. However, no functional de-
pendence of PI, and H on lt and p" is given. As always
(2a) and (2b) may be written as'

P(x, t) = exp {—i[P(x xp) H(t tp)]]

X lt (xptp) exP IiP(x —xp) —iH(t —t, ) ] .

(2c)
III. In any Geld theory (any quantum theory for

that matter) one has to impose commutation rules
between the Geld operators. In relativistic field
theories one customarily demands local commuta-
tivity (Wightman [1], Schweber [5]); operators at
points separated by a space-like interval (x-y)'—
(xp-yp)' ) 0 commute. A. straight forward transcrip-
tion of this requirement to the present nonrelativistic
situation would yield the vanishing of the equal time
commutators:

[4(x,t),lt(y, t)1 = o (x —y)') o, (»)
V(x, t),y'(y, t)) = 0 (x —y)' ) 0. (3b)

In the relativistic considerations nothing is said
about the commutator at the apex of the light cone
where (x-y)' —(xp-yp)' = 0. This same fact is ex-
pressed in (3) by the inequality (x-y)' ) 0.

7 Vectors in three dimensions are denoted by x, the time is
written as xp or t. When x is used it stands for x, t. AB stands
for AB —ApBp Entities such as (A,Ap). or AB do not possess
any special transformation properties under the E&uclidean
group.

the following manner: For every transformation 6 of
the Euclidean group there exists a unitary transfor-
mation of the Geld operators such that

4(6 (x,t)) = U(()4(x, t)U (6) (1a)

4 ((: '(x, t)) = U((:)4 (x,t)U '(G) (1b)
When (1) is applied to the inGnitesimal time and
space translations, the existence of the time and
space displacement operators H and P, (k = 1,2,3)
follows in the usual fashion. H and P& satisfy the
commutation rules

=la
2m

f. 8.f. = 0 8. —= —.——

f+ fs 8tfg ()
83 2m

2m '

(5a)

(5b)

In addition the f's satisfy the orthogonality and com-
pleteness relations:

d'xf (x, t)f~&(x, t) = 8 ~ (6a)

Zf-(x, t)f-*(y, t) = ~(x —y) (I )

The function 6 defined by

(:(x —y, t —t') —= Z- f-(x, t)f-*(y,t')

will be frequently used. There are of course many
ways in which such a set of functions can be picked.
It is convenient (and for strict mathematical argu-
ments essential) that 'these functions shall be test
functions in the sense of distribution theory (Schwartz
[28]), i.e., they should be differentiable infinitely
many times and vanish outside a compact set. (A
special choice of such function is given by Redmond
and Uretzky [26]). Using these smooth functions,
one now defines an average of the field operators by'

(6e)

P (t) = d'xf*(x, t)P(x, t),

P.(t) = d'xf. (x,t)p (x,t) . (7b)

8 5 has been put equal to unity.
9 The location of n on P or P is determined by conven-

ience only; it has nothing to do with co- or contravariant
indices. One could define a smoothed-out operator (p")= f dpgf~(zest)pt(zest), which is distinct from (7b), but such an
operator will never be used in this paper.

In this paper however, a more stringent assump-
tion is made:

[4(x,t)A(y, t)1 = o (4a)
[4(x,t),4 (y, t)] = t'(x —y) . (4b)

It is clear that (4) is different from (3) only in the
value assigned to the commutator at zero separation.
This modiGcation has—as will be seen presently—
profound consequences. The rationale for the assump-
tion (4) will be discussed in Sec. 2(b). For the present
it may sufEce to note that all Lagrangian type Geld
theories (such as qua, ntum electrodynamics) have
commutation rules for the field operators of the type
given by (4).

IV. To formulate the asymptotic condition it is,
as always, necessary to introduce a (complete) set of
c number functions f (x,t). These functions satisfy the
free particle Schrodinger equation':
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From (7a) it follows that

li(x, t) = Q lt'„(t)f (x,t) . (7c)

The operators f (t) and ft(t) will be referred to as
"smoothed-out" operators. The incoming and outgo-
ing particles, are (asymptotically in any case) free
particles. Consequently, they can be described in the
language of field theory in terms of the operators
lt;, (x,t) and p...(x,t) which satisfy"

8,$; (x,t) = 8,$.„„(x,f) = 0, (8a)

8.$;.(x,t) = 8.$.„,(x,t) = 0, (8b)

[4"-(x,f)A -(y, t)] = [0- (x,f)A- (y, t)] = ~(x —y)

Smoothed-out operators similar to (7) may also be
introduced for the in and out fields. From (8) and (5)
one shows immediately that

Bgi./Bt = 8$.„,/dt = 0 . (9)

The smoothed-out in and out operators are time inde-

pendent; P (t) as defined by (7a) is, of course, time

dependent The asy. mptotic condition (Iehman, Sy-
manzik, and Zimmerman [4]) can now be phrased as

This formulation expresses in a more precise manner
the qualitative physical idea mentioned previously:
at large spatial separation the particles behave as
&ree particles. Actually (10) refers to time limits
t -+ +~ and f ~ —~, rather than to spatial sepa-
rations. If, however, no stable new entities can be
formed, the limit at infinite times (positive and nega-
tive) refers to a similar limit at infinite spatial sepa-
rations. The theory is therefore in essence a scatter-
ing theory.

The postulates I—IV, all have some more or less
direct connection with experimentation. They express
the assumption that certain attributes of the field are
at least in principle measurable. In this connection it
is important to note that the introduction and use of
the averaged (smoothed-out) operators corresponds
(in some sense) to the fact that only space time aver-
ages over finite regions can be experimentally meas-
ured. Thus the use of test functions is here considered
to be an essential physical feature, rather than a

c It is demonstrated in many places (SchiQ' [29]) that the
formulation as given by (8) is precisely equivalent to a descrip-
tion of free particles by means of an ordinary Schrodinger
equation —utilizing symmetric wave functions.

device which merely allows a more rigorous mathe-
matical formulation. In quantum electrodynamics
such space time averages are known to be measurable
in principle (Bohr and Rosenfeld [30]).In that theory
one therefore definitely needs quantities of the type
f d' x f (+IF„„I%'); F is an electromagnetic field

operator. It is not certain that in all field theories, for
instance those involving strong interactions, one can
indeed measure these or similar space time averages.
Hence there, the need for a description in terms of
field operators is perhaps not as compelling.

The asymptotic condition IV, expresses (or is in-
tended to express) the possibility of making measure-
ments of momentum and energy on the free (asymp-
totic) particles. These particles are physicct particles,
which must be distinguished from the bare particles
of a Lagrangian field theory. Thus the field operators
are already renormalized. (It was in fact one of the
original purposes of the "abstract" version of field

theory to set up a formalism, which would deal ex-
clusively with "already renormalized" field operators,
physical masses, and physical charges so that no
divergent quantities would enter at any stage. )

Th'e commutation relations, or more precisely the
local commutativity which they express are con-
sistent with the physical notion of causality, but they
certainly do not follow from that requirement. Con-
sequently, one may well have grave doubts about the
physical validity of the specific form of assumption
III. Still if the theory has to be expressed in terms of
field operators at all, some assumption of this general
character appears necessary. There is now a vigorous
school (Chew and Stapp [31]) which contends that
the very notions of field operators, states, and the like
are more of a hindrance than a help in the under-
standing of strong interaction phenomena. If it were
indeed so that, all that in principe/e (not in practice)
were measurable would be the properties of free
particles it would make sense to attempt to elimi-
nate the "in principle" unobservable quantities; so
to say the theory and experiment would only make
contact in these "asymptotic" free particle observa-
tions. Just properties so obtained would be the ap-
propriate ones to enter the theory; field operators and
vacuum expectation values would at best be auxiliary
entities —and certainly not essential. In electro-
dynamics, in any case, one can measure more than
just these free particle properties —thus the field
theoretic concepts there will likely play a role for
sometime to come. Inasmuch as particles which inter-
act strongly can interact electromagnetically as well,
one may well need field theoretic ideas to describe
some of the possible interactions of strongly inter-
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acting particles, even if the strong interaction them-
selves could indeed be described without recourse to
these notions.

Nin = QNa, in: g Pa, in/a, in = 'x f;.(x,t)P;.(x,t),

N(~) —= ZN-(~) -=Z~.(~)S.(~) = 'xp (X,t)lp(x, t).

(14)
(One can obviously define¹,in a manner similar to
(18). It is known from the work of Girding and
Wightman [82] that the commutation rules (11),still
allow infinitely many inequivalent representations.
One can fix the representations of the in and out
operators by demanding the existence of vectors in
the Hilbert space, with the property

P„,;,~0;, ) = 0 alln, (15a)

P,.&~0. &) = 0 all n. (15b)
Moreover, the assumption expressed by (15) also
guarantees the existence of Ni. and N,„, defined
formally by (18) as well-defined operators in the
Hilbert space. (15a) and (15b) thus determine the
representations of the in and out operators. It is
customary to assume in addition to (15a) and (15b)
that ~0;.) = ~0,&). The in and out vacuum states are
identical. This in turn guarantees that the in and out
operators belong to equivalent representations —as
such there exists a unitary transformation which
takes the operators f into f..&. (This transformation
is in fact accomplished by the S matrix. ) In this

b. Persistence Assumptions

From the commutation rules (4) for the operators
and the definition of the smoothed-out operators

f (t) in (7) follow the commutation rules for the
averaged operators:

[4-(~)A p(~)] = ~-p, (lla)

[4-(&) li p(&)] = lli-(&)AP(&)] = o (11b)

It is important to note, that nothing can be said
about the commutation rule of the P operators at
different times [f (t), fp(t')]. The averaged operators
of the in and out fields P, ;. Pp,.„„satisfy the same
commutation rules

[fa, inifpin] [Pa,out&/pout] lap ~ (12)
(This follows directly from [8].) Since the f,;. and

fp;, are independent of the time [9], their commuta-
tion rules are known for all time in contrast, with
those for f,(t) and Pp(t'. ) These commutation rules
suggest the definition of two operators:

paper a much more restrictive assumption in addition
to (15) is made. It is clear that to fix the representa-
tions of the P (t) operators, defined by (ll), one can
again appeal to the analysis of Garding and Wight-
man [82] or Wightman and Schweber [88]. In this
case one would, in order to fix the representation of
the operators f (t), assume the existence of a state
~0,), which has the property that

P (/)i0, ) = 0 all n. (16)

(1b) together with (ll) provides a unique specifica-
tion of the representations of the operators P (t); a
representation by the way, which guarantees the
existence of N(f) as given by (14). The assumption
(16) appears physically quite reasonable; it guaran-
tees that at any t the system possesses a well-defined
vacuum state ~0&), as well as an operator for the total
number of particles N(t). In spite of this reasonable
and general appearance, (16) is a very restrictive
assumption which has specific dynamical conse-
quences. It may well be that the assumption of (16)
for all time is actually in confIict with the equations
of motion. To recognize the dynamical implications
of (16), consider a physical system, where the dy-
namics is given in terms of the time evolution of the
operators P (t) (through an equation of motion, for
example). This allows one to relate the operator
P (/) to the operator P (i'&&) at a previous time. Note
that (16) guarantees the existence of a state j0io),
such that P (tc) ~0«&) = 0. Suppose that for the sys-
temin question" f (/) = P (tc) + c„(t,tc) wherec isa
given c number function of t. In order for a vacuum
state ~0,) to exist [as required by (1b)], there must
exist a state such that P (tc)~0i) = —c (i',, to)~0i), i.e.,
P (t&&) must possess an eigenstate with c a,s an eigen-
value. In order for ~0) to be a proper vector in the
Hilbert space, one must have in addition, that
g ~c (t,t,)~' ( ~. (See Sec. 5, or Wightman and
Schweber [88].) Inasmuch as c depends on the dy-
namics (in the special case discussed in Sec. 5, c
depends on the character of the source), it is clear
that in general the requirement P~c ~' ( ~ can not
be met. Hence, the requirement (1b) excludes par-
ticular kinds of systems and interactions. This simple
example is intended to illustrate the circumstance
that a general requirement such as (lb) has direct
and profound dynamical consequences.

Actually in this paper a further, even more re-
strictive assumption is made, namely, that one can

An example of a Lagrangian system where this precise
relation holds (6xed source scalar meson theory) is given in
Sec. 5. Further details about this example are worked out
there as well.
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define a vacuum state which is independent of time
or that Io~) in (lb) is such that (d/dt) Io~) = 0. It is
clear that this represents a further limitation of the
systems describable by this theory. Vacuum polari-
zation effects, for example, cannot be described by
this scheme.

These considerations may be summarized in the

fifth

assumption:
V. It is assumed that there exists unique states

IO;.), Io, t&, I lo) in the Hilbert space such that

P., ;.Io;. &
= 0 all n,

4...„,IO.„,&
= 0 all n,

|t (t)lo) = 0 all n and t. (17)

(17) is the assumption which will be used in the
sequel. It is perhaps of some interest to show that if
one assumes (16) rather than (17), the existence of a
time-independent vacuum state is a consequence of a
particular form of the equations of motion. For if the
dynamics leads to the result that

(an't. /at) lo, ) = 0 (18)

then, one can always define a time-independent
vacuum state. To show this, note that from (16) one
sees that

(w./at)lo &+ y„(a/at)lo ) = 0, (19a)

hence, using the assumption (18), it follows that

P (t)(8/Bt)IO, &
= 0. (19b)

Therefore, P (t) annihilates the state 8/Btlo, ). Since
one had assumed in (16) the existence of a unique
state lo,) annihilated by the P„(t) (19b) implies that

(8/Bt) Io~ &
=

bello~

& . (19c)
Here b, is some number (not a vector, not an

operator) which could depend on t. A.ctually b& is
purely imaginary for 5, = (0&I(8/Bt)0&&. From the fact
(oslo~) = 1 one deduces that the real part of (0&l 80&/Bt&

equals zero. Therefore b t may be written as

isn't.

Now
(19c) yields the result that for any t

t

lo ) = exp {i dt'&u(t') } Io& .

Here lo) is a time-independent vector, hence the fact
that/ (t)lo,) = 0, for all t, implies that/ (t)lo) = 0,
for all t.

Equation (18) is a useful relation inasmuch as it
allows the possibility of checking the more stringent
requirement (17) once the dynamics of a system is
given. It is perhaps worth observing that if one a8-
sumes that a vacuum state lo,) is invariant under a
time translation, the validity of (16) at one time t

implies its validity at all times. For under a time
translation t' = t + ~, the field operators transform
according to (2c):

P(x,t+ ) = U '( )P(x,t)U( ), (20a)

while

U(r)lo, &
= Io, ). (20b)

(20b) is the assumed invariance of lo&&. Now

f(x,t + r) Io& &
= U 'P(x, t) lo, &

= 0 . (20c)

Thus there exists a state lo,) which is annihilated by
f(x,t + 7) for all 7., hence the same vacuum state
exists for all time.

It would seem reasonable that the formulation of
the requirements to be imposed on the vacuum state
as given by (17) and (18) is preferable over that given
by (20a) and (20b), the dynamical restrictions im-
posed by the requirement of the existence of a
vacuum can be seen more explicitly from (18).

Finally, it follows from (17) in conjunction with

theasymptotic condition (10) that lo;.) = Io) = Io, t&.

Not only are the in and out vacuum states identical
(this is also the case in relativistic theories) but these
vacuum states are identical with the "physical
vacuum. " To see this observe that for any

I
C')

(cly. (t)lo& = o = 1~(clp.(t)lo& = (clp.„.lo&.

(2»)
[The first equality follows from (17), the second is

obvious, the third is the asymptotic condition. ] Since
(21) holds for any state vector C, one has f,;.IO& = 0
(for all n), (2lb) but from (17)f,;.Io;.) = 0, for all n.
Combining this with (2lb) it follows that lo; ) and
lo) can be different by a phase at most. The same
argument can be used to show the identity up to a
phase of lo) and Io..t). The identity of these vacuum
states, represents of course a tremendous simpli6ca-
tion as compared to relativistic field theories. From
this identity of the three states lo) = Io;.) = Io. &,)
it also becomes evident that no vacuum polarization
effects can possibly be described by this present
formalism. (The vacuum state will from now on be
denoted by lo).)

It is easy to check from (11)and (14) that the state
Pt(t) lo) =— In(t)& is an eigenstate of N(t) with eigen-
value 1:

x(t) lp.'(t) lo &
=—x(t) I (t) &

=
I (t) )

= 0' (t)lo). (22)

The final perhaps most restrictive postulate to be
made is now that the one particle states as defined by



410 M. DRESDEN AND P. B. KAHN

P (&)I0) = ln(t)) shall be independent of the time.
Thus the one particle states are assumed to persist
unchanged in the course of time. Stated more
formally —the assumption made is as follows:

VI. The persistence assumption. It is explicitly
assumed that the states f~(t) IO) —= Icx(t)) are inde-
pendent of the time.

(a/ai)Q-'(t)lo) = (a/at)ln(t) ) = 0 (23)

Thus in the present theory there is neither vacuum
polarization nor are there self-energy effects—a
vacuum stays a vacuum —and a one-particle state
remains a one-particle state. It is no doubt obvious
that this is just the purpose of the persistence as-
surnptions. As a 6nal remark it is important to note
that VI and the asymptotic condition imply the
identity of the one-particle in-states, the one-particle
out-states, and the general one-particle states. The
one-particle in-states are obtained as P~, ;.IO) —= In;.).
ln;.) is obviously (9) independent of time. If C is an
arbitrary state, one has from the asymptotic condi-
tions

»m (~II-'(i) 10& = (~II-, '-I0& = (C'I ~'-)

On the other hand, from the persistence condition

lim(el/. (i)IO) = lim(el(i. (i)) = (Cln) .

Hence one has that for all C,

(cln;. —n) = 0 . (24c)

This implies the equality of ln) and l(i.;.&. The identi-
cal argument shows the identity of In) a,nd l(i...),
hence the identity of the one particle in and out states
follows. Physically the identity of these one-particle
states follows immediately from the persistence con-
dition: if one-particle states remain unchanged in the
course of time it is clear that one-particle incoming,
outgoing, and intermediate states must all be the
same.

The further discussion will be concerned with sys-
tems which satisfy the conditions I—VI.

3. ELEMENTARY CONSEQUENCES:
MISCELLANEOUS COMMENTS

R. Examples

Before embarking upon a detailed investigation of
the consequences of the axioms I—VI, it is well to
check whether worthwhile physical systems can be
expected to satisfy the postulates. Indeed it might
appear that the assumptions made are so stringent
that only very trivial systems can be described by

them. This is actually not the case, quite complicated
systems are included among these "persistent sys-
tems. " One can show that a sufhcient condition for
the persistence axioms (V and VI) to be satisfied is
that the Heisenberg field operators P(x, t) satisfy an
equation of motion of the form"

d'xf„*(8.'+) . (27a)

Here (5) has been used, two spatial partial integra-
tions" were carried out. Similarly,

i d xf„(8.&)—BP
(27b)

It is now very straight forward to show that if the
field operators )t satisfy an equation of the general
character (25), the persistence conditions (18) and
(23) follow.

1i' 8 is always defined by (5s, ) S, =——.———.
Bk 2'

I3 The f functions are supposed to be obtained in such a
manner, , that the out integrated parts, in the partial integra-
tion may be put equal to zero.

(25a)

It should be noted. that all that is essential in (25a) is
the 8P operator on the left side and the location of
Pt and P on the right hand side. F(g,gt) can be an
arbitrary functional of lt and pt. Actually expressions
for 8$ of the type

sA'( &) X= f &()(Ãt($)F(4 A)4((')&(~ —t —i')

(25b)
where K is, a c number, possess the general character
of (25a). (25a) indicates the general structure of the
equation of motion. The result, that if (25a) holds, the
system is persistent, is correct for all such general
expressions no matter what I' is. %hat is to be shown,
is just that (25a) implies the two persistence conditions

(8$ /Bt) IO) = 0, (8/Bt)ptl0) = 0. To show this, start
from the observation that P (t) IO) = 0, hence by (7c)

P(x, i)I0) = g.f.(x,~)y.,(i)lo& = 0. (26)

IIt is important to again note the difference between
the relatistic and the nonrelativistic situations. In
the relativistic case the field operator A(x) possesses
both positive and negative frequencies, hence
2 (x) IQ) & 0 (0 is the vacuum) this is different from
(26).] From (7a) one sees by straight differentiation
that
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tonian is a Hermitian operator. This is the reason
that (30) is actually the simplest particle noncon-
serving persistent theory. A term in II of the type
ff f"P Vf is a particle nonconserving term alright;
it would produce a term f QtV(xy)p(y) in the equa-
tion of motion, which is persistent. But the Hermitian
character of the Hamiltonian requires the presence
of an additional term ff dxdyftVQQ in the Hamil-
tonian. This term in turn produces an additional term

f dyV(xy)~ in the expression for (8.&) in the equa-
tion of motion. This clearly does not agree with the
requirement (25), hence such a theory is not in
general a persistent one. (It is well to note that the
condition (25) is a sufFicient condition, it is probably
not a necessary condition although this so far is un-

proven. ) These examples should sufFice to demon-
strate that Lagrangian persistent systems do exist.
All nonrelativistic, many particle systems interacting
via two, three, or n body potentials are included. In
addition the persistent systems include nonlocal
potentials, as well as systems interacting in a manner
in which the number of particles in individual events
is not necessarily conserved [see (80)]. Thus there
exists an extensive class of persistent systems. Some
of them might be of considerable physical interest.

b. Simple Properties, Anti-Jost Theorem

By assumption (VI) P~(t) lo) —= ln) is time inde-
pendent. It is important to note that P~lx(t) lo) is an
eigenstate of E(t), but it, itself is a time dependent
state. For

4 (x,t) lo) = g.f.*(x,t)y.'(t) lo) —= g.f.*(x,t) I ). (31)

Thus, f"(x,t)lo) is actually a superposition of one-
particle states Xln) = ln), with time dependent co-
eKcients. Whereas Pg(t) lo) is by assumption inde-
pendent of the time, the state P (t&)PJ(t~) lo) is a two-
particle state, an eigenstate of the number operator
X(t), which depends on t~, but not on t, To check.
this it is only necessary to observe that Ppt(t, ) lo) is
independent of t2, therefore, one can pick for t2 any
time value convenient in Pp~(t2) lo). Therefore,

4.'(t, )Ap(t, ) lo ) = 4.'(t, )Ap(t, ) lo ) . (32)

Consequently, N(4) (P (t&)fp(t, )lo) may be directly
obtained, indeed P (t&)gp(t2)lo) is an eigenstate of
X(t,) with eigenvalue 2. It is a two-particle state.
Thus f (t&)gp(t2) lo) depends on one time only; it is
occasionally written as lnph). In a completely anal-
ogous fashion one sees that f (t&)PJ(t2)g, (ta) lo)

f~(t, )gp(t, )$7(t,) lo). No further simplification is
possible; P~t(t, )lo) = ly) is a one-particle state,
Ppt(t2)g~t(t&)lo) = lPyt2) a two-particle state at t2.

Nothing special is known about the action of f„(t&)
on a two-particle state. Hence, P (t&)fp(t2)P„(t8) lo) is
not in general an eigenstate of the number operator,
neither at time t&, nor at time t2. A state such as

P (t&)gp(t&)P, (t3)lo) or any more complicated state,
in general, is not a state with a deGnite number of
particles. (In general means t& A t2 W t3.) The only
general state where the number of particles is definite
is a two-particle state P (t&)Pp(t&) lo). In this connec-
tion just as f (x,t) lo) is a superposition of one-particle
states (31), one has

g (x~t~)4' (x2t2) lo) = g f~(x~t~)f p(x2t2)P~(ti)fp(t2) l0)
a, P

= Q f.*(x,t&)fp(x, t2) lnpt, ). (33)e, P

Thus, P (x,t, )P (x,t2)lo) does depend on two times

t&, t2,' lnpt), of course, depends on 4 only. It is easy to
check that P (x&ti)P (x2t2) lo) is still an eigenstate of
X(t~) with eigenvalue 2.

The simple properties of the one-particle states
are of course reHected in simple expressions for some
of the vacuum expectation values of ordered or un-

ordered products of field operators. It is of interest
to recall the result of Jolt proven for relativistic
fields. Within the framework of relativistic Geld the-
ory Jost [6] proved that if (OlA(x)A (y) lo) equals the
free field value, "then'the theory is free. Here A is the
(relativistic) Beld operator. The phrase, "the theory
is free, " means that the field operators A(x) satisfy
a Gorden Klein equation: ( —m')A(x) = 0 and
the commutation relations between the field opera-
tors are again those of a free Geld of mass m. This re-
markable result therefore shows that effects of inter-
action in a relativistic theory are necessarily present
in the second Wightman function (OlA (x)A(y) lo) (or
the two point Green's function). This result is in
striking contrast with the situation under discussion
in this paper. Instead of the result of Jost in which
the second Wightman function must show some
effects of the interaction, in the persistent theories
the second Wightman function is always the one for
free Gelds no matter how complicated the actual
theory is. This result, which might well be called the
"anti-Jost theorem" is an immediate consequence of
the persistence condition. First write the free Wight-
man function:

w'"' —= (oil'. (x)4'-(y) lo)
= g, f, (x t )fp(yt )(olp. „A'p„,lo)
= g.f„(x,t, )f*.(y, t,) = &(x —y, t, —t, ) .

(34)
Thus the second Wightman function is the same as the

second Wightman function for a free, 6eld with mass m.
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The definition (6c) has been used for the last equality.
The commutation rules of the lt „,coupled with the
definition of the vacuum (V) lead directly to (84).
The calculation of the actual wightman function
proceeds in the identical manner: using the develop-
ment (7c) one has

w ( v) = (OI4 ( t )4'(yt )lo&

= g , pf (x,t )f*(y t )(oltt'. (t, )tt,'(t.)lo& .

(85)

Now tt p(ts) lo) is a time-independent state, in fact a
one-particle in state (24c). Similarly (Olp (t,) I—= (n&I. Hence the scalar product (Olp (t&)f)(ts)lo)
= 8 p. This reduces the actual Wightman function
Ws(x, y) to the free Wightman function, as a glance
at (84) will show.

There are apart from W(1,2t) = (OI1,2tlo& actu-
ally three more twofold Wightman functions" W(1,2),
W(lt, 2), W(lt, 2t&. These all vanish by virtue of the
vanishing of p(x, t) Io), or (ollt't(x&t) I.

There are eight threefold %ightman functions. All
vanish. Some vanish by virtue of the relations just
quoted. There are only two which do not vanish in
this obvious manner. Consider, for example,

W(1,2,3 ) = (Olp(x, t, )l2 (xs4)tt (x.ts) Io)

, p f~(x.ts)fp(x, ts)(olp(x&t&) P.(ts)tt'p (t,) Io) .

(86)

Since Pp(ts) Io) is independent of the time, one may
write the scalar product in (8b) as

«I&("t.)~-(t.)~p(t. ) lo) = (ol~("t.)~.(t.)~p(t. ) lo&

= (Oltt (x,t, ) lo&tl. p + (Ollt (x,t, )pp(t, )tt. (t.) I0) = 0.
The commutation relations (11) have been used.
Thus W(1',2,8") vanishes. In the same manner one
shows that W(1,2t8T) vanishes.

There are (2') or 16 fourfold Wightman functions.
Some of those are again obviously equal to zero

(by virtue of lt(x&t)lo& = 0, or (olf (x&t) = 0).
The remaining ones are W(1,2,8,4t), W(1,2,8t,4t),
W(12t,84t), and W(12t, 3t,4t). Of these W(1,2t, 8t,4t)
and W(1,2,3,4") are zero again. As proof, this last
function may be written as

W(1,2,8,4 )
= Z-pf-(»ts)f p(x4t4)(Olla (»t~)4 (»ts)~t-(ts)A(t4) Io) ~

(87)

~7 As stated before x, often stands for x1xo. It is convenient
to write functions such as (0 (P(xqtq)P~(ysts) 0) as (0

~
1,2~ (0).

This is often done in the sequel. They are a so often denoted
by W(1,2 ). This is an obvious and convenient notation.
W(x,yt) is also used.

The scalar product ( ) in (87) may be written (using
the persistence condition) as

(ol~("t.)~(.t.)~.(t.)~l(t.) Io&

= (ol~t (x,t, )~t (x.t.)p. (t.)it p(t. ) lo)

= (Ollt (x,t, ) it (x.t, )tt p'(t. )P.(t, ) IO)

+ 8 p(ol&(xgtr)tt (xs4) Io) = 0.
This derivation in fact shows that any Wightman
function of the form W( ~ Ann ) = (Ol ~ 2mn Io)
= 0. On the other hand a %ightman function of the
type W(l 2mtnt) = (Of . 2mtn IO) is in general
not zero, irrespective of the number of annihilation
operators which precede the m, tnt. This originates
from the fact that the application of mtntlo) creates
a state of the type already indicated in (88)—a time
dependent mixture of two-particle states. The general
character of such a W function is (Ol P„(t„)-
tt~(t&)tt J(ts) lo). Since the commutation rules for un-
equal times of tt„(t„) and P~&,(t~) are not given, this
expression can in general not be reduced any further.

The only nonzero fourfold Wightman functions are
W(1,2,8t 4t) and W(1,2t 8 4t). Using the persistence
conditions in the same way as before; the following
results are easily obtained:

W(1,2,84 ) = g(x, —x»t, —4)G(xs —x„ts —t4)

(88a)

W(1,2,8 4 ) = Q f~(x, t, )fp(x, t, )f„*(x,ts)f„*(x4t4)

(OI4. (t, )tt p(t. )lt'„(t,)lt'„(t,) lo&. (88b)

This last Wightman function is the first one, which
in any way reflects the character of the system. Ws
was shown to be always equal to the free-field %ight-
man function. All threefold vacuum expectation
values vanish, W(1,2t,3,4t) is a product of free-field
functions. The vacuum expectation value occuring
in (88b) depends only on two times ts and ts. In a
physical situation where a number of particles are
interacting via potentials, the W(1,2,8t 4t) function
would explicitly depend on those potentials.

It was pointed out on several occasions, that noth-

ing is known about the commutation rules of the
operators P (t) and t2 p(t'), or ftp(t'). It was this fact
which precluded a further reduction or simplification
of the fourfold Wightman function, for example.
Actually something is known about these commuta-
tors—but it is of a rather negative character: If the
commutators of P (t), Pp(t'), ftp(t') are c numbers, the
theory described by such operators is necessarily a
theory of noninteracting particles, a free theory. Thus
the inability to commute the destruction operator
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Ps(t2) in (88b) with P~(t&) and Pt(t&) is not merely a
lack of knowledge. If equations of motion were given,
one could in principle perform such exchanges. How-
ever, the theorem just stated, asserts that in this
process new operators would appear; only if the
theory were a free theory would just e numbers occur
in this commutation process. This circumstance
Inakes an explicit evaluation of Wightman functions
easy in that case. In the cases of interest however,
this simplifiction can not possibly occur. The proof"
of the result just announced is conveniently split into
two (simple) parts: (1) If the operators P (t), fs(t'),
f&(t') satisfy c number commutation rules, then these
t."numbers are the same as those giving the com-
mutators of free Gelds. Formally, if

[f (t),Pp(t')] = C s(t, t'),

IA(t)A ~(t )] = C-s(t t )
with C and C' c numbers, then

(89a)

(89b)

(ol [0-(t)4 s(t')] Io)
= (ol(y-(t)4 (t') —& (t')&-(t)lo) = o.

(l 7) has been used. This shows that C s = 0.
From (89b) and the fact that C's(t, t') is a c number
one sees that

(ol[p. (t),pp(t')]lo& = c.', (t, t') = (olp. (t)p', (t') lo) .
(89d)

One can now again apply the persistence condition;
fp(t') Io) in (89d) is a one-particle state independent
of t' Thus one m. ay pick t' = t in (89d). An appeal
to (lla) shows immediately that C's(t, t') = B s.
Hence if the commutation rules are t. numbers one
has necessarily that

[P.(t),fp(t')] = 0 for all t and t', (40a)

[P (t),/It(t')] = 8 s for alit and t'. (40b)

Next one shows that (40) implies that B$ /Bt = 0.
To show this it is best to invoke the asymptotic
condition. From (40a) one sees that

lim (C [P.(t), Ps(t')]4) = 0 for all C and + .
tI —+ e) 41a

I8 It probably goes without saying, that the basic postulated
I—VI of a persistent theory, are all made in this case.

C p(t&t') = 0, C'.p(tit') = &.p. (89c)

Proof. It follows directly from (89a) and from the
fact that C e is a c number that

(ol[4-(t)A~(t')]lo) = c-~(t t') .
But it is clear that

Applying the asymptotic condition (lob) one obtains

(42a)[P.(t),Pp, ;.] = 0.
A. similar relation is obtained from (40b)

[4' (t) A, '-) = B u (42b)

Now differentiate both (42a) and (42b) with respect
to t, this yields

[B$./Bt, gp;.] =
, 0 for all P,

[BP./Bt, gp, ;.] = 0 for all P .

Thus BP /Bt commutes with aLL operators Ps„., and

P&~„.. Therefore BP /Bt is a c number, call it C".Since
BP /Bt is a c number: (OIBQ /Btlo) = C" = B/Bt

(olp Io) = 0. Hence it has been demonstrated that
if the commutation rules of P (t), Ps(t'), P~&(t') are c
numbers, BP /Bt and also Bg/Bt (the proof follows the
identical pattern) vanish; both P and f are inde-

pendent of the time. To complete the proof that the
P's indeed do describe a free field, write the expansion

f(x,t) = P P f (x,t). Since P is independent of t,
one has 8,$(x,t) = 0. [(5a) has been used. ] Thus, f
satisfies the Geld free equation; the free particle
commutation rules are guaranteed by (40). This
completes the proof of the q number character of the
commutators, for any nontrivial (i.e., nonfree)
theory.

[P(x&t),f (yet)] = 0 for x W y. (48)

This commutation rule is actually the proper
transcription to the nonrelativistic situation of the
vanishing of the commutator for (nonzero) space-like
separations in the relativistic case. In principle noth-
ing is stated in these relativistic situations, about the
behavior of these commutators at the point x = y.
It is known from the examples in Lagrangian fMM

c. Remarks and Speculations

The differences between a relativistic theory and a
nonrelativistic persistent theory are of course im-
mense. This difference starts in the very beginning
of the development. It was possible in the nonrela-
tivistic theory to define a time dependent number
operator X(t) = P f"(t)P (t) (14). The eigenvalues
of this operator are 0, 1, , etc. In the relativistic
theory such operators can be defined for the asymp-
totic fields (the in and out Gelds) but, not for the
interpolating fields. The possibility of defining
and using the X(t) operator, in turn depended on
the assumed equal time commutation rule (4):
[P(x,t),Pt(y, t)] = B(x —y). This is distinct from the
less restrictive commutation rule (8) which just
states that
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theories, that singularities occur at those points.
Even though the statement [P(x,t),Pt(y, t)] = 0 for
x & y, it does not rigorously imply the commutation
rule [it (x,t),Pt(y, t)] = B(x —y) [it was already men-
tioned previously that (4) is a more stringent asymp-
totic than (31)]; still within the general frame-
work of field theory assumed here, this is "practi-
cally" the case. If one assumes that the commutator

[it (x,t),f (y, t)] is a distribution (this is clearly a re-
strictive assumption), which is zero for x Q y, a
theorem of Schwartz [28] may be invoked. This
theorem reference [28], [Vol. I, p. 99, Theorem
XXXV] asserts that if a distribution is nonzero at
x = 0 only, it may uniquely be written as a Pnite
sum of 8 distributions and derivatives thereof. Using
this theorem it follows that

Iap
~ Pxf. (x,t)

(44 )
2

~j s g 8 fpI p: d xf (xgt)

It is clear that I'
p defined in (44b) is again a c

number if the coefFicients are c numbers.
It is important to observe that the commutation

rule (44b) for the averaged field operators it (t),
again allows the construction of a number operator
iV. (t) = 4'.(t)4.(t).

In the special case in which one would pick plane
waves for the f (a choice which mathematically is

is The usual summation convention is used. (i = 1,2,3.)
2o If one assumes that the coefBcients are c numbers, one

may put c, = 1 in (44a). This has been done in (44b).

f~t (x t), 0 (y t)] = 2-= c-(t)~"(x —y) (44)

Here 6 &"' stands for the nth spatial derivative. Written
more explicitly (44) reads":

[it(x, t), it (y, t)] = c.8(x —y) + c, (8/Bx;)b(x —y)

+ c,, (cl'/Bx;Bx, )h(x —y) + .

(44a )

In (44a) the c's ean depend on t, they could in princi-

ple be operators. If it is assumed that the equal time
commutators are c numbers, the coeflieients in (44a)
have to be c numbers as well. On this basis, one can
again calculate the commutation relations of the
averaged operators p and it~&. Instead of the previ-
ously obtained result (1la) one now obtains":

[4.(t),A'(t)] =—r.p
= S.p q c,r.'p + c,,r."p + . . . .

(44b)

Here the I"s are ordinary numbers, which depend
on time and on the choice of the set f.

not really allowed), the I"s would all be diagonal and
one would obtain

[4-(t)A p(t)] = ~-pI"«

—= 8.p~l + K,;C; —K.,;K. ,C;; + . . . . (44e)

Here K,; is the ith component of the o. wave vector

f ( t)
~( t'ai o ac

In this special ease the eigenvalues of X.(t) are
integer multiples of I"'.Since X and Xp commute
in this same special case, the eigenvalues of X are
given by gn I".This expression depends explicitly
on the coefIicients c, which characterize the com-
mutator. In the more general situation where the
I"s are not diagonal, but still c numbers, one can
make a similar argument. Presumably the I'

p as a
matrix can be diagonalized by a unitary matrix, so
that BM—' = D diagonal. In that ca,se, P' = BP
and ft' = QtR ' satisfy the commutation rules:

[~-'(t)A p'(t)] = ~-pD- (45)

Hence, this more general situation can be described
in exactly the same manner as the previous one. The
question of real physical interest is, of course,
whether theories built on the commutation relations
(44e) have any different content from those based on
the usual commutation relations (4). It appears that
the constants c would play an important role in such
a theory. It is tempting to speculate on the possibility
of introducing interactions in a theory through a
commutation rule of the type (44a) or (44b). The
constants c would then play the role of coupling
constants. To investigate whether or not interactions
could be so introduced, it is imperative to keep the
free field equations for the Heisenberg operators.
Otherwise one would mix the effect of the presence
of interactions in the equations of motion and the
alteration of the commutation rules. Actually it
would be interesting if one could introduce or simu-

late interactions in this manner, while keeping the
free field equations. Whether or not it is possible
depends of course on what other assumptions are
made. " If one, for example, assumes that the it

operator satisfies a free field equation, as well as an
asymptotic condition, where the asymptotic fields

P;. and P.., satisfy the usual commutation rules; then
if the field P itself satisfies c number equal time com-
mutation rules, these commutation rules must indeed
be the usual ones. This is easily shown by noting that
8„$ = 0 implies immediately that P„(t) the averaged
field is independent of time. Then using the asymp-

~~ The authors are grateful to Professor Fritz Coester for
interesting discussions regarding this point.
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totic condition in the manner indicated on several
previous occasions one sees that I"

p
= 5 p. Thus the

free Geld equations, the asymptotic condition, and
(44) are not compatible. In a sense what one would
like is a time dependence in the c's in (44a) such that
C,(t) ~ l, as t ~+ ~, while C.(t) —& 0 as t —++ ~.
This might appear to be a way to express the fact
that these coefficients in some sense describe the
interaction. Actually this too is impossible as long as
one insists on c number coeKcients c. For one has,
using the invariance condition (2c), that

I4 ("~)A "(y.~)] = c "' "'l4 (xA)4'(y ~.)]~-'""-"
= g C.(to)5"(x —y)

n

Q C.(t)b" (x —y) = Q C.(t.)b"(x —y) . (46a)

(46a) is to be valid for all t and to. Hence C„(t) must
be independent of t. Thus one cannot arbitrarily
prescribe a time dependence of the coefFicients

C.(t). These considerations show that whether or not
theories based on (44) can be constructed depends
crucially on the other assumptions made. The fact
that in such theories with altered commutation rules,
one still can define number operators, points to the
possibility of introducing some kind of persistence
condition. This would in a way be a curious kind of
condition. Referring back to (45) one would expect
that Q')tl0& is a time independent state. p'~ is ac-
tually an infinite combination of the operators P~pR~p

corresponding to the degrees of freedom P of the field.
It might be amusing to investigate such theories, al-
though it is not evident that any one of these notions
and ideas can be readily generalized to relativistic
situations.

4. FORMAL RESULTS

a. Reduction Formulas

It is reasonable to anticipate that the special
assumptions made about the vacuum and one-
particle states will lead to simpliGcations in the
formalism. Some special instances of this general
situation, the vanishing of the threefold Wightman
functions; the anti-Jost theorem, were noted before.
The results to be obtained in this section are mathe-
matical consequences of the assumptions I—VI; the
states which are employed in this theory are many
particle in and out states

4; —= &Y; —=
I

~ n ln)
= (I . ) '(4'-') (4") Io& (4»)

(~)
@out 4 out lpl pl out )

= (~ -'.) '(0.'-'. ) . . . 9'-'*) Io&. (47b)

(Olr(I. . . n) IC,.) = i d'~f. (~)S«(I . . . n, P ),
(48a)

(OIT(1 n)IC;. ' ' ')

d'&.f., (b) . f.,(P.)

X Sp, Sgr(l . n$, &)

(C!;;'Ir(I . . n)IO&

(48b)

e$ 4
"n~f~, (n~) f~, (n~)

X Sgi . . Spic(gi gg, l . . n), (48c)

(~.".-"I~(I ) l~'--")
~k+ l 4 4 4d gyd ggd$g ~ ~ ~

xf-, ((,) . f-,((.)fp, (g ) . . ff, (gi)

X 8g& - 8g). 8g . . . 8(r
X (ni . vi, i . n, 4 4). (48d)

In these reduction formulas the meaning of the
symbols is the same as it was before. "T(l n) is
an abbreviation for the time ordered product of n
operators. (The earliest one in time stands farthest
to the right in the product. ) The l n stands for
the space time coordinates of the Heisenberg field
operators. r(l . n) is the vacuum expectation value
of the time ordered product:.(I. . . n) —= &Olr(I . . . n)IO&

=— (OIT(P(x&t&) . $(xA)IO) . (49a)
' In the identities derived later, some of the detailed me-

chanics, used in deriving the reduction formulas are presented.
These same methods applied to the present formulas would
directly yield the quoted results.

23 It should be noted that the integrals are taken over space
time regions; de = d3xdxo in spite of the nonrelativistic
character of the theory.

These states are time independent. They are eigen-
states of the number operators X;.and X,.&. The m&

in (4») indicates the number of indices among the
n& equal to o.I. This factor guarantees the

norma}ization of C;". if the vacuum states are assumed
to be normalized. One could in principle deal with
states of the type

c'"(&) = (I l. ) '"I:4"(~)] IÃ'(&)] Io& (47 )
Such a state would be dependent on the time, at time
t it is an eigenstate of X(t), in general it would not be
an eigenstate of X at any other time. For the further
discussion the reduction formulas are of paramount
importance. The derivation of such formulas for the
present theory is practically identical with the
derivation in the relativistic situation. (Actually it
is simpler here. ) Thus, just the results are given
here. "
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It is convenient to indicate the creation or destruction
character of an operator in the vacuum expectation
value of a product by a g or gt, appended to the
variable which locates the space time point. This is
done in (48). Thus in (48d) all the ]i Pi, in the
7 function refer to creation operators the ql
all refer to annihilation operators. Nothing (in gen-
eral) need be said about the operators l n, occur-
ring in this same r (48.d) is valid no matter what
kind operators these l n are. But the character
of the g and g has to be as indicated by the notation.
The 8 matrix which is (as always) the overlap of the
in and out states is given by

8(pi ia} (@out I
@ in )

dpi . . d fpdi), . . . dg,f ($,)

f-, (&.)f*,. (n ) f*,(n, )
~t8„, 8„,8(, . 8i,r(g, . . . q„&, . . . (,) .

(49b)

From these results one can observe that the ex-
pression of the 8 matrix in terms of r functions is
apart from trivial modifications, the same as that in
the relativistic theory. Hence as far as these formal
expressions are concerned the persistence assump-
tions do not produce any simpli6cations.

b. ~ System

In the relativistic 6eld theories, one can utilize the
unitarity of the 8 matrix (or the assumed complete-
ness of the set of in and out states) to obtain a set
of nonlinear integro-differential equations for the v

functions. Similar procedures can be used here. It
will be seen that in this case the persistence conditions
give rise to substantial simplifications. To derive this
system of equations, start from the operator iden-
tity'4

Since P(i) ~0) = 0, the second term does not con-
tribute, and one obtains

r(1 . . n, l . . m) = gg(1 —i) e(m —i )
i~=1

X (O~T(1 . . n, l i *
m )}}( /(i )~0)

m

= g 0(l —i ). . . 0(m —i )
jt~1

XQ{0IT(l. n, l . i*m l~'.) {~'.l4 (i)I0)
cx in

The second equality in (51) follows in the usual man-
ner by inserting a complete set of states in the matrix
element. The complete set picked is the set of in
states. Thus ~n;„) stands for the one-, two , and n--

partiele ~n states. The sum in (51) is over all those
states. It is known however, that because of the per-
sistence conditions Pt(it) ~0) is a linear combination of
one-particle states [see (31) and (24c)]. The one-

particle states are one-particle ~n states.

i(' (i ) I
0 ) = g p fp (x t ) Ii(i ) = g p f p (x;t,) I P;. ) . (52)

In (51) the expression {n;,ftj(i)t~0) occurred. Since
the one-particle in states are orthogonal to in states
having a different number of particles; it follows

using (52) that this matrix element is zero, unless

~

i}.;.) refers to a one-particle in state. The summation

P;.which in fact stands for g},(g ~ ~ P,) there-
fore, reduces to a summation over the one-particle
states. Thus (51) becomes [using (52)]

r(l n, l m) =$9(l —i) 0(m —i )
i~=1

Xg(0~T(1 n, l . . . i *m—)[~)f*„(x;).

Now one obtains using the reduction formula (48a)
and the de6nition of the function 6:

~*& T(1 i . . n, l m)P(i) . (50)

The notation T(l n, lt i"* mt) means that
the operator Pt(i) is to be omitted from the product.
Now take the vacuum expectation value of (50).

~4i}(t) =Oift(0; 0(t) = lift)0; 0(t) = 1/2ift =0.

T(1. . . n, l . . . m ) = g 0(l —i ).. . g(m —i )
i =1

X T(1 n, l i m)i( (i )
~f*

r (1.. . n, 1 . . . m ) = ig g(}(1—i ).. . 0(m —i )

f d'&('(& —x,)
t*

X 8ir(l . n, l i m, & ) . (53)

It is clear that (53) is a linear relation. In addition,
(53) is a relation which involves only r functions of a
given order, on the left side r(l n, l m, );it ap-
pears that on the right side, the operator Pt(x;) is
to be omitted, but Pt(&) is to be included in the r
function, so that indeed the right, side involves the
same type r function again. Thus (53) plays the role
of an identity which has to be satisfied in a persistent
theory. The structure of (53) indicates that the
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variables 1 . n play no role in this particular iden-
tity, they just enter as parameters. On the other hand,
integrals and sums have to be carried out over the P

variables. There exists an identity in which the roles
of the creation and destruction operators are re-
versed. This identity is obtained in a completely
analogous fashion. Instead. of starting from (50) one
starts from the identity:

T(1 . n, i m ) = Qe(i —1) 9(i —m )
~*P(i)T(l . . i - nl . . m)

gag(i —1).. . 0(i —m)
X P (i) T(1 . . . ~, 1 . . . i *.. . m ) . (54)

The procedure already described in deriving (53) is
now imitated. When inserting a complete set of
states as in (51) a set of out states is used. This will

require the use of the reduction formulas, in the
form (48c). Putting this together the counterpart of
(53) is obtained:

r(l n, l . m ) = i+0(i —1) 0(i —m )
~*

X drlG(x; —ri)8„r(ri, l . i —n, l m ) .

Equations (53) and (55) are direct consequences of
the persistence conditions. They are integral rela-
tions, valid for all the functions in a persistent theory.

In the simplest case (n = l, m, = l) these identities
become"

r(x, $) = i8(x —$) d'rfG(rl —p)8„r(x,rf), (56a)

r(x, P) = ill(x —g) d'yG(x —y)8„r(x,g) . (56b)

It is already known that in any persistent theory, the
twofold Wightman functions are those of a free field

(35a). In a persistent theory

r(»&) = (0!TQ'(x)4 (5))I0)
= 0( —~)G(* —~), (»)

(35a) has been used. Since the identities (56) have
to be satisfied in a persistent theory it follows that
r(x, $) as given by (57) should satisfy the relations
(56) identically. It is easy to check that this indeed
is the case. A more interesting and as yet unanswered
question is just what conditions have to be added to
the equations (50a) and (50b) so as to make the
solution of these equations unique.

The actual content of the relations (53) and (55)

» The notation in (56) has been changed from that of (55)
and (53).It is frequently convenient to indicate the space time
points referring to annihilation operators P(x) by x in general,
by Latin letters; those referring to creation operators Pt(&)
by Greek letters.

will be studied in the next section in conjunction with
another set of identities the "asymptotic identities. "
¹teadded in proof. The authors have profited from

discussions with Dr. Edwards. The application of
Zimmerman s method to this nonrelativistic situa-
tion was given independently by Dr. Edwards.

Gs(x) = 8(x)G(x) Gs(x) = 0 x, (0, (58a)

G&(x) = —fl( —x)G(x) G~(x) = 0 x, ) 0. (58b)

Using the definition of 8, one immediately established
that

i8,Gs(x) = 5(x),
i8.G~(x) = 8(x),
i8.Gs(~ —x) = 5(~ —x),
i8.G~(j —x) = 8(g —x) . (59)

26 In harmony with the convention adopted in the begin-
ning; x stands for x,xc, s(x) is a four-dimensional s function.
e(x) refers only to the time variable, strictly speaking this
should be written e(xc).

c. Asymptotic Identities

It is clear from the way in which they were derived,
that the identities (53) and (55) depend in an essen-
tial manner on the persistence assumptions. In the
relativistic theory, we would therefore not expect
identities of this type to occur. It is for that reason,
extremely interesting to observe, that Zimmerman
[34] within the context of the relativistic theory has
obtained relations, which although not identical with
the relations (53) and (55), have a remarkably
similar structure. This is somewhat surprising, since
the identity of the states Pt(t) ~0) and Pt, ;,~0) (which
itself is a direct consequence of the persistence con-
dition and which is not true in relativistic theories)
was the crucial step which allowed the simplification
of the nonlinear coupled r system, to a linear relation
involving only one r function at a time. The deriva-
tion of the new relations given here, follows Zimmer-
man's procedure in a general way. Since his proofs
were somewhat abbreviated, and the present situa-
tion is genuinely different, the necessary formulas
will be derived here. It is important to state explicitly
that the derivation of these identities does not in any
way depend on the persistence conditions. The results
obtained here (with obvious modifications) apply to
relativistic theories as well. In order to distinguish
between these two types of identities, (53) and (55)
will be referred to as "persistent" identities, while the
ones under discussion now will be called the "asymp-
totic" or the "Zimmerman" identities.

It is convenient to define in addition to the function
G, given by (6c), two auxiliary functions":
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( b)
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1&'rom (67) and (59) it follows immediately that,

8.,Qs = 8., Qz = 0. (68a)

Furthermore, using the property that G&(x) = 0 as
xo(0, one sees that

lim Q&(x& x„) = lim T(x& x.)
xl to~

lim T(x, . x.)P;.(x&),
zl to

(68b)

lim Qg(xi x.) = lim T(x) x.)
xl so~+ o

lim P.„,(x, )T(x2 . x.) .
zl so +~

(68c)

Strictly speaking, the limits in (68) should be written
in terms of matrix elements.

Finally, one sees from (67) that

Qs —Qg ——i d&G (x& —&)8)T (P,x, x„)

= T(x, . . . x„)P,.(x) —P,, (x) T(x. x.) .

(68d)
(66b) has been used in obtaining (68d).

The conditions (68a) and (68d) determine Qs (and
Q~) uniquely as functions of x&. [The Eq. (68a) for
Q& and Qs are linear in time —boundary conditions
in time are provided by (68b) or (68c)—these condi-
tions suffice to determine Q& and Q& uniquely; (68d)
is in a way a consistency condition, or additional
check. ) It is easy to check that Q& and Q& defined by

Qs(x, x„) = T(x, x.)P;„(x,), (69a)

Qg(xg x.) = P...(x&) T(x2 x.) ) (69b)

satisfy the conditions (68). Since these conditions
have a unique solution, the identities (61) follow via
(67) and (69). This proves (61); the proof of (62) is
identical, it can safely be omitted.

From the identities (61) and (62), the relations for
the vacuum expectation values follow directly. Take,
for instance, the vacuum expectation value of (61a).
From the fact that P;.(x,) ~0) = 0, one sees, by in-
spection, that the identity (64a) follows. In an identi-
cal manner (62b) produces (64b).

Thus all the identities given, have now been
proven. The similarity in structure of the persistence
identities and the asymptotic identities (64) is indeed
striking. If one recalls that Gs(x —t) = e(z —g)G(x—$), one sees by inspection that (64a) and (53) are
different only with respect to integrations over the 0
functions. This of course, causes considerable diA'er-.

ences in the significance of these relations. This will
be studied in the next section.

d. Significance of the Persistent Identities

In a sense the designation "identities" for (53),
(55), and (64) is unfortunate; these relations are
certainly not satisfied for arbitrary functions r(x~

~ ~ x.). On the other hand these relations are
certainly not to be considered as equction8, from
which the r functions can be actually computed.
(From the general character of the theories com-
prised in the "persistence category, " this could
hardly be expected. ) Actually, the persistence identi-
ties, especially when combined with the asymptotic
identities, give general requirements which the
functions must satisfy. These general requirements
have the character of boundary or limiting condi-
tions. To clarify this situation consider for simplicity
the identities which must be satis6ed by the function
r(x, $) "They. are

,(x,~) = ie(x. —P.) d'&G(& —~) 8„.(x,~), (70a)

r(x, &) = ig(x, —&,) d'yG(x —y)8„r(y,g), (70b)

r(x, $) = i d'yGs(x —y)8„r(y, &)

= i d'yg(xc —yo)G(x —y) 8„r(M &), (71a)

r(x,$) = i d'rfGs(ri —$) 8„r(x,rI)

d rfg(go —po)G(rl —$) 8„r(x,rf) . (71b)
It is easy to check (and reassuring) that r(x&P)
= 0 (x&&

—
$&&)G(x —t) indeed does satisfy all four

relations (70) and (71). To study the genera/ nature
of these identities; consider (70b) and (71a) together.
One can make partial integrations in (70a), with
respect to all the variables which are integrated and
which occur in 8„. Thus one can make two partial
integrations with respect to the space variables y,
one with respect to the time variable yp. In the partial
integration, one will obtain an out-integrated part.
It appears reasonable from the character of the f
functions to assume that the out integrated parts
vanish at very large spatial distances. (This will not
be the case at either positive or negative large times. )
Combining this with the fact that 0(f) = 0 for t ( 0
(70b) reduces to a limiting statement:

r(x, P) = 8(xo —g.) lim d'yG(x —y)r(y, &)
gp ~+co

—lim rj'yG(x —y) r (y, P)
NJp ~—CO 72a)

7 This function must of course be the same as e(xc —(0)
6'(x —(); as was proven before. The discussion which follows
is only intended as an illustration of the situation encountered
in general; not as a clumsy way to discuss this particular
function.
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The integrations in (72a) are over all three dimen-
sional space, at infinitely remote (future or past)
times.

The same partial integration process can, of course,
be applied to (71a). The only difference between the
two cases, stems from the fact that 8tGs(x —y)

B(x —y). This causes a cancellation of o (x,$) in
(71a). The remarks made previously, concerning the
vanishing (or nonvanishing) of the out-integrated
parts, apply here as well. In this manner (7la) be-
comes:

0 = lim d'y8 (x. —yo) G (x —y)r (y, &)

lim d'y8(x, —yo)r(y, p)G(x —y) .
(7 b)pe ~—QQ

Since, in this expression, x —= (x,x()) is presumably
finite it follows (if one may exchange the limiting
process involving yo and the integral involving y)
that, the first term always vanishes since xo —y0 is
negative; one obtains

lim d'yr(y, g)G(x —y) = 0
Pp +—00 q72c )

It appears therefore, that the limiting statement
(72c) is another form of the asymptotic identity.
Actually, (72c) is a very mild restriction. For if
r(y, P) just possesses the form 8(yo —go)F, where F is
arbitrary, the limiting demand (72c) is already
satisfied. (As yo —+ —oo for finite Po the argument of
0 becomes negative, hence 0 and thus the integral in
(72c) vanish in this limit. ) Combination of (72c) and

(72a) yields the apparently nontrivial condition that:

r (x,P) = 8 (xo —$o) lim d'yG (x —y)r (y, $)
P o ~+o)

Arguments identical in all details, [using (70a) and

(7lb) ] yield

,(x,p) = 8 (x, —p, ) lim d'qG ()l —p)r (x,rt) .
74Qp +

From the form of these relations, one sees clearly
that they play the role of auxiliary conditions; they
have the general character of a boundary condition.
Another way in which the difference between the
persistent identities and the asymptotic identities can
be seen, is by taking the Fourier transforms of (70b)
and (7la). It is straightforward to take the Fourier
transf orm of (71a) .

One only needs to define the Fourier transforms of
7. and 0 in the ordinary manner"

r(x, p) —= dpdk exp Iipx —ik&}r(p,k) (75a)

o*(z) —= fdic exp ((pz}G (y). (75b)

Substitutions of (75) into (71a), lead at once to the
result that

8(xo) = dt exp Iix()t}q (t), (77)

one checks immediately from (77) and (75b) that

G (p) = d4 (t)G(p, p —t) (77a)

This combined with (76a) gives

7.(p, k) = i(p'/2m —p())7 (p, k) dt(() (t)G(p, po —t)

(77b)

To obtain the Fourier transf orm of the persistence
identities, one proceeds as before; substitute (75) and
(77) into (70b), then using the fact that 8 depends

just on xo, one finds after a short calculation

T (p, k) = i dt(() (t)G (p,p, —t) (p'/2m —po —t)

)& 7 (p,po —t,k, k() —t) (78)

A glance at (77b) and (78) shows again that they
express different limiting properties of the Fourier
transf orms of the ~ functions. To study this in more
detail would obviously require a more careful han-
dling of the limiting processes which are implicitly
involved in (78) and (77). This will be discussed in a
later paper. The persistent identities are perhaps the
most typical feature of persistent theories.

28 In the succeeding discussion all factors 2m. , i, are omitted.
The purpose of the calculation is only to show the general
form of the relations obtained. The detailed analysis of these
relations (which is in fact pretty tricky) will be given on a
later occasion.

Note again that numerical factors are omitted. It is
important to remember that 0 depends on one variable only.

7.(p,k) = iGs(p) (p /2m p )r(p, k) . (76)

If one works with the general asymptotic identity
(64) rather then with (70), one obtains instead of (76)

PV

7'(. p' ) = iG (p') (p'/2m —p'. ).( . p' . ).
(76a)

The expression written here, also the later ones in
this section, have only a formal significance Many
of the Fourier transforms used are actually singular.
Their precise treatment takes considerable care. The
expression (76a) is valid (in this formal sense) for
any p variable p;; in the functions r (A. p v. ariable in

is one which corresponds to an x variable in
which in turn corresponds to an operator })t'(x) in the
time ordered product. A. k variable in 7, corresponds
to an operator Pt in the T product. )

If one calls the Fourier transform" of 8(x)
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5. EXTENSIONS, CLARIFICATIONS

AND FURTHER DISCUSSION

a. Unitarity Condition

The persistent identities for the r functions are
linear. This, as has been mentioned a number of
times, is in striking contrast with the relativistic
situation, where the corresponding relations are non-
linear. In fact the nonlinear relations between the ~

functions in the relativistic theory are often referred
to as the unitcrity conditions. It is clear, that since
the 8 matrix can be expressed in terms of r function,
the unitarity of the 8 matrix SS" = 1, will give rise
to nonlinear relations between the v. functions; again
in the relativistic case, it can be shown [5] that the
relations so obtained are equivalent to the ones ob-
tained by starting from the operator identity (50).
In the present case, the 8 matrix is still unitary.
(This fact follows at once from the assumed com-
pleteness of the in and out states. ) Hence, via the
reduction formulas, the unitarity must result in a
nonlinear relation between the v- functions in the
persistent theories, as well. The use of the operator
identity (50) leads to perfectly valid identities for
the persistent theories, but the unitarity is not
expressed thereby. To obtain this set of nonlinear r
equations, one could just substitute the explicit
expression for the 8 matrix in terms of the r functions
into 88 = 1. Here a slight variation of this pro-

cedure will be used —an adaptation of a method due
to I ehman, Symanzik, and Zimmerman is most con-
venient. Start from the identity,

Ze (~lp)(plQI» = (~IQI». (79)

= 0(1 —2) Ze(~la(x)lp)(pl& (x)I»
+ 0(2' —1) ge &~14'(x,) IP&(PIN(x, ) I». (80)

Next, pick for ~n) a le particle in state ~n~ n2 in);
pick for

~ y) an m particle in state
~
y&

.y in). The
complete set ~p) is chosen as the complete set of all
out states ~p& p~ out) with l = 0, ~.The summa-

tion over p) in (80) is therefore g&Q e& get). With
this choice of ~a), ~p), and ~», one sees that the
typicalformof thetermin (80), (n~P) = (n& . n i 2~Pn,

p& out); this is just an 8 matrix element; it can be
directly expressed in terms of 7 functions by means
of the reduction formulas. The other terms in (80)
may be expressed in the same manner. The structure
of (80) is such that the summations over p& may be
carried out. After some manipulations one obtains:

(79) is valid for any states ~n) and ~»; the sum p
must be over a complete set. Q is any operator; pick
for Q the time ordered product T[f(x~)f (x,)]. Then
(79) becomes, upon expansion of the right-hand side
and the insertion of a complete set

dye dy2dg& ~ dE (d(g dgdy( ~ dy f~g (y~y ) f~2 (y2)fry (y ( ) f (yr)~
G(&i —$i) G(&i —g)S„i 8„28), . 8))8'„, . 8'„Sg, Sg.

/ / ~ / /[r ($, . $(,y, . . . y2)r($, . &(x)x2y, y„) —0(1 —2 )r (f, . - $,z,y, y2)
/ / 1

r(&i . $(x2 y) . . y ) e(2 1 )r (t, g(x2y, . y, ) r(&, $,x)y( . . y )] 0. (81)

(81) is true for all n& a2 and y& y; since the f's form a complete set it follows that one ends up
with the following system

1 / 1 /dt, d&(d&, . dj&G(&, —
&, ) . G(t( —&()Sg, SgtS„, 8„28„, . . . S„SP, . . . 8(&

[r (fi $,y, y2)r($, $,1,2 y~ . y„) —g(1 —2 )r ($i P,zygo . y2)
/ 1 t /t /~

(5 - ~xy y-) —0(2 —1) (&
/ / t /~ /~ / / /t /t

tl& 2yxl ' ' ' yh) r(fl ' ' plxlyl ' yen)] 0 (82)

This set of equations (82) expresses the unitarity
condition. Its nonlinear character is no doubt ap-
parent. The time independence of the one-particle
states, causes a certain amount of simplification in
this system (82), but only for the small l terms in the
series. The anticipated nonlinear character remains.
It would appear that an effective use of (82) in any
manner different from a perturbation or iteration

method is as difEcult here, as it is in the relativistic
situation.

b. Euclidean and Galilean Invariance

It was mentioned in the introduction, that the
particle nonconserving theories considered in this
paper, can only be invariant with respect to the
Euclidean group; not with respect to the Galilean
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group. Invarianee, with respect to the latter group,
implies that the number of particles is necessarily
conserved. Even though this fact is a direct conse-
quence of rather deep group theoretical results,
Bargmann [25], more or less heuristic and elementary
arguments may be presented to demonstrate this
connection. The 6rst point to note, is the behavior
of the ordinary nonrelativistic Schrodinger equation
under Galilean transformations. Let G be a special
Galilean transformation x~x = x —ut. Suppose
X(xit) and X'(xit') both satisfy the Schrodinger
equation as functions of their respective variables.
Then the c number functions X(x,t), X'(x', t') are re-
lated by the transformation:

X(x't') = exp {—im[ux' + (1/2)u't']}X(x, t) . (83)

The presence of this phase factor, is essential;
without it, X' and X would not both satisfy the
same equation. Note further that this phase factor
depends on x and t Since .clearly X'(xit') = X(x,t)
one ean say that the Schrodinger wave function is
not a scalar under Galilean transformations.

To study the effect of Galilean transformations in
a quantized field theory it is convenient to develop
the field operators f(xit) in the usual fashion; how-

ever, the smoothing functions f (xit) are taken to be
plane waves":

f (x,t) = exp [i(p x —E t)]
=—exp {mi[v.x —(1/2) v.'t] } . (84)

Here p,E,v are, respectively, the momentum,
energy, and velocity of a free particle of mass m,
having f as a wave function. If one develops the
free field operator f;,(xit) in terms of these functions
f;„(x,t) = P f,;.f (xit), the operators f, ; are (as
always) time independent. f;.~0) is a one-particle
state, of a free particle having a velocity v . The
simplest way to introduce Galilean invarianee, is by
requiring that for every Galilean transformation G,
there exists a unitary operator U, such that

(85a)

(85b)

The first requirement merely states the invariance
of the vacuum. (Gn) in (85b) specifies the free-
particle state which results from the state n, from
the application of the Galilean transformation G.
Thus, in the case that 6 is the transformation x'
= x + ut, (Gu) refers to a state where the particle
has a velocity v + u. The requirements (85a and b)

3o No normalization constants are written.

express the transformation properties, which one
can on physical grounds expect from the vacuum and
one-particle states under Galilean transformations.
Using (8.5a) and (85b) and the development of
f;.(x&t), one observes that

U|t;.(x,t)U
'

= g P&g ~„.exp {mi[v x —(1/2)v't]} .
Consider the transformation G:

(86)

UP;. (x,t)U
' = Q ~ P

exp {mi[v x —(1/2)(v )'t]}
exp {—im[ux + (1/2) u't] }

= exp {—im[ux+ (1/2)u t]}f; (x't') . (88)

Thus one observes the important fact that in a
Galilean invariant theory, the field operators contain
a nontrivial phase factor in their transformation law.
(The phase factor is in fact the same as that occurring
in the e-number theory. )

The group theoretical basis of the essential charac-
ter of the phases in the Galilean group can be under-
stood on the basis of a result of Bargmann: If one
has a representation U(L) of the Lorentz group, such
that

U(I, )U(L2) = id(L, L,)U(L,L,), (89)

where ~~(L&L2)
~

= 1, one ean by permissible phase
changes, change this into a representation, up to a
factor plus or minus one. A similar result holds for
the Euclidean group; however, for the Galilean group
a corresponding result does not hold. In the Galilean
group the phases co appear; they cannot be removed.
If Gi and G2 are general Galilean transformation (a
represents the space translation, u an acceleration
transformation, r the time translation, 8 a rotation)
then a&(G,G2) = exp (im[uRa + (1/2)u't]) (cf.Wight-
man).

For the present purposes (88) can serve to suggest
the relation between particle nonconservation and
Galilean invariance. Suppose one has a Lagrangian
theory where the Lagrangian L is constructed from
the field operators P(x, t) and iit (x,t). If the theory is
invariant with respect to Galilean transformation,
one must require that for every t, there exists a U

x' = x+ut
t'=t

v.' = v + u. (87)

Call the state Gn = n' (all the characterizations of
the state are denoted by a prime). Then straight
substitution in (86) yields
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Since (96a) must hold for aQ a and u;, it follows that
the integral must be zero for all c if u; g 0, In par-
ticular, the integral must vanish if c = o, therefore,

fd'xd'yd'z exp J
—imu(x + y —z) —(1/2) imu't J

X f P PF = 0 if u / 0. (96b)

But, one recognizes (96b) as Q', which by (93) is the
same as Q. Thus, (96b) states that Q = 0, if u 4 0;
but Q is independent of u, hence, Q vanishes identi-
cally. This shows that a term of the type (92) is
indeed incompatible with the invariance require-
ments. This type of term is one which would give
rise to nonparticle conserving types of interactions.
This kind of argument could be given in general. It
is clear that this is not a very compelling procedure,
especially since the argument which needs to be
given, depends to some extent on the structure of
the terms in question. A more general argument
eliminating the need to investigate terms of specific
character in a Lagrangian would be desirable. "

There is one feature of these heuristic considera-
tions which is of special interest. Consider the same

type of term (92); however, consider the case where

P (xit), f (yit), P(zit) refer to diferent fields with
different masses, mi, m, , m3. In that case the phase
introduced by the Galilean transformation, for the
ease of loca/ interactions (all field operators are taken
at the same space time point) i-s given by

exp [—iux(mi + m, —m, )]
X —exp [—(1/2)iu' (mi + m2 —m3)] . (97)

(The corresponding expression for the case of equal
masses m. is exp( —iuxm. —-', iu'm. ). It now follows

by inspection from (97) that the phases will be
identically zero if only mi + m2 ——m3. In that case
the theory is indeed Galilean invariant. This example
already shows that it is quite possible to have
Galilean invariant theories in which the number of
particles is not conserved, but where in the individual
interaction processes (characterized by such terms
as iitt(x)P~(y)P(z) the creation of two particles and
the destruction of one) the total mass is conserved.
From this viewpoint, , Galilean invariance actually
requires the conservation of mass. In a theory with
only one kind of particle of a Gxed mass present, this
necessarily implies conservation of the number of
particles. It is however, physically more illuminating
to stress the mass conservation aspect of the Galilean
invariance. In the group theoretic treatment this
same result is expressed in terms of the superselection

32 Dr. Hans Kkstein has informed us that he has constructed
such a proof.

lim, „(CIA (t)l+) = (CIA, ;.I@)

l~ --- (c'IB-(t) I+) = (c'IB-.'-I+)
lim „(4IC (t)l+) = (CIC, ;.I%') . (98)

The equal time commutation rules are the usual ones;

[A(x, t),A (y, t)] = [B(xit),B (yit)]
= [C(x,t),C'(y, t)] = S(x —y),

[A(x t),B(y t)] = I:A(» t),C(3 t) J

= [B(x,t),C(y, t)] = 0, (99)

all other commutators vanish.
These commutators allow one to give at each

instant of time the eigenvalues of the commuting
number operators, X& (t)X&s(t)X~~(t). As before
the A, B, C particles are "dressed. " particles (and by
the persistence assumption they will stay dressed the
same way). One now assumes again the existence and
persistence of a vacuum state IO) defined by

A(x, t)IO) = 0

B(x,t)IO) = 0

C(x,t)IO) = 0. (100)

rule of the mass for the Galilean group. The existence
of a state which is a superposition of two states with
different masses, is in conAict with Galilean in-
variance.

The use of the Euclidean group in this paper is
thus directly tied to the model described. If one
describes a number of particles of different masses,
such that the mass is conserved in the various proc-
esses, one can require Galilean invariance and still
have non conservation of particle number.

c. Many Particle Theory

It is straightforward to generalize the formalism
given here to one applicable to the description of
several kinds of particles. Since the applications are
primarily concerned with systems consisting of
several kinds of particles, some of the pertinent
formulas are collected here. The system considered
contains three kinds of stable particles, masses m1,
m2, m3. They are described by fields; the Geld opera-
tors are written as A, B, C. Each field operator is
averaged by appropriate functions, f ~, f s, f c
which satisfy the free-particle equations for particles
of mass mi, m2, m3, respectively. The fields, A, B, C
each have asymptotic fields associated with them

A in, ooti Bio,ooii Cio, out, . These '6'8 field operators
satisfy the field free equations, as well as the field
free commutation rules.

The asymptotic condition is now
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Finally, one assumes the persistence conditions

(8/Bt)A i0) = 0,
(8/Bt)Bpi0) = 0,
(8/Bt) C, i

0 ) = 0 . (101)

Hence, a single A, B, or C particle stays single, each
individual particle persists as long as it is alone.

A sufficient condition for the validity of (100) and
(101) is the validity of

BA "/Bt = (A") FA" (102)

The upper indices (i), (j), (lp) in (102) denotes (1),
(2), or (3) snd A&~& = A A&P& = B A&~& = C F is
an arbitrary functional of A, B, C.

A very simple example of a persistent system would
be one described by a Lagrangian (Lp ——sum of the
free Lagrangians)

L = Lp+ C (x)A (y)F(xgy)A(x)B(y)

+ B (x)A (y)G(x, y)A(x)C(y) . (103)

It is worth noting in this example, that although all
single particles persist, this is no longer for the two-
particle states. (103) describes the processes A + B
—+A + C, and A + C~A + B. Similarly, the
persistent Lagrangian

L' = Lp+ C A FABC+ C B A F AC (103a)

describes the "production" processes A + B + C
—+ C + A; A + C ~ A + B + C. A complete set of
states in the present theory consists for example of
alt the in states:

=— 8(—a, ) (105a)

t&(a; —a, ) 0(a; —bg) 0(a, —c()
= 8(+a). (105b)

The products in (105) contain n + n' + lp + k' + l

+ l' —1 factors [the factor t&(a; —a,) is omitted].
Clearly 8(—a;) is different from zero only if a; . is
the smallest of all the times in the product. 8(+ a;)
is different from zero only if a;,, is the largest of all
the times. With these conventions, one may write
the following operator identities:

T(''') = Z 8(—a' )T(' a' ' )A(a')
i=1

+ g 8(—d;)T( a; )A (a;)
*

+ Ze(—
i=1

+ ge(—

b)T( b . .)B(b)

b, )T( b; )B (b;)

c;)T( c; )C(c;)

points of the creation operators. As written T con-
tains n + n' + k + lp' + l + l' operators; it will be
abbreviated as T( ). In this notation only the
presence, or absence of an operator, diferent from
the original ones will be noted: T( a";. ) is the
same product but for the absence of A(a;). It is also
useful to abbreviate certain sign factors:

0(a, —a, )0(ap —a;) 0(bg —a;) 8(c( —a,)

' ~a,Pi ' ' Pt, Yi ' ''rm&n )
= A~, ;. . A~, . P, ;. BPl i.C'~ i. C, i0).

(104)

c,) T( c; )C (c;) .
)

n

T( ) = Q 8(+ a;)A(a;)T( a; )
i=1

The anti-Jost theorem is unchanged, the threefold
Wightman functions are still zero. In fact, the whole
formal apparatus, including the reduction formulas,
carries over with only obvious modifications, and an
increase in the number of subscripts and superscripts.
The only slightly more significant alteration comes
from the modified persistence identities. The deriva-
tion follows that; given previously. Since the main
problem is one of notation, the following conventions
are helpful. A general time ordered product has the
structure T(A i A„,A J A„„B„B„B,~ B,',

C&, Cf C~&'). Since each one of these field

operators depends on a space time point, the product
can be written as T(ai . . a„&a& a.&,b& . . b&,

bi . b~, c~ . ci, ci cia)
The dotted variables always refer to the space-time

+ Q 8(a;)A (d;)T( a„)*
%=1

q g e(+ b, )B(b.)T(
i=1

+ g e(+ b;)B'(6;)T( 6", )
l

+ Q 8(+ c;)C(cf)T( c; )
i=1

l

+ pe+ (',)C (e,)T(t ~
*

(106b)
One now just imitates the derivation given before;
take the vacuum expectation value of (106a) [just
three terms remain by (100)J, then insert a complete
set of states in the matrix element of the product.
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For the complete set of states one can use the set of
in states given by (104). A typical term occurring in
the result will be (0(F (a'; ) (in)(in~A~(a;(0); here
~in) is a general, in state containing A, B, and C par-
ticles. However, At(a;) ~0) gives by the persistence
condition a mixture of free A type particles. Hence,
the only in states that give nonzero contribution are
the one-particle A in states. Using this; as well as the
analogue of the reduction formulas, one obtains

r( ) = i Q 0(—a„) d'nG&(n —a;)
*

8gr( a; . u)

+i Q 8(—b;) d'pGp(p —b;)
'*

Sear (. b p)

+ i Q 0(—c;) d'yGC(y —ci)
*

Sgr( c; y) . (107)
The 8~ operator is the Schrodinger operator for the
A field; G& =—g f ~(x)f*&(y); similarly for the other
fields. Starting from (106b) one can obtain a relation
similar to (55). The linear character of the persistent
identities is retained in the many particle case.

As in the case of one type of particle, the first
physically interesting r (or Wightman) function is
the fourfold one. The persistence conditions allow
some simplifications there, but the essential features
of the interactions are contained there. It is worth
emphasizing that in spite of the persistence condi-
tions, expressions such as (O~ABAtC"~0) do not
vanish, they describe reactions of the type A + B
~A + C, which are nontrivial physical processes.

d. Example: Fixed Source Theory

It is interesting to observe that some extremely
simple field theoretic models are not included in the
class of persistent theories. The simplest example is
the well-known theory of a neutral scalar field inter-
acting with fixed sources. This theory is described
by the Hamiltonian

H = — d xP (x&t)Af(x, t)
1

2m

+ d'xp(x)(P(x, t) + P (x,t),
)

p is the source function. The equal time commutators
are the usual ones. It is easy to check that the equa-
tions of motion of the Heisenberg operators are given
by

S.P = —p(x) . (108a)
The equations of evolution for the smoothed out
field operators are

8$ /Bt = —i d'xf*(x~t)p(x) —= —ip. (t) (108b)

Both of these equations can be easily solved. One
should recall that p(x) is a given c number function,
p (t) is a known c number function of the time.

|t (x,t) = P„,.(x,t) —i d'yGs(x —y)p(y), (109a)
t

|t' (,) = P (0) —i dt'p (t') —= f (0) —iC (t) .
(109b)

G& is the function previously de6ned. It satisfies
i8.'G&(x —y) = 8(x —y); f&„.is an operator satisfy-
ing S~fipee = 0.

It is easy to see that the equation of motion
(108b), is not of the form (25) which will guarantee a
persistent theory.

That this theory is not a persistent one, can be
seen, in many ways; for instance, one can calculate
the second Wightman function (which is free in a
persistent theory), using (109a)

Wn(x y) = (0lf(x)4'(y) l0)

= Wf...+ dx'dy'p(x') p(y')

Gs(x —x') Gs(y —y') . (110)
From (110) one sees that W2 W W&,.. Hence, the
theory described by (108) is not a persistent one.
Actually, this fixed source theory does not even
possess a persistent vacuum. [In fact since
= 1' d' X P~(x& t ~P~x&t) and II as given by (108)
do not commute, there are in general, no simul-
taneous eigenstates of X and H, hence, the number
vacuum is distinct from the lowest energy state. ]
Suppose one has a number vacuum at time o, that
is a state ~o) so that/ (o) ~o) = 0. If there were a time-

independent vacuum, then one should have, using
(109b) f (t) ~o) = 0 = Q (o) —ic (t)) ~o) = 0. This
would require c (t)~o) = 0; in general, this is impos-
sible. Thus the theory has no persistent vacuum. If
the theory is to have a number vacuum at any time,
(not a persistent number vacuum) one must demand
at any time the existence of a state

~
o&), which has the

property that f (t) ~o,) = 0. One can assume that a
vacuum state ~o) exists at time t = o, so that the
existence of a vector having the property P (o)

~
o) = 0

is guaranteed. Since by (109b) P (t) = P (o) —ic (t),
the question of the existence of a vacuum state ~o,)
boils down to the existence of an eigenvector of P (o)
with a prescribed eigenvalue ic„.Since the vector

~
o)

is a given, ft~o), (P")'~o) (P~) "~o) are all vectors in
the space, they will be written as ~n)& . . ~n + 1).The
action of P (o) and Pt(o) on these vectors is, of course,
known. It is convenient to normalize them so that

f (0)~n) = (n)*~n —1) (illa)
P (0)ln) = (n+ 1)'In+ 1) (lllb)
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Now construct a vector Iu) as a superposition

Iu ) = Q. g. In ) . (112)
The q„are numbers, they are to be fixed in such a
way that u) becomes an eigenvector of P (o) with
eigenvalue ic . Since Iu) is a superposition of vectors
In) in the space, Iu) is such a vector. Hence, if co-
«cients g. can be found such that p (o) Iu) = ic, Iu)
one has demonstrated the existence of a vacuum state
at time t It i.s easy to find such q„. By using (112) and
(lllb) the requirement tha, t P (o)Iu) = ic Iu) tran-
scribes to

Z. v-(n)'In —1)
= g„(ic )g„In ) g.+&(n + 1)' = ic q„. (113)

One Gnds solving this recursion relation for the q' in
terms of g. that

(ic.)"
l0 (t)): U =2

( ~)- 9 In) (113 )
(113a) exhibits the vacuum state Io (t)) as a linear
combination (with prescribed time dependent coef-
ficients in terms of the c's) of the states In).

One can check, of course, that Io (t)) has the prop-
erty that it (t)Io,) = 0. Thus in this fixed source
theory one can indeed always find a state Io (t)),
which satisfies it (t) Io (t)) = 0. It should be stressed
however, that so far one has been dealing throughout
with one degree of freedom, the n one. Strictly speak-
ing, the n's in (111) and (113) should all be n, for
In ) is a state of n particles, each with a wave func-
tion f One get.s, of course, results similar to (llsa)
for all degrees of freedom. Since the vectors corre-
sponding to n particles in state In), and m particles in
state IP) are orthogonal (for all o.,p,n, m), one obtains
for the vacuum state

Io(t) ) = II- Io-(t) ) (114)
Since Io (t)) always exists in this theory, it appears
as if (114) must exist as well. However, Io(t)) should
be a normalizable state. If one calculates the norm
of o&) [using (114) and (113)j one finds that the norm
of o&) is proportional to exp P 'Ic I'. Thus. the exist-
ence of a time dependent vacuum state depends di-
rectly on the convergence or divergence of PIc I'. In
turn, the c's depend directly on the source function p.

available, in addition to the usual machinery. The
use of these identities facilitates the discussion of the
analytic properties, somewhat, but so far, no proof
of the Mandelstam representation has been given
within this framework. Since the persistent frame-
work is rather broad, this would be a substantial
generalization over the existing proofs, for potential
scattering. It would be desirable to include in this
formalism, the possibility of unstable particles.
Clearly such particles could not satisfy a persistence
condition, but it would be interesting, to see whether
such particles, or resonant states, can be incorpo-
rated in this type formalism.

There are many other generalizations which one
could seriously consider, such as extensions to many
channel situations, bound states, etc. But the basic
question which this paper raises is whether the per-
sistence condition (in the form given here or in an
alternate form) is a sensible physical condition for
stable particles. It would appear to express in some
crude way, that one can associate well-defined physi-
cal attributes with a single particle. This seems
physically reasonable for nonrelativistic situations,
and not obviously insane for 8ingte particles (elec-
trons) moving at relativistic speeds. Still, within
the Geld theoretic context, this persistence condition
is compatible only with trivial relativistic theories.
Part of the trouble comes no doubt from the fact
that one also made certain assumptions about the
persistence of the vacuum. Since it is hard (but per-
haps not impossible) to construct a theory where one
has persistent one-particle states, but no persistent
vacuum, it is dificult to disentangle the role of the
vacuum and one-particle persistence conditions. Per-
haps at some future time a relativistic, persistent
one-particle theory with a "boiling vacuum" can be
obtained. Until such time the detailed applicability
of the formalism here is restricted to nonrelativistic
situations. However, as a testing ground for the
study of general aspects of Geld theory, the formalism
might have some value. Some of the applications, a
more detailed discussion of the analytic character
of 8-matrix elements, as they follow from the per-
sistence conditions will be given in a forthcoming
paper.

e. Final Comments; Unsolved Questions

There are a number of questions, which are sug-
gested by the present work, which so far, have been
only partially solved, or which remain unsolved.

An immediate question is whether in a persistent
theory one can prove analytic properties of the 8
matrix elements. One has the persistent identities

1. A. 8. Wightman, Phys. Rev. 101, 860 (1956}.
2. R. Jost, Helv. Phys. Acta 30, 409 (1957}.
3. R. Haag, Kgl. Danske Videnskab. Selskab, Mat. -fys.

Medd. 29, No. 12 (1955).
4. H. Lehman, K. Symanzik, and W. Zimmerman, Nuovo

cimento 2, 429 (1955).
5. S. Schweber, Relativistic Quantum Theory (Row, Peter-

son and Company, Evanston, Illinois, 1961).
6. R. Jost, Field Theory and the Many Body Problem

(Academic Press Inc. , New York, 1961).



FIELD THEORIES. I 429

7. N. Burgoyne, Nuovo cimento 8, 607 (1958).
8. Geoffrey F. Chew, S M-atria Theory of Strong Inter

actions (W. A.. Benjamin, Inc., New York, 1962).
9. G. F. Chew, Ann. Rev. of Nuclear Sci. 9, 29 (1959).

10. G. Chew and S. Mandelstam, Phys. Rev. 119, 469
(1960).

11. H. Lehman, E. Symanzik, and W. Zimmerman, Nuovo
cimento 6, 819 (1957).

12. Peter B. Kahn: Thesis, Northwestern University
(1960).

13. M. Dresden, W. D. McGlinn, and P. Kahn, Bull. Am.
Phys. Soc. 5, 288 (1960).

14. M. Dresden, "Lectures on Abstract Field Theory, "
Summer Institute for Theoretical Physics, Boulder, Colorado,
1959.

15. R. H. Landshoff and S. A. Treiman, Nuovo cimento 19,
1249 (1961).

16. G. Kallen and A. S.Wightman, Kgl. Danske Videnskat.
Selksab. Mat. -fys. Skriffer 1, No. 6 (1958).

17. L. Landau, Nuclear Phys. 13, 181 (1959).
18. R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
19. W. Zimmerman, Nuovo cimento 10, 597 (1958).
20. A. O. Barnt and K. H. Ruei, J. Math. Phys. 2, 181

(1961).

21. A. Klein, J. Math. Phys. 1, 41 (1960).
22. R. Blankenbeder, M. Goldberger, N. Ehuri, and S. A.

Treiman, Ann. Phys. 10, 62 (1960).
23. J. Bowcock and A. Martin, Nuovo cimento 14, 516

(1959).
24. A. Martin, Nuovo cimento 19, 1257 (1961).
25. V. Bargmann, Ann. Math. 59, 1 (1954).
26. Peter J. Redmond and Jack L. Uretzky, Ann. Phys. 9,

106 (1960); M. Hamermesh, ibid 9, 51.8 (1960).
27. H. Stapp, University of California Radiation Labora-

tory Report UCRL-9875 (unpublished).
28. L. Schwarts, Theori des distributions (Hermann and

Co. , Paris, 1951) Actualities Scientiffenes No. 1019.
29. L. Schiff, Quantum Meebanies (McGraw-Hill Book Co.,

Inc. , New York, 1960).
30. N. Bohr and L. Rosenfeld, Kgl. Danske Videnskat

Selksab, Mat. -fys. Medd 12 (1988).
81. G. F. Chew, Revs. Modern Phys. 34, 894 (1962); H.

Stapp, ibid 34, 890. (1962).
32. L. Garding and A. S. Wightman, Proc. Nat. Acad.

Sci. U. S. 40, 617 (1954).
33. A. S. Wightman and S. Schweber, Phys. Rev. 98, 812

(1955).
84. W. Zimmerman, Nuovo cimento 16, 690 (1960).

REVIEWS OF MODERN PHYSICS VOLUME 34, NUMBER 3 JULY, 1962

:Cinema). ics oI . .—..ig. i-.~ nergy .. artie. .es
K. G. DEDHIcK

Stanford Linear Accelerator Center, Stanford University, Stanford, California

CONTENTS I. INTRODUCTION

I. Introduction. . . . . . . . . . . . . 429
II. The Lorentz Transformation. . . . . . 430

A.. The Energy-Momentum Four-Vector . 430
B. Motion of the Center of Mass. . . . 430
C. The Graphical Method for the Mo-

mentum Transformation. . . . . . . 431
D. Transformation of Angles. . . . . . 432
E. Transformation of a Differential Cross

Section. . . . . . . . . . . . . . 432
F. Laboratory Energy, Momentum, and

Angle Relationships. . . . . . . . . 432
G. Relations for the Two-Particle Final

State. . . . . . . . . . . . . . . 433
III. Jacobians of the Lorentz Transformations 434

A. Mono-Energetic Excitation of a Sta-
tistical Process. . . . . . . . . . . 435

B. Bombardment with a Poly-Energetic
Beam. . . . . . . . . . . . . . . 436

IV. Remarks on the Two-Particle Final State 438
V. Appendix A. Glossary of Symbols. . . . 440

VI. Appendix B. A Short List of Kinematics
Tables. . . . . . . . . . . ~. . . . 440

*This work was supported by the U. S. Atomic Energy
Commission.

~ XPERIMENTAL workers in high-energy phys-
& ics have frequent need of formulas and tables

giving properties of the kinematics of particle pro-
duction, scattering, and decay. Many excellent tables
and graphs have been published, ' and others are
certain to appear as particle masses are determined
more accurately, new particles are discovered, and
bombarding energies are increased. The required
formulas are generated using the well-known trans-
formation laws provided by the special theory of
relativity, and we note that except for the systematic
treatments by Blaton' and others, ' " these formulas

1 See Appendix B.
~ J. Blaton, Kgl. Danske Vidensk. Selskab, Mat. -fys. Medd.

24, No. 20 (1950).
3 The work of Blaton~ has been extended by Baldin et al.4

In the latter, we note that many formulas are written in a
variety of ways so that the reader has greater latitude for
choice of an appropriate form. Collections of formulas are
given by Morrison, ~ Monahan, Fowler and Brolley, and by
Blumberg and Schlesinger. s Other lists of formulas are given
by Marshakg and by Janossy. &o

A. Baldin, V. I. Goldanskii, and I.L.Rozental', Kinematics
of tguctear Iteaetions (Oxford University Press, New York,
1961).Translated from the Russian by R. F. Peierls.

P. Morrison in Experimental XucLear Physics, edited by E.
Segre (John Wiley tk Sons, Inc. , New York, 1958), Vol. II,
p. 3.


