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I. INTRODUCTION

OON after the introduction of the thermal-diffusion

column by Clusius and Dickel,! some elementary
theories were advanced by a number of workers.2~7
All these theories were developed on the one basic
assumption that the column consists of two plane
parallel walls, one hot and the other cold. Furry and
Jones® gave the theory for the realistic cylindrical
columns as more or less an extension from the plane
case.* The assumptions involved in this derivation are:
(1) The temperature distribution in the column is
determined by conduction only. (2) The convective
flow is viscous and is entirely in the vertical direction
so that the velocity is constant along the entire length
of the column. (3) The dependence of the coefficient
of viscosity (7), thermal conductivity ()\), diffusion
(D), and density (p) on the composition of the isotopic
mixture is neglected. (4) The time variation of the
concentration of a particular species at each point in the
tube is assumed to be negligible; this implies that either
a stationary or a quasi-stationary condition exists in
the column. (5) The quantities (\/T), (n/N\), (oD/N),
and (p7) are assumed to be independent of temperature
and pressure, where 7' is the temperature in °K.
(6) In tabulating the column-shape factors, the temper-
ature variation of the thermal-diffusion factor (ay) is
neglected.

These tabulations are applicable for those columns
which conform to the category of either “the extreme
cylindrical case,” or “the nearly plane case” of Furry
and Jones.® Assumption (1) holds fairly well in practice,
except near both ends of the column. As the Reynolds
number for the column under actual operating condi-
tions is much smaller than the values at which tur-
bulence starts, one can reasonably assume the convec-
tive flow to be lamellar. The transport coefficients and
the density are substantially independent of composition
if the fractional difference of the molecular weight is
small.
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In a column, the stationary condition exists only at
the final steady state; during the approach to equilib-
rium, an essentially stationary condition is realized
if column ends are connected to sufficiently large, end
reservoirs. Following Bardeen,” we show here that the
contribution of this assumption for the cylindrical
columns is negligible. Assumption (5) is rigorously
valid only for monatomic gases interacting according
to the Maxwellian model. It is now well established®
that even the simple inert gases do not follow this
interaction potential, although the general inverse-
power model is capable of effectively representing the
interaction in the limited temperature range. We
develop in this paper a general theory of the cylindrical
columns filled with gases which follow the inverse-power
potential. Srivastaval® gave the theory for molecules
which interact according to the rigid-sphere model.
This latter work, therefore, presents the treatment for
molecules which constitute the other extreme end;
the real gases lie in between these two extremes.
Unfortunately, Srivastava’s paper'® contains some
algebraic- and numerical-computational errors which
have led to certain wrong conclusions, and these are
discussed in this paper. As pointed out by Furry and
Jones,? their calculations can be readily extended to
include any chosen, simple, temperature dependence of
ar. This was actually performed by Srivastava and
Srivastaval’! and by Srivastava.? They found an
improved agreement with the experimental data when
ap was considered as temperature-dependent. This has
been further investigated in this paper with a view
to the analysis of the consequences of assumption (6).

A critical summary of the column theory along with
its limitations and an interpretation of some experi-
mental data are discussed at length by Jones and Furry*
in their excellent review article. Since the publication
of their work,”® several groups have contributed
experimental data on thermal-diffusion columns, and
the transport theory has also advanced to such an
extent that some of the above-mentioned assumptions
can be reliably understood and satisfactorily accounted
for, so that a proper evaluation of the predicted and
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actual performance of a column is possible. This is
the purpose of the present work and is found essential
as thermal-diffusion columns are still considered as
the best means to separate some isotopes to meet
certain particular requirements. Recently, McInteer
and Reisfeld* have calculated the column constants
assuming a more realistic Lennard-Jones (12-6) poten-
tial. These results are also applicable only to nonatomic
gases and involve assumptions (1) through (4), men-
tioned above. Results obtained according to this work
have also been considered and are discussed here.

II. DEVELOPMENT OF THEORY

Let us consider a thermal-diffusion column which has
concentric cylinders as the hot and cold surfaces. The
outer surface is of radius 7, and maintained at a temper-
ature 7T, while the inner one is of radius 7, and at
temperature 75, such that 7;>7, and 7:<7T.. The
annular gap is filled with the gaseous isotopic mixture
to be separated. The hydrodynamical equation in
cylindrical co-ordinates is®

19/ dv ap
- “<"'7—> =—pg, 1
rdr\ Or

where 7 and z are the variable cylindrical co-ordinates,
the convection velocity v is parallel to Z axis, p is the
pressure of the gas, and g the acceleration due to
gravity. The boundary conditions for Eq. (1) are

‘Z)(T1)=7)(T2)=O- (2)
The equation for the flux of species 1 is* _
Ji=p[vC1+D(—gradCi+arC:Cs grad InT)].  (3)

Here, C stands for the molar concentration and the
subscripts 1 and 2 refer to the molecular species. We
have for the equation of continuity of the gas”

a(pCl)/8t+divJ1=0, (4)

where ¢ refers to time. Substituting for J; from Eq. (3)
in (4) we get
9(pC1)/dt=—div[pC1v—pD gradC,

+pDarC1Cs grad InT].  (5)

Equation (5) is to be solved with the following two
boundary conditions:

6] / ”rpverO, (6)

since there is no net flow of the gas, and

= 66'1 pDOlTC1C2 aT
(i)  pCrvyy=—=pD—t——r——=0, (7)
ar T ar

( 4 B. B. McInteer and M. J. Reisfeld, J. Chem. Phys. 33, 570
1960).
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at r=r; and r=r,, since the flux J;, vanishes at the
walls. Equation (5) in conjunction with Eqgs. (6) and
(7) simplifies to

o 9C, 1 a 0?2
/ rov—dr=— / rp<——— D——)C 1dr. (8)
- oz o at YA

Let us define a new function!®

G(r)= [ pvrdr. 9)
72
In terms of this new function, the boundary conditions
given by Eq. (2) become
G(r)=G'(r)=G(rz) =G"(r2)=0. (10)

Here, primes represent differentiation with respect to
7. Integrating Eq. (5) with respect to 7 and rearranging,

we get
aC, apC.Cy 0T r aC|
rpD——=7pD ———f—/ |:r'p'v’*
ar T or Ju EYA
aC; 9%Cy
+r’p'~—~r'p’D’—:|dr'. (11)
at VA

The prime indicates that the various quantities in the
integrand are functions of 7. Equation (11), on differen-
tiation with respect to Z, yields

62C1 ar (9T (9 1 r GZCI
=———(C1C)+—— [r'p'v'——~
0Zor T or 0Z rpD J ., 022
0%C, 9%Cy
7’0’ —7'p' D’ :Idr’ (12)
YA VA
In terms of the function G(r), Eq. (12) becomes
3?Cy ardT 9 1 *C,
-2 ecar—{ow
0Zor T or 9Z rpD VA
r [¢] 9?2 \aC,
-l—/ 1”p’<~——DL——)*——d¢/}. (13)
Jre ot YAT N VA
Also, we have
n9C " 9Cy
—-/ rp‘v—~dr=—/ —d{G(r)}
r9 aZ 72 BZ
71 2, 1
- / GO —dr. (19)
re aZor

15 Tt is related to G(T') of Furry and Jones,? such that

G)=[G(T)Irs fo
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Substituting for 8°C:/Zdr from Eq. (13), Eq. (14)
becomes equal to

" apG(r) 0T d 9°C, 1 [G(r)]?
[ / —dr:l—(Clcz)—f— / dr
n I Or 9z az% J,, rpD

no79 9? * G@') 190Cy
—}—I:[ rp(—«—D-—){/ dr’}vdr:l. (15)
Sy at 9z n 70D aZ

Let us put

T G(r)
()= ar'.
s T/p’D'

(16)

Combining Eq. (8) with Egs. (15) and (16), and after
some rearrangement, we get

o9 a
27r/ rp—I: 1— [(T)‘]Cldr
NP oz

ad 6C1 6C1 82C1
= ——[HClcz—Kc —K—+K/ :I, (17)
aZ oz 9z YA
o711
oz
where
1 aTG(r) oT
H=—2r / A (19)
w1 Or
G T
K.=2r / dr, (20)
rn  ¥pD
71
Kd=27r/ rpDdr (21)
72
r1
K/= 27r/ roDI (r)dr, (22)
T2
and 7, the transport of species 1 is given by
aC, 9%C,
r11=HCCy— (Kc‘f‘Kd)—‘i—Kd'w*- (23)
oz VA

Further, because of the assumption (1), the equations
giving the temperature field in the column are?

27Q=2mr\(—dT/dr),

0 In(r/ry) = / NI, (24)

(9/0r)=—(Q/r\)(9/0T).

Here, 27(Q is the heat flow by conduction per unit
length of the cylinders in cal/cm sec. Equation (9) in
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conjunction with Eq. (24) gives for the convection
velocity

0 d
o(T)=———G(T).
Aor? dT

(25)

Substitution of Eqgs. (24) and (25) in Eq. (1), and
subsequent differentiation with respect to 7', leads to
the required differential equation for G(7") as follows:

d 1 dndy1 dG dp
—— (—~ —)=g~, (26)
dT Mr? dT N dT \\pr? dT ar
with the boundary conditions
G(T)=G'(T1)=G(T2)=G'(T2)=0. 27

In order to solve Eq. (26), a knowledge of the tempera-
ture dependence of the transport coefficients and
density is essential. An analytic solution of Eq. (26)
is possible if N\, 7, and D are assumed to vary with
temperature according to that given by the inverse-
power model, viz., proportional to some power of 7,
and further restrict overselves only to the monatomic
gases. The quantities

N n n pD

T T ) and pT
T~ T™ A

(28)

b

are then assumed to be temperature independent. The
exponent 7 is related to the force index » of the inverse-
power model by the relation

v=(2n+3)/(2n—1). (28a)
Integrating Eq. (24), we get
(n+Dlnr=— (\/QT*) T+ const. (29)

We now introduce the dimensionless variable ¢ and the
dimensionless parameters ¢, and /, defined by

1= (\/QT"T,

and
L= (\/QT™)UDT, (7=1,2). (30)
The quantities ¢ and £, are determined from
to/t1i="Ts/Th, (31)
by — 1M = (n41)In(r1/7s). (32)
For the sake of brevity, we rewrite Eq. (29) as
rHl=yortl exp (— ). (33)

In analogy with Furry and Jones,® we introduce a
master function vy which is related to G as

Tn 3/(n+1) )\13 12
G(T)-—~<Q —) [g p—}aw). (34)
)\ nIQStIQn-—Q

In terms of the master function, the differential equa-
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tion (26) takes the form

d 2¢nt1y d? 2{vHiINdy
—in exp( )—tl‘” exp( >—= 2, (35)
dt n+1/d? n+1/dt
with the boundary conditions
v (t) =7 () =7'(t) =7'(t2) =0. (36)
Equations (19)-(22) now reduce to
T2 qpG(T)
H=—12rx / dT
T1 T
gp12t12+" 4t1"+1 t2 ary
=27r[ :|r14 eXp( ) / —dt. 37
m n+1 u ¢
2 LG(T) ] N
K,=2r / —dT
T1 pD Q
g2p13 811"+1 t2
- z,r[ z+} exp( ) / v (39)
n12D; n+1 t
2r T2
Ki=— [ NoDr?dT
Q T
2t1"+1 t2
= 27rp1D11’12t1_" exp( >/- t2n
n+1 1
2¢ntt
Xexp<— >dl. (39)
n+1

2w T2 T2
K= / W{ / G(T’)dT’}dT
Q2 T1 T
gp12t12+" 6tln+1
=— 21r|: —:Irlﬁ exp< >
N1 n+1

t2 t2 Ztn-}-l
X/ t”{/ 'y(t')dl’} exp(— )dt. (40)
o ¢ n+1

Alternatively, these four column constants can be put
in terms of the dimensionless ““shape factors” %, k., ka,
and k4 for convenience of numerical computation.
These expressions are

2mg (arp?
H=—{ }m“h, (41)
6!l ¢
2mg?( p?
= {——} r1%k., (42)
9! 772D 1
Kqo=27{pD}r1%*ka, (43)
Ki'=—2ng{p*/n}r:°kd, (44)
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where
4t1"+1 ta ar 7y
h=0614*t" exp( > — —dt, (45)
n+1 1 ATy t
Stln—i—] 123
k=943 eXp( )/ yidt, (46)
n—l—l t
2t1n+1 t2 2tn+1
ko=t exp( )/ 12 exp(———)dt, (47
n+1//, n+1
6t1n+1 to to
Ry =172 exp( )/ t“{f 'y(t’)dt'}
n+1 t1 ¢
ian
XeXp<— )dt. (48)
n+1

In Egs. (41) to (44), the quantities within the curly
brackets are to be evaluated at the lower temperature
T1. ap, is the value of ar at the temperature 7. In the
expressions for H, K, K4 and K/, all quantities
appearing outside the integrals are temperature
independent because of Eq. (28), and, therefore, may
be evaluated at any temperature. As, in the hot-wire
type of thermal-diffusion columns, most of the gas is at
temperature T, the evaluation at 7T'; seems a more
reasonable choice.®

A knowledge of the master function v is essential for
the calculation of %, k., and k;. v is to be determined
from the solution of the differential equation (35) with
the boundary conditions of Eq. (36). Equation (35)
can be solved in somewhat the same way adopted by
Furry and Jones.® Let y be the particular integral of
Eq. (35) and w, v, w, I, the four linearly independent
integrals of the homogeneous equation

d 24ty @2 24N\ dZ
—" exp( >—t“" exp( )«: 0. (49)
dt n+1/dt? n+1/ dt
Then, v is given by
y=y+Au+Bv+Cw-+D. (50)

Applying the boundary conditions Eq. (36), the four
constants 4, B, C, and D, of Eq. (50) can be determined.
Finally, we get

v=¢/s, (51)
where
y u v w 1
Yi %1 U1 Wi 1
€= Y2 U Vo Wy 1 5 (52)
yi' w’ v ow' 0
yo' ug' v w0

and ¢ is the cofactor of y in e. Here, the prime means
differentiation with respect to ¢, and subscripts 1, 2
indicate that the functions are evaluated at #; and /.,
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respectively. y, %, v, and w are given by the following
equations:

y=gef—g; w=d; v=f, w=e. (53)
Here, ¢, f, g, and d are defined as
2[7L+1 2[ n+1
@=@®<— ) '~8P<““““> (i=12),
n+1 n+1
,‘/7-5—1
f= / gl e*{p( )dx,
n+1
(53a)
Lomtt
g«/ac"‘ eXp< )dx,
n+1

t 2yt - 2yn+1
d=2 o1 ex < > { / epx<~~———)dy } dx.
/ P n+1 n+1

In the above integrals, the lower limits are not specified,
but are to be the same in any formulation. Let us also

define
2t
fi ~/ s cxp( ~—*>dx
" n+1
27(‘"+1
ftw /x"‘l exp( >
n+1
(54)
f”_/ xn 16Xp<
ti
fij:/ gn! exp(—
t

2t
i (=12
The quantities gos, i, €tc., doy, dis, €tc., have similar
meanings. Equation (51) holds irrespective of the
choice for the lower limit of the integrals. If ¢, is taken
as the lower limit of the integrals, we get

—3(et-e2) fro— Adig+Co(24s frate2—e),

an-H
)dx, (i,7=1,2).

n+1

(55)

Y=4t
where

B 2f12(etr—exly—tilof12) — 3 (e1—e€9)2—

- 2dss(ti— o) — ks (e1— e2— 2 f12)}

2g12(12~ 11)

)

(35a)

and

/312(261f12““ 4g12)+d12 (61“ ey 251][12) +262k12f13

Ay (ti— to) — kra(e1—e2— 215 f12) }
(55b)
Here, % stands for the integral
¢ 2t
k=/ exp(—W—>(Zx, (55¢)
n+1
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with the nomenclature for the specification of the limits
as in Eq. (54). If 4 is assumed as the lower limit, then,

y=3%(e+te1) frui— Adu+Ci(er—e— 261 f1)— g1,  (56)
where 4 is as defined in the foregoing, while
B k12(2esf12—4g12) Fdi2(es—e1+ 205 19) +2e1k 10 12
C 4{du(i—t)—ku(e—e—2b 1)} '

(56a)

kq can be readily obtained from Eq. (47) by direct
integration. The final result is

1\ " 2
<_) @XP{__(IH?H—I_ tQ"+[) }
tl %—’—1

Ztln—H
+3nt " fro CXP< ) (57)
n+1

Thus, we find that the transport Eq. (23) derived
here differs from that of Furry and Jones® in the
inclusion of an additional term containing K. Also,
the expressions derived here for H, K., K4, and K, are
general and reduce to those of Furry and Jones® for
n=1, and those of Srivastava'® for = (1/2). However,
the expression for v assumed by Srivastava' is wrong,
as he takes f* to be one of the solutions of Eq. (49)
with #=3%, which is incorrect. For this reason, all the
numerical results of Srivastaval® are in error and hence
are not used in this paper. We are publishing the
revised tables for the shape factors in a separate paper.'¢
Bardeen” investigated the contribution of K, for the
plane case with »=1 and found that the fractional
error involved because of the neglect of this term is less
than 19,. In the present case, it can be estimated as
follows:

We define a quantity e, the measure of the error
involved in the neglect of the additional term

K (8°C1/022)

—1
kd*g’—

(NI

appearing in Eq. (23) as
1 9C Kd

E=— —— ——

C,0Z KJ

4t1n+l
714t12n+2 exp( )
n+1

[2152"{/ 27(/’)(11,‘ }exp(
|2t

7 Qntl
/ 2 exp<~« )dl
i n-+1

In order to estimate the value of e, it is essential to

[ H }gpl
K A+K) D,

lerH
)w
n—l~l

(58)

16 S, Raman and S. C. Saxena, (to be published).
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assign a numerical value to #. We consider here its two
extreme possible values, viz., n=% and 1, in conjunction
with the experimental data of Simon!” for argon with
T5=1500°K. The factor within the curly brackets
was given the maximum, observed value. The integrals
were evaluated by direct, numerical integrations. For
n=1, the v values of Furry and Jones® were used,
whereas the other quantities in Eq. (58) were given
appropriate values. This gave e as 0.018. For n=%, a
similar procedure was adopted except the v values of
Raman and Saxena!$ were used. This gave e as 0.0065.
Thus, we find that the neglect of this term causes only
an error of approximately 19 and, consequently, we
neglect the last term of the transport equation (23)
in the rest of our discussions.

Since, in most of the hot-wire columns, 757,
TFurry and Jones® further simplified the expression for
v and hence of % and k. using this assumption. They
designate this as the extreme, cylindrical case. The
master function for this case is given by

Yo (v'/12)

T~ (89)
1—(8"/t)
where
Yoo = (gtoo— 3 100) F A teo (g100— €1 f100F 11 1) / A
+ frool Freo (€1 10— 28100)
+dleo{ (61/2)"'t1flw}]/A, (60)
’y”:5”(gtw—‘%eftw)’l"dtuo[:tlgloo_ (612/4)]A
+6[2k1w(61f1w—‘ 2g1m)+d1w(61'— Ztlflw)]/4AJ (61)
A——"Zklwfloo—dloo; (62)
and
8" = (e1k1o— 118155)/ A. (62a)

Various d, e, f, g, and k functions occurring in Egs.
(60) to (62a) can be readily obtained from Egs. (53a)
and (55¢). The two subscripts assigned to these func-
tions merely represent the lower and upper limits of
the integrals, [Eq. (54)]. For the extreme, cylindrical
case, the simplified expressions for % and %. are

4t1"’+1\h0—' (ho”/tz)
h=061t,>+" exp( , (63)
nt1/ 1= (8"/1,)
81,7 N\ by— (2k1" /1) + (ko' / 1?
kc=9!t14+3”exp( 1 \ (2k)""/12)+ (Rs"/ 2)’ (64)
1) (= ("))

where
24

Car (Yo “© ar (v _
1¢0=/ ——(——)dl; /zo”zf ——<——>dt, (65)
t, aTry ¢ t1 ATy t

17 R, Simon, Phys. Rev. 69, 596 (1946); J. W. Corbertt and
W. W. Watson, ¢b:d. 101, 519 (1956); J. Donaldson and W. W.
Watson, ibid. 82, 909 (1951).
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and

ka/- Yol2dl; kl”z/-ymv”rli; kg"=/ "%t (66)

Joty a3 J oty

In the above expression for A Eqs. (63) and (65)],
ap can be assigned any type of temperature dependence.
If ay is assumed to vary as A— (B/T), we now get

* Yoo Bll oo Yoo
— / (——)dt—(—) / (——)dl,
t1 t T1 t t2

Bt
=Ah,— (—)h«,];, (67)
T,
o0 ,Y// Btl 00 ,Y//
"an= A / (——)dt—<—~> f (—)dt,
iy t Tl 138 t2
=AW'— (Bty/T1)hs". (68)
Here
(Yo “ (Vo
hw-——/ (——)dt, /zw13=/ (—)dt,
31 t t £
0 ’Y” 0 ‘Y”
h”:/ (——)dt; hB”=/ (»—)dt. (69)
13 ¢ i1 2

III. COMPARISON OF THEORY AND EXPERIMENT

For comparing the results of theory developed in
Sec. II with the measured, isotope separation in a
thermal-diffusion column, one has to make use of the
transport equation. Neglecting the K/ term in Eq. (23),
it can be shown that for discontinuous operation (r=0)
at the steady state (r1=7.=0)

g= e, (70)
where ¢ is the equilibrium-separation factor and is the
ratio of (ci/cs) at the top end of the column to that at
the bottom end, L is the length of the column, = is the
total transport of the gas through the column, and

24=H/(KA+KJ). (1)

Owing to the practical difficulties involved in the
construction of ideal columns, certain asymmetries
very often result. These are caused either by the
nonverticality and nonconstancy of the annular gap
or lack of uniformity in the temperatures of the two
surfaces. Consequently, the vertical lamellar flow of
the gas in the column becomes disturbed, which has
been assumed in deriving the theory. The flow of gas
becomes somewhat turbulent and causes parasitic
remixing and, hence, reduction in separation.’® As
shown by Jones and Furry'® in detail, the effect of this
is to add an additional term K,(8C1/8Z) in the trans-
port equation. Equation (71), therefore, becomes

 U=H/(KAKAK,). (72)
183, C. Saxena and W. W. Watson, Phys. Fluids 3, 105 (1960).
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TaBLE 1. Values for various gases, of 7, D, ar, p, #, and m.

108y
gm/cm  10% D2 105p2  #n and
Gas °K sec cm?/sec 103ar gm/cc m
He 288  194.7 154.8 59.0 16.94  0.6567
300  200.0 165.8 59.0 16.27  0.6567
Ne 208 316.1 50.9 26.5 82.54 0.63
358  356.7 69.2 27.2 68.71 0.63
Ar 288 219.5 17.1 16.2 169.0 0.72
(normal) 293 2225 17.6 16.5 166.2 0.72
Ar 288  218.5 17.1 16.2 167.7 0.72
(9.79, Ar®¢) 358 259.9 25.3 20.0 134.9 0.72
Kr 298 265.9 9.64 167.3> 342.8 0.83
358 295.5 13.6 232.0>  285.3 0.83
H. 293 89.82 139.8 172 8.65 0.676,
0.818
(023 293 204.6 20.22 12.69 133.1 0.686,
0.911
CH, 300 111.0 22.4 8.15 65.19 0.787,
1.36
a Values refer to 1 atm pressure.
b Reduced, thermal-duffusion factor =ar (%Ii——]‘ﬂ;—z) .

The theoretical expressions of H, K., and K, indicate
that these quantities are proportional to P? P% and P°,
respectively, where P is the pressure. K, will depend on
P in the same way as K,. Hence, the separation factor
will have the following pressure dependence:

a/P?
Ing= , (73)
(1+K,/Ko)+b/P*
where @ and b are constants given by
a=(HLPYK.), b= (K.,PYK,). (74)

We have put the theory in a form such that it can
be directly compared with the experimental data. If the
isotopic separation is measured either as a function of
pressure in a column keeping the temperatures of the
hot and cold walls constant, or at a single pressure as a
function of the hot-wall temperature, Egs. (73) and
(74) are to be used. One very interesting and crucial
test of the theory lies in its success in the prediction of
the observed pressure dependence of the separation
factor. The constants ¢ and & depend on the inter-
molecular forces, column dimensions, and the tempera-
tures of the two surfaces. As it is hard to construct
columns which are completely free from any type of
parasitic-remixing effect, and also as extensive tabula-
tions of H, K, and K, are not available for a potential
which is adequate for most of the common gases used,
it would be interesting to test the qualitative form of
the pressure dependence of ¢ given by theory. We have
analyzed the available experimental, column data of
various groups of workers on a number of isotopic
mixtures; He, Ne, Ar, Kr, Xe, CHy, Hs, and Os. In the
theoretical calculations of ¢, a knowledge of 4, D, ar,
and p is necessary. 7, D, and ar were computed at the
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relevant temperature according to the Lennard-Jones
(L-]) (12-6) potential® using the theoretical formulas,®
and are recorded in Table I. p values, also listed in
Table I, were evaluated according to the perfect-gas
equation. Values of # obtained from viscosity and
thermal-conductivity data in the case of monatomic
gases, and of #» and m obtained from viscosity and
thermal-conductivity data, respectively, for polyatomic
gases are also recorded in Table I. The constants ¢ and
b of Eq. (73) (neglecting the K,/K, term) have been
determined in each case from the experimental data by
the least-squares method. These constants are also
computed from theory, assuming the intermolecular
potential of L-J (12-6) type and inverse-power potential
with =1 and %. These theoretical values of ¢ and &
are recorded in Table II. Throughout our calculations
we have used the tabulated shape factors of McInteer
and Reisfeld"”? for L-J (12-6) potential, of Furry and
Jones,® and of Raman and Saxena'® for the inverse-
power petential with =1 and %, respectively. To
facilitate a direct, numerical comparison of theory and
experiment, we equate the experimental value of a to its
theoretical value, and the values of b'= (bexpulineoret/
@expt1) SO obtained are tabulated in Table II. For a good
agreement, b’ values should be equal to b values. Also
shown in this table are values of K,/K, equal to
(@theoret/ expt) — 1, which give the idea of the magnitude
of parasitic remixing, if we assume the validity of
theory.

To check the adequacy of theory, theoretical- and
experimental-separation factors have been plotted as
a function of pressure wherever possible for a number of
gases. A consistent notation is used in designating the
various curves. Thus, curve ¢ in all cases represents a
least-square fit through the experimental points
according to Eq. (73) when the (K,/K.) term is
dropped. Curves b and d are according to the inverse-
power model with =1 and 3%, respectively, and
assuming ar to be temperature-independent. 8’ and d’
correspond to b and d when ar is assigned a temperature
dependence of the form 4— (B/T). The constants A4
and B are determined by the least-square method,
assuming the theoretical tabulated values® according
to the L-J (12-6) potential. Curve ¢ represents in all
cases the theoretical plot according to L-J (12-6) poten-
tial. We now discuss the results for individual gases in
detail.

A. Monatomic Gases
Helium

For helium isotopes, McInteer, Aldrich, and Nier*
determined H for a hot-wire column at two pressures

B B. B. McInteer and M. J. Reisfeld, Los Alamos Scientific
Laboratory Report, LAMS-2517 (1961); see also J. Chem. Phys.
34, 1844 (1961).

20§, C. Saxena and E. A. Mason, J. Chem. Phys. 28, 623 (1958).

21 B. B. MclInteer, L. T. Aldrich, and A. O. Nier, Phys. Rev.
74, 946 (1948).



THERMAL-DIFFUSION COLUMN

TaBLE II. Theoretical values® of @ and b of Eq. (74); values® of b’ = bexpti@theoret/ @expt1 and K /K o= (@theoret@expti)— 1.
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Inverse-power model and n=1

Inverse-power model and n=1%

Lennard-Jones (12-6) Model

Gas Qtheoret btheoret 4 pr/ 1<L Qtheoret btheoret 4 K ;u/ K ¢ Qtheoret btheoret 4 I(p/ I<c
He
Bowring B. 0.294 38 47 —0.141 0297 30.6 47.6 —0.131
Ne
T1=298°K 0.0525 7.153 4.38 5.69 0.0259 2.49 2.16 230 0.0459 5.34 5.34 4.84
Ne
T1=358°K 0.0992 24.24 15.43 401 0.0489 844 7.61 147 0.0859 18.00 13.35 3.33
Ar
Simon, 7,=1100°K 0.0014 0.0086 0.0059 0.23  0.00055 0.0021 0.0024 —0.507 0.0013 0.0043 0.0056 0.178
Ar
Simon, T,=1500°K 0.0032 0.026 0.024 —0.094 0.0013 0.0044 0.0100 —0.626 0.0025 0.0082 0.0192 —0.285
Ar (normal)
M and W
T,=288°K 0.0036  0.092 0.076 0.57 0.0018 0.0321 0.0375 —0.226 0.0040 0.078 0.083 0.713
Ar (9.79, Ars®)
M and W
T1=288°K 0.0037  0.094 0.079 1.344 0.0018 0.0326 0.0391 0.159 0.0040 0.079 0.086 1.56
Ar (9.79, Ar%)
M and W
T1=358°K 0.0099 0.448 0.472 1.525 0.0049 0.156 0.2324 0.243 0.0101 0.368 0.482 1.58
Kr
T7=298°K 0.0064 0.0105 0.0097 0.993 0.0031  0.0037 0.0048 —0.019 0.0088 0.0095 0.0135 1.77
Kr
T1=2358°K 0.0166 0.0374 0.0681 0.425 0.0082 0.0130 0.0335 —0.298 0.0203 0.0324 0.0832 0.742
H, 0.240 4.94 4.88 7.67 0.0931 1.27 1.89 2.36 0.161 2.25 3.23 4.80
(623 0.0135  0.440 0.728 1.82 cee oo s 0.0132  0.433 0.714 1.77
CH, 1.81 0.163 0.170 0.35 2.51 0.140 0.236 0.87

& Units of atheort are (atm)?, biheort and b’ in (atm)4.

and also for a concentric-tube column at one pressure,
keeping the other factors constant. Their results are
shown in Table II, and H values for the hot-wire
column are found to follow the theoretically predicted,
pressure dependence. In Table III are also listed the
theoretically calculated values according to the L-J
(12-6) potential and inverse-power potential for n=1
and 1. For the concentric-tube column, the value for
n=1 is calculated according to the nearly plane-case
theory of Furry and Jones.® Our calculated H values
completely agree with the previous calculations!* for
n=1. For the L-J (12-6) potential calculated values
obtained according to the revised tabulations for the
shape factors'® are in reasonable agreement with the
reported values of McInteer and Reisfeld!* for the
hot-wire column only, but differ by about 8.5%, for the
concentric-tube column. The agreement between theory
and experiment is quite poor for the hot-wire column,
the experimental values being too high. For helium, the
attractive force is weak,? and the assumption of a purely
inverse, power potential is adequate. In fact, viscosity
measurements in the range 4° to 1100°K yield®
n=0.6567, and, accordingly, if the theoretical value of
H is corrected for this », the disagreement with the
experimental value is approximately 309,. The agree-
ment of the calculated L-J (12-6) values with the

22 J. Kestin"and W. Leidenfrost, Physica 25, 537 (1959).

experimental values is also poor, though it is partly
expected as helium molecules are much softer? than
represented by this potential. The source of this
discrepancy also could not be traced in the possibility

TasLE III. Experimental and calculated values®

of H, K., K4, and 24 for helium.

MclInteer et al. Bowring
Conc.

Hot tube Column  Column

wire  Column column A B
Pressure (atm) 7.8 9.7 7.8 1 1
H (exptl) 16.5 24.8 257 0.432 7.18
H (n=1) 9.5 14.8 267 0.657 10.02
H (n=1% 12.5 19.3 oo 0.792 cee
H (L-J, 12-6) 12.1 18.8 282 0.784 11.93
K, (exptl) .. cee e 0.0032 0.26
K. (n=1) 0.443 1.06 129 0.0026 0.394
K. (n=1%) 1.382 331 oo 0.0065 e
K. (L-J, 12-6) 0.940 224 134 0.0050 0.463
K4 (exptl) s cee s 1.90 15.0
Kqi (n=1) 1.70 1.70 26.7 3.34 14.8
Kq (n=3%) 1.25 1.25 e 2.36 e
K4 (L-J, 12-6) 1.36 1.36 26.1 2.53 14.2
24 (exptl) 0.043 e 0.017 0.0028>  0.0060°
24 (n=1) 0.051  0.062 0.020 0.0023 0.0076
24 (n=1%) 0.055  0.032 s 0.0039 e
24 (L-J,12-6)  0.061  0.060 0.020 0.0036 0.0094

a Units of H are litres STP /day, K. and Kq incc STP/cm sec, 24 incm™.

b Extrapolated

value.

¢ Interpolated value,
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of a parasitic-remixing effect, Table II. In all these
calculations, an ar=0.059 was assumed, following
Mclnteer et al.2® This value has been confirmed by the
recent measurements of van der Valk and de Vries.?!
They found a7=0.062 in the approximate temperature
range 300-500°K. Consequently, the lack of this
disagreement cannot be attributed to the oy value or
to its variation with temperature. The reduction in the
value of the exponent 12 will tend to decrease the value
of H and may, thereby, further worsen the agreement
between theory and experiment. Also listed in Table I1I

10
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o 20 60

4
P, in.of Hg

Fi1c. 2. Comparison of theoretical- and experimental-(Ing)/L
plots as a function of pressure for Ne. @—Experimental points,
Moran and Watson, 71 =298°K.

% B. B. MclInteer, L. '[. Aldrich, and A. O. Nier, Phys. Rev.
72, 510 (1947).

24 I, van der Valk and A. E. de Vries, J. Chem. Phys. 34, 345
(1961).

are the experimental and calculated 24 values, and
these also show the same type of disagreement as found
in the case of H values. It may be noted in connection
with an earlier conclusion of Srivastaval® that the
experimental H values of McInteer et al. for the hot-wire
column lie in between the two theoretical values
corresponding to =1 and % is wrong. He was led to
this because of the interchange of the theoretical values
of H for n=1 with the experimental values. Our
theoretical H values for n=4%, are greater than the cor-
responding values for =1, whereas Srivastava!® found
them to be smaller.

Bowring? has investigated the pressure dependence
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Fi6. 3. Comparison of theoretical- and experimental-(Ing)/L
plots as a function of pressure for Ne. @—Experimental points,
Moran and Watson, 7'y =358°K.

% R. W. Bowring, Great Britain Atomic Energy Research
Establishment, Harwell Report, AERE-GP/R-2058, Part I
(1957).
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of the separation factor for this gas using a hot-wire
column (Column A) and a concentric-tube column
(Column B). His experimental results for column A
have been considered by us in another paper,'® while
those of Colum B are plotted in Fig. 1. In Table III
are tabulated the experimental and theoretical values
of H, K., K4, and 24 for both columns. From Fig. 1,
we find that the experimental data follow the qualitative
form of the pressure dependence given by theory; the
quantitative agreement is also quite satisfactory. Some-
what similar conclusions were also drawn in connection
with the data on Column A by Raman and Saxena.!®
It is interesting to note that, unlike the McInteer
et al. data® for the hot-wire column, here the experi-
mental g values are mostly lower than the calculated
values. From Table III, we also find that the agreement
between the theoretical and the experimental H, K.,

30 40

P, cm of Hg

Kg4, and 24 values is poor. Our calculated H values
differ considerably from those of McInteer and
Reisfeld,'* and we feel that there is some computational
error in their reported values. Thus, we find that the
two sets of data for He show discrepancies of opposite
nature when compared with theory. This result is
rather surprising, for helilum accords well to the
assumptions of theory. The parasitic remixing cannot
improve or explain the disagreement. Some other
column experiments also have been performed?® with
this gas, but the data are not suitable for quantitative
interpretation. Further precise column measurements
will be extremely useful to resolve this discrepancy.

Neon and Argon

Several workers'$2728 have used thermal-diffusion
columns either to enrich the neon isotopes or to measure

24
. . T e}
F1c. 5. Comparison of theoret- £

ical- and experimental-lng values

as a function of pressure for Ar.

e—Experimental points, Simon,

T2=1500°K. o8l

l | I ] 1

30
P, cm of Hg

40

26 A, Andrew and W. R. Smythe, Phys. Rev. 74, 496 (1948); O. F. Schuette, A. Zucker, and W. W. Watson, Rev. Sci. Instr.

21, 1016 (1950).
27T, I. Moran and W. W. Watson, Phys. Rev. 111, 380 (1958).
22'W. W. Watson, L. Onsager, and A. Zucker, Rev. Sci. Instr.
50 (1940); K. Clusius and M. Huber, Experimentia 6, 262 (1950).

20, 924 (1949); G. Dickel and K. Clusius, Z. physik. Chem. B48,
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the separation factor under different conditions with a
view to determining the most efficient operation of the
column. Moran and Watson?” determined the separation
factor as a function of pressure for two sets of cold-
and hot-wall temperatures, and their data are most
suitable for comparison with theory. The experimental
data of Moran and Watson?” are shown in Figs. 2 and 3.
In either case, we find that the experimental data
accord only moderately well even to the theoretical,
qualitative form for the pressure dependence. The
calculated g values according to the L-J potential are
almost double the experimental values, and the pressure
at which the maximum separation occurs also disagrees.
Such a poor reproduction is unexpected as the L-J
(12-6) potential does satisfactorily represent the
behavior of neon gas in this temperature range.® This
discrepancy between theory and experiment also cannot
be attributed to the presence of parasitic convection in
the column as seen from Table II. An attempt in this
direction leads only to unrealistic values for K,/K,
and &’ values which are only two-thirds the theoretical

values in certain cases, whereas the agreement is good
for the inverse-power model =% and L-J (12-6)
potential at 7;=298°K. From Figs. 2 and 3, we find
that the agreement between theory and experiment is
improved for the inverse-power model if the temperature
dependence of ar is incorporated. Viscosity and thermal-
conductivity data® yield #=0.630 in the temperature
range 300-1100°K. Even if the theoretical curves are
interpolated for this # value, the agreement is far from
satisfactory for pressures greater than one atmosphere.
In particular, the maximum-separation factors are
very different, the observed values being too low.
Unfortunately, no reliable data for ar as a function of
temperature are available® to warrant an investigation
for exploring this big difference between theory and
experiment in the use of an incorrect temperature
dependence of ap. It will, therefore, be interesting to
measure ar as a function of temperature and ¢ as a
function of pressure to resolve this discrepancy.
Several very careful studies!’?” of column operation
have been pursued using argon gas. The pressure

10%tnq/L,cm=!

el 1 1 1

Fic. 7. Comparison of theoret-
ical- and experimental-(Ing)/L
values as a function of pressure
for Ar. (9.79, Ar®*). e—Experi-
mental points, Moran and Watson,
T,=288°K.

15
P, in.of Ha

»® R. S. Edwards, Proc. Roy. Soc. (London) Al19, 578 (1928); M. Trautz and R. Zink, Ann. Physik 7, 427 (1930); W. G.
Kannuluik and E. H. Carman, Proc. Phys. Soc. (London) B65, 701 (1952).
# 8. C. Saxena, J. G. Kelley, and W. W. Watson, Phys. Fluids 4, 1216 (1961).
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F16. 8. Comparison of theoret-
tical- and experimental-(Ing)/L
values as a function of pressure
for Ar. (9.79% Ar%). e—Experi-
mental points, Moran and Watson,
T1=358°K.
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dependence of the separation factor was extensively
investigated by Simon,'” and by Moran and Watson.?’
Both of these sets of data are considered here for
comparison with theory. Simon!” measured ¢ for the
hot-wire temperatures at 1100° and 1500°K and his
data are plotted in Figs. 4 and 5, and those of Moran
and Watson are plotted in Figs. 6-8. All the five sets
of data can be reasonably represented by the theoretical
qualitative form for the pressure dependence. The
Lennard-Jones (12-6) potential gives poor agreement
with the experimental data in almost all cases, the
observed separation always being smaller. One would
normally expect a very good agreement for this gas as
L-J [12-6) potential adequately reproduces almost
all the properties.® The inclusion of a parasitic-remixing
term, unlike neon, improves the agreement in certain
cases. The value of # obtained on the basis of experi-
mental viscosity and thermal conductivity® is 0.72
=+0.06. Keeping in view even this value of #, we find
only a poor over-all agreement between theory and
experiment, the inverse-power model giving a somewhat
superior agreement with the experiment than the L-J
(12-6) potential.

Krypton and Xenon

Amongst all the data available for krypton®* and
xenon,?”:3% we have analyzed here only those of Moran
and Watson?” for krypton (Figs. 9 and 10), while for
xenon, it has been done by Raman and Saxena.l®

3 M. Trautz and R. Zink, Ann. Physik 7, 427, (1930); H. L.
Johnston and E. R. Grilly, J. Phys. Chem. 46, 948 (1942);
V. Vasilesco, Ann. phys. 20, 292 (1945); C. F. Bonilla, S. J. Wang,
H. Weiner, Trans. Am. Soc. Mech. Engrs. 78, 1285 (1956);
W. G. Kannuluik and E. H. Carman, Proc. Phys. Soc. (London)
B65, 701 (1952).

2 W. Groth, Naturwiss. 27, 260 (1939); W. Groth and P.
Harteck, 4bid. 28, 47, (1940); K. Clusius and G. Dickel, Z. physik.
Chem. B52, 348 (1942); B53, 178 (1943); J. W. Corbett and
W. W. Watson, J. Chem. Phys. 25, 385 (1956).

3 W. Groth, Naturwiss. 27, 260 (1939); K. Clusius, Helv.
Phys. Acta. 22,473 (1949); K. Clusius, H. H. Biihler, H. Hiirzeler,
zznd E. Schumacher, Z. Naturforsch. 10a, 809 (1955); 11a, 702

1956).
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In Figs. 9 and 10, we have plotted (#/L)Ing’?" instead
of Ing as a function of pressure, where 7% is the average
mass of the two isotopes and ¢’ is the value of ¢ for
unit-mass difference of isotopes.2”** Both these gases
approximate better the Maxwellian behavior as far
as the temperature dependence of 7, N\, and D are
concerned. We find from available viscosity and
thermal-conductivity data that %#=0.83 for krypton?®

40

©
o

10%m.In g7L em™!
N
o

10

[}

P in.of Hg

Fic. 9. Theoretical- and experimental plots of (/L) Ing’
values vs pressure for Krypton. ¢’ is ¢ for unit mass difference of
the two isotopes. @—Experimental points, Moran and Watson,
T,=298°K.

#W. W. Watson (private communication, 1961).

3 A. O. Rankine, Proc. Roy. Soc. (London) A83, 516 (1910).
A84, 181 (1910); W. G. Kannuluik and E. H. Carman, Proc;
Phys. Soc. (London), B65, 701 (1952); B. N. Srivastava and
S. C. Saxena, bid. B70, 369 (1957).
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F16. 10. Theoretical and experimental plots of (2/L)Ing’ as
a function of pressure for Krypton. e@—Experimental points,
Moran and Watson, 7'1=358°K.

and #=90 for xenon® in the temperature range 300°
to 600°K. On the other hand, the temperature depend-
ence of ar for these gases is very pronounced.?” From
the figures, we find that the theoretical qualitative
form for the pressure dependence of ¢ is preserved
reasonably well. Theoretical calculated values accord-
ing to L-J (12-6) potential are in extremely poor
agreement with the observed values. The inverse-power
model, on the other hand, gives a much better reproduc-
tion of the experimental data. An accurate knowledge of
temperature variation of ar may still improve the
agreement. In this direction, further experimental
work with this gas will be useful to check the theory.
Analogous conclusions were arrived at by Raman and
Saxena'® while interpreting the experimental data for
Xenon.

B. Polyatomic gases

Rigorously speaking, the theory given in the foregoing
section does not hold for polyatomic molecules because
of assumption (5). (9/A) and (pD/)\) are no longer
temperature-independent quantities, owing to the
dependence of \ on the internal degrees of freedom.?®
If we assume that (\/7) and not (\/T™") is independent
of temperature, we obtain the following equations
corresponding to Egs. (34) and (35):

QTm 3/ (m+1) g>\13P12 7'04 _
on--(—)  [Sar |, a0
)\ 171Q3 t13m~—n-2
and
d 24ty g2 281N dy (1)
—fm exp( )———tl"” exp( )———~=f2, (77)
dt m—+1/ d? m—+1/ dt

3 A. 0. Rankine, Proc. Roy. Soc. (London) A83, 516 (1910);
M. Trautz and R. Heberling, Ann. Physik 20, 118 (1934); W. G.
Kannuluik and E. H. Carman, Proc. Phys. Soc. (London) B65,
701 (1952); S. C. Saxena, Indian J. Phys. 31, 597 (1957).

37T. I. Moran and W. W. Watson, Phys. Rev. 109, 1184 (1958).

38 J. O. Hirschfelder, J. Chem. Phys. 26, 282 (1957).
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where G(T) and v(f) are new functions and satisfy the
same type of boundary conditions as given by Egs. (27)
and (36), respectively. Additional complications arise
in carrying the algebra further starting from Eq. (77)
and calculating the expressions for K., K4, and K.
because of the temperature dependence of (oD/\) also.
Probably the best solution for polyatomic gases is to
perform numerical integrations for the specific cases,
preceded by a numerical solution of Eq. (77).
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I'16. 11. Comparison of theoretical- and experimental-separation
factors as a function of pressure for Hy. @ —Experimental points,
Almqvist, Allen, and Sanders, T7=293°K.

Hydrogen and Oxygen

A number of workers have used thermal-diffusion
columns to study the isotope separation of hydrogen?®
and oxygen.®® In the case of hydrogen isotopes, as
the mass differences are rather big, assumption (3)
does not hold in addition to the limitations mentioned
in the foregoing and, unless one isotope is in trace, the
composition dependence of the transport coefficients
and density in the column cannot be neglected.
Almqvist, Allen, and Sanders® measured the separation
factor as a function of pressure for a mixture of hydrogen
(96.5%) and tritium (3.5%). As the heavier component

¥ G. T. Seaborg, A. C. Wahl, and J. W. Kennedy, J. Chem.
Phys. 8, 639 (1940); E. Almqvist, K. W. Allen, and J. H. Sanders,
Rev. Sci. Instr. 26, 649 (1955); G. R. Grove, K. W. Foster, and
R. E. Vallee, Proceedings International Symposium on Isotope
separation (North-Holland Publishing Company, Amsterdam,
1958), Chapter 35; C. Boorman and H. Kronberger, tbid. Chapter
36.

401, Lauder, Trans. Faraday Soc. 43, 620 (1947); E. Whalley,
E. R. S. Winter, and H. V. A. Briscoe, 7bid. 45, 1085 (1949);
S. B. Welles, Phys. Rev. 69, 586 (1946); K. Clusius and G. Dickel,
Z. physik. Chem. 193, 274 (1944); K. Clusius, G. Dickel, and
E. Becker, Naturwiss. 31, 210 (1943).
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is only in small proportion, we will still assume that the
variation of #, N, p, and D is negligible because of the
change in composition. Their®® measured separation
points are shown in Fig. 11. Data of Whalley, Winter,
and Briscoe? for oxygen isotopes are plotted in Fig. 12.
The excellent agreement of the experimental points
with curve @ in both the cases shows that the simple
theory of monatomic gases gives a qualitative form
for the pressure dependence which holds well for
hydrogen and oxygen. It will, therefore, be interesting
to see what happens to this simple theory on the
quantitative basis. For both gases, we find that the
measured-separation factors are much smaller than the
predicted values. From the experimental values of
thermal conductivity, we find m equal to 0.818 (300°
to 800°K) for hydrogen* and 0.911 (200° to 600°K)
for oxygen* whereas from the viscosity data we get »
equal to 0.676 (200° to 1100°K) and 0.686 (300° to
1100°K) for hydrogen* and oxygen,** respectively.
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¥16. 12. Comparison of theoretical- and experimental-separation
factors as a function of pressure for oxygen isotopes. @—Experi-
mental points, Whalley, Winter, and Briscoe.

Thus, we find that the assumption (\/7) is temperature
independent, very weak, and may indeed be the chief
cause of the failure of theory. Table II also confirms
that this bad agreement cannot be attributed to the
presence of a parasitic-remixing effect in the columns.
A slightly improved agreement will be obtained for both
the gases if the experimentally available ar values® are
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used. As the difference between theoretical and experi-
mental ar values is of the order of experimental un-
certainty, we have used the theoretical values. However,
now it has become possible to accurately determine
these values by Trennschaukel.

Methane

Methane is a very interesting polyatomic molecule
because it can be considered as approximately spherical
in shape and because the transport theory developed
for spherically symmetrical molecules also holds well®
for this gas, except in the case of thermal conductivity.
The assumption that (n/A\) and (pD/\) are not in-
dependent of temperature is also important here. From
the viscosity data,*® we find %#=0.787, while the thermal
conductivity data*” yield m=1.36. Both of these values
approximately correspond to the temperature range
300° to 600°K. Nier and others*® have reported column
measurements for this gas. Nier’s data* are plotted in
Fig. 13. Here again we find that the experimental
data can be well represented by Eq. (73) assuming
parasitic convection to be absent where ¢ and 5 are
according to the L-J (12-6) model, and refer to the
ratio of the hot-wall to the cold-wall temperature values
as 2.00 and 2.09, respectively, the experimental value*s
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I'16. 13. Comparison of theoretical- and experimental-separation
factors as a function of pressure for Methane gas, Nier. Curves
c1 and ¢; are both according to the L-J (12-6) potential for
(T2/T1) equal to 2.0 and 2.09, respectively. @-Experimental
points.
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Fi1G. 14. Separation factors as a function of pressure for carbon
dioxide and propane mixture. @—Experimental points, Drickamer
et al.

being 1.91 for which the tabulations are not available.'®
We find that the agreement is good with »=1 values and
becomes still better if a parasitic-remixing term is
included (Table IT). We feel, in conformity with Jones
and Furry,!® that this excellent agreement is just
fortuitous. Indeed, the L-J model predicts higher
values in accordance with what we found for hydrogen
"and oxygen. In view of the widely different m and »
values, the simple theory is inapplicable for methane.

C. Gaseous Mixtures

The theory described in this paper does not apply
even to the mixtures of nonatomic gases because of
assumption (3), while for mixtures involving polyatomic
gases further complications arise because of the temper-
ature dependence of (5/\) and (pD/M). Drickamer,
Mellow, and Tung?® have suggested a semi-empirical
modification for the theory of Furry, Jones, and
Onsager* to suit for mixtures by analyzing the data?:5
on the binary mixtures of Ne—Ar and CO,—C;Hs.
Some additional support to this modified theory has
been added by the later measurements of Tung and
Drickamer® on CH;—Xe system, of Hirota and

4% H. G. Drickamer, E. W. Mellow, and L. H. Tung, J. Chem.
Phys. 18, 945 (1950).

% H. G. Drickamer, V. J. O’'Brien, J. C. Bresee, and C. E.
Ockert, J. Chem. Phys. 16, 122 (1948).

81, H. Tung and H. G. Drickamer, J. Chem. Phys. 18, 1031
(1950).
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Kobayashi®* on H;—N, mixtures, and of others.5
Besides the inherent defect in the Drickamer ef al.
modification of the column theory of being empirical,
several other doubts have been raised against it by
Becker,* and by Davenport and Winter.5 In view of
the fact that the column theory fails badly even for
pure polyatomic gases in the low-pressure region, we
feel that much caution is required in putting reliance on
analyzing data from the modified theory of Drickamer,
Mellow, and Tung,”® who used data for mixtures
involving polyatomic gases at high pressures. The
Drickamer ef al.%° data on CO;— C;H; system at low
pressures is shown in Fig. 14. The qualitative from of
the pressure dependence for ¢ suggested by theory is
quite adequate in representing this data. Unfortunately,
no rigorous theory has yet been developed to compare
the experimental results on a quantitative basis.

IV. CONCLUSIONS

The following conclusions seem to be reasonable in
view of this detailed comparison of theory and experi-
ment:

(1). The present form of column theory cannot be
extended with any confidence for predicting the column
behavior either for pure polyatomic gases or for their
mixtures.

(2). The quantitative agreement between theory
and experiment even for monatomic gases is, in general,
quite poor. The agreement is somewhat better at low
pressures, i.e., for pressures smaller than the pressure at
which ¢ is a maximum. In most of the cases, the
inverse power potential gives a better reproduction of
column data than the L-J (12-6) potential.

(3). The disagreement cannot be attributed, at least
wholly, to the presence of a parasitic remixing in the
column.

(4). The qualitative form of the theory for the
pressure dependence of the separation factor holds
not only for monatomic gases but may also hold for
polyatomic gases and probably mixtures.
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