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tation of the spin states follows from the conserva-
tion of angular momentum in a similar way.

This connection between particle and antiparticle
reactions, though equivalent to the field theoretic
one, comes out in a much simpler form for the case of
particles with spin. Usually some rather awkward
manipulations involving multiplications by appropri-
ate spinors are required. These manipulations, in
effect, eliminate the redundant variables associated
with the use of, say, four-component Dirac fields to
describe spin 1/2 particles. Only two components are
really needed, and the S-matrix approach leads
directly to a simple covariant two-component formal-
ism for spin 1/2 particles. For higher spins one gets a
covariant description involving only the necessary
(28 + 1) components.

A principal triumph of axiomatic field theory is the
proof of the normal connection between spin and
statistics. This connection follows also from the
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S-matrix postulates, provided, in addition, that the
magnitudes of self-conjugate combinations of parti-
cle-antiparticle amplitudes are not in principle un-
observable. We know experimentally of certain
combinations, the K; and K, that are in fact observa-
ble. This added assumption, which is analogous to
one needed until recently in field theoretic proofs, can
probably be eliminated if the full power of the analy-
ticity postulate is utilized.

SUMMARY

The general properties of the S matrix usually de-
duced from field theory can be derived from postu-
lates expressing very general physical principles. This
provides a basis for the establishment of S-matrix
theory as an independent and self-contained frame-
work for describing elementary-particle physics, a
framework suited to the modern practical calcula-
tions in this field.
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1. INTRODUCTION

N this paper I present an indecently optimistic view
of strong interaction theory. My belief is that a
major breakthrough has occurred and that within a
relatively short period we are going to achieve a depth
of understanding of strong interactions that a few
years ago I, at least, did not expect to see within my
lifetime. I know that few of you will be convinced by
the arguments given here, but I would be masking my
feelings if I were to employ a conventionally cautious
attitude in this talk. I am bursting with excitement,
as are a number of other theorists in this game.

I present my view of the current situation entirely
in terms of the analytically continued S matrix, be-
cause there is no other framework that I understand
for strong interactions. My oldest and dearest friends

* This work was done under the auspices of the U. S. Atomic
Energy Commission.

T Invited paper at the New York meeting of the American
Physical Society, January 1962.

tell me that this is a fetish, that field theory is an
equally suitable language, but to me the basic strong-
interaction concepts, simple and beautiful in a pure
S-matrix approach, are weird, if not impossible, for
field theory. It must be said, nevertheless, that my
own awareness of these concepts was largely achieved
through close collaboration with three great experts
in field theory, M. L. Goldberger, Francis Low, and
Stanley Mandelstam. Fach of them has played a
major role in the development of the strong inter-
action theory that I describe,! even though the lan-
guage of my description may be repugnant to them.
Murray Gell-Mann, also, although he has not actu-
ally published a great deal on the analyticity aspects
of strong interactions, has for many years exerted a
major positive influence both on the subject and on

L A brief review of the development of S-matrix theory, with
references, may be found in G. F. Chew, The S-Matriz Theory
of Strong Interactions (W. A. Benjamin and Company, Inc.,
New York, 1961).
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me?; his enthusiasm and sharp observations of the
past few months have markedly accelerated the
course of events as well as my personal sense of ex-
citement.

2. THE POSTULATES

In addition to the postulates discussed by Stapp?
in the preceding paper, there are three assumptions
underlying the S-matrix theory of strong interactions
that I discuss here. First of all, Frautschi and I pro-
pose extending the maximal analyticity postulate to
angular as well as linear momenta, thereby elimina-
ting (as I explain later) the possibility of elementary
particles?; future developments may well show that
such a circumstance is unavoidable and requires no
separate assumption. Philosophically speaking, I
would motivate both of these maximal analyticity
postulates by the principle of ‘“lack of sufficient
reason.” It seems natural for an S-matrix element to
vary smoothly as energies and angles are changed,
and a natural mathematical definition of smoothness
lies in the concept of analyticity. The fundamental
principle therefore is of maximum smoothness. The
S matrix has only those irregularities necessary to
satisfy unitarity. There is no ‘“‘reason’ for any others.
Similarly, as Feynman and Heisenberg have both
emphasized, there is no reason why some particles
should be on a different footing from others. The
elementary particle concept is unnecessary, at least
for baryons and mesons.

The second assumption may turn out to be closely
related to the first, perhaps even a consequence, but
Frautschi and I use it at present as an independent
principle.’ This is the postulate of maximum strength:
Strong inleractions saturate the unitarity condition.
Forces in the S-matrix framework are bounded in
strength by unitarity, since they are determined by
scattering amplitudes in the crossed reactions reached
by analytic continuation. It is possible, therefore, to
assume that all forces are ‘‘as strong as possible” so
as to eliminate dimensionless coupling parameters
from the theory. I shall explain later how this second
postulate is applied in practice, and what are some
of its experimental consequences. The final postulate
is less satisfying from an aesthetic standpoint but at

present seems unavoidable. It is: The quantities iso- -

2 See, for example, M. Gell-Mann, in Proceedings of the Sixth
Annual Rochester Conference on High-Energy Nuclear Pyysics,
April 1956 (Interscience Publishers, Inc., New York, 1956),
Sec. I11, p. 30.

3 H. P. Stapp, Phys. Rev. 125, 2139 (1962); Revs. Modern
Phys. 34, 390 (1962), preceding paper.

( 4 G‘rj F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
1961).

5G. F. Chew and 8. C. Frautschi, Phys. Rev. 123, 1478

(1961); Phys. Rev. Letters 8, 41 (1962).
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topic spin (1), strangeness (S), and baryon number (B)
are conserved. Frautschi and I are hopeful that a con-
nection eventually will be found between this ugly
assumption and the preceding two, but at present we
have no proposals in such a direction.

That the foregoing three postulates, together with
those outlined by Stapp, lead to a complete and self-
consistent theory of strong interactions has not yet
been demonstrated—much less has it been shown
that they explain all experimental facts. No incon-
sistencies have yet become apparent, however, and
the sum of the successful experimental predictions is
impressive. Predictions both quantitative and quali-
tative, based on the postulate of maximal analyticity
in linear momenta together with the conservation
laws, have been emerging in a steady stream since
1955, when the relevance of dispersion relations to
strong interactions was first recognized. To date,
none of these predictions has failed. The current wave
of excitement, however, stems from predictions as-
sociated with the postulates of maximum strength
and maximal analyticity in angular momentum. To
explain these predictions, I must first tell you about
the work of Froissart and of Regge.

3. RESULTS OF FROISSART AND REGGE

It was Regge who drew attention to the possibility
of unique analytic continuation in angular momen-
tum, and I shall come quickly to his important results
for nonrelativistic potential scattering. Froissart,
however, has produced the first rigorous results in
this connection for the relativistic S matrix.® He
considered processes of the type a + b — ¢ + d, with
total barycentric energy squared s, connected by
analytic continuation to two other processes, a + ¢
—d+band a + d — ¢ + b, in which the squared
energies are, respectively, ¢ and u with s + ¢4
= constant. Froissart showed on the basis of the
Mandelstam representation that an analytic con-
tinuation in J (maintaining the unitarity condition
for all real J and well-behaved at infinity) can be de-
fined for Re J > aum.x(s), if the asymptotic behavior
of the amplitude for large ¢ at fixed s is bounded by
#max) He also proved that am.(s) < 1fors < 0.In
other words, a large domain of analyticity in angular
momentum has already been shown to follow from
unitarity and maximal analyticity in linear momenta.

6 M. Froissart, Phys. Rev. 123, 1053 (1961); -also unpub-
lished report to the La Jolla Conference on Weak and Strong
Interactions, June 1961. The unpublished work of Froissart
has recently been reviewed by E. J. Squires, On the Continua-
tion of Partial Wave Amplitudes to Complex I, Lawrence
Radiation Laboratory Report UCRL-10033, January 1962
(unpublished). °
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Now Regge has proved for potential scattering that
there is an even larger region of analyticity in J—at
least as large as Re J > — 1/2—if simple poles are
allowed.” It is exceedingly tempting to conjecture
that the same circumstance will hold relativistically,
and that the characteristics of the poles in the general
case are essentially those deduced by Regge. This
conjecture has proved irresistible to at least three
independent teams of theorists, Blankenbecler and
Goldberger at Princeton®; Gell-Mann and Zacharia-
sen at Cal Tech?; and Chew, Frautschi, and Mandel-
stam at Berkeley® (Frautschi is now at Cornell,
Mandelstam at Birmingham). Chronologically, I be-
lieve that it was Mandelstam who first noticed the
possible importance of Regge poles in the relativistic
S matrix.

I am confident that there will soon be a proof of J
analyticity, except for poles, throughout the region
Re J > 1 for all s, but an extension to the entire J
plane (or even to Re J > 0) may not follow purely
from analyticity in linear momenta. The further ex-
tension may require a separate postulate because
physically it amounts to a denial of the existence of
any elementary particles. In order for you to under-
stand this last statement I must explain certain
properties of Regge poles.

4. PROPERTIES OF REGGE POLES

The most illuminating way to discuss Regge poles
is in terms of the union of the two complex variables
s and J. These two variables characterize systems of
arbitrary multiplicity, so it seems almost certain that
analyticity properties in s and J are common to all
S-matrix elements of the same internal quantum
numbers (not just elements for a + b — ¢ + d), since
this entire subset of elements is coupled by unitarity.
In particular a pole in one must be accompanied by a
pole in all at the same values of s and J, although the
residues of corresponding poles in different elements
will differ. According to Regge’s analysis of scatter-
ing by a superposition of Yukawa potentials, all poles
in the right-half J plane are at least incipiently con-
nected with bound states and resonances. Any pole
may be viewed in the s plane (perhaps on an unphysi-

7T. Regge, Nuovo cimento 14, 951 (1959); 18, 947 (1960).
Also see A. Bottino, A. M. Longoni, and T. Regge, Nuovo
cimento 23, 954 (1962).

8 M. L. Goldberger, report to the La Jolla Conference on
Weak and Strong Interactions, June 1961; R. Blankenbecler
and M. L. Goldberger, Phys. Rev. 126, 766 (1962).

9 M. Gell-Mann, invited paper at the Los Angeles meeting
of the American Physical Society, December, 1961; S. Frauts-
chi, 1\/)[ Gell-Mann, and F. Zachariasen, Phys. Rev. 126, 2204
(1962).

10 G. F. Chew, S. C. Frautschi, and S. Mandelstam, Phys.
Rev. 126, 1204 (1962).
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cal sheet), where its position depends on J, or in the
J plane, where its position «; depends on s. In fact,
a;(s) is a real analytic function with a positive
definite imaginary part along the upper side of the
physical s cut. The position of a Regge pole neces-
sarily, therefore, varies with s—a circumstance of the
utmost importance.

Regge has had nothing to say about the left-half J
plane but he showed that, for a sufficiently attractive
potential, as s is increased from — « along the real
axis a succession of polesin the J plane passes through
the point J = —1/2 and moves to the right along the
real J axis. For those values of s below the threshold
of the physical scattering region (i.e., the beginning
of the right-hand cut in the s plane) for which a par-
ticular pole crosses a real positive integer value of
angular momentum, J = 0,1,2,- - -, one has a bound
state with this spin. At the threshold energy each
pole moves into the upper-half J plane, but with
short range forces continues its rightward excursion
for some range of physical s. If Re a;(s) crosses any
further positive integer, i.e., Re «;(s:#) = M, one has
here a resonance with half width given by

1 0¥z = Im ai(st)/(d Re ai/dr/s).," . (1)
In the region of sharp resonances Im «; is small com-
pared to unity. Where there occur either bound states
(stable particles) or sharp resonances (metastable
particles) one may use the formula
d(a+ 3)*/dp" = R, 2)
where p is the momentum and R some average
“radius” of the particle. For sufficiently large energy
the trajectory of each Regge pole is presumed to turn
around and retreat to the left-half J plane. The cross-
ing of integer Re J on the return trip does not pro-
duce further resonances, since here the phase shift is
decreasing.

It is clear that if Jm.. is the maximum (integer)
angular momentum of a bound state or resonance
produced by a given Regge trajectory, then there
will be resonances or bound states for all integer
J < Jumax, and one has a whole family of particles for
each trajectory. Because of the general occurrence of
exchange forces, one must ascribe different potentials
to odd and even J, so that a particular trajectory is
relevant only to physical odd or to physical even
values of angular momentum. Nevertheless, for at-
tractive forces of sufficient strength one may expect
to find families of particles with a common set of in-
ternal quantum numbers (B, S, I, etc.), and definite
J parity. The number of family members—or, equiv-
alently, the extent of the rightward excursion of the
Regge trajectory in the J plane—will increase with
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the strength of the attractive force. Also directly cor-
related with the force strength is the number of
different trajectories that lead to particles, i.e., whose
rightward excursion reaches as far as Re J = 0. It
seems plausible that for each set of internal quantum
numbers there are an infinite number of Regge
trajectories beginning and ending in the left-half J
plane, but that only a few manage to reach the right-
half plane for the short range forces actually occur-
ring in nature. .

Frautschi and I consider it obvious that any
particle associated with a Regge trajectory is not
elementary in the conventional sense, because its
spin (as well as its mass) is a dynamical consequence
of the forces.* To avoid semantic arguments, how-
ever, it would be better to say that all particles
associated with Regge trajectories are on a dynami-
cally equivalent footing. None is more fundamental
than any other. [Incidentally, none of the above-
mentioned theorists,®'° who have fallen in love with
Regge poles, hesitates to apply the notion to baryons,
where half odd-integer spins occur and where J parity
should be defined as (—1)—#.] If one asks what kind
of a pole in the S matrix would be associated with the
conventional elementary-particle concept, it appears
to be a pole in s for a definite physical value of J that
has no analytic continuation in J. The results of
Froissart show that such a singularity for J > 1 is
inconsistent with the postulates of unitarity and
maximal analyticity in linear momenta,® and further
study may show that such poles are mathematically
inconsistent even for J = 0, 1/2, and 1. If one is will-
ing to assume maximal analyticity in J, as Frautschi
and I are doing,* then elementary-particle poles are
automatically eliminated.

A further crucial property of Regge poles is that
each contributes a term « @ to the asymptotic
behavior of the amplitude for large ¢ (the negative
square of the momentum transfer in the channel
where s is the square of the energy). This circum-
stance follows from the Sommerfeld-Watson contour
representation in the complex J plane for the ampli-
tude A (s,t)." This representation divides A (s,f) into
two parts with different asymptotic behavior in
cos 6 (or, equivalently, in ¢ since ¢ « cos ). The first
part is an integral along the vertical line Re J =
—1/2 that vanishes as cos § — . The second part
consists of pole contributions that generally do not
vanish at infinity, these being of the form

Bi(s)
Z¢ sin r a;(s) 3)

11 A. Sommerfeld, Partial Differential Equations tn Physics
(Academic Press Inc., New York, 1949), p. 279.

Pa,-(s)(_ COos 0) 5
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where «; is the position of the 7th pole in the complex
J plane, and B; is the residue. Since P,(z) «2z* for
large 2, those poles that at any particular energy
stand farthest to the right in the J-plane control the
asymptotic behavior in ¢. Now large ¢ at finite posi-
tive s is always an unphysical region, but for s nega-
tive one is in the region of forward or backward high-
energy scattering of a crossed reaction (because s and
t have switched roles). Thus, if Regge’s analyticity—
except for poles—is maintained in the J plane for
negative as well as positive s, then there follows a
magnificently simple theory of high-energy scatter-
ing. Conversely, one has here an elegant experimental
tool to trace out Regge trajectories for s < 0.*

5. EXPERIMENTAL STATUS OF THE PRINCIPLE
OF MAXIMUM STRENGTH

In Fig. 1 is plotted the angular momentum of all
particles of baryon number less than two, for which -
spin evidence exists, as a function of the square of the
mass. [I am indebted to Arthur Rosenfeld and Duane
Carmony for preparing this plot.] Each point is sup-
posed to lie on a Regge trajectory, but according to
the rule of J parity only a few pairs could belong to
the same trajectory. These pairs have been connected
with straight lines even though a strict linear be-
havior of the trajectories is not expected. (In particu-
lar there are singularities at the various physical

Mass (Mev)
500700 900 100 _ 1300 1500 1700 1200
March 1962 %_._.___ J— ._.._____/.,L.__ \ng\__
.7'“
arity,G(if applical an”
Xiscspin(Jp 1. Gliteop WMQSS) /x{‘\‘:‘ &2
&
PR
Strangeness | Meson Baryon N 2
cangeness s / S E
2 s / Lfo i
| A A& F— ’_g\\w—% —]
2 = / SN
/s
N // N /
2 / 2 /N o
T > RN
§ < -\4’/\4“ &
a S AT
7 LN TN
A e SO A 7AA*°_.‘.\ P,
B SRS s
S /
N
Ve A7
N S/ 8
2 B, > 7‘:/.‘2_&;_______ R
& S
&7 ST S
& S35 7 !
%o | L

-1 =& o5 n 5 2 75 ; — 2
M Mass squared ( Bev?)

F1a. 1. The spin of strongly-interacting particles of baryon
number less than two plotted against the square of the mass.
Points conjectured to lie on the same Regge trajectories are
connected by straight lines, but a strictly linear behavior of
the trajectories is not to be inferred.

thresholds, but Barut and Zwanziger have shown
that the slope of a trajectory is continuous in crossing
a threshold if at this point Re a; > 1/2.)2 The uni-

12 A. Barut and D. Zwanziger, “Threshold Behavior and

Analyticity of Regge Poles and Their Residues,” University
of California Physics Department preprint (1962).
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formity of the slopes in Fig. 1 is striking, and is per-
haps to be understood in terms of formula (2) and
the plausible notion that all the particles in Fig. 1 are
of about the same “‘size.” The slopes shown are of the
order da/ds ~ 1 BeV~2 implying through formula
(2) a particle “radius” of the order (2m,)'—a result
that will surprise no one. Note that with the family
interval rule AJ = 2, the spacing in m? between two
members of the same family is ~ 2 BeV? so in each
family only the member of lowest spin has a chance
of being stable. Frequently all members are unstable,
and the ABC trajectory tentatively shown at the
bottom may be an example where the maximum of
Re a is achieved before any particles are generated.’
(In this case the trajectory almost reaches J = 0 and
one has what is usually called a “‘virtual particle.”)

The principle of maximum strength depends on the
assumption that Regge trajectories can be continued
to the region s < 0, where Froissart has proved for
all trajectories that a;(s) < 1.5 His proof depends on
the circumstance, noted above, that in this region
t < FE for a crossed reaction, while at the same time
s = — A? the negative square of momentum trans-
fer. The high-energy amplitude for the crossed re-
action thus contains a contribution

o (Elab)a‘(_Az)

from a Regge pole located at a:(s), and Froissart was
able to establish that physical amplitudes violate
unitarity if they increase asymptotically as a power
of K. greater than 1. A glance at Fig. 1 shows that
none of the trajectories associated with known parti-
cles is likely to reach the Froissart limit if all slopes
are of the order of magnitude 1 BeV—2 What then do
Frautschi and I mean when we speak of a saturation
of the unitarity condition?

Our motivation lies in the fact that total cross
sections appear to approach constants at high energy,
implying an imaginary part of forward amplitudes
« K. We have been emboldened to conjecture that
a Regge pole for the quantum numbers of the vacuum
is responsible—with a trajectory such that a(s = 0)
= 1. If «;(0) < 1 for all other trajectories, then the
various Pomeranchuk conditions for total cross sec-
tion limits are all automatically satisfied. I shall refer
to this top-level trajectory as the Pomeranchuk
trajectory. Only even integer J are physical for the
Pomeranchuk trajectory, but if its slope is of the
order 1 BeV—2 then we may expect it to produce a
spin 2 meson with a mass ~ 1 BeV. Sharp eyes in the
audience will be wondering what happens at s = —1

13 A. Barut, “Virtual Particles,” Lawrence Radiation Labo-
ratory Report UCRL-9993, December 1961 (unpublished).
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BeV? where the Pomerncahuk trajectory cuts J = 0.
I shall return to this question presently. First I must
give our tentative explanation of why it is only the
vacuum quantum numbers that saturate Froissart.

In a detailed study of the = system—where the
quantum numbers can be I = 0,1,2 (together with
B =0,8 = 0,and ¢ = 0)—Frautschi, Mandelstam,
and I have shown that the long-range forces are most
attractive for I = 0, less attractive for I = 1, and
perhaps even repulsive for 7 = 2.1 This circum-
stance follows entirely from the crossing matrix, and
we are consequently inclined to make the conjecture
that generally forces are strongest in systems with
the simplest quantum numbers. The more compli-
cated quantum numbers, we believe, will usually
lead to elements of the crossing matrix whose relative
signs lack coherence. In systems with the quantum
numbers of the vacuum (I =0, B=0, S =0,
G = 0), all the partial contributors to the force add
with the same sign, and one gets the maximum possi-
ble force. For all other sets of quantum numbers the
net forces are weaker. Since the level of each Regge
trajectory in Fig. 1 is correlated with the strength of
the forces acting, such a hypothesis would immedi-
ately explain why only the Pomeranchuk trajectory
reaches Froissart’s limit.

An examination of the order of trajectory levels in
Fig. 1 bears out our hypothesis in a satisfactory
fashion. There is a clear tendency for height of tra-
jectory to be correlated with simplicity of quantum
numbers. (The top three trajectories, for example,
have S = 0, B = 0, and 7 zero or one.) Further sup-
port is given by the circumstance that the only set of
quantum numbers for which two separate trajectories
manifest themselves through particles is the quantum
numbers of the vacuum (Pomeranchuk and ABC tra-
jectories).

Another qualitative feature of Iig. 1 worth noting
is that high-level trajectories rarely occur for both
values of J parity if all other quantum numbers are
the same. Such a circumstance is understandable if
we remember that corresponding systems of opposite
J parity have the same ordinary force but exchange
forces of opposite sign. Since exchange and ordinary
forces are normally of comparable strength, the net
attractive force for one value of J parity will then
usually be substantially greater than for the other.

Quantitatively reliable methods for calculating
short-range forces have yet to be developed, but a
preliminary investigation by Frautschi, Mandel-
stam, and myself leads us to believe that although
such forces are crucial they are mainly repulsive,?
so that a less detailed knowledge should be needed
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than for the long-range forces—where quantitative
formulas in a number of cases are already available.
The current scheme of calculation is what Mandel-
stam and I like to call the “bootstrap’4: Given a
generalized potential for one channel—in terms of
analytic continuation from crossed channels—one
solves integral equations to find the S matrix. With
the assumptions listed above there are no arbitrary
parameters so far as we can see, except for one mass
to be added to % and ¢ in order to complete the
dimensional structure. Gell-Mann has predicted that
calculational procedures based on analyticity in linear
momenta (e.g., the Mandelstam representation) will
soon be superseded by methods that treat Regge poles
as primary rather than derived aspects of the theory.
I am inclined to agree, but no such methods have yet
been formulated.

6. THEORY OF HIGH-ENERGY SCATTERING

Whether primary or derived in a theoretical sense,
Regge trajectories, if they have the properties con-
jectured, henceforth will dominate the subject of
strong interactions because of the direct light they
shed on experiment. Experimenters are going to
determine these trajectories just as they have deter-
mined phase shifts, the quantities that heretofore
have constituted the meeting ground between strong
interaction theory and experiment. The details of
Fig. 1 will be filled in, step by step, for the imaginary
as well as the real part of «.(s). The technique for
s > 0 is obvious and would be followed even if Regge
were not so smart: One looks for both stable particles
and resonances and tries to determine the masses,
widths, spins, and internal quantum numbers. Figure
1 will be of help, of course, in suggesting where to
look. The spin 2 meson of mass = 7m., belonging to
the Pomeranchuk trajectory, is a good example.!
Equally potent experimental tools, however, are high-
energy total and differential scattering cross sections.
These will determine trajectories for s < 0.

The essential ingredient for a theory of high-
energy scattering has already been stated above in
formula (3): Each Regge pole contributes in the
crossed amplitude a term that asymptotically is of
the form
B:(=A%)

sin wo: (— A?)

X [(—Emb)““*“ + (Emb)““"“’], @

Ai(Elab,Az) =

14 (. F. Chew and S. Mandelstam, Nuovo cimento 19, 752
(1961).

15 C. Lovelace, Imperial College Physics Department pre-
print, London (1961).
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where «; is the position of the pole and B: the residue.
Both a; and B: are real for A2 > 0. The plus or minus
sign in (4) depends on the J parity of the trajectory.’
The simplest experimental application of formula (3)
is to total cross sections, which are proportional to
By Im A(E, A? = 0), and which will get contri-
butions from trajectories with B = 0, S = 0, and
I, = 0. The highest of these are the Pomeranchuk,
p, and w—probably in that order. So one should be
able to represent any high-energy total cross section
by the formula

O':LOt(Elab) = Pn + Pn Elab_u-ap(())]
+ E’lab_[l_aww)] + .-, %)

where the series converges more rapidly the higher
the energy. If further relevant trajectories exist with
«(0) > 0 they should of course be included (e.g., the
ABC trajectory). There are many relations between
the residues in different amplitudes that are now
being studied. Udgaonkar has looked at the NN, =N,
and KN combinations.’ As an illustration of the
power of this approach, he finds for the NN cross
sections the following connections:

Uzt;;:t (Elab) = Pyy — pww Elab—[luap(())] - wNNElab_[ba“’(o)]
+ ...

o (Biw) = Pry + pwy B ™7 — oy By
4.

o (Br) = Py + paw By 7%
+ wyw By e oL

o (Frw) = Py — pyy B 0@
+ wny Emb“[l_a“’(o)] R (6)

(The signs of all the coefficients here are probably
positive.) Experimenters may use formulas of this
type just as they use phase shift expansions and
determine empirically the real parameters appearing
therein. There is reason to believe that such asymp-
totic expressions should be usable almost as soon as
one gets beyond the resonance region, i.e., above
about 2 BeV. Udgaonkar is currently analyzing exist-
ing total cross-section data on this basis, but more
particle combinations and much greater experimental
accuracy must be achieved before the potentialities
of such formulas are fulfilled.

For example, one especially simple application
isolates «,(0):

t —[1-a,(0)]

U:L(;t (Elab) - U;fp (Elab) = 2pny Ewp “ .
tot - —[1-a,(0)]

afro_tp(E wb) — Orsp(Biab) = 2pzy Hip 0

16 B. Udgaonkar, Phys. Rev. Letters 8, 142 (1962).

)
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Udgaonkar finds that existing data are consistent
with «,(0) = 1/2, a result that would follow if the
slope of the p trajectory is of the order 1 BeV—2; but
experiments need drastic improvement before the
energy dependence (7) can be definitely established
and a value for «,(0) determined.

A second application of Formula (4) is to high-
energy differential cross sections for processes of the
type a + b — ¢ + d, which will have peaks in the
forward direction due to Regge poles in the channel
a + ¢ — b + d, and in the backward direction due to
poles in the channel a + d — b 4 ¢. These applica-
tions have been studied in some detail by Frautschi,
Gell-Mann, and Zachariasen.® A careful measure-
ment of the shape and energy dependence of these
peaks evidently will yield both the residues and the
positions of the relevant Regge poles for a continuous
range of negative s. The most prominent peak is for
elastic scattering in the forward direction, and is
dominated by the Pomeranchuk trajectory. Keeping
only this contribution one finds

do? - 1 Pi(‘*Az) —2{l—ap(~ AD]
dA? ~ 167 sin?[rar(—A2)/2] " T (8)

Fitting to recent CERN data on pp elastic scatter-
ing, Frautschi et al. find that ar(— A% decreases
smoothly with increasing A% and probably goes nega-
tive at A2 = 1 BeV? as indicated in Fig. 1.° Now
formula (8) blows up when ap(— A% = 0 unless at
the same time the residue P, vanishes linearly with
ap. Presumably such a vanishing occurs, since an
infinite cross section is neither tolerated by unitarity
nor observed experimentally. Gell-Mann likes to
interpret the simultaneous vanishing at negative s of
ar(s) and all the residues of this Pomeranchuk Regge-
pole as meaning that there is a fundamental spin-
zero ghost particle of imaginary mass (= 1 BeV 7),
with the quantum numbers of the vacuum but zero
coupling to all physical systems. I prefer not to use
such language, but there is no difference in our atti-
tudes toward the physics. The Pomeranchuk tra-
jectory manages to cross J = 0 at negative s without
disaster for the S matrix.

Formula (8) is remarkable in that it predicts an
indefinite logarithmic decrease with energy in the
width of the diffraction peak, and thus in the ratio
o.°t/a,°t. For many months Frautschi and I felt this
circumstance to be so unreasonable that we were un-
willing to ascribe diffraction scattering to a Regge
trajectory. However, a related property of (8) is that
at fixed E ., there is an exponential decrease with A?
so long as ap(— A?) continues to fall. This feature
also is contrary to a classical picture of diffraction
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scattering, but it is clearly observed in elastic pp
experiments.® Lovelace has pointed out that such
exponential behavior also occurs for mp elastic scat-
tering,® so the nonclassical aspects of formula (8)
have to be taken seriously. No one yet is sure as to
what interpretation should be given to an asymptotic
logarithmic vanishing of the elastic cross section, but
we believe that it is going to be observed experi-
mentally.

An important remark about formula (4) is due to
Frautschi.* He pointed out that high-energy forward
and backward peaks must be a consequence of coher-
ence in the scattering, and the strength of a peak,
i.e., the value of @;(0), should increase with the de-
gree of coherence. This notion fits perfectly with the
earlier hypothesis that height of trajectory is corre-
lated with simplicity of quantum numbers. Maximum
coherence should be and is achieved by scattering
with exchange of the vacuum quantum numbers. As
the exchanged quantum numbers become more com-
plicated the degree of coherence decreases and «;(0)
becomes smaller.

7. CONCLUSION

One of the most attractive aspects of S-matrix
theory is that checks with experiment are possible at
many different levels, and do not require a complete
solution of the dynamical equations. We shall, in
fact, never have a complete solution; it would be far
too complicated, since all particles would have to be
considered simultaneously. It may be that an ap-
proximation isolating a few of the top-level Regge
trajectories will make sense, so that a few mass ratios
can be roughly calculated; that remains to be seen.
One need not wait for such a development, however,
to join the fun. This report has only scratched the
surface of possible contacts between theory and ex-
periment, and I am convinced that a wild period of
merrymaking lies before us. All the physicists who
never learned field theory can get in the game, and
experimenters are as likely to come up with im-
portant ideas as are theorists. They may even have
an advantage over us.

An inevitable question at this point is, ‘“What
about electromagnetism and weak interactions?” I
personally have not developed strong convictions on
this question, but I do not see how leptons and the
photon can emerge from the principles enunciated
here. One may imagine, in fact, that leptons and
weak interactions represent a deficiency in one or
more of these principles that will become a major
effect in some - experimental domain of the future.
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Had we known of hyperfine structure in the early
days of atomic physics, however, it would have been
a mistake to insist that any theory should explain
the effect. Historically, all dynamical theories in
physics have had limitations on their domain of
validity, no matter how general they seemed when
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they were proposed. We must not be too greedy.

Note added: After preparation of this manuscript I
became aware of an article by V. N. Gribov, J.
Exptl. Theoret. Phys. (U.S.8.R.) 41, 667 (1961),
which discusses the importance of the Pomeranchuk
trajectory in high energy scattering.
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1. MOTIVATION AND PURPOSE

N the last few years considerable attention has been
devoted to the study of the general aspects of
field theory. Currently there are actually several
rather different approaches. One approach is based

* Work supported in part by the National Science Foun-
dation.

t Now at the State University of New York, Long Island
Center, Oyster Bay, Long Island, New York.

on the notion of local field operators; general princi-
ples such as relativistic invariance and local com-
mutativity are assumed. On this basis an extensive,
mathematically precise theory may be developed.
Initiated by Wightman [1],! this approach through
the work of Jost [2], Haag [3], Lebhman, Symanzik,
and Zimmerman [4], and many others (see the ex-
tensive bibliography in Schweber [5], has led to a
considerable deepening of the mathematical basis of
field theory and to specific results of physical interest,
such as proofs of the TCP theorem (Jost [6]) and the
connection between spin and statistics (Burgoyne
[7]). Another approach described most explicitly by
Chew [8], also utilizes the principle of relativistic
invariance. The notions of the ‘“local field” and field
operators, so essential in the abstract approach, are
eliminated as far as possible in this approach. In fact
the ultimate hope of this general philosophy is that
the relevant physical principles may be expressed ex-
clusively in terms of the analytic properties of S-
matrix elements. If, according to this attitude, a
particular assumption about the analytic character
of the S maftrix, such as the Mandelstam representa-
tion, cannot be proven, using the general principles
of field theory—this is yet another indication that
field theory is incorrect, inconsistent, and irrelevant.
Thus using the assumed analytic properties of S-
matrix elements as given by the Mandelstam repre-
sentation (for two incoming and two outgoing parti-
cles), together with the requirements of unitarity and
relativistic invariance, a detailed theoretical frame-
work has been constructed, which has been successful

1 The references are to be found at the end of this paper.



