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INTRODUCTION
Formulation of the Problem

S yet, the physical nature of the chemical bond is

little understood in many essential details, and
the reason for this must be seen in the mathematical
difficulties which are encountered in solving molecular
quantum-mechanical problems. The older concepts on
the subject have suffered from being based on wave
functions which, by virtue of their simplicity, per-
mitted plausible interpretations (or so it was hoped), but
turned out to be inadequate approximations to the true
solutions. The recent progress towards better approxi-
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PHYSICAL NATURE OF THE CHEMICAL BOND

mations, on the other hand, isleading toincreasingly com-
plicated wave functions whose conceptual meaning is
becoming less and less lucid.

While there used to exist hope of arriving at satis-
factory results by supplementing mathematically un-
justified approximations with chemical and physical
intuition in such a way as to achieve an all-around
cancellation of errors, it now seems to transpire that
bona fide solutions of the mathematical problems, based
on justified approximations only, cannot be sidestepped
if quantitative reliability and unambiguous predictions
are to be achieved in the absence of close analogies. It
has furthermore become apparent that bona fide wave
functions must be determined according to methods
which are largely influenced by considerations of mathe-
matical practicability and computational efficiency, and
that they will have complex appearances of various
forms. Thus, there has arisen the need for a uniform
and generally applicable procedure of interpretation
leading to a meaningful analysis of the physical and
chemical significance of molecular wave functions.

In order to formulate such an analysis, it is necessary
to define quantities referring to various parts of a given
molecule so that total molecular quantities can be
broken down into interpretable fragments. The actual
value of such definitions depends upon whether analo-
gous quantities assume similar numerical values in
analogous situations (e.g., if two. different molecules
contain parts which for chemical or physical reasons
are considered similar in character, then the quantities
defined for the analogous portions in the two molecules
should have similar values). If such is the case, then
it is possible to formulate quantitatively meaningful
comparisons of similar bonding situations in different
molecules, and to use this information for interpolation
and extrapolation to new cases. It is furthermore pos-
sible to analyze the physical similarities between differ-
ent approximations and approaches to a given problem,
and to spot “accidental” agreement with experiment.
Last, but not least, an interpretation of the kind postu-
lated should contribute towards bridging the gap pres-
ently existing between chemical concepts and rigorous
mathematical treatments.

The question must be raised whether the isolation of
fragments of the total energy, for example, is at all a
physically meaningful objective. The answer would
appear to be in the affirmative if it turns out that the
defined fragments exhibit regular and illuminating be-
havior. If it should be so that, for series of molecules,
the variation of the fragments follows certain curves
whose parameters could be found empirically by con-
sidering enough members of the series, then these frag-
ments would qualify as observables, or at least semi-
observables, from an operational viewpoint.

The partitioning of molecular quantities has to be of
a twofold nature. On the one hand, one expects to have
available a partitioning into fragments corresponding
to various ‘‘geographical regions” within the molecule,
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so that it becomes possible to assign quantitative mean-
ings to such concepts as atoms and bonds within a
molecule. On the other hand, one would like to obtain
a partitioning according to physical significance so that
the binding phenomenon can be quantitatively under-
stood as the cooperative effect of such contributions as
long-range Coulombic forces, short-range overlap forces,
ionic and polarization effects, etc. The largest terms in
such a conjunction of the regional and the physical
partitioning have to be something akin to atomic
valence states, but the analysis of the quantitatively
smaller remainder is just as important in order to obtain
an “anatomy of the bonds.”

To be sure, the intuitive desire for such an under-
standing goes back to before the days of quantum
mechanics, and fundamental insights in important as-
pects of the problem were gained by Lewis, Kossel,
Heitler, London, Slater, Pauling, Lennard-Jones, Mulli-
ken, Coulson, and others. Here we wish to mark the suc-
cinct point, however, that no attempt has been made as yet
lo establish whether it is at all possible lo extract from a
rigorous wave function (or from a bona fide approximation
lo il), in a quantitative fashion, a partitioning of the
energy which justifies conceplual interpretations. There
have been attempts to construct approximate forms for
wave functions on the basis of certain preconceived
notions concerning the physical or chemical character
of interatomic forces, and how this character should
be reflected in the wave functions. The valence bond
theory in its simple form is one example, the additive
introduction of van der Waals forces as intramolecular
contributions is another. Unfortunately none of these
synthetic approaches has been able to produce bona fide
approximations to the true solutions, however, and one
must therefore ask whether at least part of the con-
comitantly created concepts have not been forced
artificially into the problem. Thus, these approaches
do not answer the question raised here, viz., whether
or not definite physical interpretations naturally emerge
from the correct wave functions. They rather indicate
that the @ priori imposition of formalistic restrictions
upon wave functions for the sake of interpretability
may be a trap to be avoided.

Present Approach

The reason that it has not been possible to guess a
generally valid, lucid form for molecular wave functions
is, of course, that it is not yet known how best to deal
with  the many-body problem which arises due to the
electronic interactions. Various formulations are useful
at present to overcome this problem and it is therefore
desirable that the interpretation sought should be based
upon an analytic procedure, which is entirely inde-
pendent of the synthetic forms by which specific wave
functions take into account interelectronic interactions.
This requirement is in harmony with the general
quantum-mechanical principle that wave functions
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themselves are not physically observable and hence one
is led to suspect that it may be best to also base mo-
lecular interpretations on quantities which qualify, at
least in principle, as being observable. The most obvious
property of this kind is the energy and its analysis is
no doubt indispensable. However, if one observes that
the energy as well as all other observable quantities
are completely determined by two functions, viz., the
density (first-order density kernel) and the pair density
(second-order density kernel), then it appears natural to
choose these two as the starting point for an interpre-
tative analysis of molecules.

In view of these considerations, the aim of the fol-
lowing developments is a simultaneous regional and
physical partitioning of the molecular density, the
molecular pair density, and the molecular energy; a
partitioning, moreover, which is such that meaningful
concepts can be associated with the proposed fragments.

In such an analysis there are encountered many
instances where definitions are needed which must
fit in the mathematical framework as well as have a
relation to physical intuition. All such formalistic defi-
nitions are, of course, arbitrary. The arbitrariness is
basically inherent in the objective which we wish to
achieve, viz., to understand molecules in terms of atoms
and bonds. It has long been recognized that, within a
molecule, an atom is best described as being to some
degree modified; it is said to exist in a ‘“promoted state.”
Thus, the conceptual isolation of atoms in molecules is
paid for by granting that the atoms are somewhat
changed to meet the demands of the valence situation,
and it is clear that the appropriate valence state of an
atom in a specific environment is by no means a unique
invariant but, within a ceriain range of physical reason-
ableness, open to convenient choice.

This arbitrariness does not preclude, however, the
usefulness of such definitions, if they are consistently
adhered to in the comparison of different systems. The
concept of atoms being the constituents of molecules
has been so unquestionably successful in chemistry that
attempts at a precise mathematical formulation of such
an interpretation ought to be abandoned only when a
cogent and definitive demonstration of their futility has
been established. .

The problems just mentioned are closely related to
the fact that the molecular density and pair density
differ profoundly from those of the constituent atoms,
even if promoted and placed at the actual positions,
because in the molecule electrons are shared between
atoms. The detailed analysis of how electron sharing
affects densities and energies is hoped to be a contribu-
tion of this investigation. It is suggested that a mole-
cule differs from the juxtaposed promoted atoms in
three major aspects, characterized by the concepts of
interference, penetration, and charge transfer. The inter-
ference contributions embody the precise connections
existing between overlap and chemical binding. The
analysis shows that, contrary to a widely held miscon-
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ception, the accumulation of charge in the bond asso-
ciated with overlap does ol provide the potentral
energy lowering which yields binding, but is accom-
panied by a crucial depression of the kinetic energy.
The penetration contributions, on the other hand,
describe how electron sharing modifies the electronic
correlations. This important, bond opposing, aspect of
electron sharing has not been fully appreciated pre-
viously. Finally, from an analysis of the hydrogen
molecule and the hydrogen molecule-ion, it is concluded
that electron sharing leads to chemical binding as the
result of a subtle interplay between the uncertainty
principle and the nuclear attractions: Delocalization of
the valence electrons from one atom o several atoms leads
to a lowering of he kinelic-energy pressure and, as a
consequence, there rvesulls a firmer allachment of these
electrons to the nuclei with a concomilant lowering of the
polential as well as the total energy.

While the specific definitions of the individual terms
representing the various contributions are subject to the
arbitrariness mentioned earlier, limitations do exist in
the form of conservation relations which must hold for
the density and the pair density. To find, within these
limits, physically sensible formulations which exhaus-
tively account for all terms in the actual quantum-
mechanical energy expression, is not altogether trivial.

Inevitably, the ideas advanced here can only be con-
sidered as a first step towards a fully adequate solution
of the problem. While it has been possible to forge a
seemingly complete chain of interpretative concepts to
tie together all parts of the rigorous quantum-mechan-
ical energy expression in a molecule, nobody could be
more aware of the weak links than the author. It is
hoped that these weaknesses may serve as a stimulus
towards more careful thinking about these questions.

Purpose of Interpretative Physical Pictures

The objective of the present inquiry is the interpreta-
tion of given wave functions and not the proposal of
new methods of calculation. On the other hand, it
stands to reason that a meaningful method of interpret-
ing general wave functions will also prove helpful for
synthesizing good specific approximations. Moreover,
the isolation of energy and density terms which show
consistent trends under various conditions would im-
prove the prospects for a more intimate welding of
rigorous calculations and semi-empirical physico-
chemical considerations.

In the pursuit of this goal, we are going to be involved
deeper and deeper into arguments concerning the
interpretation of certain mathematical expressions.
Many of these interpretations certainly are not “phys-
ical” in an operational sense, i.e., they have no direct
relationship to specific experimental observations. They
are however ‘“physical” in the sense that they try to
provide a complete set of consistent physical pictures
which furnish a correct facsimile of the mathematical
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workings of the Schridinger equation. Such pictures are
useful in the field of molecular structure because they
allow us to visualize and predict similarities and differ-
ences in the solutions of the Schroédinger equation for
different molecules without continuous appeal to an
electronic computer. As has already been indicated,
the development of correct and useful pictures of this
nature is a major, and largely still unsolved, objective
of molecular calculations.

In this sense, then, one might say somewhat pointedly
that we are interested in physical concepts which help
to analyze and visualize electronic distributions and
energies in molecules “‘as long as they are unperturbed
by measurement.” It is unavoidable that such inter-
pretative concepts which are suitable to describe a system
in the absence of observation and measurement (e.g.,
interference, sharing, exchange, correlation, penetra-
tion) differ from those interpretative concepts which
are needed to predict properly the results of observation
and measurement (the Copenhagen interpretation).
This is undoubtedly connected with the fact that, in the
absence of measurement, the reversible Schridinger equa-
tion is the applicable law of nature, whereas, during a
measurement, the Schrodinger equation ceases to apply
and, instead, irreversible statistical mechanisms take
over.!

It must be admitted that the way of thinking pur-
sued here tends to consider molecular wavefunctions,
or at least their densities and pair-densities, as fully

1See G. Ludwig, Z. Physik 135, 483 (1953); P. Jordan, Phil.
Sci. 16, 269 (1949). See also G. Ludwig, Die Grundlagen der
Quantenmechanik (Springer-Verlag, Berlin, Germany, 1954),
Chap. V. A simple physical formulation is perhaps as follows.
We define a measurement as the creation of an experimental
effect macroscopic enough to be perceptible to natural human observa-
tion and therefore usable as a classical record.

To set up an atomistic measurement means to set up a thermo-
dynamic trap. The system to be measured is brought into a situa-
tion where its state is highly improbable (e.g., a fast moving
particle suddenly finds itself surrounded by a dense distribution
of resting particles); hence a statistical interaction will take place
(e.g., sooner or later the particle will suffer sufficient collisions to
stop it or slow it down) which involves the system as a whole
and causes it to impart its energy and momentum, or at least part
of it, to the measuring device. Sometimes the statistical inter-
action does not involve the system itself but, e.g., a photon
which is deflected by it.

The thermodynamic trap is moreover directly connected with a
thermodynamic amplifier. An “inhibited statistical avalanche”
has. been dammed up independently (e.g., oversaturation in a
cloud chamber; chemical reactions on a photographic plate in-
hibited in the absence of radiation). This avalanche is triggered
by the relatively small energy and momentum received in the
previously described trapping process. Sometimes several succes-
sive amplification stages are involved.

At the moment the system to be measured falls a victim to the
thermodynamic trap, its wave function undergoes an irreversible
change, which is known as the “reduction of the wave function”
to the new state of the system.

In order to take into account the role of the trap, prob-
ability predictions could perhaps be written in the form: P(x)
=Py(x)Pr(x), where P(x)=probability of occurrence of the
value x for the observable X, Py(x)=absolute square of the pro-
jection of the wave function ¢ on the eigenfunction of ¥ corre-
sponding to the eigenvalue x, Pr(x)=statistical efficiency of the
trap T for measuring the value % of the observable ¥. For example,
one would have P7r(x)=0 in the absence of a measuring device

for %.
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representative description of the molecular “reality.”
The view that these quantities should only be considered
as ‘“‘potentialities” for the prediction of the “actuality”
of certain physical experimental events,!# this extreme
operational point of view is unlikely to find many
practical followers among those who use wooden scale
models of atomic and molecular wave functions to
work out chemical structures.

1. BASIC CONCEPTS AND RELATIONS
1.1 Density Operator and Pair-Density Operator

Let
i=1,2,---, N (1.1)

denote the space-spin coordinates of the N electrons
in a molecule; let

dV,:= dx,dy,dzl, dT7;= dSidVi,
dr=dridredrs - -dTN
denote the corresponding volume elements; and let
1.3)

denote the exact electronic wave function of the mo-
lecular system in question.
The second-order density matrix

Xi§i= X5Yi%:S4i,

(1.2)

\I,(lesbx%s?’ e )XN;SN)

F(X181,X282 ‘ Xllsll,X2182/)

= N(N'— 1)/(dT/dTlde)‘I/(X1S1,X2S2,X3$3, .. ,XNSN)
X\I’*(Xlsl,XQSZ,XgSg, s ,XNSN) (14)

and the first-order density matrix
y(xs|x's")=(N— 1)_1/d72P(XS,X252 |x's’ Xo52) (1.5)

were introduced and discussed by Lowdin and Mc-
Weeny .2

For the purpose of the present discussion, only the
spinless density matrices

o(x|x")= /ds'y(xs |x's), (1.6)

W(X1X2IX1,X2’)=/dSI/dSzP(X181,X2$2|Xllsl,Xgl.S‘z), (1.7)

are required. Their diagonal elements have the follow-
ing physical significance:

p(x |x)=p(x)=total probable density of electrons
at the space point x=(x,y,2),
(1.8)

1a W. Heisenberg, Niels Bokr and the Development of Physics
(McGraw-Hill Book Company, Inc., New York, 1955), p. 12.

2P. O. Lowdin, Phys. Rev. 97, 1474 (1955); R. McWeeny,
Proc. Roy. Soc. (London) A232, 114 (1955); A235, 496 (1956).
We use McWeeny’s definition but Léwdin’s symbol T'.
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m(X1X2 |[X1Xz) =7 (X1X2) = total pair density of electrons;
i.e., the probable number of elec-
tron pairs which have one
partner at the space point
x;=(x1y121), the other at the
space point Xs=(¥2y222). (1.9)

Because of this physical significance the symbols p and
w have been chosen. In the subsequent derivations
certain integrals over p and w are important. For these,
the name populations will be used. More specifically:

/ dVp(x)=electron population in
v

the volume 7, (1.10)

3 / av, / dV o (x1X2) =electron-pair population
14 14

in the volume V.

The factor 1 corrects for the fact that the double
integration counts each pair of volume elements twice.
From the definitions (1.4) to (1.7) follow the conserva-
tion relations

/deﬂ’(XleXIX2)= (N—1p(x|x"), (1.11)

/ dVp(x)=N, (1.11)

expressing the facts that the fofal population consists of
N electrons and that the fofal pair population consists
of N(N—1)/2 electron pairs. v

Both p(x|x’) and 7(x:X: |X)'Xs’) must be considered
as kernels of Hermitian integral operators o and = in the
Hilbert spaces spanned by certain functions of the
space coordinates of one and two electrons, respectively.
These operators are defined by the identities

0f(X)= f o(x|X)dV (X)), (1.12)

xf(xl,x;,)://-;r(xlxglxl’x2’)dV1’dVz'f(xl’,Xg’), (1.13)

where the f’s denote arbitrary functions in the respec-
tive Hilbert spaces. In order to be consistent the follow-
ing names will therefore be used: density kernel, pair-
density kernel for the Schriodinger representations (1.6),
(1.7); density malrix, pair-density matrixz for matrix
representations obtained by expansion in terms of dis-
crete bases in the Hilbert spaces; density operalor, pair-
density operator, when reference to a particular repre-
sentation is to be avoided. A similar nomenclature has
been used previously by S. F. Boys.

Lowdin and McWeeny? pointed out that it is always
possible to express g as a sum of projection operators
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arising from certain one-electron functions ¢,(x), ¢a(x),

@3(x), - - -, the “natural molecular orbitals,” as follows,
p(x|x) =2 pa(x[X"), (1.14)

n=1
Pu(X|X)=Nuou(X) ou*(x'). (1.15)

In line with the interpretation given in Egs. (1.8) and
(1.9), the coefficients N, are called the orbital occupa-
tion numbers. They fulfill the conservation relation

> N.=N,

n=1

(1.16)

and, because of the antisymmetry of the wave function
(1.3), are numbers between zero and two. In the case
of the spinless density operator the existence of Egs.
(1.14) and (1.15) can be rigorously proven from the
theory of integral equations. In fact, ¢.(x) and N, are
defined as the solutions of the eigenvalue integral
equation

oen(X)=Npon(x), (1.17)

f Vo) onX)=Nogal®).  (L18)

Since it is easily shown that the density kernel is con-
tinuous, Hermitian, and non-negative, it follows from
the theorem of Mercer for Fredholm integral equations
of the first kind that the bilinear expansion

P(x l X/) = {:1 Nn(Pn(x) ‘Pn*(x,)

exists and converges absolutely and uniformly. The bi-
linear expansion is, however, identical with Egs. (1.14)
and (1.15).

Similar arguments are valid for the pair density, for
which “natural molecular pair orbitals” can be found
from an analogous integral equation.

If an approximate wave function is known for a
molecular system, such a wave function will give rise
to approximate density operators. An approximation
which is of some interest is that of one antisymmetrized
product of V one-electron spin orbitals, i.e., the Hartree-
Fock form. For the first-order density operator, this
restriction has the consequence that only the values
0, 1, 2 occur for the occupation numbers N,. A par-
ticular simplification arises for the self-consistent field
approximation to a closed-shell state, an important
special case. Here the occupation numbers are re-
stricted to

2, n=1,2,---
Nn: b ) ) ) (N/2)7 (1'19)
0, n>(N/2),

and the pair-density kernel can be expressed in terms -



PHYSICAL NATURE OF

of the density kernel by the relation!

m(X1X2 [X1"X2") = p(X1 [X1")p(X2 [X2)
—30(xy |X2')P(X2 [X1');

7(X1Xg) = p(X1)p(X2) — (3) |P(X1 [xo) [2.

(1.20)
(1.21)

The first term, commonly called the Coulomb part,
would be the pair density for two independent sets of
particles; the second term, called the exchange part,
always represents the subtraction of a positive quantity
and is discussed in Sec. 1.4. If the wave function is
real, practically almost the only case of interest, then
the density kernel is symmetric and the absolute-value
signs can be dropped in Eq. (1.21).

In the general Hartree-Fock case, where the deter-
minant consists of NV different spin orbitals, each with
occupation number 1, it is convenient to divide the sum
(1.14) and (1.15) into a sum over the orbitals with (+4)
spin and a sum over the orbitals with (—) spin. If the
two sums are denoted by p; and p_, the density kernel
can be written

p(X1 [X2) = py (X1 [X2) +p— (X1 [X2). (1.22)

In this case the pair density is found to have the form

(X1,X2) = p(X1)p(X2) — p1 (X1 | X2) —p_2(%1 [x2), (1.22")

the previous Eq. (1.21) results from Eq. (1.22") by
putting py=p_=73p.

It is useful to introduce a decomposition similar to
Egs. (1.21) and (1.22") for the exact pair density,
namely,

(1.23)

The term 7, may be called the generalized exchange
term.

m(X1,Xs2) = p(X1)p(X2) — 7(X1,X2).

1.2 Molecular Energy

The density operators are sufficient to calculate the
mean values of all spin-independent physical observ-
ables so far of interest. In particular, if

N
F= Z f(x;)

is a sum of one-electron operators, and if

is a sum of two-electron operators, then the expectation
values can be written

F=(¥ |5 |¥)=Tr(f), (1.24)
G=(¥|g |¥)=Tr(gx). (1.25)

The energy to be discussed here is that obtained from
nonrelativistic quantum mechanics, with the nuclei held
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in fixed positions, under neglect of interactions involving
the electron spin. By virtue of Egs. (1.24) and (1.25),
it takes the form?

E= Y ZiZpRup!

A<LB
1
+/thp+E /dVl/‘dehflw. (126)

The following notation is used here. The capital letters
A, B, --- denote atoms; Z4, Zp, - - -, denote the respec-
tive nuclear charges; x4, Xg, - - -, denote the respective
nuclear positions; Rap= [xa—x3p/|, etc., denote the
various internuclear distances, finally,

h=T+0 (1.27)
T(x)=—3V? (1.28)
VX)=—X Zafra=—3 Zs/|x—x4| (1.29)

denote the one-electron operators. Furthermore,” the

abbreviations
Tp={T(X)p(x [x)}x=x, (1.30)
Vp=1(x)p(x) (1.31)
7r1’12~1=7|'(X1X2)/ [Xl—XZ |, (132)

have been used. Atomic units are understood: ¢=one
“Bohr” for length, and (e?/a)=one “Hartree” for
energy. In conjunction with the meanings given in
Egs. (1.9) and (1.10). Formula (1.26) permits an obvious
quasi-electrostatic interpretation.

It is helpful to rewrite the energy equation (1.26) in
the form [Eq. (1.23) has been used ]

E=T+V.~V.,

='/dVTp+/dV1/dV2w(X1,X2)/7’12

—% /dVlde2Wx(X1,X2)/rl2,

(1.33)

with

w(X1,X9) = ,EBPAN (x1)p Y (x2)+3p(x1)p(x2)
+3[p(x1) % pB" (X2)+p(xs) % peN(x1)], (1.34)

where
pAN(X)= ”"ZAa(X—XA) (135)

denotes the nuclear point-charge distribution giving rise
to the nuclear potential (—Z4/74).

The term V. has the appearance of a classical electro-
static Coulombic energy in terms of the density p(x).
However, for the proper understanding and interpreta-
tion of the actual form of this density the recognition of
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wave-mechanical effects, in particular inferference, is
essential (see Sec. 3). The term V, still looks like an
electrostatic repulsion term, except that m,(x1,x2) cannot
be reduced to a one-particle density (see Sec. 4). The
kinetic energy T', finally, can only be expressed in terms
of a density operator, not in terms of a density function.
It is via the kinetic energy that the wuncertainty prin-
ciple is known to influence the form of electronic wave
functions (if we think in terms of the variation principle,
say) and, as is seen, becomes essential for the typically
quantum-mechanical phenomenon of covalent binding
(see Sec. 7).

1.3 Preliminary Analysis of the Quasi-Classical
Terms

It is instructive to analyze the potential energy part
V. which arises if one takes into account merely the
Coulombic part

o= p(X1)p(Xs) (1.36)

of the pair density (1.23).> The distribution w of Eq.
(1.34) can be written

w=%[§ pAN(X1)+p(X1)][§ oY (X2)+p(xs)]

-3 AZ pa¥(x1)pa¥(xz), (1.37)

and hence, except for the constant (infinite) self-energy
of the nuclear point charges, the total potential energy
of the molecule can be interpreted as the self-energy of
the total molecular distribution [)_ 4 pa¥(x)+p(x)]. If
one furthermore assumes that the total electronic charge
p(x) is expressible as a sum of atomic contributions,

p(x)= % pa(x), (1.38)

then the distribution w becomes a sum of monatomic
and diatomic terms, and the potential energy can be
split correspondingly,

Ve=2Vat 3 Vas. (1.39)
A A<B
Here
Va= / avi / AVl pa™(x1)pa(xz)
+3p4(X1)pa(x2)]/r12  (1.40)

must be considered as the internal potential energy
(nucleus-electron attraction and electronic repulsion) of
atom 4 within the molecule, and

Vian= / av, f AV (x)+pa(x0)]
X[PBN(X2)+PB(X2):|/7’12 (1.41)

# Different formulations of a similar character were given by
P. O. Lowdin, Phil. Mag. Suppl. 5, 12, 36 (1956).
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represents the interaction energy between the total
atom A4 (nucleus and electrons) and the total atom B.

In polar molecules it is to be expected that the total
charge, given by the integral over p4, is different from
the nuclear charge Z on the same atom. Suppose that
in such a case it is possible to give for all atoms a
decomposition

pa(x)=pa%(x)+dpa(x), (1.42)

where p4° can be considered as the density of the neutral
atom A in the molecule and p4 as the charge density
transferred to the atom, i.e.,

/deAO(X)=ZA, (1.43)

/ AVopa(x)=98Za4, (1.44)

so that 6Z4 represents the total charge transferred to
A (aloss of charge being given by 6Z4<0). Substitution
of this decomposition (1.42) into Eqs. (1.37) and (1.38)
leads to the following, more detailed partitioning of the
potential energy,

Ve=2Va'+ X Vas
4 A<B

2 V% 3 [Vap®+Vpa®]
4

ALB

+X Vad 32 Vas?,
A

A<B

(1.45)

where the following meanings must be ascribed to the
terms:

Val= / avy / AV pa" (x1)p4°(x2)
+304°(X1)p4°(x2) I/712

is the internal potential energy of the wmeufral atom A
within the molecule;

(1.46)

VABO:/dVI/dV2[PAN(X1)+PA°(X1):|
[PBN(X2) +PBO(X2) ]/7’12

is the interaction energy between the weutral atoms
A and B;

(1.47)

V4Vi= / av, / AVl pa™ (x1)+pa®(x1) 10pa(X2)/712 (1.48)

is the electrostatic energy of the charge transferred to
4 in the field of neutral atom 4;

VAB0i= /dVl/dV2[pAN(X1)+pA0(X1)]

X dpu(xs)/r1s (1.49)
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is the electrostatic energy of the charge transferred to
atom B in the field of another neutral atom 4;

VAiZ %)/dvlde23p,1(X1)5pA(X2)/7’12 (150)

is the self-energy of the charge transferred to atom 4;
and

VABi=/dV1/dV25pA(Xl)ﬁpB(Xz)/ﬁg (151)

is the interaction energy of the charge transferred to
atom A with the charge transferred to atom B. Thus,
Eq. (1.47) represents attractive long-range multipole
forces and in most cases is negative. Equations (1.48)
and (1.49) describe the energy changes occurring due
to the fact that, in the usual terminology, different
atoms have different electron affinities and ionization
potentials, i.e., they are electronegativity terms. The
term of Eq. (1.50) is positive, describing the electronic
repulsion created by accumulating the additional charge
dpa on atom A ; it should be taken together with the
electronegativity term of Eq. (1.48). Finally, Eq. (1.51)
contains what might be called the naive ionic energy
terms, which, taken together, will in general be negative.

The interpretations just discussed depend upon the
incomplete expression (1.36) for the pair density and
upon the hypothetical decompositions (1.38), (1.42) for
the density. These interpretations can be termed
“purely quasi-classical.” Additional terms of typical
quantum-mechanical character will appear in the en-
ergy decomposition when correct expressions are used
for the density and the pair density.

1.4, Sharing, Self-Pairing, and Correlation
Interpretation of the Generalized Exchange Term

The conservation relations (1.11, 11’), in conjunction
with Eq. (1.23), yield the separate identities

f AV sp(x1)o(x2) = Np(x), (1.52)

/deTa;(Xl,XQ):p(Xl), (1.52’)

indicating that, for large systems, the simpler Coulomb
term will yield the majority of the interelectronic inter-
action energy. This suggests that the decomposition
(1.23) may be useful in isolating the more complicated
aspects of the electronic interactions. For the interpre-
tations in subsequent sections it is necessary to ap-
preciate these aspects, i.e., to develop a physical feeling
for the term =, (X1,X2).
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I

First consider a wave function describing two atoms
4 and B, at a distance large enough so that the respec-
tive atomic wave functions have practically vanishing
overlap. Suppose the wave function to be such that
electrons 1, 2, --.) N4 are associated with atom 4,
whereas electrons N 441, Na+2, - - -, Na+Np=N, are
associated with atom B. This separation of electrons
will be preserved since according to the time-dependent
Schrodinger equation the time required for an electron
to tunnel from 4 to B will be infinitely long from the
practical standpoint. Hence it is possible to distinguish
the electrons on 4 from the electrons on B and to make
the statement that the two atoms are occupied by
different electrons.

Assume now furthermore that the atoms are far
enough apart so that long-range forces between them
are entirely negligible. Then the probability of finding
an electron at a certain point on atom 4 is independent
of whatever the electrons on atom B do, and vice
versa. Under these conditions the identity

m(Xi,X2) = p(X1)p (X2) = 7 (X1,X2) (1.53)

holds for the pair density, if x; denotes a position on
atom 4 and x, denotes a position on atom B.

II.

Consider next the case of two nonoverlapping atoms
between which long-range forces are acting. The elec-
trons of the two atoms still form two distinguishable
sets, but now the motions of the electrons on atom 4
are correlated with the motions of the electrons on
atom B. Consequently, the identity (1.53) is no longer
valid, i.e., even if x; and x, lie on atoms 4 and B,
respectively. The generalized exchange term m.(X1,Xz) in
Eq. (1.23) can now be nonvanishing. However, since
no electrons are shared between the two atoms, it is
still true that the total number of pairs having one
partner on 4 and the other partner on B is given by

/ av, / AV (x1,%) =q(A)q(B) (1.54)
V4) V(B)

where

q(4)= dVp(x)
V(4)

q(B)= aVp(x)

V(B)

are the total populations of atom 4 and B, respectively
[V(4) and V(B) denote volumes including the non-
overlapping atoms 4 and B, respectively].

Hence one finds that, under these circumstances, the
pair density is given by Eq. (1.23) where, however,
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has the property that

/ av, / A% > (Xl,Xz) =0.
V(4) V(B)

It follows that, for x; on A and x, on B, the term
m.(X1,Xs) must assume negative as well as positive
values.

These deviations of 7, from its mean value zero (for
x; on 4 and x, on B), describe precisely the correlations
which exist between the electrons on atom 4 and those
on atom B, and which are the physical reasons for the
lowering of energy giving rise to certain long-range
forces. Thus, in the case of London forces such un-
shared correlations correspond to the classical situation
where electrons on the atoms circle their respective
centers in unison, so that the instantaneous positions
of the electrons on 4 depend upon those of the electrons
on B. There results an attractive dipole energy at all
times without giving rise to an average dipole on either
atom.

In this situation, then, the difference term ,(x1,Xs)
deserves the name ‘‘correlative pair density between
different electrons,” as long as x; belongs to atom 4
and X, belongs to atom B.

(1.55)

I11.

Consider now the case that two atoms are close to
each other and form a molecule, so that they share
certain electrons, i.e., the motions of such electrons
extend around both nuclei. From the point of view of
tunneling between 4 and B, it is clear that the sharing
of electrons is necessarily connected with an appreciable
overlap of the wave functions on the two atoms.

Now the electrons at x; and those at x,, where x; is
close to nucleus 4 and x; is close to nucleus B, say, no
longer form two separate sets and, therefore, certain
shared electrons are involved in building up both, the
density p(x1) as well as the density p(x2). Hence the
product p(x1)p(x2) must contain pair contributions in
which the density contributions of a certain electron at
X; is paired with a density contribution of the same
electron at x,. Such self-pairings are however foreign
to the actual pair density «. Thus we conclude that the
Coulomb term treats the electrons at x; and those at x,
as belonging to two different sets, and that it contains
unphysical self-pairing contributions if electrons are
shared between x; and x,. This viewpoint is supported
by the conservation relation

%/dVl/dVQP(Xl)p(X2)=%N2, (156)

which indicates that the Coulomb term not only counts
the N(V—1)/2 pairs which are obtained by choosing
two different electrons, but also those fictitious pairs
which result by choosing the same electron as partners
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in one pair. These N self-pairs are mathematical arti-
facts of the counting procedure inherent in the Cou-
lomb term.

Under the present conditions, the term =, plays
therefore a different role than in the previously con-
sidered case. Now it serves to eliminate the spurious
self-pairings contained in the Coulombic term. In a
situation where this would be the only function of =,
this term would be positive for all argument values.
It would then deserve the name ‘‘self-pair density.”

IV.

It is to be expected however, that correlative inter-
actions between different electrons exist between two
points x; and x, also in the case that electrons are
shared between them. Therefore the general situation
is that both roles are played by m.(x1,Xs), that of sub-
tracting out spurious self-pairing as well as that of
describing unshared correlations. It is tempting to as-
sume that . can be written as a sum,

(1.57)

where .1¢ represents the totality of all contributions
in p(x1)p(x2) arising from self-pairing of particles which
are shared between the two points, whereas eorr
furnishes that modification of = which arises from the
instantaneous correlations between different electrons
at the two points, due to forces contained in the Hamil-
tonian.

The self-pair density mseir would be characterized by
the condition

M= 7rse1f+7rcorr,

Tsers(X1,X2) > 0, for all xy, Xs, (1.58)

/dVldeZWself(Xl,X2):N-

The correlative pair density meorr would be character-
ized by assuming negative as well as positive values in
such a way that

(1.59)

/dVl /dV2Wcorr(X1yX2)=0- (160)

Interpretation of the Exchange Term ., for an
Antisymmetric Product of Molecular
Spin Orbitals

1.

In the preceding discussion certain conditions had
been quoted under which s vanishes, namely, be-
tween two atoms which do not share electrons. Are
there other conditions, under which o vanishes so
that 7, accounts merely for self-pairing?

We suggest that this may be the appropriate inter-
pretation for an antisymmetrized product of spin
orbitals (molecular orbital approximation) such as was
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discussed for the Hartree-Fock approximation, in
conjunction with Eqgs. (1.19) to (1.22’). The following
arguments can be given in support of this viewpoint.

The molecular orbital wave function is an exact
solution for noninteracting particles. In the case of
interacting particles, it represents an approximation
which consists of imitating, as well as possible, the
individual electronic interactions by an average poten-
tial (operator) acting on all electrons equally. Hence
a single determinant may be taken to describe in-
dividually uncorrelated particles, and it is therefore
known as the independent particle model.

Next, the exchange term =, of such a wave function
is always positive for any values of the arguments Xy, X»,
as is apparent from Egs. (1.21, 22’). This is in agree-
ment with the postulate (1.58) for the self-pairing term.
In particular, it has the consequence that a Hartree-
Fock type wave function is intrinsically incapable of
describing long-range forces which result from unshared
correlation and, as was discussed earlier, arise only if
T, assumes also negative values.

Finally, the present point of view appears to be in
agreement with the two concepts “exchange term” and
“correlation energy.”’” In the first place, the exchange
concept attempts to describe the same state of affairs
as the sharing concept: Both express the fact that one
and the same electron appears to be energetically active
at different places in space, as far as the solution of the
Schrédinger equation is concerned. The sharing concept
is preferred here because it avoids the use of a pseudo-
time-dependent picture, and a static picture seems
more in line with the relevant properties of wave func-
tions. The correlation energy, on the other hand, is
defined as that energy difference which distinguishes
the exact energy eigenvalue from the best possible
approximation to it that can be attained by the molecu-
lar orbital approximation.

IIL

It is sometimes expedient to write the Hartree-Fock
pair density in the form

7 (X1,X2) = p (x1)p (x2) [ 1— 5 (x1,%s) ]. (1.61) .
In our interpretation, ~
5 (x1,X2) = p*(X1| X2)/p (X1) p (%2)
=m.(X1,X2)/p(x1)p(x2) 1 (1.62)

represents that fraction of the Coulomb term which
results from self-pairing. Hence it is natural to call it the
sharing fraction between the points x; and x,. This
concept can also be illustrated in the following manner.
According to the present view, the Coulomb term

mo(X1,X2) = p(X1)p(X2) (1.63)

represents, for a Hartree-Fock type wave function, the
number of “virtual pairs” between x; and x,, where by
‘“virtual” it is meant that the two partners of a pair
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may be different particles or the same particle. If, in
analogy to Eq. (1.63), two densities p_ and p; are
defined by

(1.64)
(1.65)

then p.(x||xo) can be considered as that part of the
total density at x which describes the average number
of particles which are not shared with the point x,,
whereas p_(x||xo) describes the average number
of particles at x which are shared between x and x,.
From Egs. (1.63) to (1.65) and Eq. (1.23) it follows that

p(x) = p—(x]x0) 4 (x[|x0), (1.66)

i.e., the total density at the point x can be divided into
a shared part and an unshared part with respect to an
arbitrary point Xo. If one considers p_ and ps as a func-
tion of x, for a fixed value of xo, then one can also
say that that density at x which inferacts with the den-
sity at Xo, namely, p.(x||xo), differs from the total
density at x, namely, p(x), by having subtracted out
the “hole” p_(x||xo), which arises from those electrons
which are shared with xo at any given time.*
From Egs. (1.63 to 1.65) follow the relations

(X,Xo) =P(X0)P¢(X|[X0),

2(X,X0) = p (X0) p— (x[|x0),

(1.67)
(1.68)

o (x]1%0) = p(x)s (x,x0),
o (xllx0) = p ()1 s (x,x0)],

which suggest the same interpretation of s(xi,xs) as
was given above, viz., that of a sharing fraction.

II1.

Sometimes the term “correlation” is used to describe
a different aspect of the pair density of antisymmetric
wave functions. It is said that the exchange term in the
Hartree-Fock pair density introduces modifications
of the Coulomb term which result from correlations
between motions of different electrons as a consequence
of the mutual exchange repulsions originating from the
antisymmelry of the wave function.® From the present
point of view this matter looks as follows.

4The following simple picture may serve to illustrate Egs.
(1.63)-(1.60). If at a particular time the density at the point x
were due entirely to one given electron, then, at the point x;, the
part p_(xi||x2) would be due to the same electron and the part
p(x1]|x2) would be due to all other electrons. Note that

/ AV (xixs) =1, / AV 1p (s x2) = N—1.

From this picture follows indeed that, between x; and x,
p=(X1][X2)p (x2) =75 (X1,%2)

is the self-pair density, and that
p(X1|X2)p (X2) = 7 (Xy,X2)

is the number of pairs with different electrons at that particular
time.

5 See, e.g., R. McWeeny, Revs. Modern Phys. 32, 335 (1960).
Thus, the function s(x,x’), called the sharing fraction here, is
called the “correlation function” there (aside from a change
in sign).
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In the first place, the existence of the term . is
independent of the symmetry properties of wave func-
tions. Consider for example the symmetric wave func-
tion obtained by placing all N electrons in the same
spin orbital ¢(x), viz.,

D=0 (x1)¢p(x3) - - - p(xx)a(1)a(2)- - -a(N).
The density and the pair density are found to be
7 (X1,X2) = NV (N — 1)$* (x1)$* (x2),
p(x1]x2) =N (x1) (x2),

m(X1,X2) = p(X1)p (X2) — p*(x1| X2)/ V.

In this case the concept of exchange repulsion is not
very apt, but the identification of w, with the self-pair
density of shared electrons is still meaningful.

Secondly, the interpretation of the exchange term
as a correlation correction is based upon the premise
that the Coulomb term represents the pair density
correctly if the motions of different electrons are truly
independent. There exists however no argument which
could be advanced in support of this hypothesis, and its
validity is in fact excluded by virtue of the integral
relationship (1.56).

Finally, let us consider in detail the specific charac-
teristics of the pair density of an antisymmetric wave
function. They are best discussed in the combined space
of position and spin. For antisymmetric wave functions,
the position-spin pair densities, i.e., the diagonal ele-
ments of the second-order density kernel (1.4), are
characterized by the fundamental exclusion property,
i.e., the closer (x151) and (xss2) are together in position-
spin space, the less likely it is, in general, to find at
these points two different electrons. More specifically,

(1.69)
(1.70)

so that

T (X131,X1.§'1) = 0,
T (X151,%s52) = of | (X151) — (X252) |2}

for (x151)— (Xa52).

This exclusion behavior does not result from any
physical force, i.e., from a term in the Hamiltonian.
Within the unrelativistic quantum mechanics of elec-
trons, it stems from an independent a priori axiom,
the Pauli principle.® As such, it plays in this part of
quantum mechanics a role completely analogous to
Aristotles’ principle that “two bodies cannot be in the
same place.” (In fact, Aristotles’ principle is a corol-
lary of the Pauli principle; for the noninterpenetrability
of “bodies” arises from the repulsion of closed shells
which is a direct consequence of the exclusion principle.)
The exclusion principle is static and not kinetic in
character.

8 In general relativistic quantum mechanics, the antisymmetry
requirement can of course be related to the statistical behavior and
to the spin of the electron. Also there are bosons and, for these,
symmetric wave functions are appropriate. These arguments show

even more clearly that the Pauli exclusion does not stem from a
force in the Hamiltonian.
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Now the position-spin pair density can be decomposed
in analogy to Eq. (1.23):

(1.71)

r (XlSl.,X2SZ) =v (Xlsl)’)’ (X282) —I‘x(X131,X2S2),

where v (x151) is the diagonal element of the first-order
position-spin density of Eq. (1.5). For a molecular
orbital wave function, one finds

v (xs|x's") =a(s)a(s)pr (x| x)+B(5)B(s)p-(x]x"), (1.72)

with py and p_ having the same meaning as in Eq.
(1.22), and?

I‘x(xlslyx232): |’Y(X131|X2S2)|2>0, (1.73)

and the exclusion behavior is then expressed by

Do (X151,X289) /v (X151) Y (X252)
=1—-0¢] (x15) — (x252) |2} (1.74)

for (x151)—(xs55). This equation says that the self-
pairing part T', constitutes a larger and larger fraction
of the Coulomb term as the two points in position-spin
space approach each other until, when the points
coincide, the total Coulomb term is made up of spurious
self-pairing. Thus the exclusion principle finds its
natural expression in the fact that, for antisymmetric
molecular-orbital functions, the position-spin sharing
fraction has its maximum, viz., unity, on the surface
(x151) = (X252) and is reasonably compact around it.
According to Eq. (1.67), the shared density p_ has a
quite similar behavior.”

Thus, inasmuch as (1) there is no reason to consider
the Coulombic term as the general pair density for
uncorrelated electrons, and (2) the exclusive behavior
of spin-1/2 particles is not the result of forces contained
in the Hamiltonian but rather the atomistic counter-
part of Aristotles’ principle, it seems more appealing to
interpret the exchange term as being the subtractive
correction which eliminates spurious self-pairing in the
Coulomb term rather than representing a pseudo-
kinetic correlation phenomenon.

IV.

Frequently, an “intermediate’’ point of view is
taken: The exchange term of the Hartree-Fock ap-
proximation is considered to describe both, self-pairing
corrections as well as interelectronic correlations arising
from the antisymmetry requirement.

One version of this view is the following interpreta-
tion.® By expansion in molecular orbitals, the exchange
term of Eq. (1.21) can be written

30° (X1 X2) =2 20 3o bn (X1) P (X1)n (X2)pin (x2).. (1.75)

7Thus, even in a set of delocalized orbitals, the individual
clectrons act with respect to each other as more or less localized
clouds which dislike to penetrate each other. There is no concep-
tual reason why the instantaneous sharing distribution for a given
point could not differ from the average electron distribution.

8 F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-
pany, Inc., New York, 1940), p. 240.
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It has been suggested that the diagonal terms, which
clearly cancel identical terms in the Coulomb part,
eliminate spurious self-interactions, whereas the off-
diagonal terms in Eq. (1.75) are different in character
and describe correlations between different electrons.
This view is unsatisfactory in that the division into
diagonal and off-diagonal terms is not invariant against
the permissible unitary transformations among the
molecular orbitals. The misunderstanding of this inter-
pretation lies in the identification of electrons with
molecular orbitals. In fact, because of symmetriza-
tion or antisymmetrization, electrons cannot be identi-
fied with orbitals, but all electrons make use of all
orbitals.

Another version consists in asking for that set of
molecular orbitals, among the many equivalent sets,
which exhibits maximum localization, e.g., for which the
energy of the diagonal terms in Eq. (1.75) is greatest.
These unique diagonal elements are then identified with
the spurious self-interactions in the Coulomb term.?

Finally, it sometimes is argued that the spurious
self-pairing contributions in the Coulomb term ought
to be equated to p(x1)p(x2)/N, i.e., to the Nth part of
the Coulomb term.! This interpretation would be oppo-
site to the point of view expressed in reference 7.

In the present investigation, we shall however pre-
serve the Aristotelean idea that the Fermi hole, gener-
ated by the fofal invariant expression (1.75), represents
a picture of how an electron keeps away others from the
place it occupies itself, and that the exclusion effect
is therefore the consequence of a particularly compact self-
pair density, typical for antisymmelric wave functions.
A related, though less radical, view was expressed by
Slater in an earlier investigation.! Analyzing the
Hartree-Fock equations of motion, he came to the
conclusion that off-diagonal and diagonal terms to-
gether give rise to what must be considered as the self-
repulsion of the electrons which are to be subtracted
from the Coulomb terms.

General Relation befween mom and etz

For a complete analysis and understanding of rigor-
ous molecular wave functions it will be necessary to
differentiate quantitatively between self-pairing due to
sharing and correlation due to electrostatic interactions.
For Hartree-Fock self-consistent field approximations
this is fortunately not necessary if the foregoing view
is adopted.

It is an interesting question whether 7.(1,2) ever
has negative values within one molecule. Only if

9 The possibility of this interpretation was pointed out by Dr.
G. G. Hall and Dr. S. F. Boys (personal communication). A
method for approximating such orbitals has been suggested by
g. lF. Boys, Revs. Modern Phys. 32, 300 (1960). See also Sec. 3.6

elow.

10 This possibility was pointed out by Dr. J. S. Pople (personal
communication).

u 7. C. Slater, Phys. Rev. 81, 385 (1951). Similar views go back
to E. Wigner and F. Seitz, ibid. 43, 804 (1933); 46, 509 (1934).
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accurate molecular wave functions will furnish pair
densities which exhibit such negative values, can we
justifiably speak of London-type intramolecular forces.

There are two reasons why it is doubtful that forces
arising from an unshared correlation play a major part
within molecules. One is the fact that SCF wave func-
tions appear to be reasonably good as first approxima-
tions. The other is the paramount importance of elec-
tron sharing in connection with strong chemical forces,
as is seen later. It seems doubtful whether these strong
forces permit the subtle rearrangements that are re-
quired to originate strong correlation forces

It does not appear to be easy to think of a simple
partitioning of the pair density such as was postulated
in Eq. (1.57), and we shall, therefore, not pursue the
subject here. In the remainder of this investigation,
unshared correlation will be omitted from consideration;
it is hoped that this question can be analyzed in greater
detail elsewhere.

Conclusion

The preceding discussions show that a completely
satisfactory interpretation of the nonclassical contribu-
tions in the pair density will require more careful
thought. It is therefore to be expected that similar
problems will be encountered in interpreting the inter-
electronic contributions to the molecular binding
energy.

2. EXPANSION IN ATOMIC ORBITALS
2.1 Choice of Atomic Orbitals

There exist several methods for constructing explicit
expressions of electronic wave functions in molecules.
Numerical and analytical formulations are possible and,
in the case of analytical formulations, there exists a
choice of basic functions in terms of which a wave func-
tion can be expanded. Physical and chemical intuition
anticipates the expansion in terms of atomic orbitals to
be an effective device for constructing solutions to the
problem of electrons moving in the field of fixed nuclei,
and also from the mathematical viewpoint this approach
seems reasonable for a differential equation with simple
poles at the nuclear positions. The numerical experience
gained so far has confirmed these expectations and,
vice versa, it suggests that expansions in atomic orbitals
have physical significance.

An exception is the case of diatomic molecules where
molecular orbitals in terms of elliptic coordinates appear
to form a more convenient basis set (the explanation
lies in the fact that, in this case, one has at hand one
orthogonal, curvilinear coordinate system which ex-
hibits singularities at the positions of all nuclei in the
molecule). However, if molecules are to be understood
in terms of atoms and bonds, then decompositions of
the density operators into atomic building blocks are
required; and if many electron wave functions are
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formed, in one way or another, from one-electron func-
tions, then the expansion of the wave function in atomic
orbitals appears to be the most appropriate point of
departure for the interpretative analysis. If a wave
function has been determined in terms of elliptic coordi-
nates, its expansion in terms of atomic orbitals can
always be carried out afterwards.

Thus, we start with the postulate that there exists a
physically significant expansion of the rigorous solution of
the Schrodinger equation in terms of atomic orbitals on
the participating atoms in the molecule. Since all atomic
orbitals on all atoms form an overcomplete set, there
exist, of course, infinitely many ways of expanding the
exact solution in terms of atomic orbitals. Some of these
expansions however, converge more rapidly than others
(e.g., the convergence is very slow if all AO’s are chosen
from the same atom). Exactly the same statements are
valid for the density kernel derived from the wave
function. We should like to believe that the requirement
of optimal convergence of the expansion of the first-order
density kernel in terms of atomic orbitals will select a
particular sequence of AO’s from the various atoms and
thus lead to a shortest expansion, which then deserves
the name “significant expansion” in atomic orbitals. It
is conceivable that in some cases there may exist more
than one significant expansion of roughly comparable
speed of convergence, and they would then lead to
several equivalent interpretations. It seems, however,
likely that, in any specific case, an ambiguity of this
kind would be limited to only a few alternatives. The
actual selection of the significant expansion depends,
of course, upon the mathematical formulation of the
criterion of optimal convergence; this question is dis-
cussed in Sec. 2.3.

The following derivations practically presuppose
wave functions which are expressed in terms of anti-
symmetrized products of one-electron orbitals. If and
when it should become feasible to explicitly include in
the wave functions many inter-electronic distances,
then a corresponding modification of our developments
will be in order.

The following notation for atomic orbitals is adopted
throughout; 4, B, C, - - - denote atoms and @, b, ¢, - -,
are indices numbering the orbitals on the atoms 4, B,
C, - - -, respectively; furthermore

XAa(x>y,Z)=XAa(x): (Aa) (21)

denotes the ath orbital on atom 4; e.g., (N1s), (V3d9),
(NV2ps) would denote the 1s orbital, the 3d6 orbital, and
the 2po orbital on the nitrogen atom in NH;. But in the
case of hybrid orbitals, the index a can represent any
other kind of orbital identification on atom A which
may be useful. Occasionally, it is convenient to number
through all atomic orbitals in a molecule without
reference to the atoms; for this purpose, the indices
7,5, t, - -+, will be used, so that each of these is equiva-
lent to an index pair of the type Aa, Bh, Cc, - - -, etc.
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Also the notation

XAa(x1,y1,21)=XA.,(1)=(Aa) m (2.2)

is employed.
A given set of atomic orbitals determines a metric
characterized by the overlap integrals

A(rrs):/dVXrXs- (23)

Since it is always assumed that atomic orbitals are
normalized, and that those located on the same atom
are mutually orthogonal, the overlap matrix can be
written

A=1+S§, (2.4)

with
S(4a,Bb)= (1—6113)/dV(Aa)(Bb), (2.4

so that the matrix S has nonvanishing elements only
if the two orbitals belong to different atoms. In order
to keep the formulas free of asterisks, it is assumed that
all atomic orbitals are chosen to be real, in practice the
only case of importance.

2.2 Expansion of Density and Pair Density

Let
p(x1]X2) =27 3= x(1)x:(2)p(r| )

=Y T (4a)W(Bb)@p(Aa| BY), (2.5)
Aa Bb

with
(2.5)

be the expansion of the first-order density. The expan-
sion coefficients p(4a |Bb) form a Hermitian matrix p
for which the name bond-order matrix will be used.
More specifically, only the off-diagonal elements of
p will be referred to as bond orders, whereas the di-
agonal elements are related to atomic populations to
be discussed in a subsequent section. The name as well
as the symbol p are chosen, because the quantities
p(r|s) are the natural generalizations of the “bond
orders” used, with the symbol p, in molecular orbital
theory for two decades. Thus the bond-order matrix is
defined as the representation of the first-order density oper-
ator in the nonorthogonal basis of significant alomic
orbitals.?

According to Eq. (1.32) only the diagonal elements
(1.9) of the pair-density kernel = enter in the molecular

12 We reserve the name “bond-order matrix’ for a representation
of the density operator in a basis of atomic orbitals. It is confusing
to use this name for representations in other basis sets. For them
the nomenclature proposed after Eq. (1.13) is adequate.
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calculation. Hence, we introduce the expansion

W(X1X2)=§: ; ‘s; ; x(Dx(1)xs(2)xs(2)
Xp(rr|s3),

(AaAa) ™ (BbBb)®

(2.6)

Aa AG Bb Bb
X p(AaAd| BbBb),
where

(Aada) W =(4a)D(Aa)D, etc., (2.6')

and where the atomic orbitals are those used in Eq.
(2.5). Frequently, in particular for computational pur-
poses, it is convenient to consider the expansion coeffi-
cients p(4aAa | BbBb) as elements of a matrix p wherein
each row corresponds lo one index quadruple (AaAa) and
each column corresponds to one index quadruple (BbBD).
This matrix is real and symmetric, i.e.,

p(AaAa|BbBb)= p(BbBb |Aada); 2.7
and furthermore it follows from Eq. (2.6) that it can
be chosen such that

p(AaAa |BbBb)=p(AaAa |BbBD), -
p(AaAa |BbBb)=p(AaAd |BbBY). 28)
By virtue of Eq. (2.8) it is permissible, in most nu-
merical work, to omit the row (Ad4ae) and instead
double the row (4aAa), provided (4a)##(Ad); similar
simplifications hold for the columns. The matrix p will
be called the pair bond-order matrix.

From the formal mathematical point of view, the
grouping of indices inside the parentheses of the pair
bond-orders would be unsuitable if it were intended to
construct a representative of the operator =. The ar-
rangement is however expedient for our analysis, whose
object is the disentanglement of contributions arising
from overlapping atomic orbitals.

The conservation relations (1.11) and (1.11") generate
corresponding relations for the bond-order matrix and
for the pair bond-order matrix, viz.,

Tr(Ap)=% % p(r[s)A(r,5)=N, (2.9)

22 p(r7|s)A(s,8)=(N—Dp(r|7).  (2.10)

Considering the overlap matrix A and the bond-order
matrix p as vectors, one can write Eq. (2.10)

pA=(N—1)p. (2.11)
Combination of Egs. (2.9) and (2.10) yields
>3 Alr,P)p(rF| s8)A(s,8)=N(N—1). (2.12)

r7  s3

The derivation of Egs. (2.9) and (2.10) is based on the
assumption that the set of atomic orbitals selected by
the significant expansion is not overcomplete.
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2.3 Significant Expansions

At present, even the most rigorous LCAO calculations
use only a limited number of atomic orbitals. In these
cases, it seems natural to consider the chosen set of
atomic orbitals, or a suitable linear combination of
them, as the significant expansion of this particular
approximation. '

For this reason there does not seem to be an urgent
need for finding methods to determine significant ex-
pansions.'® Hence the purpose of the subsequent sug-
gestions is not to establish a practical method, but to
show that criteria can be given by which a significant
expansion can be defined, in principle, from the rigorous
wave functions of a molecule.

A possible general procedure would be as follows:

(1) Find the natural orbitals by solving the Fredholm
integral equation (1.18);

(2) Find the optimal expansions of the natural
orbitals;

(3) By substituting into the bilinear expansion (1.14),
(1.15), find the significant expansion of the den-
sity kernel.

In order to find the optimal expansion of a natural
orbital ¢(x), suppose that

¢(X)=§ 04(X),

where ¢4(x) is the contribution from atom A. Because
of the overcompleteness, many such expansions can be
found. If the equations!*

pa(x)= lZ Vim(04,94) fim(ra), (2.13)

and

%/ drr* fin(r) = fi?, (2.14)

define fin(r) and fi%, then the ‘“‘uncertainty” Alya,
given by

(Aly)2= lj;:o a—Defe, (2.15)
with .
=% 112, (2.15")

would seem to be an appropriate measure for the length
of the expansion of ¢4(x) in terms of atomic orbitals
on atom 4.

An optimal expansion of ¢(x) could then be charac-
terized by the minimum of the multiple uncertainty

product!®
Al=TT4(Al4). (2.16)

B Except in the case of those wave functions for diatomic
molecules which have been calculated in elliptic coordinates.

4 The Vi (0,4) are spherical harmonics.

15 Tt is also stipulated that fi.(r) is an analytic function of its
argument in the whole range 0 {7 <.
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Suppose then that an optimal expansion has been
found for each natural orbital, i.e.,

en(x)= § Xincin?. (2.17)

In this way, one obtains many atomic orbitals ¥;,4 on
a given atom 4. They form a nonorthogonal set with
metric matrix

M4= {Mim,ﬂb[l}x (218)

and linear dependence, or at least near-linear depend-
ence, is to be expected between them.

An effective way to eliminate the linear dependence
is by canonical orthogonalization.'® To this end, one
finds the matrix U4 which diagonalizes M4, i.e.,

(U4)MAUA= g4
Z Z Mim,jnA(Uim,aA)*an, EA = daAaaE

i,m J,n

(2.19)

and then constructs new orthogonal atomic orbitals
X4a, defined by the relation

X () =2 (Ujn,a*)*(da")x1a(x).  (2.20)

The occurrence of linear dependence (near linear de-
pendence) among the original orbitals manifests itself
by the appearance of vanishing (very small) eigen-
values d 4.

Substitution of the transformations (2.20) into the
optimal expansions (2.17) and inserting the latter into
the bilinear expansion (1.14), (1.15), yields for the
density an expansion of the kind given in Eq. (2.5)
with the bond-order matrix

p(Aale): (daAde)% Z ]Vn Z CinA(Uin,aA)*
n Ag
X2 cinB(Ujnp®)*. (2.21)
Bj

By omitting those terms in this series which are insig-
nificant because of the smallness of the factors (d,4d33)?,
one selects the best set of linear independent atomic
orbitals. They are found explicitly by inverting the
Eq. (2.20).

3. DENSITY PARTITIONING AND SHARING
INTERFERENCE

3.1 Interference Partitioning

From the expression (2.5), it is apparent that a de-
composition of the density in terms of atomic contribu-
tions only, such as considered in Eq. (1.38), is not pos-
sible if the atomic contributions are derived, in some
way, from afomic orbitals. A relation of the type of
Eq. (1.38) could be obtained on the basis of a cellular
subdivision; however, the orbital subdivision is unques-

16 This method of eliminating linear dependencies is due to
P. O. Lowdin (personal communication).
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tionably more appropriate if afomic contributions are to
be isolated. Moreover, the cross terms between atomic
orbitals from different atoms are actually of greatest
interest since they are intimately connected with
the overlap effect which is the chief cause for bond
formation.

The presence of overlap terms in the density p is
typical for the wave character of quantum mechanics.
This kind of phenomenon occurs in any wave theory
based on a homogeneous linear differential equation,
whenever certain constituent wave functions combine
linearly to form exact or approximate new solutions,
and it is generally called the interference effect.

Whereas, in classical electrostatics one would super-
pose densities to form new densities; in wave mechanics,
wave functions are superposed to form new wave functions,
from which new densities are then obtained by squaring
the absolute value. Hence, the resulting density differs
from the sum of the densities of the constituent wave
functions.

Consider the case of two atomic orbitals x4 and x s
forming a molecular orbital ¢. The densities for the
separate constituent atoms are given by

pa(X)=x4%(x), pn(X)=x5%(x). (3.1)

Suppose that the molecular wave function is of the form
e=[2(1+35) I (xa+x5), (3.2)

with S being the overlap integral between the two
atomic orbitals. Equation (3.2) indicates that each
atomic orbital contributes 509 to the electron. In such
a situation, a “quasi-classical” electrostatic approach
would lead to the molecular density

pl=3pa+3%p5. (3.3)

The equipartitioning follows from the symmetric linear
combination chosen in Eq. (3.2) and does not depend
upon whether the two orbitals (3.1) are similar in range
or character. [ The factors (1/2) originate from the fact
that p, pa, pp all must be normalized to unity.] In
contrast, the wave-mechanical density is given by

p=pCt+p, (3.4)

where
o'=[xaxs—35S(xa*+x5%1/(14S)

represents precisely the modification of the quasi-classical
density pCL due to the interference effect. A further charac-
teristic of the wave nature of quantum mechanics is
that it gives rise to two distinct possibilities:

(1) Constructive inlerference resulting in charge ac-
cumulation within the bond region, this is the case of
Eq. (3.2);

(2) Destructive interference resulting in charge dimi-
nution within the bond region, this case is that of the
antibonding orbital

¢'=[2(1-3) 1 xa—xn),

(3.5)

(3.6)
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which is characterized by the density
p'=p%T+p"T, (3.7)
with

p'=—[xaxs—3S(xa*+ x5 1/ (1=3).
It is significant that p and o’ differ in the interference

parts p', p’f and not in the quasi-classical part pCL.
We proceed now to find an interference partitioning

(3.8)

p(x) = p°L(x)+p'(x) (3.9)
for the general density expansion
p(x)=2 BZb (4a)(Bb)p(Aa|Bb), (3.10)

which follows from Eq. (2.5). The two parts must have
the following structure and meaning!”:

pC(x)=2" pa(x)=quasi-classical density, (3.11)
a
p'(x)= >/ pan(x)=interference density. (3.12)
4B

It is clear that the interference density p! must origi-
nate from the cross terms

AX; Zb(Aa)(Bb)p(Aa]Bb), (3.13)

of Eq. (3.10). It cannot be identical with these terms,
however, since the fotal population of p! vanishes, i.e.,

/ dVpl(x)=0, (3.14)

a relation which follows from the fact that the total
classical population as well as the total wave-mechanical
population, botk must be equal to N, the total number
of electrons. It is therefore necessary that the expression
(3.13) be separated into two parts: One part can have
nonvanishing total population, but must be a sum of
atomic contributions only; the other part must have
vanishing total population, but can have interatomic
cross terms. If we now adopt the natural postulate that
the procedure of carrying out this separation does mnot
depend upon the particular values which the bond orders
p(Aa|Bb) happen to have in specific cases, then it
follows that this separation must be carried out for
each orbital product (Aa)(Bb) individually. Hence a
partitioning

X 4a(X)xB5(X) = Caax 42%(X)
4 cpex s (X)+ faams(x) (3.15)

must be found, where

/deAaBb(X) = 0,

17 Here and in the rest of the paper a primed summation is
defined by 2/,“7'=E,;Ej, (Z;é])
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and where ¢, and ¢, depend only upon the two orbitals
and add up to S(4e,Bb). In the special case of the
molecular orbitals (3.2) and (3.6), the expansion (3.10)
reduces to

2(1=S)""(x a2+ x B2+ 2x4XB)- (3.16)

In order that the substitution of the decomposition
(3.15) into the expressions (3.16) yields the previously
discussed results (3.3) to (3.5), and (3.7), (3.8), it is
necessary that the constants C4, and Cps must be
equal, and in fact, equal 4S(4a,Bb). Thus we find
the basic interference partitioning for orbital products

(4aBb)=(Aa)(Bb)=%S(4a,Bb)[(4a)>+ (Bb)*]

+(Aa,Bb), A%B, (3.17)
where (4a,Bb), defined by
(4a,Bb)=(Aa)(Bb)—%S(4a,Bb)[(4a)*+(Bb)*],

A=B, (3.18)

is called the interference-density part of the orbital
product (Aa)(Bb). As was pointed out after Eq. (3.3),
these results do not depend upon an assumption of
similarity between the atomic orbitals.

Substitution of the interference partitioning (3.17)
for orbital products into the expansion (3.10) leads now
to an interference partitioning for the general electron
density. This partitioning is of the kind expressed by
Egs. (3.9), (3.11), and (3.12), where now the terms p4
and p4p are given by

pa()= 3 (Aa)(40)

X[p(Aa| Aa@)+843(Sp) aaaz]=p(4), (3.19)
pan(x)=2 Zb: (4a,Bb)p(Aa| Bb)=p(4B),
(A4B). (3.20)

Note that the matrix S, defined by Eq. (2.4) has
vanishing elements for 4 =B.

3.2 Interference Densities

In agreement with Eq. (3.14), interference densities
satisfy the conservation relations

/dV(Aa,Bb)zO,
(3.20a)
/ dVp(AB)=0.

These relations show that an interference density is
positive in some regions and negative in other regions,
a circumstance which characterizes it as a density
modification: the addition of an interference density
rearranges the quasi-classical density without changing
the total population. Specifically, the constructive bond-
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Fic. 1. Interference density in Hy*. Values along the internuclear
axis. (41s)=(1s) orbital on nucleus 4 with effective charge =1
Similar for (Bls).

ing interference takes away density from the atoms and
puts it in the bond regions, whereas the destructive
interference takes density out of the bond regions and
puts it in the atom regions. In order to illustrate these
statements a graphical representation is given for the
interference density (41s,Bls) arising in the case of the
H,* ion. The distance of the two centers 4 and B is
chosen to be two Bohr, and the orbital exponent of the
(1s) function is chosen equal to unity. Figure 1 gives a
plot of the value of the interference density along the
internuclear axis; Fig. 2 gives a radial cut through the
surfaces of constant density.

From the preceding derivations it appears likely, and
the subsequent derivations make it explicit, that tke
inlerference density p' is responsible for the origin of the
specific and substantial stabilization energy which cannot
be understood in terms of a quasi-classical picture and
which gives vise to the phenomenon of ‘‘covalent chemical
binding.”

In previous approaches, referred to in the introduc-
tion, these nonclassical energy contributions have been
variously characterized by such concepts as “exchange
energy,” “resonance,” and “overlap forces,” the latter
giving rise to the “postulate of maximum overlap.”
Although in none of these cases a rigorous general
formulation has been achieved, it is of interest to ex-
amine the relation between these concepts and those
introduced here.

In Sec. 7.6, it is shown that the energy-lowering part
of the exchange emergy indeed arises from the inter-
ference density p!. It is also found, however, that the
exchange energy contains other terms which raise the
energy. Its meaning is further confused by certain un-
justified simplifications introduced in connection with
the “approximation of perfect pairing.”

Originally, the resonance concept was closely tied to
the exchange picture of covalent binding, which is dis-
cussed in the last subsection of Sec. 7.6. More recently
the chemical meaning of resonance appears to have
been limited to describe simply the superposition prin-
ciple for the construction of solutions to the Schrédinger

KLAUS RUEDENBERG

equation. More specifically it denotes what may be
called “structure interaction” in analogy to ‘‘configura-
tion interaction.” The present results show that, in a
covalent bond, orbitals from different atoms are in-
volved in interactions which may be compared to
acoustical resonance, as the origin of the latter is pre-
cisely an enhancement (or attenuation) of the ampli-
tudes of sound waves due to interference. In fact, we
shall see that certain integrals over our -interference
densities lead directly to certain previously encountered
“resonance integrals.” Thus, it seems that the formalism
of interference densities exhibits physical essentials
lying behind the resonance idea.

The close connection between overlap and interference
has already been elaborated. A further point must be
made: At first sight it might have appeared tempting to
hold the “overlap distribution”

(3.21)

responsible for the specific covalent binding effect be-
tween the orbitals (4a) and (Bb), and hence to consider
this effect roughly proportional to the overlap integral
S(Aa,Bb). This suggestion has been made repeatedly.!®
However, the present analysis suggests that the re-
sponsibility must be attributed to the interference
density (3.18) rather than to the expression (3.21).
The strength of this interference depends upon the
amount of charge displaced, in Fig. 2, from the negative
region into the positive central region. This interference
populatron is roughly proportional to S(1—.5), in the
case at hand. That this view is indeed the correct one
becomes evident from the energy analysis in Sec. 6.2.
Expressions related to the overlap distribution (3.21)
will, however, be found useful for a somewhat more
modest purpose, viz., to characterize the ‘“valence
activity” of atomic and molecular orbitals.

X 4a(X)x B5(X)

3.3 Quasi-Classical Densities

The quasi-classical atomic density contributions
(3.19) can be written in the form?!?
p(4)=2(4a)*q(Aa)+ 2 (da)(4a)p(4a| Ad), (3.22)

where
q(Aa)=(Ap) 1q,4a,

¥

18R McWeeny, Chem. Phys., 19, 1614 (1951); 20, 920
(1951); R. S. Mulhken. ibid. 23. 1833, 1841 2338, 2343 (1955)

(3.23)

Fic. 2. Interference
density in Hy*. Contour
lines in a plane contain-
ing the internuclear axis.
The numbers character-
izing the different con-
tours represent

[a?r(A1s,B1s)X102].
Extrema: M,.=5.642,

M_=-—16.156. (Com-
pare Fig. 1).
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or
q(4a)=p(4a)+v(4a), (3.24)

with
p(da)=p(4a|Aa), (3.25)
v(4a)=(SP) aa,40=2_ S(Aa,Bb)p(Bb| Aa). (3.26)
Bb

The overlap matrices A, S are defined in Eqgs. (2.4),
and (2.4’). Integration yields the populations

/ WoA)=F qda)=g(4),  (3.27)

which, according to Eq. (2.9), satisfy the conservation
relation

/ dVp= / AVpL=Y ¢(4)=Tr(Ap)=N. (3.28)

Thus the quantities g(4a) can be considered as the
populations of the orbitals (4a) in the quasi-classical
density part pCl. These quantities are the natural
generalizations of certain quantities, which have been
used, with the symbol g, for over a decade in ‘“naive”
molecular orbital theories, although in somewhat differ-
ent context.!® The names “atomic charges,” ‘“formal
charges,” and more recently, by Mulliken,’® “gross
atomic populations” have been used in that context.
We shall call g(4a) simply the population of the atomic
orbital (Aa) in the molecule considered.

From Egs. (3.24) to (3.26) it is likely that the relative
magnitude of the contribution of v(4¢) to ¢(4a) fur-
nishes a measure of the degree to which the orbital (4a)
participates in the formation of nonvanishing inter-
ference densities and, hence, contributes to binding or
antibinding. For this reason we call

p(Aa)=the valence-inactive population of (4a),*
v(4a)=the valence-active population of (4a).

Their sum is g(4a), the (gross) population of (4a). The
relative size of v(4a) can be considered as a measure of
the valence activity of the orbital (4a).

Equation (3.22) is not yet entirely satisfactory. Its
conceptual simplicity is marred by the appearance of
the second sum on the right-hand side, for which the
preceding arguments have yielded no interpretation.
These terms actually have the character of interference
densities inasmuch as, because of the intra-atomic or-
thogonality of atomic orbitals, they merely modify the
density without changing the total population. In fact,
it is convenient for later purposes to extend the defini-
tion (3.18) of the interference densities {4a,Bb) to the
case that both orbitals are on the same atom. Because

19 C. A. Coulson and H. C. Longuet-Higgings, Proc. Roy. Soc.
{(London) A191, 39 (1947).

20 Mulliken suggested the name ‘net” populations for the
p(4a)’s. However, he made no use of these quantities.
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of orthonormality, one obtains in this case indeed
(4a,Ad)= (1—b,3)(4a)(4a) (3.29)

as intra-atomic interference densities. It may be noted
that the decomposition (3.17) is also valid for them.
The elimination of these terms from the quasi-classical
density contributions (3.22) is achieved in the next
section.

3.4 Valence Atomic Orbitals
General Discussion

In qualitative reasoning on molecules, it has become
useful to assume certain atomic orbitals, generally of
hybrid character, as rather valence active and others,
such as lone-pair orbitals and inner shells, as more or
less valence inactive. It is desirable to have a way to
extract an orthogonal set of such hybrid atomic orbitals
from a general molecular wave function.

The results of the preceding section suggest that, for
the determination of such orbitals, it may be reasonable
to demand that the valence-inactive parts p(4a) aris-
ing from the density of the molecule under study should
be either as large as possible or as small as possible.
The atomic hybrid orbitals which are derived from this
postulate of maximal or minimal valence activity will be
called valence atomic orbitals (VAO’s, if an abbreviation
is desired) of a given atom in a given molecule.

It is readily shown that this postulate of extremal
valence activity is equivalent to the condition that
all intra-atomic parts of the bond-order matrix are
diagonal, i.e.,

p(Aa|Ad)=p(Aa)d,a, forall 4. (3.30)
Indeed: Let (4a°) be an arbitrary orthogonal set of
atomic orbitals on atom A. Let (4¢) be another or-
thogonal basis on 4, spanning the same function space

so that
(Aa)=22(4a")Ta0", (3.31)

where T4 is an orthogonal matrix. If p® and p are the
bond-order matrices representing the molecular density
in these two bases, then one has the relations

p(Aa| Bb)=3 p*(Aa|Bb)Tz.AT52  (3.32)
@b

Our postulate requires the extremization of the quad-
ratic form

p(dalda)=% PO(APiAU)TMATmAa (3.33)

considered as function of the variables T,,4 (p=1,
2, ---), for each atom A. The result is that the com-
ponents of the valence orbitals (4a), in terms of the
original orbitals (4a?), are the eigenvectors of that intra-
atomic part of the bond-order matrix p® which refers to
the atom A. Hence, the matrix of these eigenvectors
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T4 diagonalizes the intra-atomic bond-order matrix, i.e.,

2 TMAPO(APIAO’)TaaA=P(Aa)5aa. (3.34)

If the matrix T denotes the direct sum of all eigen-
vectors matrices T4, i.e.,

T(A (I,Bb) = EABTabA, (335)

then the Eq. (3.34), for all A, can be expressed by the
one matrix equation

TtpT=p, (3.36)

where the intra-atomic parts of p are given by Eq.
(3.30). We shall say that the bond-order matrix in
terms of valence atomic orbitals is locally diagonal.

This property makes the valence orbitals particularly
suited for the interference partitioning, since it leads
to the disappearance of the intra-atomic interference
densities (3.29). Thus, Eq. (3.22) for the quasi-classical
density simplifies to

pOr=2 p(d)=2 L (4a)*q(4a), (3.37)

so that the populations ¢(4a@) can now also be inter-
pretated as orbital occupation numbers. 17 the following
discussions we always assume that, in any given molecule,
the valence alomic orbitals have been chosen as basis of ex-
pansion on each atom, unless explicitly stated otherwise.?

Examples

We illustrate the physical significance of valence
hybrids by two examples: First, we consider the wave
function calculated by Scherr for the N, molecule
by means of the LCAO-SCF-MO method.?? The fol-
lowing basis of unhybridized atomic orbitals was used
in this work: (41s), (42s), (42p0), (A2pm), (A2p7);
(B1s), (B2s), (B2pa), (B2pm),(B2p7), where A and B
denote the two centers. Diagonalization of the intra-
atomic bond-order matrix leaves the = orbitals un-
changed, but leads to six g-valence hybrids:

(Aia'}y (Alo')y (Abd), (BZU); (Bla')7 (Bbo')a

which are related to the spherical orbitals?® as follows:

(1s) (2s) (29)
(ie)  0.961959 —0.251794 0.105998
(o) 0271779 0.842545 —0.465031
(bs)  0.027784 0.476149 0.878926

(3.38)

21 After completion of this work the author learned that R.
McWeeny had previously expressed the conjecture that it might
be useful to choose atomic orbitals which diagonalize the intra-
atomic parts of the bond-order matrix. See: R. McWeeny, Tech.
Rept. No. 7, Solid State and Molecular Theory Group, Massa-
chusetts Institute of Technology (1955), p. 33; also Revs. Modern
Phys. 32, 335 (1960). No relation to a maximum-minimum prin-
ciple was given.

22 C. W. Scherr, J. Chem. Phys. 23, 569 (1955).

28 Spherical atomic orbitals=atomic orbitals which are pro-
portional to spherical harmonics.
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TasiLE I. Populations of spherical AO’s and valence AO’s in Nj.

1s 2s 2pa io lo bo 2pm 2T
p 201 181 0984 200 216 0.64 0.78 0.78
v —0.01 —0.07 0.276 0.00 —0.11 031 022 022
¢ 200 174 1.26 2.00 205 095 100 1.00

(for A and B). It is apparent that the hybrid orbital
(bo) points to the other atom, whereas the hybrid
orbital (l¢) points away from it. Table I lists the gross
orbital populations and their partitioning in valence-
active and valence-inactive parts for both the spherical
and the valence orbitals. The exhibited quantitative
clarification effected by transformation to valence hy-
brids is remarkable and justifies the choice of the
names:

(i0), inner-shell valence—AQO) of the N atom in the N,
(lg), lone-pair valence—AO molecule, within the
(bs), bonding valence—AO chosen approximation.

Secondly, we consider the wave function for the water
molecule calculated by Ellison and Shull within the
LCAO-MO-SCF approximation.?* The basis of un-
hydrized orbitals is

(015), (02), (02px), (02py), (02p2), (H1s), (H'Ls).

Here, (02px) is perpendicular to the molecular plane;
(02py) is parallel to the H—H' bond; and (02pz) points
to the midpoint of the H—H’ bond. Due to the mo-
lecular symmetry, the “local” bond-order matrix is
already diagonal in (2px) and (2py), so that the forma-
tion of valence hybrids merely mixes (1s), (2s), and
(2pz). Again one finds valence hybrids ((Ois), (Olo),
(Obo). They are related to the unhybridized atomic
orbitals as follows:

(01s) (02s) (02p3)
(Oio) 0.988077 —0.144001 0.054465
(Olo) 0.149955 0.820012 —0.552353
(Oba) 0.034878 0.553935 0.831829

(3.39)

It is obvious that the method of local diagonalization
furnishes valence atomic orbitals which transform ac-
cording to irreducible representations of the molecular
symmetry group and, hence, do not point in the direc-
tion of the OH and OH’ bonds. Each of these single
bonds appear divided into a o-type contribution and a
m-type contribution. It seems reasonable now to con-
struct bond atomic orbitals on oxygen by the definitions,?®

(ObH)=[(0bo)+(02py) 1/ V2,
(ObH')=[(0ba)—(02py) ]/ V2.

24 F, O. Ellison and H. Shull, J. Chem. Phys. 23, 2348 (1955).

25 Equation (3.40) defines the only superpositions of (Obs) and
(02py) which are each other’s mirror images. Furthermore, the
1:1 mixing ratio seems reasonable since, according to Table II,
both are equally valence active.

(3.40)
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The angle enclosed by these two atomic orbitals is
found to be 100° 30, slightly less than 105° the as-
sumed HOH’ angle. This compares rather favorably
with previous attempts of defining “bond hybrids.” One
definition, proposed by Pople,?® if applied to the Ellison—
Shull calculation, yields bond hybrids enclosing an angle
of 68°47’! Another definition, proposed by McWeeny,*’
if applied to this calculation yields bond hybrids en-
closing an angle of 154°! It may also be mentioned that
these other definitions are based upon a transformation
of molecular orbitals and, in contrast to the procedure
proposed here, are therefore inapplicable outside the
MO approximation (one-determinant wave function).

Tables IT and III list the gross populations, valence-
active - populations, and valence-inactive populations
for H,0. As in the case of Ny, it exhibits the conceptual
advantage in choosing the valence orbitals as basis for
interpreting populations.

3.5 Expectation Values of One-Electron
Operators; Dipole Partitioning

In order to be able to calculate expectation values of
the kind given by Eq. (1.24), we generalize the inter-
ference partitioning, in terms of valence orbitals, to the
density kernel

p(X1 | X5) = pC(x1 | X5) +p" (X1 | X2), (3.41)
POl (x| X2)=§ PA(X1|X2)=§: q(Aa)x1a(1)x44(2), (3.42)

Pr(xl | Xg)= AZB’ PAB(X1 l Xg)
=3'> p(Aa|Bb)<Aale2), (3.43)

where

(4a'Bb?)=3{[xaa(D)x5s(2)+x56(1)x44(2) ]
—S(A a)Bb)[XAa(l)XAa(z)+XBb(1)XBb(2):|}

=(Bb'Aa?), (3.44)
so that
(Aa'BbY)y={Aa,Bb).
The expectation value (1.24) can be written
F=YF,+ Y Fup (3.45)
A A<LB

TastE II. Populations of spherical AO’s and valence AO’s
on oxygen in H,0.

0ls 025 02z Oic Ols Obs 02y O2px
p 200 184 141 200 222 1.045 059  2.00
» 000 000 018 000 —0.15 0315 033  0.00
¢ 200 18 159 200 207 1.36 092  2.00

=

26 J. A. Pople, Proc. Roy. Soc. (London) A202, 323 (1950).

27 R. McWeeny, Tech. Rept. No. 7, Solid State and Molecular
Thfoi'y Group, Massachusetts Institute of Technology (1955),
p. 101.
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Tasie III. Populations of valence AO’s and bond AQ’s
on oxygen in H,0.

Obs  O2py ObH  ObH'
» 1.045  0.59 082  0.82
»(OH) 0158  0.165 034 —002
2(OH') 0158 0165 —002  0.34
q 136 092 114 114

exhibiting the difference between quasi-classical and
wave-mechanical contributions.

According to the Hellman-Feynman theorem, the
operator

fX)=2Z4e* grada|xa—X]| (3.46)

yields the force acting on nucleus 4. In this case, the
interference term gives the deviation of the internuclear
forces from a purely classical description, e.g., the non-
bonded repulsion between two closed-shell atoms or
molecules. ,

Consider now the dipole moment operator. Decompo-
sitions of the dipole moment of a molecule into atomic
moments, bond moments, etc., have been used tradi-
tionally on an empirical basis. All theoretically defined
decompositions proposed so far have been unsatisfac-
tory, however, in that the magnitudes of the various
contributions in them are very sensitively dependent
upon the choice of the origin with respect to which the
moment is calculated. In contrast, the total dipole
moment D of a neutral molecule is independent of the
choice of the origin, and it seems therefore logical to
look for a decomposition of D into paris whose magni-
tudes, too, are invariant against changes of the origin. Such
a partitioning is furnished by Eq. (3.45).

The molecular dipole is defined by

D=3 Z(A)xA—/de(x)x. (3.47)

The total atomic population g(A4), defined by Eq. (3.27)
for the valence orbitals, is in general different from
Z(4) the nuclear charge, where

q(4)=Z(4)+A4q(4). (3.48)

Since we consider neutral molecules, the Z(A4) represent
also the populations of the separated neutral atoms,
and Eq. (3.48) therefore defines the ‘total population
transfers Ag(A). Substituting the interference partition-
ing in Eq. (3.47) and expressing Z(A4) by means of Eq.
(3.48), one obtains

D=DT+> D+ X Dus,
A

A<B

(3.49)
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where
D= g(A)xi— / Wy,  (3.50)
Dap=—2 / dVp(4,B)x, (3.51)
(3.52)

DT=—Y Ag(4)xa.
A

The expression (3.50) represents atomic moments and
Eq. (3.51) represents bond moments. The moment of
Eq. (3.52) would be obtained by placing the total
‘charges transferred to the various atoms on the respec-
tive nuclear positions and it may be called the charge
transfer dipole, or formal ionic dipole.

It is easily seen that in each of the cases (3.50), (3.51),
and (3.52), the partial dipoles are calculated from charge
densities whose total populations vanish, and hence
their magnitudes are indeed invariant against displace-
ments of the origin.

Consequently, it is permissible to choose different
origins for the different partial dipoles. For the atomic
moments (3.50) it is convenient to choose the respective
atomic center as origin; thus Eq. (3.50) becomes

Dy=—3 ¢(4a)D(4a), (3.53)
with

D(4a)= / AV(Aa)2(x—x,). (3.54)

For the bond moments (3.51) it is convenient to choose
the bond midpoint as origin. Thereby one deduces

DAB=Z vB(Aa)D(Aa)—l—Z ’l)A(Bb)D(Bb)

—2F p(Aa| Bb)D(4a,Bb), (3.55)
a,b

where D(4a) and D(Bb) are the moments defined by
Eq. (3.54) with respect to afomic centers and

D(Aa,Bb)= / dV(Aa)(Bb)[x—i(xa+x5)] (3.56)
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are moments calculated with respect to the bond mid-
point 3(x4+xg). Moreover,

vp(da)=3 p(Aa|Bb)S(4a,Bb) (3.57)
b

is that part of the valence-active population (3.26) of
orbital (4a¢) which originates from the bond between
A and B.

As an example, Fig. 3 shows the dipole partitioning
found for the water molecule according to the calcula-
tion mentioned earlier.?* It illustrates the large contri-
bution of the lone-pair electrons on oxygen and the fact
that both bonds contain considerably larger moments
than their contributions to the total dipole betray.

3.6 Valence Molecular Orbitals

We consider now the special, but at present rather
frequent situation, that the wave function is given in
the MO approximation, with all MO’s having the same
occupation number [see Eq. (1.19)]. In this case there
exists the possibility of an arbitrary unitary transforma-
tion among the (filled) MO’s. Lennard-Jones has there-
fore suggested that this freedom be exploited to con-
struct molecular orbitals of a form which exhibits most
clearly the origin of chemical binding.28

Specifically, Lennard-Jones and Pople?® proposed for
this purpose the construction of eguivalent orbitals which
are determined by the condition that, in the invariant
exchange energy, those contributions which arise from
the diagonal terms of Eq. (1.75) become as large as
possible so that the contributions coming from the off-
diagonal terms become as small as possible. The condi-
tions defining these equivalent MO’s become very
complicated however.

On the other hand, the procedure employed above
for finding the valence atomic orbitals suggests the
possibility of finding different MO’s which are likely to
elucidate the bonding effects. Moreover, these MO’s are
determined by a simple procedure.

In the MO theory we have

on=2_ (Aa)CAa,ny
Aa (3.58)

pP= Z Nooa.
Consequently
p(da|Bb)=3 pn(da|Bb),

with p.(4a|Bb) defined by
Nn<pn2=§ ;;b pa(4a| Bb)(4a)(Bb)

Pn(Aal Bb)anCAa,nCBb,n-

28 J. Lennard-Jones, Proc. Roy. Soc. (London) A198, 1, 14
(1949); J. Chem. Phys. 20, 1024 (1952).

2 J. Lennard-Jones and J. A. Pople, Proc. Roy. Soc. (London)
A202, 166 (1950).
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Moreover, we consider only the case that all N,’s are
identical. The total electron population can now be
written

N=3 N, (3.59)
anpn"'"'vn (3.60)
pn=AZ pn(4alAa) (3.61)
tn=Y" 3 pa(Aa| Bb)S(A4a,Bb). (3.62)

Aa Bb

The population partitioning given by Egs. (3.59) to
(3.62) is analogous to that given by Egs. (3.24), (3.27),
and (3.28) for atomic orbitals and can therefore be simi-
larly interpreted, viz., the molecular orbital population
N, consists of the valence-inactive part p, and the
valence-active part v,.

This parallelism then suggests the introduction of
valence molecular orbitals based on the requirement of
maximal or minimal valence activity. We therefore define
as valence MO’s those molecular orbitals for which the
valence-inactive populations

P"=Nﬂ Z CAa,nCAa,n (363)

Aa

are extremal. It is readily seen that this condition is
equivalent to the requirement that the matrix

Prum=NnY Caa,nCaam (Note Ny=N,), (3.64)
Aa .

be diagonal.
Indeed, suppose that the molecular orbitals

&’=2_(4a)c44,° (3.65)
Aa
give rise to the matrix
PVI‘():NV AZ CAa,vOCAa,po- (3.66)
Let
(3.67)

§9n=z <Pv0Tvn
v

be another set of molecular orbitals, related to the
original ones by the linear transformation T, and
giving rise to the matrix pam of Eq. (3.64). Then the
relation

p”’”:Z pvuoTynTpm (3.68)

e

holds, and the extremization of the expression (3.63) is
equivalent to constructing the columns of T from the
eigenvector of p°; hence, p will be diagonalized and the
transformation T will be unitary.

It is easily shown that the valence molecular orbitals,
obtained in this way, are invariant against unitary
transformations among the orbitals on any one atom,
in Eq. (3.58). Thus, they depend only upon the choice

THE CHEMICAL BOND 347

TaBLE IV. Gross populations of spherical AO’s
and SCF MO’s in H,O0.

Ols 02s 02z O2py Hh H'h Total
1a, 2 0 0 0 0 0 2
2a, 0 1.64 0.05 0 0.155 0.155 2
3a; 0 021 154 0 0125 0.125 2
16, 0 0 0 092 054 0.54 2
Total 2 185 1.59 092 082 0.82 8

of the total function space on each atom, but not upon the
choice of a basis in each of these atomic spaces.?

As an example, we consider again the water calcula-
tion of reference 24. Aside from the (02px) orbital
perpendicular to the molecular plane, four doubly filled
MO’s are found from the SCF equations:

(1a1), (2a1), (3a1) of symmetry 41,
and (15;) of symmetry B.

Diagonalization of the matrix p° leads to the four
valence MO’s

(miay), (mlas), (mbay), (mbbs),

related to the original MO’s according to

(1a1) (2a1) (3a1) (102)
(miay) 0.986044 —0.142674 0.085795 0
(mla;) —0.145950 —0.492880 0.857769 0
(mbay) 0.080095 0.858320  0.506824 0
(mbbs) 0 0 0 1

(3.69)

The properties of these MO’s are best recognized if
one considers the populations

ga(4a)=Y pa(4da|Bb)A(Bb,Aa), (3.70)

which represent the contributions of the molecular
orbitals ¢, to the populations of the atomic orbitals
(Aa) and also the contributions of the atomic orbitals
(Aa) to the populations of the molecular orbitals ¢a;i.e.,

2 gu(da)=qg(4a), :an(Aa)=N,,. (3.711)

Table IV furnishes the partitioning of the total popula-

TasLE V. Gross populations of valence AO’s
and valence MO’s in Hz0.

Oic Ole Obs O2py Hh H'h Total
mi 2 0 0 0 0 0 2
mlay 0 201 003 0 —002 —0.02 2
mba; O 006 133 O 0.305 0.305 2
mbby 0 0 0 092 0.54 0.54 2
Total 2 207 136 092 0.825 0825 8

»a This was pointed out by R. Rue of this laboratory.
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TaBLE VI. Gross populations of bond AO’s
and bond MO’s in H:0.

ObH ObH' Olo Hh H'h Total
mOH 112 0.01 0.03 090 —0.06 2
mOH' 001 112 0.03 —0.06 0.90 2
Total 1.13 113 0.06 0.84 084 4

tion in terms of the spherical AO and SCF-MO popula-
tions; Table V gives the partitioning of the total
population in terms of the valence AO and MO popu-
lations. The clarification achieved by the transforma-
tion to valence orbitals is too evident to need further
elaboration.

In analogy to Eq. (3.40) it is possible to define bond
molecular orbitals in terms of the valence MO’s, viz.,

(mOH) = [ (mbay)+ (mbbs) 1/V2

(mOH’) = [ (mba,) — (mbbs) ]/V2. (3.72)

The population partitioning using these bond MQ’s and
bond AO’s is given in Table VL.

4. PAIR-DENSITY PARTITIONING AND
SHARING PENETRATION

4.1 Interference Partitioning

Although the second-order density operator has a
more complex structure than the first-order density
operator, the results of the preceding section still deter-
mine a partitioning of the pair density into an inter-
ference part and a noninterference part.

This is most clearly seen by first considering the
“Coulombic fragment” given by Eq. (1.36). Substitut-
ing into this equation the expressions for the first-order
density in the partitioned form (3.9), one obtains

m(1,2)=p"(1)p°"(2)
+280°H(1)p"(2)+0'(1)0"(2).

Here and in the following, 8 denotes the two-electron
symmetrizer defined by

8 fg=38 f(x1)g(x2) =3[ f(x1)g(x2) +g(x1) f(x2)] (4.2)

for two arbitrary functions f and g. Equation (4.1)
exhibits three characteristically different terms, and the
analysis of the molecular energy in Sec. (6.1) will evince
that such a tripartition is conceptually satisfactory.

In analogy to Eq. (4.1), it is to be expected that a
general pair density = will be amenable to a similar
tripartition, viz.,

7(1,2)=7"5(1,2)+7'(1,2)+7"(1,2),

4.1)

4.3)
into

an interference-free pair density 7V,
a primary interference pair density =1,
and a secondary interference pair density «'%.
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The superscript “VS” stands for “valence state” and is
explained in Sec. 4.2.

In order to find the decomposition (4.3), we observe
that Eq. (4.1) could have been derived by substituting
the Eq. (3.17) into the expanded form of m, (1.36).
Hence the interference partitioning of the general pair
density should be obtained by substituting the orbital
interference partitioning, as given by Egs. (3.17), (3.18),
and (3.29), into the expansion (2.6) of the general pair
density in terms of atomic orbitals. This substitution
leads to the decomposition

r=n04x'47", 4.3)
=3 3 q(r|9)8(x,*) (xs?), (4.4)
7' = Z_ Z 2?(7’? [ S) <XTXF>(Xa2), (45)
=22 D(r7]s3) () (XeXa)s (4.6)
where
p0715)= S 90759 (59, @n)

q(r|s)=2 A(r,P)p(r7|s)
=Z Z Ar,P)p(r7| s8)A(s,8)=q(s]7). (4.8)

The definitions of the functions {x,x7) and (x,2) = (xsxr)
are those of Eq. (3.17), and Eq. (3.29).

By virtue of Egs. (2.9) and (2.10), the quantities
introduced in Egs. (4.7) and (4.8) satisfy the conserva-
tion relations

2 prr|s)= (N —1)p(r|7), (4.9)

2 glr]9)=W—1)q(), (4.10)

where ¢(7) are the atomic orbital populations of Eq.
(3.23). These relations, in conjunction with Egs. (3.11),
(3.37) and Egs. (3.12), (3.20), mean that the total con-
servation relation for m, Eq. (1.11), can be split into
the following three equations:

/deﬂ'o(Xl,Xz) = (N-— l)pCL(X]_), (4: 1 1)
/ AV o’ (X1,Xe) = (N —1)p'(x1), (4.12)
/dVﬂ'”(XI,X2) =0. (413)
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The total pair population, as defined by Eq. (1.10),
becomes

1
%‘ZV(N— 1)=§' /dVldeZ‘lr(Xl,Xg)

1
=5 /dVlde2W°(X1,X2)=%Z9(”13), (4.14)

and hence the following connotations are adopted:

g(r|s)=electron pair population of the orbital
pair x,, xs, (rs),
1q(r|r)=electron pair population of the orbital x..

A physical interpretation of the coefficients p(#7|s)
is given in Sec. 6.2. [See Eq. (6.17") fi.]

In order to obtain a partitioning of the type (4.3), it
is necessary to decompose the pair density into contri-
butions according to atoms. To this end, the Egs.
(4.4) to (4.6) are expanded as follows:

= 7%4,B), (4.15)
4B
v=Y 7(4,B)+L T w'(44,B), (4.16)
4,B A7 B
=% 7"(4,B)+ %' L 7"(44,B)
4,B A B
+2 2 7'(44,BB), (4.17)
A4 BB
where the constituent parts are given by
7r°(A,B)=Za: Zb: ¢(Aa| Bb)$(Aa?)(Bb?), (4.18)
7r’(A,B)=Z_:’ > 2p(AaAa)| Bb)
" X8(dada)(Bb?), (4.19)
v'(44,B)=3% 3. 2p(4aAd| BY)
" X ${4ada)(Bb?), (A#A), (4.20)
7"(4,B)=2"%' p(Aada| BbBb)
o X 8(AaAa)(BbBb), (4.21)
w”(AA,B)z% %’ 2p(AaAa| BbBb)
X $(Aada)(BbBE), (A=), (4.22)

7"(AA,BB)=3. % p(AaAa| BbBb)
aa bb

X ${4aAa)BbBb), (A=A, B#B). (4.23)

By rearrangement, the pair density can then be written
in the form (4.3), where the three parts are now de-
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fined by
7V8=3_ 2 7(4,B), (4.24)
A B
=" n(44,B), (4.25)
A4 B
=33 x(44,BB), (4.26)
AA BB
with
7(4,B)=1%4,B)+='(4,B)+="(4,B), 4.27)
w(44,B)=7'(AA,B)+n""(44,B), (4%A4), (4.28)
w(44,BB)=n"(A4,BB), (A~A, B+B). (4.29)

The conservation relations (4.11) to (4.13) can be nar-
rowed down to '

/ dVaur"(AA,BB)= / dVar''(44,B)

= / AVar"(4,B)=0, (4.30)

/ dVs Y. 7'(4,B)=0, 4.31)
A,B
/ dV, X' Y 7'(44,B)=(N—1)o, (4.32)
AA B
/ Vs Y 79(4,B)=(N—1)p°L,  (4.33)
A,B

where Eq. (4.31) is a consequence of choosing valence
atomic orbitals as a basis of expansion.

It should be noted that a summation of the type
S’ 47 represents in effect a summation over all formal
“bonds” between all atoms, the bond between each
atom pair taken twice (note that 47A4).

4.2 Valence State

In Sec. 3 the view was taken that, within a molecule,
the atoms themselves possess the electron densities
p(A), whereas the density terms p(4,B) were ascribed
to interference between atoms due to finite overlap.
Similarly, we now consider the atomic pair-density con-
tributions of Eq. (4.27), w(4,B), as the pair density due
to the atoms themselves and ascribe the pair-density
terms w(44,B), w(4A,BB) of Egs. (4.28) and (4.29) to
an interaction between atoms, caused by mutual
overlapping.

These concepts are somewhat clarified by imagining
the atoms being removed “infinitely”” far apart, to the
“separated positions” A, B, -+, while keeping the
wave function such that

(4.34)
(4.34")

the electron populations g(4a),
the pair populations ¢g(4e| Bb),
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and also the two-atom pair-density coefficients
p(4dadd|Bb), p(AaAd|BbBb), (4.35)

remain ‘“frozen” at the values they had in the molecule.
During this process all overlap-dependent interference
terms would vanish, and the terms

pVS:pCL:% p(4), (4.36)

rvs=§ % m(4,B), (4.37)

would be the only one surviving. We shall call the en-
semble of atoms characterized by the density (4.36) and
the pair density (4.37) the “atoms in the valence state
corresponding to the molecule in question.”

This definition of the valence state differs from previ-
ous ones in that it is based upon the density and the
pair density and not upon any wave function. One
could, of course, try to construct a wave function which
would yield the densities (4.36) and (4.37) and this
problem is discussed in Sec. 4.7.

For the present purpose we consider it however more
realistic to leave the valence-state wave function un-
defined and to stipulate that the word “state’” implies,
in this context, density and pair density only. The
valence state is merely a model in order to visualize
more clearly the interference-free parts of the molecular
densities.

4.3 Promotion State and Sharing Penetration in
the Absence of Charge Transfer

General Considerations

The valence state is essentially a molecular and not an
atomic entity. It must be distinguished from the ensemble
of separated atoms, each in a “‘promoted” state by itself.

In order to appreciate what is involved here, con-
sider a molecule without charge transfer, i.e., where all
atomic populations are equal to the number of electrons
occurring in the neutral atoms, i.e.,

/de(A)=q(A)=Z g(da)=2(A), forall 4, (4.38)

where Z(4) is the nuclear charge on atom A. Construct
the valence state density and pair density of this mole-
cule according to Eqgs. (4.36) and (4.37).

In distinction from this process, suppose now each
atom isolated by itself with ¢(4) whole electrons; sup-
pose furthermore each atom in a promoted state, such
that its electron density is identical with the density
p(4) in the valence state of the aforementioned mole-
cule.?® Let 7?(4,4) be the pair densities of the atoms,
each in its promoted state. Since each electron is con-

3 For simplicity it is assumed that p(4) can be expressed as a

density of an atomic wave function. This assumption is discussed
further in Sec. 4.7.
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fined to one atom, these pair densities will satisfy the
individual conservation relations

/ Ver®(4,4)=[q(4)—1]o(4), (439)

v [ avara,H=3ao—1T). @240

Let p® be the density and #P the pair density of the
total system of all promoted atoms. According to con-
struction one has

pP=§. p(4)=p"5. (4.41)

The total pair density can be written

7rP=§ % w?(4,B), (4.42)

where the intraatomic terms n¥(4,4) are those for
which Egs. (4.39) and (4.40) hold, whereas the inter-
atomic terms are given by

7F(4,B)=8p(4)p(B), (4#B), (4.43)

since the electrons on atom 4 and those on atom B
belong to two different sets and, hence, the reasoning
leading to Eq. (1.53) applies (in the present context the
symmetrized form is more convenient). Equations
(4.39), (4.41), and (4.43) are in harmony with the
over-all conservation relation (1.11), since

/ Ve =5 [o4)~1]p(4)
5 A BB ()]
~[E 4B 115 p)= (V- 105", (449

The state characterized by p*=p"® and #? will be called
the promotion state of the ensemble of atoms.

We now compare the pair density of the promotion
state with that of the valence state. Whereas the den-
sities of these two states are identical, such an equality
does not exist between ¥ and 78, no matter how the
promotion state is chosen. This conclusion follows from
the fact that, in all practical cases, one has

/ Vv (4, A) < [g(A)—1TV5(4),  (445)
/ av, f AVarvS(4,4)> bo(A)g(4)—1], (4.46)
/ 4V ar¥(4,B) =3[ g(A)pV(B)+a(BYVS(4)], (4.47)

/ av, / AVarvS(A,B)<q(A)g(B).  (4.48)
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The over-all conservation relation

/ AV aVS=(N—1)p"s (4.48)

is, of course, satisfied.

Example

The difference between #P and #V® is most easily
understood by considering the case of the Hy molecule.
In the promotion state, each atom has an electron for
itself and its atomic pair density vanishes. Within the
molecule, however, both electrons are shared by both atoms
and there results a finite probability of finding both
electrons on the same nucleus, giving rise to a non-
vanishing atomic pair density and thus to a positive
atomic pair population.

It is instructive to analyze this simple case in quanti-
tative detail. Let 4 and B be the atomic orbitals on the
two nuclei of H, and suppose that the normalized
space-part of the molecular wave function is given in
the Weinbaum form?

®(x1,%2) = (V) ¥ cosy[4(1)4(2)+B(1)B(2)]
+simy[A(1)B)+B1)A(2)T}  (4.49)
N= (1452428 sin2y)L (4.49)

Here, .S is the overlap integral and vy determines the
mixing of “covalent” and “ionic” terms:

v=0:
y=w/4: molecular orbital wave function,
tany=3.9:

with

pure “ionic wave function,”

Weinbaum’s result for (1s) atomic
orbitals with effective charges
of 1.193,

pure covalent wave function.

(4.50)

y=m/2:

For Weinbaum’s wave function the overlap integral
has the value S=0.6720263.
From Eq. (4.49) one finds

mV8=q(4|4)[4*(1)4*(2)+B*(1)B*(2)]

42¢(4|B)sA2(1)B2(2), (4.51)
=4p(AB| A){8{4AB)(4%)+$(4AB)(BY)}, (4.51)
7I=4p(AB| AB)S{AB)AB), (4.517)
with

q(4]4)= ¢(B|B)=%(1+N cos2y), (4.52)
q(4|B)=%(1—N cos2y), (4.53)
p(AB[A)= p(AB|B)=%p(4]|B), (4.54)
p(AB|AB)=1N; (4.55)

and furthermore
p=q(A)[A*+B*]+2p(A|B){4B),  (4.56)

3 S, Weinbaum, J. Chem. Phys. 1, 593 (1933).
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with
q(4)=q(B)=1,
(4| B)=N(S+sin2y).

(4.57)

(4.58)

The pair density of the promotion state is given by
7P(4,4)=="(B,B)=0,

wP(4,B)=842%(1)B*(2). (4.59)
Figure 4 shows the variation of ¢(4|4), ¢(4|B), and
p(A| B) with v for various values of the overlap inte-
gral S. It is seen that the pair population of each atom,
19(4]4), increases with increasing admixture of ionic
terms. Thus the effect of ionic terms in a homonuclear
situation is to change the atomic pair population with-
out changing the atomic population ¢(4) itself, which
remains always unity in the present case. The result
is easiest to visualize in the molecular orbital case
(y=m/4): here it is obvious that each of the two elec-
trons, separately, belongs half to atom 4 and half to
atom B; hence, there should be a probability of % to find
both electrons at the same nucleus, and this value
agrees with 1g(4|4) from Eq. (4.52). However, even
for a purely covalent function (v=m/2) there exists a non-
vanishing atomic pair population which must be ascribed
to electron sharing. Only for S=0 does the pure covalent
function correspond exactly to the case of two isolated
atoms; g(4|4)=0, ¢(4|B)=1.
Because of the pair conservation relation,

q(4]4)+q(4|B)=1,

it is clear that an increase in intra-atomic pair popula-
tion is coupled with a decrease in the interatomic pair
population ¢(4 | B), which is related to the probability
of finding one electron on 4 and the other on B. This
correlation is also exhibited in the plots [it may be
noted that, except in the case S=0, q(4|B) does not
vanish even for a purely “ionic function” 1. As a conse-

(4.60)
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quence, some interatomic electronic repulsion is replaced
by some intra-atomic electronic repulsion as the atoms
proceed to share their electrons in forming a molecule.
In other words, electron sharing causes a greater penetra-
tion of the two electrons. Since the intra-atomic repulsion
is much larger than the interatomic repulsion (the
electrons being much closer to each other), it is evident
that this sharing penetration of the pair density will
raise the total energy and thus be unfavorable to bond
formation.

Why then is this effect further increased in the
Weinbaum function by the admixture of “ionic terms?”
The answer is that the bond-forming energy depression
is furnished by the interference terms, as discussed in
Sec. 3.2, and that interference cannot arise without elec-
tron sharing. The interdependence between the inter-
ference effect of the first-order density matrix and the
sharing-penetration effect of the second-order density
matrix is quantitatively illustrated in Fig. 4 by the plot
of the bond order p(4|B), which, according to Eq.
(4.56), determines the degree of influence of the orbital
interference density (4 B). It indicates that the bond
order is strongest when intra-atomic and interatomic
pair density differ least. Since the bond order is largest
for the molecular orbital wave function, the Weinbaum
result means that, in this specific case, the sharing-
penetration repulsion overcomes the interference at-
traction before the latter reaches its maximal value.

Conclusions

The analysis of other molecules has shown that the
physically significant arguments in the foregoing ex-
ample remain largely valid under more complicated con-
ditions; we therefore infer the following general
conclusions.

The transition from free atoms to a molecule formed
by them can be visulaized in terms of the following
steps.®?

(1) Each of the separated atoms individually as-
sumes its promotion state density and pair density.
This is as near as each atom, by itself, can come to its
status in the molecule.

(2) Valence electrons are shared between the sepa-
rated atoms to form the pair densities of the valence
state. The latter therefore involves all atoms simul-
taneously; one can speak of an atom in a valence state
only within an ensemble of atoms corresponding to a
molecule.

(3) The atoms are then moved from their separated
positions to their actual positions, where their orbitals
overlap. Thereby interference terms arise because there

3 These steps mercly represent a conceptual “taking apart”
which serves to differentiate between the roles played by various
terms in the actual density and pair density. They have nothing
to do with the variation of p and = which would result from
solving the Schrédinger equation for larger and larger internuclear
distances. The latter question is discussed in Sec. 7.5.
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are electrons which, individually, are shared between
different atoms.

Alternatively, the transition from free atoms to a mole-
cule can be visualized in terms of the following steps.3?

(1) (a) Each of the separated atoms assumes its pro-
motion-state density and pair density.

(b) The atoms are then moved from the separated
positions to the actual positions.

(2) Now valence electrons are shared between the
atoms; this gives rise to two effects.

(a) Interference. Since each valence electron, indi-
vidually, makes use of overlapping atomic orbitals from
different atoms, interference terms are generated in the
first-order density.

(b) Sharing penetration. The valence electrons from
different atoms penetrate each other much more
thoroughly than before, and the average distance be-
tween them is decreased. Hence the valence-state pair
density favors interelectronic approaches more than the
promotion-state pair density (both taken for the actual
atomic positions). This fact is expressed by the in-
equalities

/ av, / AV er(A,4)—3g(A)[g(4)~1]>0, (4.61)

/ v, / AV r(4,B)—q(A)q(B)<0. (4.62)

The first of the two pictures given stresses the differ-
ence between the overlap-free terms (steps 1 and 2)
which contain the long-range (Coulombic) interaction
energies between atoms, and the overlap-dependent
terms (step 3), which contain to shori-range interaction
energies between atoms. The second picture emphasizes
the coupling which exists between the interference effect,
which favors binding, and the penetration effect, which
opposes binding, since both are generated when electrons
are shared.

It should be mentioned that the difference between
valence state and promotion state is #of a consequence
of our particular valence state definition. The same
problem arises in the valence-bond approach to the
valence state as soon as ionic structures are included.
Since the latter are indispensible for obtaining accurate
results, even within the “atoms in molecules” pro-
cedure,?® Hurley has in fact recently introduced mo-
lecular valence states in which the states of the con-
stituent atoms are interdependent. In the valence-bond
theory, the “ionic structures” clearly serve two pur-
poses; (1) to enhance interference by effecting electron
sharing, (2) to effect charge transfer induced by differ-
ences in electronegativities of the atoms.

The energetic considerations advanced in the present
section have been qualitative in character. Quantitative

3 The method was first proposed by W. Moffitt. Recent

reviews are found in: T. Arai, Revs. Modern Phys. 32, 370
(1960); A. C. Hurley, ibid. 32, 400 (1960).
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formulations, which justify the foregoing conclusions in
detail, are derived in Sec. 6.

4.4 Inter-Atomic Sharing Penetration and
Self-Pair Density

In Sec. 1.4 it was found that there exists an intrinsic
relationship between the electron sharing phenomenon
and the self-pair density discussed in Sec. 1.4. As men-
tioned at the end of that section we simplify the inter-
pretation by equating the self-pair density with the
generalized exchange term, m,(X1,Xs), defined in Eq.
(1.23). Hence, it is to be expected that the latter will
be a convenient quantity for the analysis of electron
sharing between atoms.

Our first step is to combine the decomposition of the
pair density into Coulombic pair density and self-pair
density, as given by Eq. (1.23), with the partitioning
of the pair density into valence-state pair density and
interference pair densities, as given by Eq. (4.3). In
Eq. (4.1), there was given the interference partitioning
of the Coulombic pair density. The analogous partition-
ing . is obtained by comparing (4.1) and (4.3), whence

Te=1, 5wl (4.63)

where the parts are defined by
7V8(1,2)=pL(1)pM(2) —m.V5(1,2),  (4.64)
71(1,2) =28p%L(1)p1(2) —1(1,2), (4.65)
71(1,2)=p"(1)p*(2) —7"(1,2). (4.66)

The conservation relation (1.52”) can then be decom-
posed into the equations

/ AV ar¥8(1,2) = pOL(1), (4.67)
/ AVar1(1,2)=p'(1), (4.68)
/ AV, 1(1,2)=0. (4.69)

In the preceding section, attention was focused on
the fact that, due to electronic rearrangements, the
amount of electron sharing in the valence state differs
from that in the promotion state. Equations (4.64) to
(4.66) show that this difference can be analyzed by
examining the valence-state self-pair density #,’S. In
the following we use the term interatomic sharing-
penelration effect to denote this specific phenomenon,
which does not include the sharing effects inherent in
the terms w1, 7,

In the case of the H, calculation, discussed in Egs.
(4.49) ff., the self-pair densities for valence state and
promotion state become

mF =m,P(4,4)+27,2(4,B)+7.7(B,B),
w8=m,Y8(4,4)+27,V5(4,B)+7.Y5(B,B),

(4.70)
(4.70")
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where

WEP(A ’A) =p(A )p(A), TtP(B;B) = p(B)p(B),

7 (4,B)=0, (4.71)
m'5(4,4)=q(4| B)p(4)p(4),
72" 5(B,B)=q(4|B)p(B)p(B), (4.72)
7' 5(4,B)=q(4| 4)8p(A)p(B).  (4.72)

Equation (4.71) shows again that there is no sharing
between atoms A and B in the promotion state, and
the population on atom 4 is due to electrons different -
from those populating atom B. Equations (4.72) and
(4.72") show that, in the valence state, the population
on atom A, viz., g(4)=1, consists of the two parts
q(A4|B)=g.(4|4) and ¢(4]|A)=gs(4|B); the part
¢(A|B) is shared with atom B, the part ¢.(4|4) is
not shared with atom B. Figure 4 shows that, for the
covalent case and the Weinbaum case, the inira-atomic
sharing is >% and the inferatomic sharing is <3, that
is to say, the electrons stay predominantly on one of the
two atoms. For the molecular orbital case both are
equal to 3.

Consider now the interatomic electron-sharing effect
for a general molecule without charge transfer. Since
promotion state and valence state are assumed to have
the same density p®t=p"S, the two will also agree as
regards the Coulombic pair density, so that

wP(1,2)=pCL(1)p®L(2)— 7.7 (1,2),  (4.73)
wV8(1,2)=pH(1)p%H(2) —m,"3(1,2).  (4.74)
Hence, one can write
7V8(1,2)=7?(1,2)475%(1,2), (4.75)
where the difference
78P(1,2)=7."(1,2)—7."5(1,2) (4.76)

will be called the skaring-peneiration pair density in the
molecule. Let

=2 7%(4,B),

A,B

TE= Z TzE(A :B);
A,B

(4.77) ’

(4.77")

where the superscript 2 may be

Z=VS for the valence-state pair density,
2 =P for the promotion state pair density,
2 =SP for the sharing-penetration pair density.

[Note that, according to Eq. (4.24),

7V8(4,B)=n(4,B), w"5(4,B)=7(4,B); (4.78)
and, according to Eq. (4.76),
75P(1,2) = —m,5%(1,2).] (4.78")
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Since there are no interatomic sharing terms in the
promotion state [see Eq. (4.43)], the inferatomic parts
of 787 in Eq. (4.77") are determined by

7SP(A,B)=—m,Y5(4,B), A=B. (4.79)

For the intra-alomic parts of =S¥ a relation can be de-
rived as follows. From Egs. (4.44), (4.48’), and (4.75)
it follows that #SF satisfies

[ dV e (1,2)=0. (4.80)

Substituting Eq. (4.79) into Eq. (4.77"), and Eq. (4.77")
into Eq. (4.80), one obtains

/ AVaSP(4,4)= Y

(Bs#£A)

where, by virtue of Eq. (4.67),
/dngSP(A,A)=pCL(A)——/dV27rxVS(A,A). (4.81)

Carrying out the double integration 3 /°dV1/dV, on
Egs. (4.79) and (4.81), one obtains the expressions for
the pair population changes which were discussed pre-
viously in Egs. (4.61) and (4.62). Hence, the terms
7P (4,B) of Eq. (4.79) describe the decrease in nter-
atomic pasr density due to the creation of interatomic elec-
tron sharing as one proceeds from the promotion state
to the valence state, and the terms 757 (4,4) describe the
increase in intra-atomic pair density due to the decrease in
inira-atomic electron sharing, which according to the
conservation relations (4.80), (4.80"), is necessarily con-
nected with the increase in interatomic sharing.

The transition from the promotion state to the
valence state can also be characterized by stating that
the character of the self-pair density term m. changes
from purely atomic to being partly molecular. This
interpretation is particularly obvious in the Hartree-
Fock approximation. The fact that the self-energy of
genuine molecular orbitals is necessarily smaller than
that of the constituent atomic orbitals furnishes then
another visualization of the energy increase associated
with the sharing penetration.

4.5 Sharing-Penetration Partitioning in the
Absence of Charge Transfer

In the simple case of Eq. (4.49), the promotion-state
pair density, and hence also the sharing pair density
were known; the partitioning (4.75) was therefore com-
pletely determined. In more complicated molecules the
interatomic parts only are fixed, as given by Eq. (4.79).
Is it possible to give specifications which, in conjunction
with the conservation relation (4.81) would determine
the intra-atomic parts and thereby completed the par-
titioning (4.75) for the general case?

/dVﬁr,VS(A,B), (4.80")
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In analogy with Eqgs. (4.18), (4.19), (4.21), and
(4.27) let

7*(4,B)
=3 % q*(Aa| Bb)S(Aa?)(Bb?)
+Z_:' > 2p*(AaAa| Bb)S(AaAa)(Bb?)

+3' 3 p*(AaAa) BoBb)S(AaAa)(BBb). (4.82)

ag b
From Egs. (4.73) and (4.74) it follows that
WIE(A:B)
=22 q:(Aa| Bb)8(Aa?)(Bb?)
a b
—>"3 2p*(AaAa| Bb)S(4AaAa)(Bb?)
ad b

—3'Y p*(AaAd| BbBb)S(AaAd)(BbBD), (4.82))

az b
where
g:*(Aa| Bb)=—q*(4a| Bb)+q(4a)q(Bb),
for Z=P, VS, (4.82")
¢:5%(4a| Bb)=—q¢5?(Aa| Bb). (4.82'")

According to Eq. (4.79), the interatomic coefficients
of 75? are determined by [ Note that the superscript VS
can be omitted, see Eq. (4.78)]

¢5%(4a| Bb)=—g.(4a|Bb), (4.83)
p5P(4add| Bb)=p(Adada|Bb), (A=B) (4.83)
p5P(4daAd| BbBb) = p(Aadd| BbBE). (4.83")

For the intra-atomic coefficients of #5F, Eqgs. (4.80'),
(4.81) furnish the relations

Y pP(dada|Ad) =Y p(dada|Ad), (4.84)

a’

P ¢°P(4a|Aa)=¢°"(4a), (4.85)

where
¢ (Ada)=¢(4a)~ . g.(4a| 40)

= Y/ g.(Ada|Bb). (4.85)
(BibA)

This quantity can be considered as a measure of the
interatomic sharing-activity of the valence orbital (Aa) in
the valence state of the molecule. Equation (4.85) sig-
nifies that, in passing from the promotion state to the
valence state, the gain in interatomic electron sharing
(right-hand member) equals the loss in intra-atomic
electron sharing (left-hand member) for each atomic
orbital (4a).
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The simplest supposition which satisfies this con-
servation relation and, moreover, takes into account the
interatomic sharing activity of the various orbitals in
a proportionate fashion, is given by

¢°%(da| 4@)=¢F(Aa)g®*(4a)/¢5F(4), (4.86)
where ¢5P(A4a) is defined by Eq. (4.85’) and ¢5?(4) by
¢ (4)=% ¢**(da)=q(4)— X g:(da| 43)

=2 ¢(dae|da)—q(4)[g(4)—1].  (4.86)

Hence, $¢°F(4) is the pair population transfer into atom
A, as given in Eq. (4.61).
The simplest way to satisfy Eq. (4.84) is to assume

p5P(Aada|Ad’)=p(Aada|Ad)).  (4.87)
Moreover, it seems natural to put
p5B(4ada| Ad’'Ad")=0. (4.88)

It would be desirable, if it should prove possible, to
find a more profound analysis of the pair density leading
to a more cogent choice of the intra-atomic coefficients
of wSP. The rather modest approach adopted here is,
however, far from arbitrary. Among a variety of defini-
tions examined in detail, the one given in Eq. (4.86)
appeared to be the only one which (1) satisfied the
conservation relation (4.80); (2) embodied physically
plausible weighting factors for the various intra-atomic
contributions; (3) yielded reasonable quantitative re-
sults in those cases which were carried through nu-
merically. As was discussed in the introduction, the
overriding criterion in judging all definitions introduced
here must be their usefulness for the comparison of
series of molecules.

In accordance with the final remarks in Sec. 1.4, the
effect of electrostatic interelectronic correlation has been
ignored in the foregoing. An appropriate complementa-
tion in this direction will be necessary for a perfect
interpretation of non-SCF wave functions.

4.6 Molecular-Orbital Pair Bond Orders

In view of the frequency of SCF-MO calculations for
closed shell structures, it is of interest to particularize
the general results for this special case. The simplifica-
tions introduced by this approximation lead to the form

m:(1,2)=%0%(1,2) (4.89)

for the exchange part of the pair density. [See Eq.
(1.21)7.

Accordingly, the pair-bond orders assume the form
p(AdaAa| BbBb)
= p(AaAa| BbBb)— p.(AaAa| BbBb), (4.90)
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with
p(AaAd| BbBb)= p(Aa|Aa)p(Bb|Bb), (4.90")
p.(AdaAa| BbBb)=3{p(Aa|Bb)p(Aa|Bb)
+p(Aa|Bb)p(Aa| Bb)}. (4.90")
For the quantities in Eqs. (4.82) to (4.82”) one obtains
g:(Aa| Bb)=21{p(4a| Bb)(ApPA) sa,Bo
~+(AD) 4a,85(PA) 40,85},
p(Aad | Bb)= "i{?(Aal_Bb)(PA)Ia,Bb
+p(Aa| Bb)(pA)sa,5v}, (4.91)
p(AaAa| BbBb)= — p,(AaAa| BbBD). (4.917)
For valence AQ’s, the intra-atomic parts of Eq. (4.91")
are still diagonal, viz.,
p(dadalAd Ad")=—Lp(4a| Ada)p(Aa| Aa)
X[aua’aﬁi"l" 54&'6&;']. (4.91”/)

By virtue of the special form (4.89), the conservation
relation (1.527) yields

(4.91)

f 4V (x| x)p (x| x5)=25(2s] x2)
(4.92)
00="2p,

indicating that (p) is a projection operator. From this
relation follow the identities

pAp=2p, (4.93)
(3pA)(3pA)=(3pA), (4.93")
(3Ap)(GAp)=(3Ap), (4.93")

which are related to Egs. (4.9) and (4.10).

4.7 Wave Functions for Promotion State
and Valence State

It is a fundamental hypothesis of the present investi-
gation that densities and pair densities are more sig-
nificant for purposes of interpretation than are wave
functions. In view of past approaches, it is nevertheless
of interest to ask whether it may be possible to formu-
late wave functions for valence states and/or promotion
states on the basis of the partitioning carried out here.

In order to discuss this problem, let us write a mo-
lecular wave function in the form used in the “atoms
in molecules” method, viz.,

T=Y ®xl'k, (4.94)
K

where the ®x are the so-called “composite functions,”

Pg=@ [T BxA. (4.94"
A

Here ®x4 represents a particular neutral or ionic state
of atom A. Hence, ®x is an antisymmetric wave function
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describing the ensemble of all constituent atoms, each
in a particular state.

It is clear that a given composite function must con-
tain atomic ionic states ®x4 in such a way that the
total system is neutral, assuming a neutral molecule is
to be described. In general, there will be several different
composite functions $x which agree as regards the state
of ionization of all individual atoms. Let us say, they
are composite functions corresponding to the same state
of ionization within the molecule.

For the present purpose it is convenient to rewrite
Eq. (4.94) in the form

v=yY Cg¥x, > Cg?=1, (4.95)
K K

where the ¥k represent partial sums collecting all those
terms which belong to the same state of ionization
within the molecule. If we now let the nuclei of the atoms
be located at the “separated positions” Ay, By, -, then
W represents a ‘“valence state wave function” and each
Tk represents a’,“promotion state wave function” for
the molecule.

The density of a promotion state ¥k is found to have

the form
pE= ZA: px(4),

(4.96)

where
f AV px(4) = Zx(4)=Z(4)— Ox(A),

the integer Qx(A4) giving the state of ionization of atom
4 in Y. The pair density of ¥x is found to have
the form

TK= Z WK(A:B)7
A,B

(4.97)

where mx(4,4) satisfies the relation
[avastaar=tzatar-1puia)

and 7x(4,B) is given by
7x(4,B)=8px(A)px(B), (4A#=B).

Furthermore, the total density and pair density of the
valence state become

p(¥)= % Cx’ox= %‘, pu(4), (4.98)
(V)= % C 1{27FK=A'ZB my(4,B), (4.98"
where
pu(4)= g{: Cx2x(4), (4.99)
7r¢(A,B)=% Cr*rx(4,B). (4.99")
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Suppose now that the valence state and promotion-
state density and pair density of a molecule have been
determined by the partitioning described in the pre-
ceding sections. Two questions can then be raised:

(1) Isitpossible to find a valence-state wave function
of the type given in Egs. (4.94) and (4.95) which would
reproduce the valence-state density and pair density
found from the partitioning?

(2) Is it possible to find, for a given atom 4, an
atomic promotion state wave function which would
reproduce the atomic promotion state density and pair
density found from the partitioning? The chances are
against this being the case in general, because there is
no guarantee that the density and pair density con-
structed by our method of partitioning will fulfill the
conditions which must be satisfied by such quantities
in order to be derivable from antisymmetric wave
functions. For example, Tables I and II show that some
orbital populations g(4a) slightly exceed the value 2,
a situation which cannot arise for a first-order density
derived from an antisymmetric wave function con-
structed by means of normalized atomic orbitals.

The nonexistence of such'wave functions is not, in
itself, an objectionable feature. Not only are they un-
necessary for carrying out our analysis, but also from
quite general considerations they would have the char-
acter of artifacts. In the “atoms in molecules” method
too, it is impossible to assign a promoted wave function
to an afom in a molecule, because the expansion (4.95)
of the molecular valence state necessarily contains
several terms, corresponding to various states of ioniza-
tion, even in the absence of charge transfer. This is
indispensable for a proper description of the electron-
sharing effect, as can be seen from the following
consideration.

Let

pz(4), pz+1(4), pz-1(4);

72(4,4), wz41(4,4), 77-1(4,4)
be special cases of Eq. (4.96) and (4.97) for a specific
atom, where Z, (Z41), and (Z—1) correspond to neutral
atom, singly positive, and negative ion, respectively.
Suppose that the Eqgs. (4.99) and (4.99') have the
following form:
pu(A)=Co?pz(A)+C12pz41(A)+pz-1(4)],
7y(4,4)=Co*rz(4,4)+Ci¥[7241(4,4) +72-4(4,4)],
Co>+2C2=1.

One finds then the following intra-atomic electron
population and pair population:

/dew(A)=Z,

1 / av, / AVary(A,4)=3Z(Z—1)+C22,
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showing that the admixture of positive- and negative-
ionic states in equal amounts serves as a means to
modify the atomic pair population without affecting
the atomic electron population itself.

Since an atom in a molecule cannot be given a pro-
motion state wave function, Moffit3* was forced to con-
sider a “‘condition” of the atom in the molecule, repre-
sented by a symbolic sum of several atomic wave func-
tions containing different numbers of electrons. This
impasse is avoided if the analysis is based upon the
density and pair-density partitioning.

The present approach could be modified so as to
permit the construction of a promotion-state wave
function. One could decompose the atomic contribution
o(4) of the quasi-classical density (3.37) into a part
which can be derived from an atomic wave function
and a remainder which could be attributed to electron
sharing. In a number of actual cases, it was found that
this objective can be achieved with an extremely small
remainder.3% Once such a promotion-state wave function
is found, it does furnish a definite promotion state pair
density, so that the sharing-penetration partitioning of
Sec. 4.5 is no longer needed. However the general con-
struction of a wave function for a prescribed first-order
density is a difficult problem, since it involves the
solution of set of simultaneous nonlinear equations in
many variables.

In the present investigation the terms ‘“valence state”
and “promotion state” imply merely the existence of
density and pair density, and not the existence of a
wave function.

5. CHARGE TRANSFER
5.1 Integral Transfer and Fractional Transfer

In most molecules, the total charge associated with
a particular atom, i.e., the quantity ¢(4) defined by
Eq. (3.27), is different from that atom’s nuclear charge
Z(A). In such cases the quantity Ag(4), defined by
Eq. (3.48), represents the total population transfer into
atom 4, and

Q(4)=—Ag(4)=2(4)—q(4) (5.1)

is the total ‘““ionic charge” of this atom in the molecule.
If this total population transfer is an ¢nfegral number
of electrons, then it is convenient to consider the ion
with the charge Q(4), rather than the corresponding
neutral atom, as the natural building block for the par-
ticular molecule. In such a case, all derivations given
in the preceding sections remain directly applicable.
One has merely to keep in mind that Z(4) and¥(4)
are different. The atom must then be thought of as
entering the molecule in the form of a promoted ion.
Considerably more complicated relationships arise
when the atomic population transfers Agq(4) are frac-
3¢ W. Moffitt, Repts. Progr. in Phys. 17, 173 (1954), Eq. (3.6) ff.

3 The promotion state is of course #of a stationary state of the
free atom.
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tions of an electronic unit. Fractional population transfer,
i.e., partial electron transfer, is possible since valence
elecirons are shared, and it is in fact the most common
situation. In this condition it is impossible to conceive
of a promotion state, i.e., a state with unshared elec-
trons, which has the identical atomic populations ¢(4),
and one cannot follow the procedure of Eq. (4.41), i.e.,
to take p(A4) as the promotion state density.

One has to be satisfied with constructing ‘“‘the most
closely related promotion state,” i.e., one has to find
atomic promotion-state densities pP(4) which have
integral populations

()= f aVer (), (5.2)

and differ from the quasi-classical atomic densities
p(4) as little as possible, in a sense which remains to
be examined. With this promotion-state density one
may then proceed in a manner similar to that applied
in Sec. 4.

The most appropriate values for the promotion state
populations ¢F(4) are not necessarily identical with
those of the nuclear charges Z(4). In view of the inter-
atomic character of charge transfer and electron shar-
ing, it seems that all atoms in a molecule ought to be
considered simultaneously. Hence, we define the ¢¥(4)
as those integers which satisfy the conditions

%ﬁ [g*(4)—g(4) J=Min, (5.3)

while

> ¢%(4)=> q(4)=N=const. (5.3

When these equations have been solved, one can
write the decompositions

q(4)=¢"(4)+q"(4),

% q*(4)=0.

(5.4)
with
(54"

The quantity ¢T(4) will be called transfer population
for the atom A. If it should turn out that the promotion
state population ¢¥(4) corresponds to that of an ion,
then ¢T(4) will differ from the total population transfer
Ag(A) discussed in the beginning of this section and in

" Sec. 3.5.

5.2 Transfer Partitioning of the Density
It is our aim to define the partitioning
p(4)=pF(4)+p"(4) (5.5

for each atom in a molecule. If the promotion state
density pF(A) and the transfer density p™(4) are ex-
panded in terms of atomic orbitals

pF(4)=2a ¢"(4a)(42%),
pH(A)=2a ¢*(4a)(44%),

(5.6)
(5.7
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then Eq. (5.5) can be expressed by the orbital de-
compositions
g(da)=¢"(4a)+¢"(4a), (5.8)

which, moreover, define the corresponding partitioning
for the density operator. From Egs. (5.2), (5.5) to (5.7)
follow the conservation relations

24 gt (4a)=¢"(4), (.9
e q"(4a)=g"(4). (5.10)

Is there a physically reasonable way of implementing
the partitioning (5.8) with the side conditions (5.4),
(5.9), and (5.10)?

Since valence-active atomic orbitals are expected to
carry a larger share of electron transfer and electron
sharing, it seems reasonable to assume the orbital
transfer populations ¢*(4a) proportional to the v(4a),
the valence-active parts of the gross orbital populations.
If the proportionality constant is considered the same
for all orbitals on one atom, then the necessary validity
of Eq. (5.10) yields

q"(da)=2(4a)q"(4)/v(4),

v(d)=2.v(4a)

is the total valence-active population of atom 4.

The following different line of reasoning might also
seem plausible. According to Eq. (3.24), the amount
v(4a) is taken from the bond region to form, together
with p(4a), the total orbital population g(4a). In order
to obtain the promotion state orbital-populations ¢¥(4a),
the amounts taken from the bond regions should be
modified, though still in the relative proportions deter-
mined by the valence-active parts v(4a), i.e.,

¢*(da)=p(4a)+car(4a),

where ¢4 is the same for all orbitals on one atom. The
required validity of relation (5.9) now yields

g (4a)=p(4da)+v(4a)[g"(4)— p(4)]/2(4),
with

(5.11)
where
(5.11")

(5.12)

p(4)=24 p(4a). (5.12)

By virtue of Eq. (5.8), the two definitions, (5.11) and
(5.12) are equivalent; hence, both kinds of arguments
lead to the same partitioning of g(4a).

These definitions seem, however, reasonable only if
2(4a)>0, i.e., in the case of an over-all bonding atomic
orbitals, but not for an antibonding atomic orbital
where v(4¢)<0. An example is the lone-pair hybrid
orbital (Ols) of oxygen in water (see Table II). Since
there is an over-all charge transfer unto oxygen, Eq.
(5.11) would yield the unlikely result that some charge
leaves the lone-pair orbital and is transferred into the
binding oxygen VAO’s. We therefore modify the defini-
tion (5.11) by replacing the valence-active populations
v(Aa) with their absolute values. Thus, the relation

¢"(4a)=v(40)|q"(4)/|v(A)|av,  (5.13)
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with
|2(4) |av=2al0(4a)], (5.13)

is proposed as definition of the transfer populations.
Another possibility would be to use the squares |v(4a)|?
instead of the absolute values |v(4a)]|.

On the other hand, by comparison with bonding and
antibonding orbitals in heteronuclear diatomics, it may
be argued that the choice (5.11) is not unreasonable.

If one defines

pP=>;, pF(4), pT=ZA p*(4), (5.14)

then the Egs. (5.5) can be written as [see Eq. (4.36)]
pV8= pCL= oPf 4T, (5.15)

In the case of partial electron transfer, this definition
of p® replaces the previous Eq. (4.41).

5.3 Transfer Partitioning of the Pair Density
Valence-State Pair Density

There is no reason why the interference partitioning
of the pair density described in Sec. 4.1 should not be
carried through when there exists partial electron trans-
fer. Assuming then that one has obtained the three
parts V8, 71, 7L of Eq. (4.3), let us first consider the
further partitioning to which the valence-state pair
density V8 must be subjected as a consequence of
fractional population transfer.

Let #F be a promotion-state pair density, whose exact
definition is discussed below, but which s related to
the promotion-state density p* by Eqgs. (4.39) to (4.44),
except that Eq. (4.41) is now replaced by Eq. (5.15).
One would then expect the difference (#VS—=P) to
account for two effects:

(1) A modification of #® arising from straight electron
sharing, irrespective of charge transfer;

(2) An additional modification which is inseparably
tied up with the fractional population transfer pT.
Let us therefore attempt a partitioning of the type

78 =g PSP 47T, (5.16)

where the following conceptual significance is attached
to 75 and #T: #S? is due to the sharing-penetration

. effect while the density remains that of the promotion state,

viz., p¥; «T is concomitant with the subsequent transfer
of charge, which changes p® into pP+pT. From Egs.
(4.44), (4.48), and (5.15) follow the conservation
relations

/dngP(xl,xz) =(N—1)pP(x1), (5.17)

/dV27rSP(X1,X2) -—_—0, (5 .17’)

/dVgTT(Xl,Xz) =(N—1)p"(x1). (5.177)
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In order to implement the partitioning (5.16), we
first find a suitable definition of the transfer pair
density #T. Then the difference

VS — T =P 7SP

(5.18)

can be formed. Thereupon the procedure developed in
Secs. 4.4 and 4.5 is applied to separate wF from =SF,

It is convenient to decompose the various terms in
Eq. (5.16) into Coulomb and self-pair density parts
[Compare Egs. (4.73), (4.74)7:

wV8(1,2) =p®L(1)p°L(2) —w,"5(1,2),  (5.19)
wP(1,2)=p*(1)p*(2) —m."(1,2), (5.20)
mSP(1,2)= —5P(1,2) (5.21)
7T(1,2)==,"(1,2)—7,"(1,2), (5.22)
where
meT(1,2) = p®L(1)pCL(2) — pF(1)p"(2)
=pT(1)pM(2)+pM(1)p"(2),  (5.22')
and
pM(X)=%D>P(X)+p°L(X)]=§ pM(4). (5.22")

Here, the median atomic density
pM(4)=3[p"(4)+pM(4)1=p"(4)+30"(4) (5.22")

is the mean value of the quasi-classical atomic density
before and after charge transfer. The problem at hand
is now to propose a definition for #7(1,2) or, alterna-
tively, for 7,7(1,2). It is preferable to use the latter
term, since it is about IV times smaller than the former
in magnitude. Hence, the unavoidable arbitrariness will
be of less consequence if it is limited to the self-pair
density part of the transfer pair density.

Consider again decompositions of the kind given in
Egs. (4.77) and (4.77"), where the superscript 2 can
now be one of the following:

>=VS, P, SP, T. (5.222)

For the terms in these decompositions, orbital expan-
sions of the type given in Eqs. (4.82) and (4.82"”) are
again valid. It is readily seen that Egs. (5.17) to (5.17")
yield, among others, the conservation relations

> $*(4aAa|Bb)=0, for VS,P,SP, T, (5.23)
Bb
2 ¢="(Aa| Bb)=¢"(4a). (5.24)
Bb

Since there arise no other conditions as regards =T, it
is simplest to put

pT(AdaAa| Bb)=p"(Aada| BbBb)=0, (5.25)

so that 7, T contains only the principal terms ¢.*(4¢| Bb),
which represent essentially the change, caused by par-
tial population transfer, in the self-pair density of those
electrons which are shared between different atoms.
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Now, if two orbitals (4a) and (Bb) share one electron,
then we would estimate the change, due to charge
transfer, in the self-pair density of this electron to be
given by

g:"(Aa| Bb)=q"(4a)¢"(Bb)+¢°(Aa)g"(Bb), (5.26)
where ¢%(4a) is the mean value of the population frac-
tion due to the shared electron in (4a) before and after
transfer [ compare the similar expression (5.22) for 7, 7].
Actually, several electrons are involved in electron
sharing between two atoms. It remains, however, true
that the charge transfer is effected by the shared elec-
trons only. Thus, we feel justified in trying Eq. (5.26) as
an approximation, provided suitable values can be
found for the quantities ¢°(4a).

On the other hand, we note that the quantity

v,(4da| Bb)=q,(4Aa| Bb)—p.(Aada| BbBD), (5.27)
with
p-(Aada) BbBY)
=p(4daAa|BbBb)—p(Aa|Aa)p(Bb| Bb), (5.27")

indicates how much of the exchange term g¢.(4a|Bb)
must be ascribed to interference. By adhering to the
kind of reasoning advanced in Sec. 5.2 in connection
with the transfer partitioning of the density, we take
the quantity (5.27) also as a measure of the effect which
charge transfer has on ¢.(4a|Bb). In analogy to Eq.
(5.13), it seems therefore reasonable to put ¢, (4a| Bb)
proportional to the absolute value of v,(4a|Bb).
In this way, one arrives at the supposition

q:"(Aa| Bb)
= |v.(4a| Bb) | {g"(4a)N(Bb)+¢"(Bb)MAa)}, (5.28)
where the coefficients A(4a) are as yet undetermined.

Substitution in the conservation relations (5.24) yields
the following system of linear equations

qT(Aa);; |v.(4a| Bb)| N(Bb)

+N4a)Z [v:(4a| Bb) |g"(Bb)=4"(4a) (5.29)
Bb

which determines the A(4a) completely. Since, in gen-
eral, some of the ¢T(4a) are very small (e.g., for inner
shells), it is convenient to put

MAa)=q"(4a)y(4a). (5.29")
One then finds
g."(Aa| Bb)=M (Aa| Bb)[y(4a)+y(Bb)], (5.30)
with
M (Aa|Bb)=|v.(4a| Bb)|¢*(4a)q*(Bb), (5.30")
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and the y(4a) are determined by the linear equations
> {M(Aa|Bd)
" +é4a,55 ; M(4a|Ce)}y(Bb)=g"(4a), (5.31)
or 0
% {v=(4a|Bb)|q" (BY)

+844,85 % |v.(4a|Cc)| g% (Ce)}y(Bb)=1. (5.31)

By virtue of the definitions (5.25,28), the exchange
part of the quantity (5.18) can now be obtained ex-
plicitly [the Coulomb part follows from Eqgs. (5.19) to
(5.22)7]. Its orbital expansion coefficients [see (4.82')]
will be:

g.* (da| Bb)+q.5F(4a| Bb)
=¢.(4a|Bb)—g."(Aa| BY),

PP (AaAa| Bb)+pSF(4deda| Bb)=p(Aadd| Bb),

p?(AaAa| BbBb)+pSt(Aada| BbBD)
= p(Aada| BbBb). (5.32")

(5.32)
(5.32)

Hence, the partitioning into =,F and 7,5% can now be
carried out by means of the Eqs. (4.83)-(4.88), if only
one substitutes in these equations (¢.54¢,°F) for g,.

Interference Pair Density

The primary interference pair density ' resulting

from the partitioning (4.3) is also effected by partial
electron transfer. That this will be so is evident from
the decomposition in Coulomb and exchange term given
in Eq. (4.65), since it contains the quasi-classical
density pC which involves charge transfer.

We, therefore, define the following partitioning of #!:

wl =g P47IT, (5.33)

where
7?(1,2) =280 (1)"(2) —7,'7(1,2),  (5.34)
71T(1,2)=28pT(1)p'(2) — 7, "(1,2). (5.35)

In the next section, it is seen that #' gives rise to rela-
tively small energy contributions; moreover, it is to be
expected that =,! is about (N—1) times smaller in
magnitude than #'. Hence, we tentatively simplify Egs.
(5.34) and (5.35) by the approximation

IP— g 1

(5.36)

This assumption is compatible with the conservation
relation (4.68) and its counterpart

TAT=0, w,

/dVﬂrg,IP(l,Z):pI(l). (5.37)

While it is believed that the present definitions of
transfer densities and pair densities represent reasonable

KLAUS RUEDENBERG

first approximations, they clearly require considerable
improvements by a more careful analysis.

A more fundamental approach would consist in re-
solving the molecular problem under the additional side
conditions that all atomic populations ¢’(4) resulting
from that calculation keep the values ¢¥(4) found from
Egs. (5.3) and (5.3') for the actual molecule. The
density and pair density resulting from such a calcula-
tion might be considered as the most satisfying defini-
tions for pf and (#P+7SF).

6. ENERGY PARTITIONING

The objective of the present section is to understand
the physical significance of the partitioning of the
molecular energy which results from substituting into
the energy formula (1.26) the density partitioning and
the pair-density partitioning which were derived in the
preceding sections.

6.1 Characterization of the Interference
Partitioning
Analysis of the Coulomb Term

As in Sec. 4.1, it is again instructive first to con-
sider the terms which arise if one merely includes the
“Coulombic fragment” (1.36) of the pair density. In-
sertion of the interference partitioning for the density,
Eq. (3.9), and the corresponding pair density, Eq. (4.1),
into the energy expression (1.26) yields

E=E'+-E'+E", (6.1)
with

E'= Z ZAZBRAB_1+/dV}LpCL

ALB
1 pCL(1)pC1(2)
+5 / v, / dVe- . (6.2)

712

p®H(1)p(2)
E'= / AVhp'+ / v, / AV y—————,
712

1 p'(1)'(2)
E”=—/dV1/dV2m~.
2 712

Since the quasi-classical density p®L can be expressed
by the atomic expansion (3.37), the results derived in
Eqs. (1.38) to (1.41) become applicable for E°, and one
obtains, in a slight generalization of Eq. (1.39),

E'=3 4 Es*+3 4<p Vas,
where E40 is related to V4 of Eq. (1.40) by

(6.2)

6.2")

(6.3)

6.3
EA°=/dVTp(A)+ V4,

and represents the total intra-atomic energy of atom A4
in this approximation. Thus, the term E° represents
that part of the energy which can be given the quasi-
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classical interpretation which was discussed in consider-
able detail in Sec. 1.3.

The terms E’ and E” represent two of the quantum-
mechanical additions whose existence was mentioned
at the end of Sec. 1.3.

Of these two, the term E’ is the more substantial one.
If one inserts again the atomic decomposition (3.37)
for pCL, one finds

E= / AV(T+U), (6.4)

with
U =§ Ua, (6.4
—Za / pA(X’) 17
UA(X)_(|X—XAI)+/dV Ix—x’l' (6.4")

The potential U4(x) clearly represents the attraction
of the atom A, i.e., the nuclear attraction shielded by
the repulsion due to the electronic density p(4). Thus
the term E’ must be understood as the total energy,
kinetic and potential, of the interference density p!
under the influence of the skielded potentials of all
atoms. It should be noted moreover, that according to
Eq. (3.12), the term E’ is a sum of contributions from
the various bonds of the molecule. The lerm E' is the
prototype of the interference-energy terms which represent
the primordial source for the positive or negative stabiliza-
tion energy which leads to chemical binding and anti-
binding.

The term E” represents the self-interaction of the
interference density and its most notable quality is its
smallness. According to Eq. (3.12) it is the only term
which contains interactions between different bonds. For
reasons which soon become clear, it incorporates a con-
siderable amount of internal cancellation and is therefore
much smaller than the individual multi-center electron-
repulsion integrals which it contains. It is obviously
extremely desirable that the interactions between differ-
ent bonds appear embedded in such “packages” so that
their quantitative contributions are reduced to a mini-
mum. If this minimum is small enough, then there exists
hope of understanding the phenomenon of approximate
additivity of bond energies, which is experimentally so
firmly established and theoretically so little explained.

Characterization by Energy Integrals

The three types of energies, E% E’, and E” can also
be characterized by the type of energy integrals between
atomic orbitals which they contain. Let

T(f.g)= [ 4V Fx) To(x), 6.5)

il [ar.[ dvff—)‘ﬁ—) 66)

[fINuA]=—zAde ) ) (6.7)
|x—x4|
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The definitions (6.6) and (6.7) are consistent, if
(Nud) signifies the nuclear pointcharge distribution
—Z 46(x—x4) defined in Eq. (1.35).

There are two kinds of kinetic-energy contributions:
(1) The intra-atomic integrals,

T(4a,Ad) (6.8)

belong to the intra-atomic energy E4 which is a part of
the quasi-classical energy E?; (2) the interatomic
integrals

T(4da,Bb)= f AV T{(Aa,Bby=T(Aa,Bb)

—3S5(4e,Bb)[T(Aa,Ae)+T(Bb,Bb)], (A#B), (6.8")

represent the kinetic energies of the orbital interference

densities and belong to the interference energy E'.
There are three kinds of orbital nuclear attraction

contributions: (1) The intra atomic integrals

[4ada|Nud] (6.9)

are part of the intra-atomic energy Ex; (2) the
“Coulombic” interatomic integrals

[404d|NuB], (4%B), 6.9

describe attractive interatomic potential energies be-
tween the quasi-classical electron density on one atom
and the nucleus of another; both (6.9) and (6.9") belong
to the quasi-classical energy E°% (3) the interatomic
integrals

[{(4aBb)|NuCl=[4aBb|NuC]
—4£S(4a,Bb){[Aa?| NuC]+[Bb?| NuC},
(4#£B), (6.97)
on the other hand, represent the potential energy of
the interference density (4eBb) in the bond 4-B, in
the field of the nuclear charge at C. These contributions
belong to the interference energy E’.

There are four kinds of orbital electronic repulsion
contributions: (1) The one-center integrals

[deda|Ad’4d"] (6.10)

represent intra-atomic electronic repulsions contribut-
ing to E4. (2) The “two-center Coulomb integrals,”

[4aAa|BbBE], (AB), (6.10")

describe the shielding repulsion between the quasi-
classical electron densities on different atoms; both
terms are part of E°. (3) On the other hand, the integrals

[{4aBb)|CcCe]=[AaBb|CcCt]
—1S(4a,Bb){[Aa?|CcCe]+-[Bb?| CcCE]},
(4#B), (6.10”)
express the shielding of the nuclear attractions, due to

the repulsions by atomic electrons, as acting with re-
spect to the orbital interference density (4aBb) in the
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bond A-B; they belong to the interference energy E'.
The terms (6.10") contain the two- and three-center
hybrid integrals. (4) Finally, there are the interactions
between orbital interference densities,

[(4aBb)|{CcDd)]=[4aBb|CcDd]
+1S(4a,Bb)S(Ce,Dd)[Aa*+ Bb?| Ce*+Dd?]
—1S(Aa,Bb)[Aa?+Bb?| CeDd]
—18(Ce,Dd)[AaBb| Ce*+Dd?],

(A5%B), (C#D). (6.11)

These are the only kind of integrals occurring in E”,
the self-energy of the interference density.

It is thus apparent that the individual integrals
between atomic orbitals and their interference den-
sities are characteristic for the different energy terms
ES E', E".

It can furthermore be understood why the inter-
ference self-interaction E” is small. Many-electron re-
pulsion integrals between atomic orbitals satisfy
“Mulliken’s approximation,” 3¢ viz.,

[fl4aBb]~%S(4a,Bb){[ f| Aa*1+[f| Bb*]},

(A4%B), (6.12)

surprisingly closely. This circumstance explains immedi-
ately why the integrals (6.11) are found to be an order
of magnitude smaller than the “bare” two-, three-, and
four-center repulsion integrals [4aBb|CcDd], (A5%B,
C#D). There are, moreover, reasons to expect that
the approximation (6.12) is better for the valence
atomic orbitals, defined in Sec. 3.4, than for spherical
atomic orbitals (i.e., those which are proportional to
spherical harmonics). Thus, the orbital interference
densities (4aBb), (A£B), seem to be particularly
suited to minimize the electronic interactions between
bonds.

Mulliken’s approximation (6.12) applies also to the
integrals (6.10”"), but not to the nuclear attraction
integrals (6.9”).

6.2 Interference Partitioning
Partitioning

Let us now 1nsert the exact expressions for density
and pair density in the molecular energy formula
(1.26). The density decomposition is given by Egs.
(3.9), (3.12), (3.20), and (3.37); the pair-density de-
composition is given by Egs. (4.3) and (4.18) to (4.29).
By examining the occurring integrals between atomic or-
bitals and their interference densities, and assigning to
them the physical significance discussed in the preced-
ing section, it is then possible to partition the rigorous
energy expression into a sum of three terms which are
analogous to those found in Egs. (6.2) to (6.2”). The

3 R. S. Mulliken, J. chim. phys. 46, 500, 521 (1949); see also

K. Ruedenberg, J. Chem. Phys. 19, 1433 (1951); P. O.
Lowdin ¢bid, 21, 374 (1953).
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result is
E=EVS+E'-+EY, (6.13)
with
EV8= Z ZAZBRAB_I—I-Z /thp(A)
ALB A

+§ ZB: %/dVlde2W(A,B)/712, (614:)

E'=3%' [ dVhp(4,4)
AA
+X' X% dn / AVar(AA,B)/rs, (6.14")
AA B

El=3%"5"1 / v, f dVar(AA,BB)/r1s. (6.14")

AA BB
Interference Energies

I

Since it is convenient to discuss the various terms in
order of increasing complexity, consider first the inter-
ference self-interaction EM. 1t can be written

EU=Y EW(AA,AA)+ ¥ E"(A44,BB), (6.15)
A<A AA<BB
with

EY(AA,BB)=e¢(A4,BB) Y. 3" p(AdaAa|BbBb)
. a@ bb

X[{4ada)|(BbBb)], (A=A, B#=B), (6.15)

where _ _
. 2, if AA=BB ”
e«(4A,BB)= {4’ it AA»BB, 6.15"")
and
=1 , (A4BB), (6.15")

is a sum over all bond pairs (adopting the convention
that each pair of different atoms determines a formal
bond), each bond pair taken once, and excluding terms
of the type E"(44,44).

Equation (6.15) represents a “regional” partitioning
according to bond pairs; there are three types of terms:
self-interactions of individual bonds, interactions of
bonds having one atom in common, and interactions
of nonoverlapping bonds. The contributions can be
expected to decrease in this order; also bonds between
neighbor atoms will furnish larger contributions than
“bonds” between non-neighbor atom pairs. Within each
bond, the contributions to the term (6.15") will de-
crease with the amount of overlap associated with the
interacting orbital pairs. All contributions will be small
for the reasons discussed in the preceding section.
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The interference energy E' is the source for covalent
binding and antibinding. It can be written

E'=Y E'(44),

A<A

EY(44)=2 = p(Ada|AG)E{Aa,Ad), (A#=A), (6.16')

(6.16)

E{da,Aa)=T{da,Ad)+U{Aa,Ad), (6.16")
where
U{da,Ad)=3 Ug{da,Ad). (6.17)
B

Us{da,Aay=[{4dadAa)| (NuB)]
+X ¢'(Aada| Bb)[(4aAa)| BbBb], (6.17)

with the definitions

q'(daAa| Bbb)= p(AaAa| Bb)/p(Aa| Ad),

¢"(Aada| Bbb)=p(AaAa| BbBb)/p(Aa| Ad),
(55b).

Clearly Up(da,Ad) represents the potential energy
of the orbital interference density (4aAa) in the field of
the nucleus B, shielded by the electronic interference
shielding density

o'(dada|B)=3 ¢ (Aada| Bob)xso(x)xp5(x) (6.18)

(6.17")

on atom B. The fotal interference shielding density specific
for the interference density (AaAa) is apparently

o' (4dada)=Y ' (4add| B). (6.18")

Its population becomes, by virtue of the definitions
(6.17") and the conservation relation (4.9),

/ dVe'(4ada)=3. 3. ¢*(AaAd| Bbb)=N—1,
B b
for all (4aAa), (6.19)

expressing the fact that the total amount of shielding
experienced by any one electron is due to the (N—1)
other electrons. The quantities ¢'(4eAa|Bbb) will
therefore be called interference shielding populations;
this interpretation answers the question as to the
physical significance connected with the quantities
p(r|s), referred to earlier after Eq. (4.14).

The conservation relation (6.19) also substantiates
the intuitively obvious fact that the average shielding
per (shielded) atom or per (affected) bond will decrease
with the size of the molecule. In H,, for example, each
nucleus is only shielded by % electron (as far as the
interference energy is concerned), whereas in large aro-
matics each atom is shielded by nearly a whole electron.
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This result shows that it is really not justified to
carry over such parameters as resonance integrals from
diatomics (as e.g., the pi bond in ethylene) to large
systems.

Discussion

(1) The total interference energy (6.16) contains con-
tributions from all afom pairs. The energy E'(4,4)
arising from any one atom pair is a sum of contributions
from all orbital pairs which have one partner on each
of the two atoms. The various interference energy con-
tributions can be divided into three categories; bonding
contributions with negative interference energy, contri-
butions from noninteracting partners with vanishing
interference energy, and antibonding contributions with
positive interference energy. It is to be expected that,
within certain limits, the interference energies as well
as the bond orders can assume any numerical value,
and in practice this is found to be the case. The situation
is therefore more general than that conceived in the
“valence-bond approximation of perfect pairing” where
one anticipates only strong bonding attractions, strong
antibonding repulsions, and weak nonbonded repul-
sions. From the viewpoint of the present analysis, this
tripartition appears as an artifact of the perfect-pairing
formalism. Actually there exists an almost continuous
graduation of repulsive as well as attractive interference
terms. Some of them are easily understood as bonding
or antibonding interactions of atomic orbitals, others
can be appropriately termed nonbonded repulsions or
nonbonded attractions, for a third group however
these categories appear to be too narrow.

(2) The contribution of each orbital pair is the product
of the bond order p(Aa|Aa) and the “resonance integral”
E(Aa,Aa). Equation (6.16’) represents the first rigorous
formula exhibiting this characteristic structure for the
essential ingredients of chemical binding energies. Since
expressions formally similar to Eq. (6.16") occur in cer-
tain simple approximative treatments, they have been
used in semi-empirical reasoning since the early days
of quantum chemistry. The present derivation shows
that, first, the bond order concept (if derived from the
first-order density, as discussed in Sec. 2.2) has a rightful
place in a rigorous energy analysis and that, second,
the true resonance integrals are more complicated than
the quantities considered in semi-empirical approaches.

(3) In the case of conjugated systems, there has been
some argument as to which bond orders are appropriate
when overlap is included. When the present results are
particularized to that situation, it becomes evident that
the proper bond orders in the resonance energy are those
denoted by p’ in recent papers by this author.?” They
are related to a bond-order definition by Mulliken.
On the other hand, Chirgwin-Coulson-Léwdin bond

37 K. Ruedenberg, J. Chem. Phys. 34, 1861, 1878, 1884, 1892,
1897, 1907 (1961); see also N. S. Ham and K. Ruedenberg, bid.
29, 1215 (1958).



364

orders® are not appropriate in conjunction with reso-
nance integrals. A more detailed discussion of the
relations between the different bond-order definitions
is given in reference 37.

(4) Passing on to the resonance integrals, let us sup-
pose for a moment that the total interference shielding
density of Eq. (6.18') is not too different for the various
interference densities (4 a,Aa) occurring in the molecule,
i.e., that one can write

q'(AaAa| Bbb) = q'(Bbb)+ 8¢ (AaAd| Bbb), (6.20)
8q*(AaAa| Bbb)<Kq (Bbb),

where

E{da,Ad)=EyAa,Ad)+8E(Aa,AG), (6.20')

The major part Ey can now be expressed by means of
the “effective interference Hamiltonian”

W=T+U",
—Z3 _
o=l (= e
B [ \|x—x3p| bb
xB(X)x55(x")
X / AV'— (6.21)
x—x'|
One obtains then
E0<1’,S> = 'Y(?’,S) = 6(7'73) - %S(T,S) [a(r,r) +a(S,S):|, (622)
with
8= [Vl (=) 62)
alr)= / Wyl (6.227)

Now we shall see in the subsequent sections that the
kinetic energy is considerably larger than the potential
energy in E{4a,Ad) and hence represents the major
part of the interference energy. From the approximate
validity of the Mulliken approximation (6.12) follows,
furthermore, that in the potential part of the inter-
ference energy, the shielding term is small compared to
the nuclear attraction term. It can therefore be antici-
pated that, in many cases, the substitution of E, [Eq.
(6.22)7] for the exact expression (6.20”) will be approxi-
mately justified and that, under favorable conditions,
the shielding terms may be altogether neglected in the
potential term (6.17) : The shielding effect appears to be
of limited importance for the interference energy.
Particularly favorable circumstances exist in the pi-
electronic approximation to large conjugated organic
molecules, where each atom is assumed to contribute
only one 2pm orbital. Since these atomic orbitals are
known to satisfy the Mulliken approximation very well,
the use of Eq. (6.22), and even the neglect of the shield-

38 B. H. Chirgwin and C. A. Coulson, Proc. Roy. Soc. (LLondon)
A201, 196 (1950); P. O. Lowdin, J. Chem. Phys. 18, 365 (1950).
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ing terms in Eq. (6.21), would appear to be bona fide
quantitative approximations.®”

(5) The appearance of expressions formally identical
to that of Eq. (6.22) had been observed previously by
Mulliken in an analysis carried out essentially within a
one-electron approximation involving unspecified effec-
tive potentials.® Nevertheless, it has not been realized
that the peculiar form (6.22) constitutes a demonstra-
tion of the essential role played by interference densities
and thereby disagrees with Mulliken’s more recent sug-
gestion, namely, that overlap distributions [See Eq.
(3.21)] are the essential quantities.®

Formally, one could, of course, write

p(r|$)Er,sy=[S(r,9)p(r| ) ILECr,5)/S(r,5)],

where [S(r,s)p(r | s) ] would be generalized overlap popu-
lations. Such an introduction of overlap integrals seems
questionable, however, since the ratios [E(r,s)/S(7,s)]
are in fact nof approximate constants. The analysis of
simple cases?* seems to indicate that, in agreement
with the remarks at the end of Sec. 3.2, the interference
energy is roughly proportional to the interference popu-
lation rather than to the overlap population.

Transfer Partitioning

The effect of partial electron transfer upon the shield-
ing coefficients (6.17") is determined by Egs. (5.33) to
(5.36). They yield the decomposition
q"(AaAa| Bbb)

=q'"?(AaAa| Bbb)+q¢""(AaAa| Bbb), (6.23)
where ¢'T is defined by
q"T(AaAa| Bbb)= 6439 (BD). (6.23")
For the interference energies there results the par-
titioning _ _ _
E{da,Aa)=E*{4da,Aa)+E"(da,Ad), (6.24)
with _ _
E™(Aa,Aa)=Y" q"(Bb)[{Aada)| Bb*]. (6.24")
Bb

Insertion of Eq. (6.24) into Eq. (6.16') yields the
partitioning

EY(AA)=E™(AA)+E(4A4). (6.24"")

6.3 Valence-State Partitioning

The major energy term (6.14) can be written in
the form

EVS=3% EV(4)+ 2. EY%(4,B),

A<B

(6.25)

¥ R. S. Mulliken, J. chim. phys. 46, 497 (1949); the formula
(8—Sa), which results if a(r7)=a(ss), was already given by
R. S. Mulliken, J. Chem. Phys. 3, 373 (1935); R. S. Mulliken,
C. A. Rieke, W. G. Brown, J. Am. Chem. Soc. 63, 41 (1941)
(note that Mulliken uses 8 and y with the reverse meanings).

4 R. S. Mulliken, J. Chem. Phys. 23, 1842 (1955).

4 K. Ruedenberg and E. Mehler (to be published).
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where

EVi(4)= [ aVLT—2(a)rimiTo(a)
1
+5 /dV1/dV2T(A,A)/712, (625)
EVS(4,B)=Z(A)Z(B)Ras™"

- f AVTo () ZBYr s -4o(B)Z(A)r 1]

+de1]dV27r(A,B)/1’12, (A #B) (625”)

The expression (6.25) represents the total energy of the
valence state of the ensemble of atoms as defined in
Sec. 4.2. It must now be decomposed according to the
sharing-penetration partitioning and the charge-transfer
partitioning discussed in Secs. 4 and 5. According to
Eqgs. (5.5) and (5.16), (4.77), (5.22a) this breakdown is
characterized by the basic formulas

p(4)=p*(4)+p"(4), (6.26)

w(4,B)=7"(4,B)+m%%(4,B)+7"(4,B). (6.27)

The various resulting energy contributions will be dis-
cussed in turn.

Promotion

The insertion of p* and =¥ into Eq. (6.25’) yields the
intra-atomic energy of the promotion state of atom A4.
In this context, and in the following discussion, the
expression “atom A” does not necessarily imply the
neutral atom but may mean an atomic ion, as discussed
in Sec. 5.1. We denote the energy of this promoted ion
by [EG(4)+E?(4)], so that

ES(A)+E*(4)= / VLT~ Z(A)r TP (4)

+1 / v, / AVer®(4,4)/r12. (6.28)

Here EG(4) shall denote the energy of the atomic ion
in its ground state, characterized by the density p®
and the pair density =%, say. The promotional energy
EP(A) is therefore given by

Er(4)= / VLT —Z(A)r i Tp () —p0(4)]

+%/dV1/dV2[7I’P(A,A)—IG(A,A)]/fm. (629)

In the case that E&(4) refers to the ground state of an
ion, one may write

ES(4)=ES(40)+AES%(4), (6.29))

where E%(4y) is the ground state of the neutral atom
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and AEC(4) is the ionization energy or electron affinity
associated with the transition from the neutral atom
to the ion in question.

Quasi-Classical Interactions belween Promoted Atoms

The insertion of p¥ and #¥ into the interatomic terms
(6.25") yields the quasi-classical electrostatic inter-
actions ECLYP(4,B) occurring between the promoted
atoms. Taking into account the expression (4.43) for
the pair density terms 7F(4,B), one obtains

ECUP(4,B)=[(Nud)+p*(4)| (NuB)+p*(B)], (6.30)
where (Nud)=—Z(4)8(x—x4), as used in Eq. (6.7).
Let
QF(4)=Z(4)—q"(4) (6.31)
be the ionic charge of atom 4. Then one can write

(Nud)+p*(4)=(Q4)+0"(4) (6.32)

(QF4)=—Q%(4)6(x—x4) (6.32)
corresponds to a point charge of the magnitude Q¥(4),

and
o*(4)= g (Aa)o(4a),

where

(6.33)

with
o(Ada)=(Aa*)—d(x—x4), (6.33)

is a perfectly shielded atomic charge distribution (i.e.,
its total charge vanishes). With these definitions, the
quasi-classical interaction (6.30) can be decomposed
into an ‘onic interaction

E"P(4,B)=[Q"4|Q"B]=Q"(4)Q"(B)/Ran, (6.34)
a multipole interaction
EMP(4,B)=[c"(A4)|s"(B)], (6.34"
and an ‘on-mullipole interaction
E'MP(4,B)=[Q"A4|s?(B)]+[Q"B|s"(4)]. (6.34")
One finds
ECUP(4 B)=E“P(4,B)+E"M?(4,B)
+EMP(4,B). (6.35)

If the promotion states of 4 and B correspond to neutral
atoms, then the multipole interaction (6.34) is the only
one present.

Sharing Penetration between Promoted Atoms

Insertion of the sharing pair densities into Eq. (6.25)
yields the contributions

ESP(A)=%/dV1/dV27rSP(A,A)/7’12
=1 ¢%*(da| A)[Aa?| Ad]

+1 '3 p*7(4ada| 4a)[dada| (4a)7],
(6.36)
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and

ESP(A,B)=/dV1/dV27rSP(A,B)/r12, (45B)
=Y ¢5?(Aa| Bb)[Aa2Bb*]
a,b

+3 5 pS*(Aada| BbBb)[Aadd| BbBb]

aa bd

+3'Y pSP(dadd| Bb)[Aada)| Bb?]
e b

135S pSP(BbBE| Aa)[ BbBb| Aa”].
bb a

(6.37)

The terms ESP(A), ESP(A4,B) represent the increase in
inira-atomic electronic repulsion and the decrease in
inferatomic repulsion, respectively, both resulting from
the sharing of electrons between atoms (see discussion
in Sec. 4.3 and 4.4) “before charge transfer has taken
place” (see discussion in Sec. 5.3).

Quasi-Classical Terms Due to Fractional Charge Transfer

According to Eq. (5.22), the transfer pair density is
decomposed into a Coulombic term =T and an exchange
term w,T.

Consider first the contributions resulting from in-
serting pT and the Coulombic term 7,* into Eq. (6.25).

The intra-atomic terms can be written

EOV(4)= / VL T—Z(A)r o (4)
L) [7(4)],
- / AV THT(A)+[(Q°4) | 57(4)]

(6.38)

+[o"(4)[p7(4)]+30T(4) [p7(4)]. (6.38")

It is evident that, in the present analysis, these terms
ECLT(4) play a role which, in semi-empirical reasoning
about binding energies, is generally assigned to the
ionization potentials and electron affinities of the atoms.
It is that place where the influence of the electronega-
tivity tendencies of the participating atoms on the
formation of the molecule becomes apparent. It is also
clear however that the charge addition energies defined
in Eq. (6.38) differ considerably from the ionization
potentials and electron affinities of free atoms.

The interatomic terms give the quasi-classical inter-
actions between different atoms arising from fractional
charge transfer. They can be expressed in the form

ECLT(4,B)=[p"(4)| (NuB)+p*(B)]
+[p"(B) | (Nud)+pM(4)],
=[p"(4)|(Q"B)+¢"(B)]
+[o"(B)[(Q*4)+a7(4)]
+[o™(4)[p™(B)].  (6.39)

(6.39)
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In these equations, p(A4) denotes the “median atomic
density” of Eq. (5.22"""), and ¢%(4) represents the per-
fectly shielded atomic charge distribution of Eq. (6.33).
Furthermore, (QF4) is the ionic point charge of the
promotion state, defined in Eq. (6.32), which vanishes
in most cases.

The quasi-classical interpretations suggested by the
formal structure of Egs. (6.38), (6.38"), (6.39), and
(6.39") for the potential energy terms are evident and
need no verbal elaboration. Equation (6.38) contains of
course a nonclassical element, namely, the kinetic
energy. Its inclusion here, together with the nuclear
attraction, is clearly convenient.

Sharing Penetration Terms Due to Fractional
Charge Transfer

Insertion of the transfer self-pair density =,T into
Eq. (6.25) will yield those energy changes which result
from modifications in the sharing penetration of elec-
trons concomitant with the partial transfer of electrons
[see text after Eq. (5.25)]. Hence they may be charac-
terized as sharing penetration eff ects of fractional popula-
tion transfer. By virtue of Eqgs. (5.25) and (5.28) one
obtains the intra-atomic terms

ESPT(A)=—%/dl/}/demT(A,A)/rm

=— Z,: g:"(da|Aa)[4a?| 4a%], (6.40)
and the interatomic terms

ESPT(4,B) — _/dVI/deﬂ'zT(A,B)/’H

=—Y ¢."(da| Bb)[4a?| Bb*]. (6.41)

Partial transfer of electrons is caused by the strength
of the nuclear attraction of the more electronegative
atoms, and in spite of an increase in over-all kinetic
energy and electronic repulsion incurred in the process.
The negative of the sharing terms (6.40) and (6.41) can
be interpreted as the change in self-repulsion of the
shared electrons (see Sec. 1.4 and 4.4). If before transfer
shared electrons are about evenly divided between two
neighbor atoms, then partial transfer will increase this .
self-repulsion. The quasi-classical electronic repulsion
will increase considerably more strongly however.

6.4 Total Energy

Collecting the results of the two preceding sections,
one can now formulate a partitioning of the total
molecular energy. Let

EG=§: EG(A)=§ [ES(A40)+AES(4)] (6.42)

be the sum of the ground-state energies of the separated
atomic ions which are considered as the building blocks



PHYSICAL NATURE OF THE CHEMICAL BOND 367

Tasre VIIL. Partitioning of molecular binding energy EB.

P CLP CLT SP SPT Ip IT II Total

2(4) EP(4) e ECLT(4) ESP(4) ESPT(4) e ces E (Intra-atomic)

Z(A<B) EGLP(A ,B) LCLT(A B) LSP(A B) ESPT(A B) EIP(A B) EIT(A ,B) EN(4B,AB) E (Inter-atomic)

Z(4A<BB) --- e EY(AA,BB) E (Inter-bond)

Total EP ECLP ECLT ESP ESPT EIP EIT EII EB

Definitions of individual terms in the breakdown:

Definitions for: P CLP CLT SP SPT IP IT II

In Egs.: (6.29) (6.30f) (6.38,39) (6.36,37) (6.40,41) (6.16'-17", 23-24"") (6.15), (2.6)

4.7), (2.5)

Definitions of quantities occurring in quoted equations:

Definitions for: 0%, pT, pM wSP) 1,T [23

In Eqgs.: (5.8, 13, 22""), (3.23-26, 37) (5.28), text after (5.32"), (4.86-88), (4.8) (4.73-78), (4.8)
of the molecule, as discussed in connection with Egs. Much of the general form of the energy partitioning

(6.28)-(6.29"). Then the binding energy E , defined by given by Eq. (6.44) and Table VII should keep its
. physical significance, even if the individual parts would

E=ES+EP, (6.43)  be redefined on the basis of a more thorough re-
can be written as the sum examination. . .
As an illustration, the results will be given for the
+ ECLP | [SP_| [IP Weinbaum type H; calculation discussed in Sec. 4.3.%
EB=FE? { +EY, (6.44) In this case the breakdown of Table VII simplifies to
+ ECLT 4 ESPT L FIT that of Table VIII(a). Let (41s) and (Bls) be the two

. atomic orbitals with {=1.193, and let Eg=% be the
Here, EF represents the total promotional energy, E™ energy of a free hydrogen atom. Then the contributions
represents the secondary interference interaction, and  in Table VIII(a) are given by the following equations:
the six middle terms furnish quasi-classical (CL),

sharing-penetration (SP), and interference (I) interac- EP(4)=EP(B)= | avil
tions bdefore fractional charge transfer (P) and due to @) ®) (1)
fractional charge-transfer (T). X[—3A—r"1](1s)—Egn, (6.45)

The eight terms can be written as sums of intra- CL _
atomic, interatomic, and interbond contributions. The EOUA,B)=Lo(415)]o(B1s)]
resulting decomposition can be tabulated according to o(A1s)=(A41s)2—8(x—x4), (6.46)
the scheme shown in Table VII. Also given in the table SP{ AN _ TSP(RY_ 1 N N
are references to the major definitions of the various EFF(4)=ES*(B)=3q(4] A)[(415)?] (415)7], (6.47)
contributions. By means of these definitions it is pos-  ESP(4,B)=—q(4|4)[(A1s)2|(B1s)Z], (6.48)
sible to carry out a more detailed breakdown which will I
furnish the involvement of the individual atomic orbi- EX(4,B)=2p(A| B{T{4,B)+[(4B) o' ]}. (6.49)
tals in the binding process. E(AB)=2p(AB|AB)[{4B)|{4B)]. (6.50)

Tasre VIII. Binding energy partitioning for H, (in ev).

(a)

P CL SpP I IT Total
A EP(4) ESP(4) E(4)
B EP(B) ESP(B) EEB)
AB A ECL(4B) ESP(AB) EX(AB) EII(4B) E(4B)
Total E® ECL EsP hou Jo E®
(b)
P CL SP I 11 Total
A 0.507 e 2.953 e e 3.460
B 0.507 s 2.953 e e 3.460
AB e —0.582 —4.398 —6.006 0.051 —10.935

Total 1.014 —0.582 1.508 —6.006 0.051 — 4.015
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Fie. 5. Quantitative breakdown of binding energy in H,
(Weinbaum calculation). tany=covalent—ionic mixing ratio
[See Eq. (4.49)]. Note: S in the figure=FESP in the text.

The interference shielding density in Eq. (6.49) is
given by

o= {—8(x—x4)+3(415)%}
+{—56(x—xp)+31(B1s)%}.

~ The kinetic interference energy in (6.49) is defined by
" Eq. (6.8"). The bond order $(4 | B) and the pair popula-
tion g(4|A4) were calculated in Sec. 4.3.

For the value of v which yields the energy minimum
(tany=3.9), one obtains the quantitative breakdown
given in Table VIII(b). From the preceding equations
it is obvious that these figures already incorporate the
internal cancellation due to electrostatic shielding
effects; e.g., the terms ECL) EI E™ contain individual
interatomic energy effects as large as =20 ev. However,
even after this shielding cancellation has taken place,
so the breakdown shows, there remain several con-
ceptually distinct contributions which counteract each
other.

A graphical representation is given in Fig. 5 for all
values of the angle vy. This figure illustrates the compe-
tition between the sharing penetration energy and the
interference energy. It is particularly lucid in this case,
since these two represent the only contributions which
depend upon the covalent—ionic mixing ratio, if the
orbital exponent {=1.193 is held constant (promotion
energy and quasi-classical energy are independent of v,
and E™ is insignificantly small). The figure shows the

6.51)

KLAUS RUEDENBERG

opposition of ET and E5? as a function of y. While the
interference energy lowering would be greatest for
y=m/4 (the MO wave function), this minimum is
clearly too flat to be very effective against the steady
increase of the sharing-penetration repulsion in going
from the covalent to the ionic extreme. For this reason
Weinbaum’s minimum lies far on the covalent side.

As a second example, Table IX gives the energy
partitioning for the water calculation considered in
Sec. 3. Here, the same general pattern is found as in
the Hs case. The full results for this molecule will be
discussed elsewhere.*?

It is natural to ask whether the formalism developed
here lends itself to the introduction of semi-empirical
elements.

It would be extremely gratifying if, for a given atom,
one would find similar promotion-state densities and
pair densities in many molecules. In that case it might
be possible to assign certain empirical values to corre-
sponding intra-atomic energies. In contrast to the
“atoms in molecules” procedure, it would seem un-
necessary to establish a connection with spectroscopic
atomic states. Rather it would appear preferable to
look for optimal values of the intra-atomic expressions
by comparing different molecules, thereby avoiding the
problem of finding appropriate wave functions for
atomic states.

7. ORIGIN OF CHEMICAL BINDING
7.1 Interpretation of Energy Partitioning

The energy partitioning embodied in Eq. (6.44) and
Table VII furnishes a more intimate analysis of the
chemical bond than has been previously available. Ac-
cording to it, the stabilization which accounts for the
formation of bonds can be pictured as occurring in the
following steps:

(1) Promotion of the separated atoms raises the total
energy.

(2) Quasi-classical electrostatic interactions between
atoms furnish a slight energy lowering for neutral mole-
cules, and a slight energy rise for some molecule ions.

TasiLE IX. Partitioning of binding energy in H2O (in ev).

Sharing Interference
Quasiclassical penetration intrabond interbond Total
Promotion P T P T P T P T P T P4+T
0 7.95 5.03 14.18 —8.40 2213 =337 18.76
H —0.34 4.71 0.12 471 —0.22 4.50
H' —0.34 4.71 0.12 471 —0.22 4.50
OH —217 —0.46 — 875 1.97 —10.78 —0.52 1.34 0.10 —20.37 1.09 —19.28
OH’ —217 —0.46 — 8.75 1.97 —10.78 —0.52 1.34 0.10 —20.37 1.09 —19.28
HH' —0.22 0.40 0.18 0.11 2.37 —0.03 037 —0.24 270 0.4 2.93
H:0 7.95 —4.57 3.84 6.30 —4.12 —19.21 —1.07 3.03 —0.04 — 650 —1.37 — 7.87

4 C. Edmiston and K. Ruedenberg (to be published).
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Between atoms which overlap, valence electrons are
shared, causing two effects.

(3) Interference of atomic orbitals used by the same
electrons; this effect yields the large energy lowering
which is crucial for formation of covalent bonds.

(4) Increased penetration of electrons originating
from different atoms; this effect raises the electronic
repulsion energy moderately.

When there exist large differences in electronega-
tivities, then there will be a substantial

(5) Charge transfer between atoms, associated with
a lowering of the energy. Its effects are distributed over
the previous terms (2)-(4).

While the main purpose of the energy partitioning
is the establishment of a scheme for the comparison of
specific molecules, a number of general conclusions can
be drawn from the results so far derived.

7.2 Cohesive Effect of Constructive Interference

Relative Importance of Kinetic and
Potential Contribution

The calculations quoted indicate that the quasi-
classical (““Coulombic”) energy is only a fraction of the
interference energy, a result which was found in other
cases too. Only if the molecular situation develops
rather unusual features, is it possible for the quasi-
classical energy to become a major contribution.® In
H, it does not even compensate for the promotion
energy. Indeed, since the chemical bond is known to be
intimately connected with overlap, the interference
energy is bound to be the essential ingredient.

While the interference energy has emerged as the
decisive influence for bonding and anti-bonding, we
have yet to answer the basic question: Why is the inter-
ference energy strongly negative? The answer will show
that certain current opinions as regards the origin of the
chemical bond need revision.

There have been two seemingly incompatible schools
of thought on the physical reasons for chemical binding.
One school goes back to Hellmann.* It holds that inter-
atomic binding is due to a lowering of the kinetic energy
upon molecule formation. This idea is suggested by the
comparison between molecular wave functions and
harmonic waves, and it is closely related to the various
free-electron models for certain types of molecules.*®

The other, currently more fashionable, school criti-

4 An interesting case is the Li; molecule where there seems to
occur an extensive cancellation of interference energies so that the
weaker quasi-classical terms become more decisive. See, for
example, S. Fraga and R. S. Mulliken, Revs. Modern Phys. 32,
254 (1960).

4 H. Hellmann, Z. Physik 35, 180 (1933); see also H. Hellmann,
Quantenchemie (Deuticke 1937); R. E. Peierls, Quantum
Theory of Solids (Clarendon Press, Oxford, England, 1955), p. 101.

45 See the recent review by J. R. Platt on ‘““The Chemical Bond,”
Encyclopedia of Physics (Springer-Verlag, Berlin, German, 1961),
Vol. 37/2, p. 173. -
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cizes*® this approach by pointing out that the wvirial
theorem is known to hold for the molecule (in the equi-
librium position) as well as for the free atoms, so that
the binding energy has the form

EB=AVH+AT<0; AV<O0, AT>0;

|AV| =2AT. (7.1

Hence, the energy lowering comes about decause of a
drop in potential energy and in spite of an increase in
Fkinetic energy. The proponents of this critique then go
on to conjecture that the quantum-mechanical overlap
effect accumulates 4 the bond extra charge (as compared
with a classical model) and that this extra charge, being
attracted by both nuclei, gives rise to the negative
potential AV.#

The correct answer is obtained immediately by de-
composing the partitioning for H, of Table VIII(b) into
kinetic and potential contributions. One finds (in ev)

EP E! Other E®B
Kinetic 1151 —748 e 4.03
Potential —10.50 147 098 —8.05
Total 101 —-6.01 098 —4.02

The graphical representation in Fig. 6(a) gives a more
detailed plot for the kinetic and potential parts of the
four contributions to the binding energy of H,. This
quantitative analysis shows that the validity of the virial
theorem not withstanaing, the interference energy owes
its binding effect entirely to a lowering of the kinetic
energy, and that the fallacy of the previously mentioned
arguments lies in the omission of the promotion effect from
consideration.

The promotion we are concerned with here is of a
special kind; it consists merely in the change of the
orbital exponent from 1 to 1.193 in the (1s) atomic
orbital. We propose the name cluster promotion or con-
tractive promotion for this phenomenon. From the varia-
tion principle, the uncertainty principle, and the form
of the nuclear potential it is quite obvious that contrac-
tive promotion must lead to a large drop in potential
energy and a more than compensating rise in kinetic
energy, so that the virial theorem is far from valid in
the promotion state. In fact, after the promotion state
is formed, the potential energy is not too far from, and

46 See e.g., K. S. Pitzer, Quantum Chemistry (Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1953), p. 141; W. Kauzmann,
Quantum Chemistry (Academic Press Inc., New York, 1957),
pp. 245, 382, 390; P. O. Léwdin, Mol. Spectroscopy 3, 46 (1959),
reference on p. 51.

4 J, C. Slater, J. Chem. Phys. 1, 687 (1933); H. Eyring, J.
Walter, and G. Kimball, Quantum Chemistry (John Wiley & Sons,
Inc., New York, 1944), p. 198; J. C. Slater, Quantum Theory of
Matter (McGraw-Hill Book Company, Inc., New York, 1951), p.
203 and p. 218; C. A. Coulson, Valence (Clarendon Press, Oxford,
England, 1952), p. 82; K. S. Pitzer, Quantum Chemistry (Prentice
Hall, Inc., Englewood Cliffs, New Jersey, 1953), p. 134 and p. 140;
W. Kauzmann, Quantum Chemistry (Academic Press Inc., New
York, 1957), p. 382 and p. 390; R. Daudel, R. Lefebre, and
C. Moser, Quantum Chemistry (Interscience Publishers, Inc.,
New York, 1959), p. 20-21; see also R. S. Mulliken in reference 52.
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Fic. 6. (a) Kinetic and potential contributions to the binding
energy in Hy (Weinbaum calculation). (b) Kinetic and potential
contributions to the binding energy in H. (Heitler-London
calculation). In both cases: (=T—T(Q2H); »=V—-V(2H);
e=E—EQ2H).

actually lower than, its final value; but the kinetic
energy is much too high. The drop in kinetic energy
connected with interference in the process of bond-
formation re-establishes the 2:1 ratio. From the point
of view of the virial theorem it may be said that this
“final” drop in kinetic energy permits the ‘‘initial”
cluster promotion and thereby a more effectual exploita-
tion of the available potentials near the nuclei.

Potential Interference Energy

An understanding of the interference energy can be
gained by considering the upper two plots on Fig. 7.
They represent, for the Weinbaum function, the density
p of the molecule and the quasi-classical density pC®% of
the promoted atoms.

They illustrate why the interference energy has a
positive potential part; the interference effect cannot
create new charge between the atoms, but merely transfers
charge from the alomic regions into the bond region (see
also Figs. 1 and 2 in Sec 3.2). Since the electrostatic
potential is much lower near the nuclei than at the bond
midpoint, the interference process is unfavorable as regards
the potential energy. The ubiquitous statement that over-
lap accumulation of electrons in a bond leads to a lowering
of the potential energy is based on fallacious reasoning.

Let us critically analyze some of the arguments
which are commonly advanced.

(1) Most frequently the argument is made by an
appeal to physical insight.?” First, it is correctly ob-
served that the potential energy function of the mo-
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lecular Hamiltonian operator is more negative every-
where, in particular between the nuclei, as compared
with the free atoms. Hence, it can be considered as
intermediate between the separated atoms and a united
atom of much higher charge. Secondly, it is correctly
observed that there is an accumulation of charge in the
bond due to overlap.

It is overlooked, however, that this last statement
implies @ comparison with a charge distribution lacking
overlap effects; that is to say, the quantity which ought
to be considered is the difference between the actual
density and some quasi-classical density which has the
same population. When tkis is done, accumulation in
the bond goes hand in hand with depopulation near
the nuclei, and a rise in potential energy results as
discussed above.

It is true that the total elecironic potential energy is
lowered when each electron is attracted by two nuclei
rather than by one. The crucial question is however,
whether or not this additional attraction can outweigh
the nuclear repulsions and the additional electronic re-
pulsions. A considerable cancellation between attractive
and repulsive terms is to be expected. This electrostatic
cancellation is isolated in a clean fashion in the form of
our quasi-classical energy. Thus, all that can be gained
from the lowering of the potential between the atoms
is contained in the quasi-classical energy and not in the
interference energy. It has, therefore, little to do with
the overlap effect and, in general, is much less than the
interference energy arising from the latter.

(2) Another reason for misinterpreting the role of
the potential energy appears to be a particular way of
writing the molecular energy formulas for H, and Hy*
in a simple approximation.® In this peculiar arrange-
ment, the difference between the molecular energy and
the energy of the free atoms appears to be determined
by the so-called “Heisenberg exchange integral,” which

1.8
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F16. 7. Densities along the internuclear axis in Hy (Weinbaum
calculation). Curve denoted 2H : Sum of densities of two H atoms:
each in its ground state. Curve denoted pcr: Sum of densities of
two H atoms, each in the promoted state. Curve denoted p:
Density of H, molecule.

48 These formulas go back to W. Heitler and F. London,
Z. Physik 44, 455 (1927) and L. Pauling, Chem. Revs. 5, 173
(1928). See also the interaction-operator formalism of H. M.
James, J. Chem. Phys. 2, 794 (1934).
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is totally potential in character.®® Mistakenly, this fact
is frequently considered as physically significant.

The confusion originates from the use of the inira-
atomic Schrédinger equation for the simplification of
interatomic integrals. As a consequence, the quantity
which, finally, is supposed to represent the energy of
the free atoms in fact does not, fo the extent that it con-
tains kinetic and potential energy in a wrong proportion,
and the same holds therefore for the quantity which is
supposed to represent the binding energy. That such
a purely potential expression for the binding energy
cannot possibly be significant follows already by com-
parison with an early investigation of Hirschfelder and
Kincaid.®

(3) A third misunderstanding appears to be involved,
namely an overrating of the implications of the Hell-
mann-Feynman theorem.% This theorem states that the
forces acting between the nuclei in a molecule are exactly
identical with the forces which would arise from the
nuclear point charges and the electronic space charge
p(x) according to classical electrostatics. Thus, in a dia-
tomic molecule,

F(R)=(dE/dR)= / dVp(x; R)[0u(x; R)/6R], (7.2)

where R is the internuclear distance and v is the poten-
tial energy function in the Hamiltonian. Hence the
binding energy is given by the integral

B= / "dRF(R), (7.3)

where R, is the equilibrium distance.

Superficial examination of Eq. (7.3) might give the
impression that the total binding energy is a sum of
many small potential contributions, and hence is itself
potential in character. Moreover, Mulliken®® has ob-
served that the overlap effect tends to transfer elec-
tronic charge into regions which, according to an
analysis of Berlin,® furnish attractive contributions to
the force of Eq. (7.2). Since these regions lie essentially
in the bond, Mulliken concludes that ‘“at least so far
as potential energy contributions are concerned” over-
lap accumulation in the bond leads to covalent binding.

Such a conclusion is unwarranted however, because
Eq. (7.2) does not imply that the energy change

dE=E(R+dR)— E(R)=F(R)dR

4 Eyring-Walter-Kimball (reference 47), Egs. (11.26), (12.7);
C. Slater (reference 47), Eq. (8.3.10); C. A. Coulson (reference 47),
Eq. (18) on p. 83, Eq. (13) on p. 114; K. S. Pitzer (reference 47),
Eq. (8.5); W. Kauzmann (reference 47), Eq. (A.21) on p. 380;
R. Daudel ef al. (reference 47), pp. 404, 419. See also L. Pauling
and E. B. Wilson, Introduction to Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1935), Egs. (42.13), (43.11).
(1;‘; ) O. Hirschfelder and J. F. Kincaid, Phys. Rev. 52, 658

51 H. Hellmann, Quantenchemie (Franz Deuticke, Leipzig,
((}fgl:gg,ny, 1937), p. 285; R. P. Feynman, Phys. Rev. 56, 340

52 R. S. Mulliken, J. Chem. Phys. 23, 1841 (1955), end of Sec. 1.

8 T, H. Berlin, J. Chem. Phys. 19, 208 (1951).
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is purely potential in character. In fact Berlin has also
shown that because of the change in the wave function,
in going from R to (R+dR), a cerlain amount of poten-
tial energy is transformed internally, so to speak, into
kinetic energy (or vice versa, depending upon the direc-
tion of dR),** an effect about which the Hellmann-
Feynman theorem gives no information. For this reason
it does ot permit any conclusion concerning the poten-
tial and kinetic parts of the total binding energy.

Kinetic Interference Energy

The reason for the negative value of the kinetic part
of the interference energy must be seen in the fact that
the molecular density p is flattened out as compared with
the- quasi-classical density p®L: the steepness of the
peaks at the nuclei as well as the strong curvature at
the bond-midpoint, are both softened. By virtue of the
uncertainty principle, it is to be expected that this smooth-
ing of the density, inherent in the interference effect, is
associated with a lowering of the kinetic energy. It is
related in character to the lowering of the kinetic
energy of free electrons when the containing box is
increased in size.

The free-electron picture is therefore appropriate as
a model for changes which happen after the atoms have
been brought into their respective promotion states. The
energetic results derived from free-electron models
must, therefore, be interpreted with reference to the
promotion state. It is exactly in this sense that the
model is used in the theory of conjugated systems.5®

7.3 Covalent Binding
Formulation in Terms of Atomic Orbitals

Our energy partitioning has led to the following in-
terpretation of the covalent bond:

Atoms form promotion states in whick valence electrons
contract towards the nucleus, thereby achieving a sub-
stantial decrease in potential energy. The concomitant
excessive increase in kinetic energy (leading fo an over-all
“promotion”) can be afforded, from the point of view of
the virial theovem, since the subsequent interference of
atomic wave functions from different atoms causes a large,
compensating lowering of the kinetic energy. The inter-
ference effect is limited by a concomitant increase in poten-
tial energy and an enhancement of electronic repulsion as
a consequence of sharing penetration. In neutral molecules,
quasi-classical effects result in slightly altractive contribu-
tions, about large enough to balance the promotion energy.
The nature of the promotion state depends upon the avail-
able atomic orbitals and upon the number of electrons
present to make use of them in accordance with the Pauli
principle. Although the bulk of the binding energy is
potential in character, it must be said that the phenomenon

8 Reference 53, Eq. (5) ff.

% K. Ruedenberg, J. Chem. Phys. 22, 1878 (1954); N. S. Ham
and K. Ruedenberg, sbid. 25, 1, 13 (1956).
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of covalent binding hinges upon the lowering of the virlual
kinetic energy by interatomic interference.

Formulation without Atomic Orbitals

While the preceding formulation is expressed in terms
of atomic orbitals, its essence can be formulated, with-
out such reference, as follows.

The fundamental causa prima existing in a molecule
is the tendency of the nuclei to attract the electrons as
closely as possible. As electrons are pulled toward the
nuclei, their potential energy V falls but their kinetic
energy 7" increases in accordance with the uncertainty
principle, because their wave function contracts. Finally
this increase offsets the gain of further approach, and
the point at which the rate of increase in 7" equals the
rate of decrease in V determines the actual state in
accordance with the variation principle. If the molecule
is in equilibrium, this state is reached when 7" has in-
creased up to the value 1| V|.5

Compare now an electron which is shared by two
nuclei and attracted simultaneously by both, with an
electron which is attracted by one of the two nuclei
only. The specific cause for covalent binding lies in the
following circumstance: As the electron is pulled towards
the atiractive center(s), the kinetic energy of the shared
electron increases less rapidly than that of the unshared
electron. As a consequence the shared electron can
cluster around each of the two nuclei more tightly before
T reaches the value 2| V|. Therefore, | V| will be larger,
and hence, E more negative, than in the case of the
unshared electron.

The behavior of the kinetic energy is understood by
dividing the total kinetic energy integral roughly into
contributions from regions near the nuclei and contri-
butions from bond regions. As seen below, the con-
tributions from the bond regions change very little when a
shared electron approaches the nuclei more closely. Bond
contributions exist only in molecules, however, and not
in free atoms. Hence, the total kinetic energy of a mole-
cule will increase somewhat slower with increasing
clustering of the electrons.

The reason for the behavior of the bond contributions
can be seen by comparing, in Fig. 7, the molecular
density p with the quasiclassical density of the two
atoms in their ground states ({=1), denoted by “2H”:
In the bond region, the curve of p is only slightly steeper
than the curve of p(2H), although it rises to much higher
values near the nuclei.

Implicit in the foregoing reasoning is the premise
that the two electrons acquire about the same amount
of (negative) potential energy for a given approach to
the attractive center(s). This is indeed the case because,

% Here and in the following it is said that the electrons are
“sucked towards the nucleus by the potential, against the re-
sistance of the kinetic-energy pressure.” This picture is, of course,
merely a vivid description of the selection made by the variation
principle among the possible wave functions, by imagining a
“virtual” process.
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for the shared electron, the virial theorem applies only
after inclusion of the nuclear repulsion energy, which
just about cancels the energy lowering due to the pres-
ence of the second nucleus, if the wave function is
similar to the actual solution.

In summary, it can be said that delocalization of the
valence electrons from one atom to two atoms reduces
the virtual kinetic-energy pressure and that, as a con-
sequence, there results a firmer attachment of these
electrons to the nuclei with a concomitant lowering of
the potential, and hence, the total energy.

The wave mechanical kinetic behavior, which differs
typically from the classical behavior and is characterized
by the cue “uncertainty principle,’ is a fundamentally
essential element of covalent binding. Any explanation of
chemical binding based essentially on an electrostatic, or
any other nonkinetic concept, misses the very reason why
quantum mechanics can explain chemical binding, whereas
classical mechanics cannot.

The general description given here is necessarily
somewhat vague; a more precise formulation necessarily
entails a detailed comparison with atomic quantities,
and thereby leads back to our previous discussion.

The arbitrariness in definition, discussed earlier for
the sharing terms and the transfer terms, is absent from
the H, calculation analyzed here, and therefore does
not affect our conclusions.

A Model for the Hydrogen Molecule Ion

The following oversimplified model-calculation may
serve as an illustration. Assuming the wave function
(e?*m)~* exp(—r/a) for the H atom, the variable pa-
rameter o represents a measure of the diameter of the
electron cloud [In fact (r"1)sy=a~L] For kinetic and
potential energy, one finds

T(e)=En(e/)’, V()=—En2(e/a), (7.4)

[e=Bohr radius, Eg=ionization potential of hydrogen
atom] illustrating -the competition between potential
energy and uncertainty principle. The minimum total
energy is reached for

(@/a)=1; Tuy=Eyn, Vg=—2Eg,

7.5
Ty+Vug=—Ep. (7.5)

Consider now the hydrogen-molecule ion with its
electron cloud equally divided between the two nuclei.
Let a be a suitable measure of approach to either one
of the two nuclei. We suppose now that Eq. (7.4) can
still be used to calculate 7" and V, provided the following
one modification is made: we wish to introduce the as-
sumption that the “bond region” furnishes no kinetic
energy contributions and that this entails a loss of (1/6)
of the total kinetic energy as compared with Eq. (7.4).
Hence, we have

TH)=(5/0)T(), Vil)=V(e). (7.6)
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In this case the variation principle yields

(@/a)=(5/6); T+=(6/5)T4n,

7.7
Vim(6/5)Vi, Ev=—(6/9Es,
whence follows the binding energy
E+—EH=—%EH=—2.7 ev. (78)

The assumptions (7.6) represent in fact a rather
faithful model of the essential features of the actual Hy*
calculation of Finkelstein and Horowitz.’” The model
clearly shows that the crucial change in the kinetic
energy is the cause of the binding phenomenon, in spite
of the binding energy having a positive kinetic and
negative potential contribution. A detailed discussion
of binding in the hydrogen-molecule ion will be given
elsewhere.!

Covalent Binding in Solids

It can reasonably be expected that, qualitatively,
the present results apply also to the cohesion of covalent
solids. The theory of this subject goes back to the work
by Wigner and Seitz.%® It must be acknowledged that
Seitz seems to be the only author who expresses the
view that valence electrons lower their potential energy,
at least partly, by “shifting their center of gravity
nearer to the nuclei.” ¥ However, following Hellmann
he holds, incorrectly, that part of the binding energy is
due to a decrease in kinetic energy in contradiction to
the virial theorem.?® There may also exist a disagree-
ment with the present results as regards the effects of
those electronic repulsion terms which survive after the
quasi-classical shielding contributions have been sepa-
rated out. Wigner and Seitz seem to imply that these
terms favor the binding process,® in a case like the
alkali metals, say, whereas our results in the case of He
show that these terms oppose chemical binding because
of the sharing-penetration effect.

7.4 Covalent Binding and Contractive Promotion

(1) The foregoing analysis explains a paradox which
has puzzled quantum chemists in connection with the
Heitler-London treatment of H,.%' In this calculation
binding is obtained by a drop in kinetic energy and in
spite of an increase in potential energy, in violation of

57 The factor (5/6) in Eq. (7.6) has of course been chosen so
that Eq. (7.8) comes out close to the correct binding energy of
2.78 ev. However, a remarkable nontrivial result of this crude
calculation is that it yields the effective charge ¢=(¢/a)=1.20
which is close to the value {=1.228, found by M. Finkelstein and
M. Horowitz, Z. Physik 48, 118 (1928).

88 F, Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509
(1934); E. Wigner, ibid. 46, 1002 (1934); see also F. Seitz,
Modern Theory of Solids (McGraw-Hill Book Company, Inc.,
New York, 1940), Sec. 77-84, in particular Sec. 78. By covalent
solidi we mean solids held together by electron sharing, including
metals.

% F. Seitz, Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), p. 352 and 258.

% Reference 59, pp. 656 and 365.

61 See, e.g., W. Kauzmann, reference 47.
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the virial theorem. The partitioning of this calculation,
analogous to that of the Weinbaum calculation, is
plotted in Fig. 6(b).

This shows that the violation of the virial theorem
arises from the lack of contractive promotion. The latter
is missing, since the calculation does not admit a varia-
tion of the effective charge. That the inclusion of con-
tractive promotion is essential for the validity of the
virial theorem is a direct consequence of a theorem by
Fock which states that minimization with respect to a
scale parameter is a necessary and sufficient condition
for an approximate wave function to satisfy the virial
theorem.®

Figure 6(b) also shows that the Heitler-London calcu-
lation gives a qualitatively correct account of quasi-
classical, sharing-penetration, and interference inter-
actions. Thus, it seems that the energy partitioning
separates out valid portions from invalid portions in
this calculation.

(2) A similar situation exists in the water calculation
partitioned in Table IX. Here too, the orbital exponents
were kept fixed. We expect therefore that all terms,
except the promotion terms, can be considered as
typical. The breakdown in kinetic and potential energy
contributions is given in Table X. It is seen that the
binding character of the interference energy is again
kinetic in origin. The nonbonded repulsions between
the hydrogen atoms will be commented upon below.
A detailed interpretation of all entries in Table X will
be given elsewhere.*?

Table X shows that the energy lowering which leads
to molecule formation is the result of many positive and
negative contributions. Hence, the question arises,
whether it is justified to single out any one of them as
the cause of the binding phenomenon. It would seem
that the interference effect deserves this distinction for
the following reason.

The essential energy gain results from the contractive
effect. This effect, in turn, is only possible because of
the behavior of the kinetic energy in the bond region.
This latter, finally, is intrinsically related to the fact
that the molecular wave function can be approximated
by superposing atomic wave functions, whereas the
molecular density cannot be approximated by a super-
position of atomic densities.

(3) If it is correct that the bulk of the covalent bind-
ing energy is picked up close to the nuclei as a conse-
quence of an increased concentration of valence elec-
trons near the nuclear positions, then it follows that,
in any molecule, the electron density near a bonded
nucleus is higher than in the corresponding free atom.

It is, therefore, to be expected that any property
which sensitively depends upon the electron density
near the nucleus will exhibit a characteristic change
when the atom is incorporated in a molecule. Hence,

V. Fock, Z. Physik 63, 855 (1930). An extensive discussion of

the virial theorem has been given by P. O. Lowdin, Mol. Spectros-
copy 3, 46 (1959),
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TasrLe X. Kinetic and potential energy contributions to the binding energy in H.O (in ev).

Quasiclassical Sharing Interference
electrostatic penetration intrabond interbond Total
Promotion P T P T P T P T P T P+T
KiE 2.55 2244 2.55 2244 24.99
0] PoE 5.40 —17.41 1418 —8.40 19.58 —2581 — 6.23
Total 7.95 5.03 1418 —8.40 2213 — 3.37 18.76
KiE 0 — 2.39 0 — 239 — 239
H PoE 0 2.05 471 0.12 471 2.17 6.89
Total 0 — 0.34 471 012 471 — 0.22 4.50
KiE —13.14 0 —13.14 0 —13.14
OH  PoE —217 — 046 — 8.75 1.97 236 —0.52 134 010 — 7.24 110 — 6.14
Total —-217 — 046 — 875 197 -—10.78 —0.52 134 010 —20.37 1.09 —19.28
KiE 3.88 0 3.88 0 3.88
HH’ PoE —0.22 0.40 0.18 011 — 151 —-003 037 —024 — 1.19 024 — 095
Total —0.22 0.40 0.18  0.11 237 —0.03 037 —0.24 2.70 0.24 2.93
KiE 2.55 17.66 —22.41 0 —19.86 17.66 — 2.20
H;0 PoE 5.40 —4.57 —13.81 6.30 —4.12 321 —1.07 303 —0.04 13.36 —19.03 — 5.67
Total 7.95 —4.57 3.84 630 —4.12 —19.21 —107 303 —004 — 650 — 137 — 7.87

theoretical calculations of such properties should be
based on molecular wave functions which properly de-
scribe the contractive effect. It seems questionable, for
example, to try to predict effects due to nuclear mag-
netic resonance by using electron densities obtained
from wave functions for free atoms.

7.5 Variation of Covalent Binding with
Internuclear Distance

The present viewpoint also helps to understand
the characteristic behavior of the curves which repre-
sent the total energy, the kinetic energy, and the poten-
tial energy as functions of the internuclear distance, i.e.,
the Morse curve and its kinetic and potential com-
ponents. With the help of his generalization of the virial
theorem. Slater showed early that these curves conform
to a general pattern.®

The origin of this pattern becomes clear when one
compares these curves with the curves which represent
the optimal orbital exponents in H, and Hy* as func-
tions of the internuclear distance.’ This comparison
leads to the following conclusions.

At internuclear distances larger than about 2.5R,
(where R,=the equilibrium distance), but small enough
so that there is some overlap, there exists a pure inter-
ference effect without contraciing. This region is character-
ized as follows: (i) No change in orhital exponent, hence
no contraction occurs. (ii) The energy lowering is due to
a drop in kinetic energy in spite of an increase in poten-
tial energy; this is typical for the interference effect.
(i) A pure interference effect is possible here, because
the kinetic energy 7" does not have to be equal to —%V
in this region.

8 J. C. Slater, J. Chem. Phys. 1, 687 (1933) See also H. Eyring,
J. Walter, and G. Kimball (reference 47), p

64 N. Rosen Phys. Rev. 38, 2099 (1931) C A Coulson Trans.
Faraday Soc. 33, 1479 (1937). See also reference 47, p. 85,

The region from about 2.5R, to R, exhibits a gradual
transition from the situation just described to the situa-
tion at the equilibrium position, which has been the
object of our previous discussions. This transition is
characterized as follows: (i) The orbital exponent in-
creases from unity to its value at the equilibrium posi-
tion; hence the amount of clustering increases steadily.
(ii) The potential energy change AV falls. Beginning
with a positive value, it ends up with the negative
value of the equilibrium position. (ili) The kinetic
energy change AT rises. Starting with a negative value,
it finally reaches the positive value 3| AV| at the equi-
librium position. Clearly, the effects (i) and (iii) are
consequences of the clustering (i). In this region the
interference effect, although present and essential,
is covered up by the larger energy changes due to
clustering.

In the region below R, the following observation is
of interest. At the equilibrium distance, the resistance
against further compression arises from a further in-
crease in kinetic energy, in spite of a further decrease
in potential energy. Hence, this resistance is not an
effect of the potential energy, but it arises from the
further localization of the electronic wave function near
the nuclei, in accordance with the uncertainty principle.

7.6 Covalent Binding and Electronic Interaction
Sharing Energy

From the valence-bond theory stems the idea that
covalent binding is expressed by the ‘‘exchange energy.”
Although this theory has never been formulated with
proper inclusion of all overlap terms, the results of
our energy partitioning indicate that the sum of the
interference energy E! and the sharing-penetration
energy FESP must correspond essentially to what the
exchange energy is supposed to represent; it embodies
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the energy effects resulting from sharing, as contrasted
to the quasi-classical terms. Hence, we must consider

E'+4ES?=sharing energy,
(7.9)

=~ equivalent to valence-bond exchange energy,

and it thus emerges that this quantity actually contains
two antagonistic elements.

We wish to stress again that the binding contribution
E' is essentially determined by the first-order density
(aside from minor shielding terms) and hence represents
a one-electron effect, whose origin has become clear in
the preceding discussion. In contrast, the electron-
interaction term ESP opposes binding, as we have seen.
It arises essentially from the change in the self-pair
density ., occurring when the transition is made from
the free atoms to the molecule. Its existence shows that
it is incorrect to imagine the electronic correlation in a
molecule to be identical with that found in the sepa-
rated atoms.

Competition between Interference and Penetration

The analysis of the Weinbaum calculation shows that,
even beyond the SCF approximation, the relation be-
tween sharing-penetration effect and interference effect
represents a dominant feature of the “correlation prob-
lem’’ as far as molecule formation is concerned. The two
effects are linked together, yet opposing each other.
Useful wave functions must have enough flexibility to
allow a maximum of inlerference attraction with a mini-
mum of sharing-penetration repulsion. Since this re-
quirement is less than the correct prediction of the
total “correlation energy,” there may be hope that the
explicit introduction of all interelectronic distances
can be avoided.

The penetration repulsion is an unavoidable side
effect of the sharing process. In order to minimize it,
the true wave function adjusts itself as well as possible
so that the pair density is characterized by a relatively
low probability of finding different shared electrons
close to each other. One consequence is the well-known
tendency of the electrons in a pair bond always to be
at opposite ends of the bond.

Competition between Kinetic Energy and Potential Energy

In view of the nature of the interference energy,
it is clear that the competition between E! and ESP
represents a competition between a lowering of the
kinetic energy and a lowering of the electronic repulsion
energy. Thus, in the case of the H,; molecule, Fig. 5
shows that the molecular-orbital wave function would
have the lowest kinetic energy; this is understandable
because, in this approximation, both electrons inde-
pendently try to lower their interference enérgy as much
as possible. However, due to this uncorrelated action,
the probability of being close to each other in the bond
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region becomes too large, so that the actual energy
minimum is reached for a somewhat higher kinetic
energy, again in agreement with the virial theorem.
A similar more favorable adjustment of the subtle
balance between kinetic energy and electronic repul-
sion energy is observed in all cases where bona fide SCF
wave functions are being improved by further re-
finements.%

On the other hand, it is clear from the preceding dis-
cussions that the dulk of the over-all increase in kinetic
energy and of the over-all drop in potential energy, both
are consequences of the one-electron contractive effect. They
are not correlation effects.

Exchange Picture of Chemical Binding

(1) It is frequently stated that covalent binding re-
sults because electrons are “exchanged’” between differ-
ent atoms. This idea has originated from a formal inter-
pretation of valence-bond wave functions, and the
sharing energy discussed in the beginning of this section
would have to represent the energetic consequence of
the effect.

It must be realized that, in discussions of this nature,
the exchange concept is used with, at least, three
different meanings. (i) The name exchange energy is
used for a specific mathematical expression obtained for
the nonclassical energy lowering in the ‘“valence-bond
theory of perfect pairing.” It is now generally recognized
that the assumptions in this theory, such as neglect of
all overlap integrals, are inadequate for a bona fide
approximation. (ii) It is postulated that the picture of
electron exchange as cause of covalent binding has
general validity beyond the valence-bond approxima-
tion. In the preceding subsection we have seen that the
quantity (E'+ESF) would have to represent the corre-
sponding energy effect. (iii) After Egs. (1.21) and (1.23)
and in Sec. 1.4 we saw that the electron-interaction
energy is frequently divided into a Coulombic energy
and an exchange energy. The latter is a result of the
generalized exchange density m,, and its change upon
molecule formation is largely given by ESP. Thus, the
change in the ‘‘electron-interaction exchange energy”
represents a bond-opposing part of the “valence-bond
exchange energy.”

(2) Can the general physical picture of electron ex-
change between atoms be considered as an explanation
of covalent binding?

Basically the picture describes merely the fact that
valence electrons are shared, i.e., that they give rise to
energy contributions at widely separated points in
space as was already discussed in Sec. 1.4. In order to
appreciate the drawbacks of the exchange picture it
suffices to recall the enormous confusion which has
been created among chemists by the incorrect interpre-
tation that exchange implies a truly time-dependent

% See also the related remarks by P. O. Lowdin, Revs. Modern
Phys. 34, 82 (1962) Sec. 3.
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phenomenon, namely the ‘“‘jumping back and forth”
of electrons between atoms.56:%7

Actually the pseudotime dependent picture of an elec-
tron being constanily exchanged between atoms expresses
no more and no less than the static picture of the electron
(i.e., its “charge cloud”) being shared between the atoms.
Hence it is clear that “exchange” does not explain covalent
binding any more than “sharing” does. Both merely try
lo describe a characteristic property of the electronic dis-
tribution in general lerms.

(3) In some expositions which ascribe covalent bind-
ing to “exchange forces,” the impression is created that
the exchange of places between identical particles is an
essential ingredient for the resulting attraction, so that
there seems to be a causal relation between covalent
binding and inter-electronic effects. From this point of
view, the one-electron bond in Hst appears to have a
qualitatively different character.

Such an interpretation of the exchange energy is
incorrect. For, from Eq. (7.9) we learn that the ex-
change picture, if used, must be interpreted as follows:

The binding part E' of the exchange energy results
from the fact that individual valence electrons inde-
pendently jump back and forth. The tendency to mini-
mize the bond-opposing part ES? (see preceding sub-
section), on the other hand, is the reason for synchroniz-
ing the exchange of the two electrons in a pair bond; if
one jumps forth, the other tends to jump back. Thus,
the “exchange of places” of the two merely results from
the effort to minimize an undesirable side ejfect of shar-
ing, Vviz., penetration.

Equation (7.9) also shows that the bond in H,t is
different only in that the bond-opposing term ESF is
missing. The binding term E' is quite similar in
character to analogous terms in a pair bond.

Moreover, there can be little doubt that two non-
identical negative light particles (two electrons with
somewhat different masses, say, would they exist) could
also form a bond between two protons.

In conclusion, it seems difficult to avoid the feeling
that the exchange concept may be a Procrustean bed
for the theory of chemical binding.

7.7 Antibinding and Destructive Interference
Kinetic and Potential Energy

The simplest example for antibonding is the o,ls
state in Hyt. From the discussion in Sec. 3.1, it is clear
that the energy increase is due to a positive interference
energy, i.e., we have an anii-bonding effect due to de-
structive interference. The explanation is analogous to the
bonding effect of constructive interference and again
contrary to common belief.#” In the present case, charge

% See, e.g., G. W. Wheland, Resonance in Organic Chemistry
(John Wiley & Sons, Inc., New York, 1955), pp. 608-625, for a

very sound discussion of the subject.
%7 See also the remarks on resonance preceding Eq. (3.21).
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is taken away from the bond region and placed near the
atomic nuclei, as compared with a classical model, This
rearrangement is associated with a moderate drop in
potential energy. It also entails a considerable increase
in kinetic energy, which can be understood in terms of
an increased amount of slope of the density, in the bond,
in accordance with the uncertainty principle.

The very same phenomenon is responsible for the
“nonbonded repulsion” between the two hydrogen
atoms in the water molecule, as can be seen from
Table X.

Expansive Promotion

Since the ¢, 1s state of Hyt is the lowest of its sym-
metry, its energy may be minimized with respect to
the orbital exponents of the 1s atomic orbitals, and
Coulson has shown that the optimal exponent is lower
than unity, the free-atom value.® This decrease miti-
gates the steepness of the wave function between the
atoms and thereby lowers the kinetic energy without
undue increase of the potential energy.

In general, destructive interference will tend to cause
the participating atomic orbitals to expand, i.e., it will
lead to an expansive promotion.

Atomic Orbitals Involved in Binding
As Well As Antibinding

In more complex molecules, some atomic orbitals
are being used by binding as well as by antibinding
electrons. In such cases it would seem essential to
introduce at least two atomic orbitals of the same type
with independently variable scaling parameters, e.g.,
two (2s) orbitals with independent orbital exponents,
so that one of them can provide the contractive effect
necessary for binding and the other can take care of
the expansive effect associated with antibinding. In a
recent calculation which, partially, has been carried
out in this way, Richardson finds indeed that one orbital
exponent falls below the free atom value and the other
rises above this value.®®

These arguments show that there is a need for several
atomic orbitals of the same kind in a molecule, quite
apart from the fact that SCF atomic orbitals are super-
positions of Slater orbitals. Even if atomic self-consisteni-
field orbitals (or equivalent superpositions of Slater
orbitals), are used in a molecular calculation, it would
appear necessary to introduce at least two independently
variable scaling factors for each “SCF AO” which is in-
volved in both, binding and antibinding.
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