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HE antidual part of the Riemann tensor R

in four dimensions has been investigated earlier
by Rainich and Einstein; it is reducible to the con-
tracted curvature tensor .. Here the self-dual part
of Riji» is analyzed and reduced to a new tensor of
third order H; of essentially 16 components. This
tensor has the further property that it integrates the
field equations of a quadratic action principle by re-
ducing their order from 4 to 2. The relation of this
tensor to Dirac’s equation of the electron gives added
proof of its fundamental significance.

Notations Used

(a) Einstein’s sum convention (automatic sum-
ming over equal indices).

(b) The symbol “comma «” for covariant differ-
entiation, d, for ordinary differentiation (with respect
to 2.).

(¢) The permutation tensor

/2

1
Oijkm = G €ijkm

Bijkm _ g—l/2fijkm,
where €1 18 the completely antisymmetric Kron-
ecker symbol and ¢ the determinant of the line ele-
ment. Owing to this definition we have

**Fik = Fik
where F';, = — F}; is the electromagnetic field strength
and the “dual field strength *F;.” is defined by the
operation
*Fik = %Fwauuik .

In a universe of the signature — — — 4, the com-
ponents of &z, become zmaginary if real coordinates
are used (g negative). In Minkowskian coordinates
the § components remain real.

Since the contracted curvature tensor R, arises by
contracting over the second and fourth indices
(whereas Einstein contracts over the first and fourth
indices), we stay in harmony with Einstein’s defini-
tion of R by defining the full Riemann tensor with
a sign opposite to that of Einstein,

Rijkm = %(ayz'mgik + a?kgjm - a?mg;‘k - a?kgim)
ik [ jm 3k [im ) us
+ ([a][ﬁ]‘[a][ﬂ] v

1. INTRODUCTION

The spectacular discoveries of Einstein in the
realm of gravitation were based on the use of the
contracted curvature tensor R, This led to a certain
eclipse of the full Riemann tensor R;.. Einstein
upheld the fundamental significance of the contracted
curvature tensor for the description of the geometri-
cal properties of the physical universe, due to its
relation to the matter tensor which could be directly
interpreted in terms of momentum and energy. Since
the contracted tensor did not contain anything that
could be correlated to electric quantities, he was
compelled to drop the classical Riemannian geometry
in favor of a more restricted (addition of distance
parallelism) or more general (unsymmetric line ele-
ment) form of geometry.

We can hardly doubt that electricity has some-
thing to do with the specifically four-dimensional
nature of the universe. The double set of Maxwellian
equations

F* ,=0
*pe =0 @n

reveal a remarkable symmetry which cannot be
matched in any other number of dimensions. Dirac’s
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equation of the electron has, similarly, a structure
for which the dimension number n = 4 is of vital
significance. The contracted tensor R exists equally
in all dimensions and shows nothing unusual for
n = 4. If we want to stay within the confines of
Riemannian geometry and yet try to arrive at a
rational explanation of electricity, we have to fall
back on the full Riemann tensor Rij.. Can we find
something in this tensor that could be correlated to
the symmetry pattern of the Maxwell equations
(L.1)?

Indeed, we find that for n = 4, and only for n = 4,
we can pass from the tensor R;. to a dual tensor
*Rijtm by a similar operation that leads from F to
*Fa. If we apply the duality operation with respect
to both index pairs 7,7 and k,m:!

*Rijkm — %Ramwaaﬁifaﬁwkm (1'2)

we obtain a “dual curvature tensor’”’ that has exactly
the same symmetry properties as the original Rie-
mann tensor, with the same number of algebraically
independent components. This property of the dual
operation is not matched in other dimensions. In all
other dimensions but four, the dual operation ap-
plied to the curvature tensor would not create an
equivalent tensor.

A further remarkable property of the dual tensor
is that the Bianchi identity applied to it is reduced
to a pure divergence?

*RE L =10. (1.3)
Hence, we can dispense with the usual cyclic permu-
tation of three indices demanded in all other dimen-
sions.

The new tensor has 20 algebraically 1ndependent
components. But, we now form two new tensors by
the following construction?:

Aijkm = Rijkm - *Ri]'km (1.4)
Sijkm = Riikm + *Ria‘km
so that
Rijkm = %(Aijkm + Siikm) . (15)

We will compare these constructions with the corre-
sponding constructions of electromagnetism. Here
we can put

Aik = Fik - *Filc
Siv = Fa + *Fur . a.mn

1 This notation is in harmony with that used in J. L. Synge,
Relativity, the General Theory (North-Holland Publishing Com-
pany, Amsterdam, 1960), p. 18.

2 Cf. C. Lanczos, Annals of Math. 39, 842, (1938), Eq. (4.3).
This paper will be quoted as (I); another a er by the author,
Revs. Modern Phys. 29, 337, (1957), will be quoted as (II).

3 These definitions differ from those of Hinstein (cf. foot-
note 6) by the factor 2.
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These new tensors have no longer six but only three
algebraically independent components, on account
of the conditions

A = —Aa
*Si = Sir, (1.8)

but these three components are now complex. For
example, employing the notation

Sm:Qs, S23=Q1, S31:Q2
and using Minkowskian coordinates we obtain
Q1=II1—’L.E1,Q2=H2—7:E2,Q3=H3—'I:E3,

where E and H are the customary electric and
magnetic field strengths. The field equation

S a=0 (1.9)
can now be written in quaternionic form?*:
3 3 3 )
VO =
Q ( ox x k + dxy
X <Q11 + Q.j + Q3k> =0 (1.10)

This single set of complex equations is equivalent to
the double set of Maxwell equations (1.1) by sepa-
rating real and imaginary parts.

The situation is different with respect to the
tensors A4 :jx» and Sij». Here we have once more

*Aijkm = _Aijkm
*Sijkm = Sijkm7 (111)

but in view of the double application of the tensor
Sijem the reality of the components of A ijtm and Sijim 28
not altered. The Riemann tensor R splits by this
construction into two independent tensors. We call
Aijem the “antidual” and Sij. the “self-dual” part
of the curvature tensor.

The separation of the original 20 components of
Rijim is not 10 4 10, but 9 + 11. We see that by
introducing the local coordinates g = 84 and in-
vestigating those components of ;. that are differ-
ent in all their four subscripts. In view of the cyclic
identity, which specifically in four dimensions may
be written in the scalar form

Rijind”™ =0, (1.12)

we have

R1234 + R34z + Risps = 0 (1.13)
and only #two independent components of such char-
acter exist. These two components are self-dual and

4 Cf. L. Silberstein, The Theory of Relativity (Macmillan and
Company, Ltd., London, 1924), p. 46.
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thus contribute two components to the self-dual
tensor S;jwm, but cancel out in the case of the antidual
tensor A.i.. This explains the two surplus compo-
nents of the self-dual tensor. The other nine com-
ponents are contributed by the six combinations of
the type 1213 4= 4243 and the three combinations
of the type 1212 = 3434.

The splitting of the Riemann tensor into the
tensors (1.4) and (1.5) was first enunciated by Rai-
nich in a brief note®. Referring to this communica-
tion, Einstein® obtained the antidual tensor 4 ;.. in
explicit form by showing that it is reducible to the
contracted tensor R, [the same relation was later
found in a different context by the author, who was
unaware of Kinstein’s previous result; cf. (I), Eq.
(5.2)]. The equation found by Einstein is as follows:

Aijim = (Rix — %Rg,-k)gjm + (Rjm — %Rga‘m)g“c
— (Rim — ¥Rgin)gir — (Bjx — ¥Bgir)gim -
(1.14)

This relation can be found by direct verification
in a special reference system in which the g, are re-
duced to their normal values é::.. However, in view of
the generally covariant nature of the relation, it
seems of interest to give a proof that does not depend
on the choice of a special reference system. This can
be done on the basis of the following property of the
permutation tensor. Whereas the ;. in itself is not
reducible to the metrical tensor gi:, the product of
two 8 tensors becomes a purely metrical quantity.
We then obtain a tensor of the order 8 of the follow-
ing structure:

Owiidookn = [GuoGrofirgim)] » (1.15)
where the bracket [ ] refers to a sum, obtained as
follows. We keep the subscripts wuryj fixed, whereas
the subscripts pakm go through all possible permuta-
tions, with a plus sign in front if the permutation is
even and a minus sign in front if the permutation is
odd. We have to sum over all of these 24 terms.

We now put these terms in four groups by col-
lecting the six terms that belong to g,, in front, then
doing the same with the six terms that belong suc-
cessively to gus, gu and finally g.. in front. We then
obtain the tensor

A*Rijim = B 8,010 0m (1.16)
as a sum of 24 terms, distributed as follows:
Jirst group (gu,):
R (gisgin — gingir)
— (Risgim + Rimgir — Ringsx — Rirgin) (1.17)

5 G. Y. Rainich, Nature 115, 498 (1925).
6 A. Einstein, Math. Ann. 97, 99 (1926).
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second group (g..): the same repeated
third group (gu):

zRijkm - Z(Rilcgjm - Rjkgm)
fourth group (gum):
2Rijkm - Z(Rimgjk - ngik) .

Collecting all terms and dividing by four, the relation
(1.14) follows, now established on a generally co-
variant basis.

This equation has a remarkable persistency, inas-
much as exactly the same relation remains valid in
both two and three dimensions if the left side is re-
placed by the full Riemann tensor. The dimension
n = 4 is the first one in which the Riemann tensor is
no longer reducible to the contracted tensor. But
here the antidual part of the Riemann tensor is still
reducible to the contracted tensor, by the same
formula that in the lower dimensions gave the full
Riemann tensor.

If we employ the notation

*Riing' " = *Rax, *Rug™ = *R  (1.18)
then contraction of (1.14) by g™ yields
*Riw = — (R — 3Rgir) , (1.19)
whereas a second contraction yields
*R=R. (1.20)

Einstein made use of the decomposition (1.14) in
order to show that by a formal extension of the defini-
tion of the Riemann tensor one could arrive at the
equation

R — iRg,k = —«Tuw, (121}

where T is Maxwell’s energy-momentum tensor

Tik = %FaﬁFaﬁg,‘k it FiaFka . (1.22)

The unusual factor % (instead of %) in (1.21)
seemed to be justified by the automatic vanishing
of the spur T, of the Maxwell tensor. Einstein envis-
aged the possibility of constructing a stable electron
by this combination of gravitation and electromag-
netism, assuming that the attracting gravitational
effects might balance the repulsive electric forces.”
The difficulty with Eq. (1.21) is, however, that it is
under-determined, because the identical vanishing of
the spur on both sides of the equation leads to nine
instead of ten relations, with the result that any dis-
tribution of the electric charge density gave a pos-
sible static equilibrium. Consequently Einstein aban-

7 A. Einstein, Sitzber. preuss. Akad. Wiss. 349 (1919).
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doned this attempt of bringing electricity within the
framework of general relativity and henceforth em-
barked on a different course. The splitting of the
Riemann tensor played no further role in his specu-
lations.

Whereas the investigations of Rainich and Ein-
stein brought clarity to the structure of the anti-dual
tensor A, reducing it to a tensor of second crder,
the question of the self-dual tensor S:u. remained
open. What can we say concerning the structure of
this tensor? Is it similarly reducible to some “gener-
ating function’ of lower order as the antidual tensor
Arm was reducible to the tensor R;.? As long as this
question remains unanswered, we cannot claim that
we have truly understood the structure of a four-
dimensional Riemannian geometry. The present in-
vestigation is devoted to this problem. By finding its
solution we arrive at the further result that exactly
those components of the Riemann tensor that are not
embraced by the gravitational equations of Einstein,
give us the clue toward a deeper understanding of the
electromagnetic and wave-mechanical phenomena, with-
i the framework of general relativity.

2. THE CANONICAL LAGRANGIAN

Einstein has chosen a particularly simple La-
grangian, viz., the scalar Riemannian curvature R,
for the variational derivation of his field equations

*Ri, = — (R, — 2Rgar) = 0. 2.1)

In this singular case the second derivatives of the g
remain variationally inactive and can be eliminated
from the Lagrangian, with the consequence that the
resulting field equations are not higher than second
order. Any other Lagrangian leads to differential
equations of fourth order in the g.. Einstein argued
(with full justification) that the fundamental field
equations of mathematical physics are either of first
or of second order. Field equations of fourth order
would hardly allow a reasonable physical interpreta-
tion.

In actuality, a variational principle is always
solvable by field equations of not higher than first
order. This can be accomplished by the ‘“method of
the Lagrangian multiplier,” coupled with an increase
of variational variables. These Lagrange multipliers
are not merely mathematical quantities. Whenever
they occur, they possess an important physical
significance (for example in the form of a ‘“potential
energy’”’ that maintains a given kinematic constraint,
as in Hertz’ “forceless mechanics,”’—a forerunner of
general relativity). To oversimplify a Lagrangian
may entail the danger of overlooking an important
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physical quantity which should have come in on
account of a constraint imposed as an auxiliary condi-
tion of the variational problem. By means of such
constraints we can reduce every Lagrangian to first-
order equations.

We consider the general problem of deducing field
equations from a given Lagrangian, without specify-
ing in advance the Lagrangian we are going to choose.
We merely assume that there exests a Lagrangian L
from which our field equations follow by variation.
We consider this L as a given scalar that is con-
structed from the curvature components R, and
the gix. In this assumption, both linear and quadratic
action principles are included.

More specifically, we want to consider the con-
travariant components of the dual tensor (1.2) as the
fundamental variational variables, together with the
covariant g;x. We thus put

A= f Lg""*dx.dasdrsda, (2.2)
with
L = L(*R7™ g.1) . 2.3)

Although in reality *R*" is a complicated differential
operator of the second order in the g, we handle it
for the purposes of variation as a mere algebraic
quantity, preserving its algebraic symmetry proper-
ties. This is permitted, provided that we take care
of the limitations that are in the way of a free varia-
tion, caused by the fact that *Ri*" is in reality de-
ducible by differentiation from the g.. As we have
seen before, the tensor *Ri*" has to satisfy the
Bianchi identity (1.3). This has the consequence that
the variation of *R'*" must satisfy the following
linear tensor equation:
(5*Rijkm),m + (Bpim)*Rajkm

— (BTL)*R™™ 4 (3T0)*R"™ = 0. (2.4)
On the other hand, this is the only condition to
which the variation of *Ri*» is subjected. But this
condition brings into evidence the variation of the
T quantities (which have tensor character, although
the T'j, themselves are not components of a tensor).
These variations are again not free from their part
but restricted due to the definition of the I/, in
terms of the Christoffel symbols

; {z’k}_
x= =0 (2.5)

We have to consider these equations as auxiliary
conditions of the variation. Then the condition (2.4)
involves the §*Ri*» and the dg:. These variations
can again not be considered as independent from
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each other. If the 6*Ri*" are given, the variations of
the g.. are already determined and this relation has
to be expressed. For this purpose, however, it is
unnecessary to consider the differential expression
that defines the full Riemann tensor. It suffices to
operate with the contracted curvature tensor, as
Einstein has done. The matter tensor can be con-
sidered as the basic field quantity from which the
metrical tensor is obtainable. Although this problem
is not well defined because of its highly nonlinear
character, here we are only concerned with the rela-
tion between the variation of the matter tensor and
the corresponding vartation of the g... This is a purely
linear problem that establishes a one-to-one corre-
spondence between the two kinds of variations; if
the variation of the g is given, the variation of
*Ra becomes a linear second-order differential opera-
tor of the dg:x. On the other hand, if the variation of
*Ra is given, we can solve our differential equation
with the help of the Green’s function and obtain the
dga in terms of an integral operator, operating on the
8*R.. The condition is that the homogeneous differ-
ential equation (with zero on the right side) shall
have no nontrivial solutions under the given bound-
ary conditions. This we want to assume (mere co-
ordinate transformations, involving a free infini-
tesimal vector, remain, but are irrelevant for our
purposes since they do not cause a variation of the
fundamental action integral).

Hence, it suffices to introduce as an auxiliary
condition of the wvariation Einstein’s contracted
tensor

Ry = F(I%) = 3(9:T% + 9:T%) — 0aT'%

+ Il — IMElfa, (2.6)
which involves solely the Ty, and their first deriva-
tives, whereas the I'}, themselves are reduced to the
gix, on account of the auxiliary condition (2.5).

On the basis of this discussion we can write down

the full canonical Lagrangian, which contains noth-
ing but first-order derivatives, as follows:

L' = LC*R"™, gu) + Hi*R7™,
+ Pk — (') + 0 R — F(TR)] . (27)

The canonical variables of our problem and their
conjugates are

J
Jiky iky
ik

*Rijkm)
ik
P, P i

The tensors p* and P*; are symmetric in ¢, k, whereas
the tensor H.; is antisymmetric in <, j.
We observe the peculiarity that the conjugate of
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*Ri#m (20 independent components) is the tensor of
third-order H;, with 24 independent components.
We can show, however, that the tensor H,;; may be
restricted without any loss of generality by the
condition

*Haja = Huuaalwaj =0 (29)
for which we may also write
Hijw +Hiji +Hii; = 0. (2.10)

In view of this condition, the number of algebraically
independent components is reduced to 20, which
exactly balances the number of independent com-
ponents of the fourth-order tensor *R##»,

To perform the variation and obtain the field
equations of our problem is now a mere routine
procedure. Since the Lagrangian L does not depend
explicitly on T, the variation of the I, yields a
relation for the tensor P%*; that can be stated ex-
plicitly, independently of the form of L. We make a
slight modification in p* by splitting it as follows:

pilc _ sz + qgik (2.11)
where the scalar ¢ is defined by
4q = p"gur (2.12)
due to which
Q:: = Qikgik =0. (2.13)
The variation of I', now yields:
Pucj — Qik’ s 7. gilc _ Haja (*RiakB + *Rkaiﬁ)
— 38 (Hapy*B*™" + Q"2 + ¢.a g™
— 385 (Hap*R™™ + Q4 qug) . (2.14)

We see that the canonical variable P is not a

genuinely new quantity, being explicitly expressible

in terms of the other variables.

The variation of g yields the following relation:

9L/dga + ¥ Ly = Qug*R™™ + QRS 4 Q"*R;,
_ %*Rsz _ q*Rik _ %*Rggtk
_ % (Pizxk + Plcou} _ Pika)’a .

The factor of §*R#*" becomes

Bijim = aL/a*R”'"” —

(2.15)

Hijpw — ngjm + qGirGim -
(2.16)

This quantity cannot be directly equated to zero
because we have to take into account the algebraic
symmetry properties of §*R:*». The symmetrization
demands the following operation:

% [Bijkm + Bimii + Bjims + B
— Biitm — Bimji — Bijmr — Bunis

— 3 (Bagud™™)bis1m] - (2.17)
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In our case the last term always vanishes and thus it
suffices to introduce the following bracket symbol:

[Bijkm] = % (Bijkm + Binii + Bijime + Bmkii
- Bjikm - Bkmii - Bijmk - Bmkii) (2-18)
(The change of the factor % to % is motivated by the
fact that in all our applications of this formula the
eight terms pair off into four terms and the numerical
factor will thus disappear in the final formula. We
have to remember, however, that in the case that
Bi;=x happens to possess automatically the symmetry
properties of *R;., the bracketing amounts to a
multiplication of Bi;;.. by the factor 4.) With this
notation, the resulting equation obtained by varying
*Rim hecomes
[OL/B*R”M = tHijk, m + Qikgjm - qukgjm] . (2-19)
Equation (2.19) allows the following conclusion.
We perform the following transformation:
Hipy = Hiji — @iga + Pigin
Qix = Qi + @i + Prs — %‘1";9%
g=q — 3%.. (2.20)

Then the relation (2.19) remains unchanged. The
freedom of choosing the vector ®; at will can be used
for a further normalization of the tensor H.;. By
choosing
®; = — L Hiug™ (2.21)
we obtain
Hiwg™ =0. (2.22)

Assuming that this transformation has been ac-
complished, we omit the primes and submit H;; to
the vectorial condition

Hipng" =Hi =0. (2.23)

Hence, the number of independent components of
H ;i is now reduced from 20 to 16.

It is of interest to observe that in the case that the

tensor H.; happens to be the gradient of an anti-
symmetric tensor of second order:

Hijk = Fij,k (224}
the conditions (2.23) and (2.10) coincide with the
double set of Mazwellian equations (1.1).

3. THE FUNDAMENTAL TENSOR Hjjx

A previous investigation of the author [Cf. (I),
Egs. (4.8)-(4.15)] has shown that the following
Lagrangian:

L = Riu*R7™" (3.1)
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yields a variation which vansshes identically. Hence,
we cannot use this Lagrangian for the derivation of
field equations. But exactly for this reason we have
here a variational property which characterizes all
Riemannian geometries of four dimensions. The con-
sequences of this action principle are thus universally
valid, without prejudicing the geometry by a definite
set of field equations. We will see what consequences
we can draw from this variational principle concern-
ing the structure of an arbitrary Riemannian geom-
etry of four dimensions.
We choose our L in the form

17km, abed
L = ’;;lz“*R *R ¢ aabijBCdkm

= 1*R""Risim . (3.2)
Then
and Eq. (2.19) yields
Rijim = [Hijk,m + (Qik - qgik)gfm] . (34)
We make use of the notation
Hilc = iak,a (35)
and multiply (3.4) by g». This yields
Ry = Hi + Hii 4+ 2Qu — 6qg.r - (3.6)
A second contraction by g* yields
= — 24q. B.7)

We see that the tensor Qix (and the scalar ¢) are
algebraically reducible to the other canonical varia-
bles and can thus be eliminated. If we perform this
elimination and substitute back in (3.4), we obtain
the following relation:

2Ri}']zm - [(Rik - %Rgik)gm]
= [2Hijk,m - (Hik + Hki)gjm] . (3.8)

At this point we return to our previous splitting
of the Riemann tensor, but with a slight modification.
Instead of the 9 + 11 splitting considered in Sec. I
we now make a 10 + 10 splitting by introducing the
following two tensors:

Uiz'krn = Aijkm + %R(gikgjm - gimgjk)
Vijlcm = Sijkm - %R(gikgm - gimgjlc) . (3.9)
Once more
Rijin = 5WUisin + Vijim) - (3.10)
The added term has the effect that now
Vl-,-kmgik = Vijkmgikgjm =0 (311)
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whereas Uiing™g'™ % 0. We have thus added one
component to the previous tensor A ;.. and subtracted
one component from the tensor S;;i», thus balancing
the number of components in both cases to 10.

Now the relation (1.14), if formulated for the new
tensor U.jim, becomes

Uijim = (Bir — 5 Rgir)gim + (Rjm — %Rgifn>gik
— (Bim — %Rgim)gﬂc — (B — %jok)gim
= [(Ba — § Rgir)gin] - (3.12)

Subtraction from (3.8) yields

Viiem = [2Hijk,m - (H'Hc + Hki)g:im] . (3.13)

We have thus obtained the self-dual tensor Vim
in terms of a ‘“‘generating function” Hj;, in a similar
way as the tensor U.» could be generated by means
of the generating function R; — §Rga. The essential
difference is, however, that in the latter case the
operation is purely algebraic, while the generation of
the tensor V. demands that we differentiate the
generating function Hjs.

The tensor V. contains exactly those cbmponents
of the full Riemann tensor which are not reducible to
the contracted tensor Rg. The generation of this
tensor in terms of H;; brings into evidence the exist-
ence of a tensor of third order, (antisymmetric in ,5),
which is present in every Riemannian geometry of
four dimensions?), without adding new elements to
it, or modifying it by generalizations. In his ‘‘distance
parallelism’’ Einstein encountered a similar tensor of
third order (denoted by A%;), which had to be differ-
entiated but once in order to obtain the basic curva-
ture quantities. In Einstein’s later theories, some-
thing similar happened with the antisymmetric part
of the T that similarly formed a tensor. Yet, it is
unnecessary to abandon Riemannian geometry for
the emergence of such a tensor. Although the g, form
the unique basis of a Riemannian geometry, yet the
tensor H.; is an added element because we cannot
reduce it locally to the line element g and its deriva-
tives. It is reducible to the g only by an ¢ntegral
operation, i.e., the value of H; depends globally on
the geometry of the manifold. And yet, the tensor
H;;: participates locally in the formation of the field
equations.

It is clear that the 10 equations (3.13) cannot be
sufficient for a unique characterization of the 16
components of H;, if our aim is to establish a unique

8 This tensor appeared for the first time (but restricted to
infinitesimal fields) in the author’s paper, Revs. Modern Phys.
21, 497, (1949).
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relation between H,;; and a given Riemannian geom-
etry. The six quantities

H';ja,a = hij ) (314)
which form the components of an antisymmetric
tensor of second order, do not participate in the

operation contained on the right side of (3.4). If we
normalize this tensor to zero by the condition

Hiffa=0 (3.15)

we add six equations to the previous 10 equations
(8.13), and now the relation between the tensor Hj;
and a given Riemannian geometry becomes unique.
This condition is not provided by our variational
principle and for a good reason. The variational
principle demands more than the fulfilment of Egs.
(8.13). Equations (2.15), obtained by varying the
g, must also be satisfied and this demands ten more
relations. Without the six degrees of freedom (3.14)
and the free vector ®; that appeared in (2.20), we
would not be able to satisfy these extra conditions.
But if our aim is merely to find a generating function
for the tensor Vs, we could add the condition (3.15)
to the normalization of H;;, thus obtaining 16 differ-
ential equations for 16 quantities. The solution of the
problem is then reducible to the invariant Laplacean
operator

A= g™ . (3.16)
Differentiating (3.13) with respect to m (after raising
the subscript m to an upper position), the following
result is obtained:

AH ;i + RiakBHﬁai - RiakﬁHﬂai + %Rw’iaﬁ Haﬂk

+ Rl?Hija + R?Hkaj - R?Hkai
+ 1 (Riapygir — Riapygin) H®

= 3[(Ra —  Rgar),; — (Bix — & Rgir),i] . (3.17)

As an example, let us consider the highly simplified
problem of infinitesimal fields, i.e., a metric which
differs from the Euclidean (Minkowskian) values by
an arbitrarily small amount throughout space

gix = Sik + Yik o (3.18)
In this case covariant and ordinary differentiations
coincide, and all the second-order terms on the left of
(3.17) become negligible. The resulting equation be-
comes

AHijp = 5 (Rix — § Roi) s — 5 (R — § Réji) i s
(3.19)
which is solvable by putting
Hijk = Po’k,j - P:’Ic,z‘
Apn‘k = % (Rm - %Rﬁ,k) . (320)
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Now, if we adopt Einstein’s coordinate condition for
infinitesimal fields,

Yiaa — (321)

(with v = v4e), then the contracted tensor R.. be-
comes

37:=0

R = § Avar, (3.22)

and we get

P = % (vir — & v0a) . (3.23)

Moreover,

Hy, =Hy = Hiak,a = %A(’)’ik - %'Yﬁik) - '117’Y,ik-

(3.24)
Going back to (3.8) we now obtain
Rijin = [Hijlc,m -+ Tli 'Y,ik5jm]
= 3 (Yirim & Vim,it — Vim,jk — Yikm) , (3.25)

which is, in fact, the correct expression for the curva-
ture tensor in the case of infinitesimal fields. In this
particular instance the tensor H;; becomes locally
expressible in terms of the g

Hij = § (Yari — Yins — & 7,30 + & v,0i) . (3.26)

4. THE QUADRATIC ACTION PRINCIPLE

We now employ a Lagrangian that is no longer
vacuous from the standpoint of field equations. We
assume that our action principle is quadratic in the
curvature components. The most general form of
such an action principle [cf. (II), Eq. (5.1)] contains
one unknown numerical constant and may be put in
the following form

L = }[RaR™ — (v + 3R], (4.1)
where v is an undetermined numerical factor [the
previous B being replaced by — (v + )].

We have, however, our vacuous invariant (3.1) at
our disposal, whose variation vanishes identically and
which can thus be freely added (multiplied by an
arbitrary constant) to our Lagrangian (4.1). It will
be our aim to choose the resultant L (without en-
croaching on its generality) in such a form that the
resulting field equations should become particularly
simple.

The geometry of our manifold is determined by
equating the factor of gz to zero. This gives Eq.
(2.15). In this equation the symmetric tensor Q.
plays a fundamental role. Since P%;, defined by (2.14),
already contains the first derivatives of Q. and Eq.
(2.15) demands the first derivatives of P%; we see
that the fundamental metric equation depends on
the second derivatives of Qu. If Qi depends on the
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curvature tensor R;;, we wind up with a second-order
equation for R, which means a fourth-order equa-
tion in the gu. If, however, Q. is tndependent of R,
then the equation is greatly simplified and we obtain
—apart from small correction terms which involve
the first derivatives of Ri—an essentially algebraic
determination of R in terms of the generating func-
tion H,;. Hence, we have reduced our originally
fourth-order equation in g, to an essentially second-
order equation, in harmony with Einstein’s program
that endeavors to express the matter tensor explicitly
in other physical quantities. In this case the tensor
H,;; becomes a genuine tnlegrating function of the
field equations.

There exists, indeed, a definite Lagrangian by
which this program can be achieved. We choose L in
the following form:

L = % (Rijlcm + *Rijkm)*RUkm -
Here

Yo+ )R (42)

aL/a*R“’"” = 1 Rijkm + *Rijim)
. 17 *Rgirgin — v*Rirgin
Now Eq. (2.19) becomes
Rijin + *Rijin — %*R(gikgjm — GingGix)
= [Hijkm + Qirgim — (q — YR)gagin] , (4.4)

or, in view of the definition (3.9) of the self-dual
tensor Vijm,

(4.3)

Vijkm = [Hijk,m + Qikgjm - (Q - 7R>gik9im] (4-5)
Contraction over 7, m and later over 7, k yields

2Q: = —(Hi + Hi) (4.6)

g =v*R. 4.7

As far as the tensor V. is concerned, we are back
at Eq. (3.13), but the tensor Q. does not depend any-
more on Ri. The coupling between the matter tensor
and the tensor H,;, expressed by Eq. (2.15), ceases
to be a differential equation of second order in *R.
It becomes algebraic in * R, and because of this we can
express the matter tensor *R, explicitly in terms of the
Sfundamental tensor H .

We have to pay closer attention to Eq. (2.15). It
is this equation which determines the Riemannian
metric realized in the physical universe. In view of
the transformation (2.20) we have to correct the
expressions obtained in (4.6) and (4.7) and substitute
for Q. and ¢ the following expressions:

Qik = —% (sz -+ Hlm‘) + cI’i'k -+ ‘I’k,i - %‘t“fagik
(4.8)
(4.9)
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where the vector ®; is a free integrating function.
Moreover, since our aim is to reduce *R.; to the tensor
H:y, we will eliminate the full Riemann tensor
*Riywm by expressing it in terms of the tensor Vijum
[which according to (3.13) depends solely on H ;] and
*Ri. From the (3.12) and (3.13) we obtain
*Rijim = 5 Vijin + [ 3 R — £*Rgir)gin] - (4.10)
We will now evaluate the left side of Eq. (2.15) for
our Lagrangian (4.2). We obtain
0L/0ge = % (Rups™R)g" + 3 "R Rl
LAR*R™ _ o *¥R*R™ (4.11)
The second term on the right side can be transformed
in view of the identity [cf. (I), Eq. (4.10)]
R*P*Rlupy = 1 Raps™R™)g™ (412)
and, eliminating the full Riemann tensor with the
help of (4.10), the final result becomes
aL/ang — %V2gik _I_ %*Raﬁviakﬁ
— L*R(*R™ — L *Rg™) — 2y*R*R™ | (4.13)

while the Lagrangian L becomes

L=V — Ly*R?, (4.14)
where we made use of the abbreviation
V2 = VgV, (4.15)

Hence, the left side of (2.15) becomes
%Vzgik + %*Raﬂviakﬂ
— P*ROR* — 1*Rg") — 2°R*E" — | v*R'g".
(4.16)
Let us rearrange Eq. (2.15) by bringing over to the
left side all the terms which do not contain the inte-
grating functions H;; and ®;, and collecting all the
other terms on the right side. Then the left side be-
comes
- (v + D*RCR™ — 1 *Rg™) . (417)
We know from the general theory of a quadratic
action principle that the scalar curvature *R satisfies
the potential equation [cf. (II), Eq. (5.22)]. Since we
want to exclude nontrivial solutions of a differential

equation that is free of sources (right side zero), we
come to the conclusion

(4.18)

(this constant may be very large). Then we can
divide the entire equation by a constant, obtaining
the modified matter tensor

G = xR _ i*Rg“ - _(Rik .

*R = const

1Rg™)  (4.19)
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in terms of the tensor H.; (and the vector &,),
G" = T, (4.20)
where
k= —1/(v+3)*E. (4.21)

The expression for 7% is by far more complicated
than Maxwell’s energy-momentum tensor, and de-
mands further study. But the spur 7%, of that tensor
1S once more zero.

The fact that the fundamental metrical equation
appears in terms of the modified matter tensor (4.19),
in harmony with the astonishing hunch of Einstein
[ef. (1.21)], is related to the well-known general
feature of the quadratic action principle that not
only the solution R = 0, but also the ‘“‘cosmological
solution,”

R+ N =0, (4.22)
is an exact first integral of the field equations. At the
same time we are not hampered by the under de-
termination of our system since Eq. (4.20) is not the
only equation we have to satisfy. The general struc-
ture of the theory provides us with the added equa-
tion *R = const by which the under determination
is removed.

5. THE DIRAC EQUATION

We will study Eq. (3.13)—which is the basic field
equation for the determination of H;;—Dby restricting
ourselves to weak metrical fields, in which the devia-
tion of the g, from the Euclidean normal values 8. is
negligibly small. Moreover, we want to consider the
homogeneous case when the right side of the equations
vantshes, in analogy to the Einstein equations Ry = 0
(we know, of course, that the right side cannot be
zero everywhere, yet it may be zero almost everywhere,
excepting small islands of space). We will thus con-
sider the ten equations

3 Viitn = Hijeom — Hijme + Hime,i — Himj i
— 3 (Hix + Hei)gim — 5 (Him -+ Hunj)gix
+ 3 (Hin + Hoi)gir + 5 (Hix + Hij)gim
-0. (.1)

To these we add the six divergence equations (3.14),
again assuming that the right side vanishes. This
means

H;.=0 5.2)
In view of the relation
(I{ija + HJ'M' + Haii).ﬁgaﬂ = 0 (53)

[ef. (2.10)], we see that the condition (5.2) implies
Hik—ngi =0, (54)
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that is, the tensor H: = H%,. becomes symmetric.
Hence, in Eq. (5.1) we do not have to distinguish be-
tween Hy and Hi..

Under the greatly simplified conditions of our
problem, covariant and contravariant components
coincide, and the tensor g.: is replaceable by ... The
expression for the tensor Vi;im is then greatly simpli-
fied. By forming the sum

Vijkm = % (Vijkm + *Vijkm) P
we see at once that we can now write

V{jkm = 2(Hijk,m - Hq,'jm,k + Hijk,m - Hijm,k) (55)
where the bold face index pair shall signify that the
dual pair is to be taken; (e.g., 12 = 34, 13 = 42, etc.).
Moreover, the “comma’ now means ordinary differ-
entiation. We observe, furthermore, that the compo-
nents of H,; in our Minkowskian world are partly
real, partly imaginary, according to whether the sub-
scripts are 1,2,3, or 4; (fwo fours = real). If now we
add to Vi its dual Vijen, we obtain the sum of a real
and imaginary quantity, i.e., a complex number.
Hence, we can replace the ten real equations Ve =
0 by the five complex equations

Viitm + Viigm = 0 (5.6)
to which we add the three complex equations
hi; + hiy = 0. 5.7

The eight complex equations, (5.6) and (5.7) take now
the place of the original 16 equations. (5.1) and (5.2).
Now the expressions (5.5) show that we obtain

(z]km) = Vijkm + Viikm
= Cijk,m - C@';,'m,k + C,‘jk,m - Cijm,k (58)

where the components C;; have complex values, de-
fined as follows:

Cijk = 2(Hijk + Hiik) . (59)

Similarly,
(@) = 2(hi; + his) = Cijaa - (5.10)
Now in view of the properties of the tensor Vijim
only the following ten index combinations need to be
congsidered :
1212 1213 1214 1223 1224 1234
1313 1314 1323 1324. (5.11)
After the complex pairing (5.6), however, these ten
combinations are reducible to the five combinations,
(12 12), (1213), (12 14)
(1313), (1314).  (5.12)

Beside putting these five complex components equal
to zero, we have to add the three complex equations
(12) = (13) = (23) = 0 We replace this 5 + 3 split-
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ting by a 6 + 2 splitting in the following manner:

(1212) (1213) (1214) (12)

(1312) (1313) (1314) (13) (5.13)

This is permitted because (12 13) — (13 12) = (23)
and thus we can replace the equation (23) = 0 by
(1312) = 0. ‘

Now, the first four equations, obtained by putting
the upper row of (5.13) equal to zero, yields, if we
write the equations in the sequence (12 14), — (12
13), (12 12), (12):

— Qi1 — Qa2+ Qs+ Qe =0
Qs — Qa2 — Qia+ Qe =0
— Q21+ Q2 — Quz+ @0 =0
Qi1+ Q22+ Qs34+ Qua =0, (5.14)

which may also be written in the form of the follow-
ing quaternion equation:

J . a ., a
(axl”L aza? T oms

(@i + i+ et +0.) =0,

(5.15)
where
Ql = A121, Qz = A122, Qs = A123, Q4 = A124 .
(5.16)

The second row yields exactly the same set if the Q;
are identified with the A4s,.

We see that the original eight complex equations
separate into two independent groups of four equations.?®
(This separation does not occur in covariant fashion
and may be accomplished in an infinite number of
ways.) We may also consider the four Q; as the four
components of a complex column vector ¥ and write
Eq. (5.14) in matrix form:

Y1V + 72V + vV + v¥, =0 (5.17)
where i1, vz, vs, v« are four matrices defined as fol-
lows:

0 0 0—17 0 0—1 07

0 0 1 0 0 0 0-—1
=1o—-1 0 o] ™Tl1 0 0 o0
1 0o o ol o 1 0 ol

( 010 07 "1 0 0 07
|-100 o0 0 1 0 0
=1 00 0-1 =10 0 1 o0
|l 00 1 0] o 0 0 1]
(5.18)

9 The duplication of the equation is not accidental. One

‘equation alone would create a right-handed or left-handed

rotational sense in space time, which is not in harmony with
the nature of a Riemannian geometry.
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They are mathematically equivalent to the four
Dirac matrices that appear in Dirac’s equation of the
electron in which the ‘“mass term”’ is omitted. The
reason for the absence of the mass term is not that it
is outside the scope of the theory but rather that in
our “infinitesimal”’ over-simplification the mass could
not come into existence, since it represents a second
order superpostition effect.

The spontaneous and quite unexpected appearance
of quaternion calculus and the Dirac equation (the
fundamental building blocks of electromagnetism and
of quantum theory) in the field equations of general
relativity can hardly be considered as mere accidents.
Einstein’s “cosmic wisdom’” hypothesis seems to have
asserted itself once more on a grandiose scale. Ein-
stein’s fundamental discovery of introducing Rieman-
nian geometry and interpreting the matter tensor in
terms of the contracted tensor opened the great per-
spective of interpreting all physical phenomena in
last analysis as geometrical properties of the space-
time world. But the puzzling problem remained:
What shall we do with the matter tensor? What is its
structure? It can certainly not vanish everywhere, as
demanded by Einstein’s linear action principle. Shall
we then equate the metrical matter tensor to the mat-
ter tensor of macroscopic physical events, such as
Minkowski’s kinetic tensor, or Maxwell’s energy-
momentum tensor, or a combination of both? Apart
from the fact that such a procedure gives no clues
concerning the atomistic structure of matter, it was
in Einstein’s eyes inconceivable that entirely hetero-
geneous quantities should be equated to each other.
In his opinion this procedure could only be justified
as a matter of expedience, without deeper signifi-
cance.!?

This puzzle could not be properly answered before
unearthing a fundamental element of four-dimen-
sional Riemannian geometry: a tensor of third-order
H;;, (antisymmetric in 4j), of 16 independent com-
ponents. The quadratic action principle establishes
a direct coupling between the matter tensor and this
tensor Hj;;, while on the other hand this tensor is
coupled to exactly those ten components of the
Riemann tensor which are not included in the matter
tensor. This highly involved feed-back system repre-

10 Einstein expressed this thought in his characteristic style:
“This equation reminds one of a palace which has two wings;
the left wing is built of imperishable marble, the right wing
of inferior wood.” [Cf. L. de Broglie, Nouvelles perspectives en
macrophysique (A. Michel, Paris, 1956), p. 186).]
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sents a mathematical problem which in its generality
goes far beyond our present faculties and can only
be handled in approximation. The problem is further
complicated by the fact that the basic metrical
plateau of the physical universe is far from a smooth,
almost Minkowskian manifold. It is in fact an im-
mensely agitated surface of very high frequencies
which cancel out in the average and give the im-
pression of a mirror-like surface. The ‘“‘macroscopic
matter” appears only as a second-order interference
effect of the matter waves, (caused by the non-
linearity of the field equations) which gives a rela-
tively stable (although very weak) superstructure. It
is this second-order superstructure, however, which
is of decisive importance from the standpoint of our
physical observations, since they are solely tied to it,
while the basic plateau is obtainable only by infer-
ence.

In spite of the formidable task of unraveling the
mathematical consequences of the field equations,
the general outlines of the Masterplan become clearly
visible. Riemann’s geometry remains untouched by
any encroachments through additions or generaliza-
tions. The mere presence of an unadulterated Rie-
mannian geometry of specifically four dimensions
brings into existence a tensor of third order H;; of 16
components which bridges the gap between the
second-order tensor of the line element g and the
fourth-order tensor of the Riemannian curvature
Risim. We will call it the “‘spintensor.” We then have
the hierarchy

‘I’i, ik, Hijk, Rijkm,

in physical interpretation: the vector potential, the
metrical tensor, the spintensor, the Riemann tensor.
These quantities, which emerge as inherent struc-
tural elements of a Riemannian geometry of four
dimensions, seem to provide all the necessary and
sufficient building blocks for a rational explanation of
electricity and the quantum phenomena. Einstein’s
revealing essay on “Physics and Reality’’!! ends with
the following words: “It #s shown, however, that the
conviction to the effect that the field theory is unable to
gtve by its methods a solution of these problems (viz. the
atomistic structure of matter and the quantum phe-
nomena), rests upon prejudice.”’ It is perhaps not too
far fetched to claim that the results of the present in-
vestigation seem to corroborate Einstein’s contention.

11 A. Einstein, J. Franklin Inst. 221, 349, (1936).



