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INTRODUCTION one, incapable of exact solution at the present stage
of mathematical advancement, except for the simple,
triparticle systems B2+, etc. The difhculties are well

exemplified by the calculations of Kolos and Roothaan'
on the X'Zg+ and 3'Z + states of the hydrogen molecule.
To calculate 8, for the X'Z,+ state by a self-consistent-
field procedure, 40- and 50-term wave functions were

used. Excellent agreement with curves from experi-
mental data was obtained at small displacements of
the nuclei from the equilibrium position r,. However,
at bondlengths greater than 1.0 A, deviations occurred
despite the complexity of the wave function used. ' The
reason, in this case, is that the wave functions are of
the polynomial type which requires more and more

terms, for increasing r, to approach the correct asymp-
totic form. Their results on the 8'Z„+ state are not in
as good agreement with the curve obtained from
experimental data as in the case of the X'Z,+ state, but
here only a 34-term wave function was used. Actually,
the Kolos and Roothaan curves are in remarkably good
agreement with the curves based on experimental
data near r=r, and offer some hope that accurate
calculated curves will soon be forthcoming for simple

systems.
As the number of particles increases, however, the

difficulties mount extremely quickly. At present, there
does not seem to be much hope of obtaining accurate
curves except for the simplest of systems. Furthermore,
as the interacting atoms become more complicated, the
number of electronic states arising from their interaction
increases rapidly, thus compounding the difFiculties.

Clearly, alternative procedures for obtaining potential
curves are desirable, indeed essential at the present
time. Potential curves for diatomic systems fall mainly
into two categories, ones with appreciable minima

(bound states) and ones which exhibit a very shallow
minimum or none at all (repulsive states); we are
concerned with the former. Three general methods
exist for obtaining curves for the bound states of
diatomic molecules. The first and perhaps most satis-

A KNOWLEDGE of internuclear potential curves
is of fundamental importance in a wide variety

of 6elds ranging from gas kinetics to stellar structure.
In particular, the recent increased interest in astro-
physical problems has emphasized the need for accurate
potential curves governing the interaction of two atoms
in either their ground or excited states, i.e., the potential
curves for the different electronic states of diatomic
molecules. The interaction potential arises, for various
nuclear separations, from the change in interaction
of all the charged particles in the system from those
existing at infinite separations of one or more of the
atoms from the remainder of the system. For a diatomic
system, the energy levels are determined from1

(8„+8,)% =M, (0
where II and B, depend, respectively, on nuclear
coordinates alone, and electronic coordinates alone and
are given by

II = Q(h'/ger'M —)V' '+ V, (2)

8,= —Q; (h'/Se'm)VP+ $' .+V... (3)

where V „, V„„and V„are the internuclear, nuclear-
electron, and electron-electron-potential operators,
respectively.

If the Born-Oppenheimer approximation is valid
4'=f„P, and

8.f,=E,f„
then,

(H„+E,)f„=EP„.

Here, P„depends only on the nuclear coordinates. E, is
the electronic energy which is a function of the inter-
nuclear distance r. According to Eq. (5), the potential-
energy term appearing in the Hamiltonian for the
nuclear motion is just the sum of E, and V„„.The
problem of solving Eq. (4) for E, is a highly complex
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Office, U. S. Army, and in part by the Office of Naval Research.
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United Kingdom.' H. Kyring, J. Walter, and G. E. Kimball, Qeantlm Chemistr
(John Wiley tk Sons, inc. , New York, 1944), p. 190-192.

W. Kolos and C. C. J. Roothan, Revs. Modern Phys. B2,'2&9
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y 'I. Tobias and J. T. Vanderslice, J. Chem. Phys. &~, &852
(1961).
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& ~= Z V~~(&+a)'J'(~+1)', (6)

where 1 and j are summation indices and e and J are
the vibrational and rotational numbers, respectively,
and where the I'~; are coefficients which can be deter-
mined from the experimental rotational and vibrational
levels. Here, the energy zero is taken at the minimum
of the potential curve. If the potential is assumed to be
of the form

Dr~'- hr~ Dr~' Ar~'
V=a, —

i
1+a, —i+a, —i+a, —i+" ~

r, )
ar par ' ~Dr '

+B,J(7+1) 1—2—+3i ——4i —+
r, &r. &r,

(7)

where Dr=r —r„ then the g s can be related to the
I ~ s. Since the I'~ s are determined from the experi-
mental data, the potential function based on this
data can be determined from Eq. (7). The most serious
drawback of the Dunham method is that it diverges
as the energy approaches the dissociation limit and,
hence, must be used with care at the higher-vibrational
levels.

The third general method is based on empirical
potential functions. The assumption is made that all
bonding-potential curves can be fitted to a certain form
of algebraic expression when the parameters in the
expression are evaluated from the known spectroscopic
constants. Numerous attempts to find suitable functions
have been made. The parameters of these proposed

4 R. Rydberg, Z. Physiit 73, 376 (1931);80, 514 (1933).
s O. Klein, Z. Physik 76, 221 (1932).' A. L. G. Rees, Proc. Phys. Soc. (London) 59, 998 (1947).
~ J. T. Vanderslice, E. A. Mason, W. G. Maisch, and E. R.

Lippincott, J. Mol. Spectroscopy 3, 1'7 (1959); 5, 83 (1960).
s W. R. Jarmain, Can. J. Phys. 38, 217 (196()).
s J. L. Dnnham, Phys. Rev. 41, 713, 721 (1932).

factory of these is the calculation of the curve from the
experimental energy levels using the method of Rydberg,
Klein, and Rees (RKR).4 r This is a WKB method
where one starts with the observed-energy levels E
and from these calculates the maximum and minimum
points of the vibration. Since this is a VVKB method,
one might expect this to be somewhat in error near r,.
However, the results near the minimum agree with
the curve calculated by the Dunham procedure which
is known to be accurate in this region. r Indeed, Jarmains
has shown that the two are equivalent for the lower-
vibrational-energy levels. One major disadvantage of
the RKR method is that the potential curve can be
constructed only in the region for which sufhcient
spectroscopic data exist. For this reason, other reliable
techniques must be found.

The second general method is due to Dunham. ' He
used the %KB method to show that the energy levels
have the form

functions can be related to the spectroscopic constants
and also to the dissociation energy. For example, the
vibrational frequency co, and the dissociation energy
D, are given by the classical expressions

V"(r,)=k, =4s'c'(o, 'p,

V(r.)—V( )=D,

and these enable one to determine two parameters in the
assumed-potential expression. By solving the Schro-
dinger equation with the assumed form for V(r), the
other parameters in the expression can be related to the
higher-order spectroscopic constants. The whole pro-
cedure of relating the parameters in the assumed-
potential expression is greatly simplified by expanding
the assumed potential and putting it in the form given

by Eq. (7). Then, the parameters are given directly in
terms of the I'& s as determined by the Dunham
method. ' However, since the fit of all potential curves
to a given algebraic expression must be considered as
approximate, the only useful parameters are the
harmonic and the first-order correction terms. This
limits the number of paramters in the function to five
for them to be determinate. Therefore, if the potential
function contains fewer than five parameters, internal
relationships among the spectroscopic constants exist.

The performance of a given function in correlation of
these spectroscopic constants may be used as a first
criterion for reliability of the function. Varshni ' has ex-
amined a selection of the better known three-parameter
functions on this basis, expressing the results graphically
by plotting G=(8a&,x,/8, ) and Ii= (rr,&o,/68, ') against
6= (k,r,s//2D, ) and comparing with the experimental
plots.

A far more stringent test of an empirical potential
function lies in the comparison of the V(r) vs r depend-
ence with the curves for the different states of different
molecules as determined from either the RKR or the
Dunham method. The only published work known to
the authors in which this has been done is the original
work of Rydberg4 and the work of Vanderslice et at. on
the ground state of the hydrogen molecule. ~

In view of the considerable importance of the
empirical functions in supplementing curves obtained
from the RKR and Dunham methods, and in view of
the fact that for many highly excited states of diatomic
molecules, it is the only way at present of obtaining
anywhere near reliable potential curves, a systematic
and thorough comparison of a number of the better-
known and more widely used functions is believed to
be useful. Two criteria exist for testing the validity of
a given expression, as indicated in the foregoing. The
first is the testing of internal correlations resulting from
the use of less than five parameters in a function.
Although Varshni" has carried out fairly extensive
comparisons of this nature, a quantitative reassessment
in terms of average percent deviation is felt to be a

I Y. P. Varshni, Revs. Modern Phys. 29, 664 (1957).
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very useful addition to the problem. This is a strict
test of the validity of the function close to the equi-
librium coniguration, but good results here do not
necessarily mean that the function accurately represents
the potential at small or large internuclear distances.

The second criterion is a comparison of the calculated
curves with those given by the RKR method. Although
the basic procedure, as enunciated by Rydberg, 4 was
published in 193I, no extensive comparisons have been
made. The quantity of experimental data now available
is considerable, thus allowing for such comparisons.
This is a more thorough and satisfying test of the
long-range validity of the function.

The choice of ground states and excited states of
diatomic molecules for which a test of this second
criterion may be carried out is of necessity limited to
molecules to which the RKR method has been applied.
The following 19 examples are used in this comparative
study. These are: the X'Z,+ state of H&,' the X'Z,+
state of I2," the X'Z,+, A'Z„+, u'II„and 8'II, states
of N2 " the X'Zg —,8'Z„—,and A. 'Z„+ states of 02"
the X'Z+, d'&, A'II, PZ—,and a"3+ states of CO;"
the X'II~ and 8'Il states of NO" the X'II; and A'Z+

states of OH;" and the X'Z+ states of HF. '~

EMPIRICAL FUNCTIONS FOR
COMPARATIVE STUDY

Since Varshni" has given a discussion of the different
empirical potential functions as well as of the criteria
which should be satisfied by the functions, we emphasize
only a few salient points.

Most of the proposed potential functions have been
given in closed analytical form and make use of three
parameters. Four- and five- parameter functions have
also been proposed which usually are extensions of
known three-parameter functions. All parameters must
be evaluated in terms of known spectroscopic constants.
Three-parameter functions can be evaluated by the
quantities: equilibrium-bond length r„vibrational
frequency for zero displacement of the nuclei cv„and
bond-dissociation energy from the bottom of the
potential curve D,. The erst two of these quantities
are usually known if the state in question has been
studied experimentally whereas the third D, may or
may not be well known, in which case a three-parameter
function cannot be used to construct the potential curve
unless a reasonably reliable method is available for
predicting D, from interrelations among the spectro-
"R. D. Uerma, J. Chem. Phys. 32, 738 (1960)."J.T. Vanderslice, E. A. Mason, and E. R. Lippincott, J.

Chem. Phys. BO, 129 (1959)."J.T, Vanderslice, K. A. Mason, and W. G. Maisch, J. Chem.
Phys. 32, 515 (1960); 33, 614 (1960).' I. Tobias, R. J. Fallon, and J.T. Vanderslice, J. Chem. Phys.
BB, 1638 (1960)."J.T. Vanderslice, K. A. Mason, and %. G. Maisch, J. Chem.
Phys. 31, 738 (1959)."R.J. Fallon, I. Tobias, and J.T. Vanderslice, J. Chem. Phys.
34, 16'I (1961).

'~ R. J. Fallon, J. T. Vanderslice, and E. A. Mason, J. Chem.
Phys. 32, 698 (1960); 33, 944 (1960).

Ygp= CO,

Vpj=B,
I'p2= —D.
I'ps= H,

V2p= —co,x,
I'gg= —o.,
Vu P. =

I'3p=~.y. I'4p= ~.S&

(10)

Here, the experimentally determined, molecular levels
are given by

&.z= ~.(s+ s)—~.~.(s+s)'+~.y.(s+ s)'
+o).s,(s+s)4+ +BJ(J+1) D„J'(7+1)'—

+H.J'(J+1)'+, (11)'
with B„=B,—n, (v+-,')+y, (s+-,')' and B,=h/Ss'pr, '.
Dunham's method shows that

roP=4aoB. or De=as/6 (12)

oo,x,= (B,/2) L3(as—Sars/4) $
or G= 12 (as —SaP/4) (13)

&o,y, = (B,s/2~, )$10a4—35a&as —17(ass/2)

+ (225ar'as/4) —705ar'/32 1 (14)
—u, = (B,'/co, )$6(1+ar)j or F=1+ar (15)

y.= (6B.'/ro. ') $5+ 10ar 3as+ 5as 13aras- —
+15(ai'+ar')/2j (16)

D,= (4B,s/ro. s),

scopic constants. This has been done with varying
degrees of success for some of the proposed functions.

Five-parameter functions must be evaluated with the
aid of two additional spectroscopic quantities. They
usually are taken as the vibrational anharmonicity
~,x, and the vibrational rotational-coupling constant
n, .These quantities are usually not as well known for a
given state as r, and ~, and, unless a state has been
extensively studied spectroscopically, they may be
unknown or known only with rather doubtful accuracy.

For three-parameter functions, conditions (8) along
with

(d V/dr) „=0
are used with r„co„and D, to compute the three
parameters. The higher derivatives (d'V/dr')„, and
(d'V/dr4) „, can then be used to predict or correlate the
quantities co,x, and 0, For five-parameter functions, the
higher derivatives must be used along with co,x, and n,
to compute the parameters of the function.

In order to demonstrate the relation of the various
spectroscopic constants used in describing the observed
energy levels of a nonrigid, rotating, anharmonic
oscillator to the parameters of any empirical function
which may be expanded in a power series in (r r.), —
it is sufficient to use the method of Dunham. ' If B,/ro,
is suKciently small, which is the usual case, with the
possible exception of hydrides, the F'& s in Eq. (6) are
related to the experimentally determined, molecular.
constants as follows:
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TAsLE II. Molecular constants used in calculations. '

Molecule

H2
I2
N2

02

CO

OH

HF

State

X1Z,+
X1Z,+
XZ+
A'Z„+
a'Qg
8'D g
X'Zg

A8Z„+
X1Z+
d'6
A'lI
e'Z
@~3'+
XIII)
8'll
X'D;
A2Z+
X'Z+

co, (cm ')
4400.39
214.518

2358.07
1460.60
1693.7
1735.42
1580.36

/00. 36
801.0

2169.829
1137.79
1515.61
1093.99
1230.65
1904.03
1036.96
3734.09
3203.28
4137.25

r. (A)

0.74173
2.668
1.0976
1.2867
1.2197
1.2128
1.20740
1.604
1.5183
1.12822
1.3770
1.2351
1.3933
1.3518
1,.1590
1.4176
0.9705
1.0117
0.91717

a, (cm-1)

60.8407
0.03734
1.9987
1.4545
1.6181
1.6375
1.44566
0.819
0.9142
1.9312
1.296
1.6116
1.2663
1.3453
1.6809
1.1226

18.867
17.358
20.946

co,x, (cm ')

120.815
0.612/

14.188
13.851
13.825
15.198
12.0730
8.0023

13.81
13.295

'/. 624
17.2505
9.578

11.0130
13.97
7.603

82.665
113.85
88.726

u. (cm-')

3.0177
1.208X10 4

0.0171
0.01798
0.0183
0.01794
0.01579
0.011
0.0165
0.0175
0.0171
0.02229
0.0179
0.01872
0.0174
0.0121
0.708
0.7868
0.7888

D, (ev)

4.7467
1.55/1
9.902
3.690
6.07
4.90
5.2129
1.005
0.8239

11.245
3.516
3.175
3.147
4.324
6.609
3.29
4.624
2.53
6.114

a These constants are consistent with the data used in the calculation of the experimental-potential curves by the RKR method. The references to the
original data are given in references (7), (11)-(17).

where, following Varshni, "we de6ne

F=, ,/6B.', G=8 .*./~. (18)

and A=A,r,s/2D, . Additional relations are available
relating higher-order terms.

By expanding any proposed function in a power
series of the form of (7), one has a convenient method
of relating the parameters of the function to the known,
spectroscopic constants. Also, it is convenient to
use Eqs. (12) to (17) to evaluate any additional
spectroscopic quantities not used in determining the
parameters.

We have chosen nine empirical functions for this
comparative study of internuclear potentials. Each
function is evaluated for its ability to reproduce the
potential curve as determined by the RKR method and
for its ability to predict co,x, and n, or other spectro-
scopic quantities such as bond-dissociation energy.
After careful consideration of all proposed functions
known to us, we have selected the following for con-
sideration. ' Morse"; Hulburt-Hirschfelder"; Rosen-
Morse"' Rydberg'; Poschl-Teller". Linnett" Irost-
Musulin" Varshni" ' and Lippincott. '~" Several

"P.M. Morse, Phys Rev. 34, 57 (1929).
'QH. M. Hulburt and J. O. Hirschfelder, J. Chem. Phys. 9,

61 (1941).
'0 N. Rosen and P. M. Morse, Phys. Rev. 42, 210 (1932}.
'!G. Poschl and E. Teller, Z. Physik 83, 143 (1933)."J.W. Linnett, Trans. Faraday Soc. 36, 1123 (1940); 38, 1

(1942).
"A. A. Frost and B.Musulin, J. Chem. Phys. 22, 1017 (1954);

J. Am. Chem. Soc. 76, 2045 (1954).
n E. R. Lippincott, J. Chem. Phys. 21, 2070 (1953).
'5 E. R. Lippincott and R. Schroeder, J. Chem. Phys. 23, 1131

(1955); J. Am. Chem. Soc. 78, 5171 (1956); J. Phys. Chem. 61,
921 (1957).' K. R. Lippincott and M. O. Dayhoff, Spectrochim. Acta 16,
807 (1960); E. R. Lippincott, J. Chem. Phys. 26, 1678 (1957).

'7 K. R. Lippincott, D. Steele, and P. Caldwell, J. Chem. Phys.
35, 123 (1961).

'sD. Steele and E. R. Lippincott, J. Chem. Phys. 35, 2065
(1961).

factors a6ected this selection, including: known
performance, form of the function, ability to correlate
spectroscopic quantities, number of parameters, etc.
The selection covers a suKciently wide range of types
so as to make an effective comparative study of
empirical potential functions.

Table I summarizes the necessary information on
these potential functions. The relations between the
parameters and the spectroscopic constants were
obtained from Eqs. (8) and (9). The predicted expres-
sions for n, and co,x, for each potential function were
obtained from Eqs. (12) to (17).The results in Table I
agree with those of Varshni" except for the Linnett
and Lippincott functions. 29

Varshni" has proposed a number of functions for
consideration as empirical internuclear potentials. We
have used his III function in the comparison study here
since it appears to be the best over-all function of
those he proposed "

The spectroscopic data needed for the evaluation of
the parameters of the potential curves are given in
Table II.

RESULTS

The results of this comparative study are shown in
Tables III to XXIV. Tables III to XXI show the
comparison between the RKR and various empirical
potential curves for all the molecular states considered.
Tables XXII and XXIII give a comparison between
the calculated and observed values of ~,x, and n,
for the various functions. Table XXIV gives a summary
of the results showing the average percent errors from
the experimental values for co,x, and n, and the average
percent error for the quantity (~ V—VQKa~)/D. for

29 Varshni's expressions for 0., in the case of the Linnett and
Lippincott functions dier from the ones given above. Varshni
(private communication) agrees that the above expressions are
the correct ones. LSee also Revs. Modern Phys. 31, 839 (1959)j.
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TABLE III. Results of potential-curve calculations for X'Z,+ state of H2. '

.(A)

0.4109
0.4319
0.4597
0.5088
0.6337
0.8833
1.2186
1.5148
1.8524
2.3748
2.2835
4.23
6.35

RKR (ev)

4.729
3.880
2.935
1.730
0.269
0.269
1.730
2.935
3.880
4.522
4.729
4.745
4.747

Morse

3.868
3.243
2.533
1.558
0.259
0.275
1.734
2.870
3.715
4.358
4,679
4.736
4.747

4.652
3.823
2.913
1.724
0.268
0.270
1.724
2.902
3.782
4.413
4.690
4.737
4.747

3.680
3.097
2.435
1.508
0.256
0.279
1.790
2.975
3.838
4.454
4.712
4.743
4.747

Hulburt-
Hirschfelder Rydberg

Poschl-
Teller

4.854
3.950
2.982
1.745
0.269
0.269
1.687
2.815
3.672
4339
4.676
4.735
4.747

6.918
4.745
3.930
2.154
0.291
0.250
1.450
2395
3.183
3.931
4.491
4.673
4.744

5.787
4.629
3.421
1.938
0.279
0.261
1.608
2.721
3.628
4.371
4.712
4.745
4.747

Linnett Varshni
Rosen-
Morse

3.189
2.721
2.172
1.384
0.248
0.287
1.869
3.084
3.924
4.489
4.714
4.743
4.747

Lippincot t

4.187
3.498
2.716
1.648
0.264
0.273
1.757
2.959
3.846
4.467
4.714
4.743
4.747

Frost-
Musulin

4.946
4.038
3.054
1.790
0.272
0.264
1.608
2.667
3.500
4.205
4.626
4.722
4.747

& The energies given in Tables III—XXI are in ev.

TABLE IV. Results of potential-curve calculations for X'Z,+ state of I2.

r (A) RKR (ev) Morse
Hulburt-

Hirschfelder Rydberg
Poschl-
Teller Linnett Varshni

Rosen-
Morse Lippincott

Frost-
Musulin

2.288
2.292
2.309
2.336
2.423
3.056
3.389
3.671
4.448
6.522
8.814

1.500-1.556
1.493
1.245
0.977
0.465
0.465
0.977
1.245
1.493
1.551
1.556

1.637
1.589
1.399
1.131
0.517
0.411
0.848
1.111
1.445
1.555
1.557

1.521
1.475
1.297
1.048
0.482
0.452
0.951
1.231
1.501
1.555
1.557

1.548
1.504
1.328
1.080
0.500
0.422
0.879
1.151
1.475
1.556
1.557

1.634
1.587
1.398
1.130
0.517
0.411
0.848
1.111
1.445
1.555
1.557

1.285
1.251
1.114
0.919
0.446
0.506
1.204
1.732
2.598
2.602
2.106

1.458
1.417
1.256
1.027
0.483
0.436
0.914
1.194
1.502
1.557
1.557

1.603
1.561
1.372
1.107
0.503
0.404
0.840
1.104
1.438
1.55
1.55

1.451
1.412
1.255
1.029
0.487
0.445
0.945
1.216
1.474
1.555
1.557

1.593
1.545
1.363
1.105
0.507
0.417
0.866
1.135
1.464
1.556
1.557

TABLE V. Results of potential-curve calculations for X'Z,+ state of N2.

r (A) RKR (ev) Morse
Hulburt-

Hirschfelder Rydb erg
Poschl-
Teller Linnett Varshni

Rosen-
Morse Lippincott

Frost-
Musulin

0.896
0.919
0.942
0.983
1.027
1.185
1.261
1.358
1.447
1.528

5.021
3.865
2.618
1.280
0.435
0.435
1.280
2.618
3.865
5.021

5.128
3.764
2.673
1..290
0.433
0.434
1.252
2.510
3.675
4.656

4.925
3.624
2.582
1.256
0.426
0.443
1.297
2.639
3.893
4.949

4.926
3.634
2.595
1.263
0.427
0.439
1.277
2.580
3.795
4.820

5.166
3.784
2.685
1.294
0.434
0.435
1.251
2.507
3.671
4.651

5.181
3.791
2.684
1.289
0.431
0.436
1.267
2.573
3.811
4.883

4.801
3.551
2.543
1.244
0.424
0.445
1.305
2.662
3.941
5.025

4.950
3.673
2.618
1.272
0.432
0.432
1.267
2.559
3.740
4.742

4.854
3.597
2.576
1.258
0.426
0.444
1.303
2.678
3.988
5.102

5.207
3.809
2.704
1.302
0.429
0.430
1.245
2.503
3.668
4.653

TABLE VI. Results of potential-curve calculations for the A'Z„+ state of No.

r (A)

1.046
1.089
1.145
1.203
1.405
1.503
1.633
1.756

RK.R (ev)

2.257
1.564
0.780
0.268
0.268
0.780
1.564
2.257

Morse

3.181
1.886
0.822
0.243
0.281
0.733
1.379
1.924

2.968
1.772
0.783
0.236
0.291
0.778
1.486
2.082

3.023
1.813
0.800
0.239
0.285
0.752
1.424
1 994

Hulburt-
Hirschfelder Rydb erg

Poschl-
Teller

3.194
1.892
0.824
0.244
0.280
0.733
1.378
1.923

2.973
1.780
0.784
0.235
0.291
0.784
1.533
2.210

2.878
1.741
0.778
0.236
0.291
0.775
1.483
2.086

Linnett Varshni
Rosen-
Morse

3.066
1.838
0.804
0.233
0.286
0.745
1.399
1.950

Lippincott

2.910
1.771
0.791
0.238
0.290
0.779
1.507
2.129

Frost-
Musulin

3.178
1.884
0.821
0.242
0.279
0.736
1.389
1.942
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TABLE VII. Results of potential-curve calculations for u'lI, state of¹.
r (A) RKR (ev) Morse

Hulburt-
Hirschfelder Rydberg

Poschl-
Teller Linnett Varshni

Rosen-
Morse Lippincott

Frost-
Musulin

1.013
1.036
1.077
1.139
1.325
I.445
1.564
4.655

2.686
2.016
1.103
0.311
0.311
1.103
2.016
2.686

2.69
2.00
1.08
0.30
0.32
1.10
1.99
2.63

2.70
2.00
1.08
0.29
0.32
1.11
2.01
2.67

2.59
1.93
1.06
0.29
0.32
1.13
2.05
2.72

2.70
2.00
1.09
0.30
0.32
1.10
1.99
2.63

2.69
1.99
1.08
0.30
0.32
1.13
2.07
2.77

2.52
1.89
1.04
0.29
0.33
1.16
2.13
2.84

2.61
1.95
1.07
0.30
0.33
1.13
2.03
2.69

2.55
1.91
1.05
0.29
0.33
1.16
2.15
2.88

2.72
2.02
1.09'
0.30
0.32
1.10
1.99
2.63

TABLE VIII. Results of potential-curve calculations for 8'lI, state of N2.

0.983
1.006
I.037
1.082
1'.132
1.316
1.409
1.531
1.644
1.760

RKR (ev)

3.500
2.738
1.880
0.932
0.319
0.319
0.932
1.880
2.738
3.500

4.05
3.05
2.01
0.97
0.32
0.31
0.88
1.71
2.42
3.02

3.65
2.78
1.85
0.92
0.31
0.32
0.93
1.84
2.61
3.25

3.85
2.92
1.94
0.95
0.31
0.32
0.90
1.77
2.51
3.14

Hulburt-
Hirschfelder Rydberg

Poschl-
Teller

4.07
3.06
2.01
0.97
0.32
0.31
0.88
1.71
2.42
3.02

3.84
2.91
1.92
0.94
0.32
0.32
0.93
1.87
2.73
3.49

3.67
2.80
1.87
0.92
0.31
0.32
0.93
1.84
2.62
3.28

Linnett Varshni
Rosen-
Morse

3.89
2.94
1.95
0.95
0.32
0.32
0.90
1.74
2.46
3.06

Lippincot t

3.72
2.85
1.90
0.94
0.31
0.32
0.93
1.87
2.67
3.34

Frost-
Musulin

4.06
3.05
2.00
0.97
0.32
0.31
0.88
1.72
2.44
3.05

TABLE IX, Results of potential-curve calculations for I'Zg state of 02.

r (A)

0.979
1.022
1.067
I.158
1.262
1.422
1.556
1.662
1.768

RKR (ev)

3.551
2.063
1.034
0.098
0.098
1.034
2.063
2.844
3.551

Morse

3.623
2.108
1.063
0.108
0.095
0.983
1.900
2.561
3.125

3.590
2.076
1.046
0.101
0.096
1.021
2.001
2.711
3.310

3.461
2.034
1.037
0.102
0.096
1.007
1.961
2.652
3.240

Hulburt-
Hirschfelder Rydberg

Poschl-
Teller

3.642
2.114
1.066
0.102
0.094
0.982
1.898
2.559
3.123

3.570
2.085
1.067
0.119
0.110
1.035
2.040
2.800
3.476

3.330
1.972
1.013
0.101
0.095
1.036
2.040
2.771
3.392

Linnett Varshni
Rosen-
Morse

3.483
2.037
1.037
0.094
0.094
0 994
1.929
2.600
3.171

Lippincott

3.371
2.004
1.028
0.102
0.096
1.039
2.067
2.820
3.447

Frost-
Musulin

3.656
2.121
1.068
0.104
0.095
0.984
1.905
2.573
3.143

TABLE X. Results of potential-curve calculations for J3'Z state of 02.

f.334
I.356
1.405
1.531
1.683
1.962
2.232
2.865

0.956
0.749
0.441
0.043
0.043
0.441
0.749
0.956

1.132
0.895
0.499
0.047
0.037
0.382
0.666
0.938

r (A) RKR (ev) Morse

0.942
0.745
0.423
0.044
0.039
0.460
0.798
0.995

1.069
0.850
0.480
0.046
0.037
0.395
0.691
0.956

Hulburt-
Hirschfelder Rydberg

Poschl-
Teller

1.133
0.894
0.498
0.047
0.037
0.382
0.666
0.938

0.946
0.759
0.436
0.046
0.039
0.467
0.908
1.439

1.003
0.802
0.459
0.046
0.037
0.411
0.720
0.975

Linnett Varshni
Rosen-
Morse

1.129
0.893
0.503
0.053
0.041
0.389
0.674
0.945

Lippincott

1.005
0.808
0.465
0.046
0.037
0.421
0.735
0.957

Frost-
Musulin

1.110
0.879
0.491
0.046
0.036
0.387
0.679
1.005

all points considered for all states of all molecules for
each function, along with the same quantity for values
of r&r, .

Some functions show an average performance which
is distinctly superior to others. The 6ve-parameter
Hulburt-Hirschfelder gives an average error of about
1.5% in (~ V—V@ @~)/KD„while the better three-
parameter functions give average errors of 2% to 3'Po

in this same quantity. However, no one function is
best for all molecular states considered, nor can we
predict a priori which function will give the more
correct potential for a restricted range of r. Furthermore,
it is easy to see from Tables III to XXI that no one
function gives consistent positive or negative deviations
from the experimental curves for a given value of r/r, .

The empirical potentials give better average
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TABLE XI. Results of potential-curve calculations for A'Z + state of 0&.

r (A)

1.300
1.318
1.350
1.410
1.668
1.823
1.984
2.247

RKR (ev)

0.783
0.629
0.409
0.145
0.145
0.409
0.629
0.783

Morse

0,985
0.775
0.485
0.158
0.130
0.341
0.518
0.690

Hulburt-
Hirschfelder

0.824
0.650
0.413
0.141
0.146
0.404
0.612
0.770

Rydb erg

0.929
0.735
0.465
0.154
0.133
0.353
0.538
0.711

Poschl-
Teller

0.987
0.777
0.487
0.158
0.131
0.341
0.518
0.690

0.751
0.604
0.394
0.139
0.153
0.462
0.790
1.206

0.872
0.695
0.445
0.150
0.136
0.366
0.559
0.732

Linnett Varshni
Rosen-
Morse

0.972
0.763
0.479
0.153
0.130
0.337
0.513
0.688

Lippincott

0.863
0.692
0.446
0.151
0.138
0.378
0.575
0.728

Frost-
Musulin

0.954
0.753
0.474
0.156
0.132
0.348
0.530
0.704

TABLE XII. Results of potential-curve calculations for X'Z+ state of CO.

r (A) RKR (ev) Morse
Hulburt-

Hirschfelder Rydberg
Poschl-
Teller Linnett Varshni

Rosen-
Morse Lippincott

Prost-
Musuhn

0.901
0.923
0.952
0.997
1.054
1.220
1.322
1.438
1.544
1.649

5.428
4.211
2.878
1.430
0.400
0.400
1.430
2.878
4.211
5.428

5.283
4.081
2.802
1.392
0.389
0.407
1.452
2.916
4.258
5.475

5.480
4.211
2.873
1.416
0.392
0.404
1.437
2.881
4.207
5.416

5.086
3.945
2.723
1.364
0.384
0.411
1.482
2.998
4.398
5.671

5.357
4.127
2.827
1.401
0.390
0.405
1.448
2.907
4.246
5.461

5.611
4.291
2.913
1.429
0393
0.402
1.431
2.883
4.227
5.469

5.059
3.921
2.706
1.356
0.383
0.414
1.505
3.074
4.539
5.880

5.048
3.930
2.718
1.369
0.392
0.413
1.481
2.986
4.372
5.627

5.052
3.927
2.716
1.362
0.384
0.413
1.507
3.096
4.595
5.967

5.439
4.181
2.856
1.411
0.395
0.408
1.440
2.889
4.218
5.424

TABLE XIII. Results of potential-curve calculations for the d'6 state of CO.

r (A)

1.097
1.119
1.151
1.204
1.277
1.506
1.657
1.837
1.991
2.122

RKR (ev)

2.367
2.000
1.475
0.744
0.209
0.209
0.744
1.475
2.000
2.367

Morse

2.411
1.944
1.385
0.718
0.203
0.207
0.722
1.391
1.893
2.246

2.715
2.141
1.484
0.744
0.205
0.210
0.754
1.497
2.064
2.455

2.305
1.865
1.336
0.699
0.201
0.210
0.740
1.437
1.962
2.328

Hulburt-
Hirschfelder Rydb erg

Poschl-
Teller

2.430
1.956
1.391
0.720
0.204
0.207
0.720
1.389
1.891
2.244

2.443
1.962
1.392
0.720
0.203
0.209
0.738
1.450
2.006
2.411

2.239
1.815
1.304
0.686
0.198
0.213
0.761
1.484
2.049
2.435

Linnett Varshni
Rosen-
Morse

2.308
1.869
1.343
0.705
0.204
0.213
0.738
1.422
1.934
2.299

Lippincott

2.265
1.840
1.325
0.697
0.201
0.211
0.764
1.514
2.082
2.470

Frost-
Musulin

2.452
1.973
1.400
0.722
0.204
0.207
0.719
1.388
1.894
2.249

TABLE XIV. Results of potential-curve calculations for A'll state of CO.

r (A)

1.003
1.021
1.050
1.085
1.148
1.348
1.484
1.599
1.744
1.867

RKR (ev)

2.742
2.275
1.591
0.967
0.276
0.276
0.967
1.591
2.275
2.742

Morse

3.276
2.625
1.782
1.045
0.288
0.265
0.887
1.412
1.957
2.303

2.939
2.369
1.627
0.970
0.276
0.277
0.966
1.537
2.124
2.475

3.101
2.497
1.709
1.012
0.283
0.269
0.913
1.461
2.029
2.385

Hulburt-
Hirschfelder Rydberg

Poschl-
Teller

3.285
2.630
1.784
1.045
0.289
0.266
0.888
1.412
1.956
2.303

2.952
2.384
1.636
0.972
0.275
0.279
0.988
1.642
2.383
2.894

2.927
2.370
1.635
0.977
0.277
0.275
0.946
1.525
2.123
2.490

Linnett Varshni
Rosen-
Morse

3.227
2.593
1.764
1.041
0.286
0.258
0.884
1.415
1.967
2.314

Lippincott

2.950
2.399
1.662
0.994
0.280
0.274
0.957
1.558
2.165
2.515

Frost-
Musulin

3.257
2.608
1.773
1.043
0.289
0.266
0.895
1.428
1.982
2.333

percentage deviations from the RKR curves for r)r„
as shown in the fourth row of Table XXIII where the
better functions give an average error between 1 and 2%
in dissociation energy. This is not unexpected since, for
r&r., a small change in r gives a large change in V.
There are not many states for which data are available

for a comparison of the function for large r, the region
of importance in the calculations of macroscopic
properties that depend on collision phenomena like the
transport properties. Although there are not many
examples in Tables III to XXI where the RKR curves
are available for r&&r„ the indications are that the
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TABLE XV. Results of potential-curve calculations for e'Z state of CQ.

r (A) RKR (ev) Morse
Hulburt-

Hirschfelder Rydberg
Poschl-
Teller Linnett Varshni

Rosen-
Morse Lippincott

Frost-
Musulin

1.124
1.147
1.176
1.217
1.292
1.527
1.681
1.806
1.924
2.042

2.014
1.616
1.182
0.710
0.201
0.201
0.710
1.182
1.616
2.014

2.031
1.60g
1.169
0.69g
0.194
0.203
0.688
1.114
1.486
1.810

2.172
1.697
1.216
0.715
0.195
0.205
0.706
1.158
1.557
1.905

1.944
1.546
1.130
0.681
0.191
0.206
0.706
1.150
1.539
1.877

2.046
1.618
1.174
0.701
0.194
0.203
0.687
1.113
1.485
1.809

2.031
1.604
1.163
0.694
0.194
0.205
0.709
1.167
1.582
1.954

1.882
1.501
1~ 100
0.666
0.189
0.209
0.730
1.194
1.606
1.963

1.956
1.559
1.138
0.681
0.189
0.195
0.689
1.124
1.505
1.834

1.902
1.520
1.116
0.675
0.191
0.208
0.730
1.208
1.631
1.994

2.059
1.625
1.179
0.705
0.195
0.204
0.688
1.114
1.489
1.815

TABLE XVI. Results of potential-curve calculations for c"Z+ state of CQ.

1.075
1.094
1.119
1.164
1.257
1.479
1.681
1.846
1.981
2.122

2.907
2.397
1.829
1.071
0.226
0.226
1.071
1.829
2.397
2.907

2.692
2.236
1.723
1.013
0.210
0.238
1.078
1.805
2.326
2.780

r (A) RKR (ev) Morse
Hulburt-

Hirschfelder

3.044
2.494
1.890
1.060
0.216
0.234
1,056
1.778
2.305
2.7'?0

Rydb erg

2.578
2.149
1,663
0.985
0.207
0.241
1.108
1.867
2.411
2.882

Poschl-
Teller

2.720
2.255
1.736
1.019
0.211
0.238
1.076
1.802
2.323
2.777

Linnett

2.775
2.295
1.759
1.027
0.213
0.238
1.093
1.854
2.419
2.926

Var shni

2.523
2.104
1.630
0.969
0.206
0.244
1.141
1.939
2.515
3.011

Rosen-
Morse

2.5'?4
2.147
1.663
0.986
0.208
0.236
1.095
1.839
2.371
2.831

Lippincott

2.534
2.120
1.647
0.980
0.207
0.243
1.147
1.965
2.554
3.048

Frost-
Musulin

2.749
2.279
1.751
1.025
0.211
0.238
1.074
1.798
2.322
2.778

TA'BLE XVII. Results of potential-curve calculations for the X'II~ state of NQ.

0.929
0 949
0.982
1.026
1.113
1.210
1.360
1.486
1.623
1.725

4.582
3.774
2.485
1.246
0.118
0.118
1.246
2.485
3.774
4.582

5.116
4.015
2.586
1.282
0.120
0.113
1.188
2.319
3.427
4.109

r (A) RKR (ev) Morse

5.031
3.937
2.530
1.257
0.119
0.114
1.232
2.440
3.626
4.342

4.876
3.847
2.496
1.251
0.119
0.114
1.217
2.394
3.552
4.260

Hulburt-
Hirschfelder Rydberg

Poschl-
Teller

5.149
4.035
2.596
1.286
0.118
0.111
1.187
2.316
3.424
4.106

Linnett

5.018
3.934
2.535
1.260
0.117
0.112
1.233
2.469
3.743
4.563

Varshni

4.689
3.712
2.422
1.223
0.118
0.115
1.251
2.488
3.713
4.459

Rosen-
Morse

4.907
3.868
2.505
1.258
0.111
0.113
1.198
2.340
3.472
4.156

Lippincott

4.734
3.767
2.392
1.242
0.118
0.112
1.252
2.518
3.776
4.525

Frost-
Musulin

5.166
4 049
2.599
1.289
0.121
0.112
1.189
2.324
3.442
4.131

TABLE XVIII. Results of potential-curve calculations for the 8'll state of NQ.

r (A) RKR (ev) Morse
Hulburt-

Hirschfelder Rydberg
Poschl-
Teller Linnett Varshni

Rosen-
Morse Lippincott

Frost-
Musulin

1.130
1.188
1.239
1.356
1.488
1.690
1.831
1.962
2.068

2.184
1.258
0.681
0.064
0.064
0.681
1.258
1.793
2.184

2.32
1.29
0.70
0.064
0.063
0.63
1.12
1.54
1.84

2,22
1.24
0.67
0.063
0.064
0.67
1.21
1.67
2.00

2.21
1.25
0.68
0.064
0.064
0.65
1.16
1.60
1.91

2.33
1.30
0.70
0.065
0.063
0.63
1.12
1.54
1.84

2.33
1.29
0.70
0.064
0.064
0.65
1.17
1.63
1.97

2.15
1.22
0.66
0.063
0.064
0.67
1.20
1.66
1.99

2.22
1.25
0.68
0.064
0.064
0.64
1.14
1.57
1.88

2.17
1.23
0.67
0.063
0.064
0.67
1.21
1.69
2.03

2.35
1.31
0.70
0.063
0.062
0.63
1.12
1.54
1.84

percentage errors in the interaction energy V—D,
will be large in this region and that the various func-
tions will retain, for the most part, the same relative
performance.

The average percent errors for n, and co,x, shown in
Table XXIV indicate that a good fit with the RKR

curves may sometimes mean a satisfactory prediction
of n, and or,x„but this is not general for all functions.
For example, this seems to hold for the I.innett and
Iippincott functions and to a lesser extent with the
Rydberg function, but does not hold for the Varshni III
function which gives good correlation with the RKR



248 STEELE, L I P P IN COTT, AN D VAN DE RSL I CE

TABLE XIX. Results of potential-curve calculations for X'II; state of OH.

r (A)

0.702
0.731
0.777
0.831
1.179
1.329
1.538
1.760

RKR (ev)

3.478
2.580
1.495
0.672
0.672
1.495
2.580
3.478

Morse

3.348
2.477
1.442
0.657
0.668
1.452
2.449
3.235

3.550
2.590
1.482
0.666
0.674
1.482
2.523
3.337

3.194
2.377
1.397
0.643
0.682
1.497
2.538
3.351

Hulburt-
Hirschfelder Rydb erg

Poschl-
Teller

3.479
2.553
1.473
0.666
0.664

2.438
3.224

3.931
2.831
1.589
0.699
0.641
1.379
2.332
3.115

3.352
2.469
1.432
0.651
0.685
1.518
2.601
3.455

Linnett Varshni
Rosen-
Morse

3.065
2.299
1.364
0.633
0.682
1.500
2.537
3.337

Lippincott

3.182
2.379
1.403
0.646
0.691
1.541
2.649
3.493

Frost-
Musulin

3.579
2.618
1.501
0.674
0.657
1.423
2.398
3.179

TABLE XX. Results of potential-curve calculations for A'Z+ state of OH.

r (A)

0.752
0.777
0.809
0.863
1.244
1.428
1.614
2.038

2.394
1.797
1.233
0.565
0.565
1.233
1.797
2.394

2.50
1.90
1.29
0.60
0.54
1.13
1.61
2.21

RKR (ev) Morse

2.19
1.69
1.18
0.56
0.56
1.19
1.68
2.25

2.37
1.81
1.24
0.58
0.55
1.17
1.67
2.27

Hulburt-
Hirschfelder Rydberg

Poschl-
Teller

2.55
1.93
1.30
0.59
0.54
1.13
1.61
2.21

2.70
2.02
1.35
0.61
0.54
1.14
1.66
2.34

2.35
1.79
1.23
0.57
0.56
1.22
1.74
2.34

Linnett Varshni
Rosen-
Morse

2.33
1.78
1.23
0.57
0.55
1.16
1.65
2.24

Lippincott

2.31
1.78
1.23
0.58
0.57
1.23
1.76
2.32

Frost-
Musulin

2.60
1.96
1.32
0.61
0.53
1.13
1.61
2.21

TABLE XXI. Results of potential-curve calculations for the X'Z+ state of HF.

0.623
0.639
0.662
0.716
0.786
1.115
1.317
1.633
1.922
2.555

RKR (ev)

5.987
5.079
3.951
2.092
0.745
0.745
2.092
3.951
5.079
5.987

Morse

5.190
4.462
3.549
1.938
0.699
0.772
2.116
3.873
4.870
5.796

Hulburt-
Hirschfelder

6.015
5.104
3.988
2.100
0.729
0.755
2.074
3.848
4.876
5.811

Rydberg

4.935
4.258
3.404
1.877
0.685
0.788
2.184
4.015
5.030
5.894

Poschl-
Teller

5.530
4.724
3.722
1.999
0.710
0.766
2.099
3.852
4.855
5.791

6.578
5.539
4.285
2.210
0.751
0.730
1.962
3.609
4.618
5.695

5.471
4.667
3.678
1.974
0.703
0.783
2.188
4.086
5.154
5.982

Linnett Varshni
Rosen-
Morse

4.616
4.004
3.225
1.804
0.666
0.795
2.208
4.033
5.026
5.870

Lippincott

4.930
4.267
3.423
1.893
0.690
0.794
2.240
4.167
5.180
5.935

Frost-
Musulin

5.724
4.879
3.838
2.045
0.721
0.755
2.055
3.767
4.770
5.749

TABLE XXII. Comparison of observed values of ~,x. with calculated values for various functions.

Mole-
cule

H2
I2
N2

02

CO

NO

OH

HF

State

X~Z,+
X~z,+
Xiz+
A3Z„+
a~IIg
8'IIg
X3Zg
83z„-
ASZ„+
X~z+
d'6
A'II
e'Z
gag+
X2II)
82II
X'II;
A'Z+
Xix+

COeXe

(observed)

120.815
0.6127

14.188
13.851
13.825
15.198
12.0730
8.0023

13.81
13.295
7.624

17.2505
9.578

11.0130
13.97
7.603

82.665
113.85
88.726

Morse

126.545
0.9165

17.4126
17.9278
14.6494
19.0633
14.8517
15.1264
24.1387
12.9777
11.4141
22.4280
11.7890
10.8575
17.0042
10.1253
93.4369

125.642
86.8172

Rosen-
Morse

84.5915
0.9039

15.8476
16.9588
13.3998
17.8997
13.7959
14.7357
23.861
11.3698
10.4383
21.4432
10.8218
9.7597

15.7364
9.3063

77.545
111.419
69.418

Rydberg

116.00
0.8402

15.9616
16.4339
13.4287
17.4748
13.6141
13.8659
22.1272
11.8963
10.4630
20.5591
10.8066
9.9527

15.5872
9.2816

85.6508
115.172
79.5827

Poschl-
Teller

126.545
0.9165

17.4126
17.9278
14.6494
19.0633
14.8517
15.1264
24.1387
12.9777
11.4141
22.4280
11.7890
10.8575
17.0042
10.1253
93.4369

125.642
86.8172

Linnett

197.73
0.41521

15.6394
13.2889
12.9074
14.626
12.240
8.5264

10.310
13.099
10.060
15.393
10.240
10.115
14.242
8.7464

105.76
122.92
104.49

Frost-
Musulin

148.78
0.87153

17.389
17.527
14.591
18.690
14.676
14.475
18.293
13.227
11.369
21.762
11.654
10.904
16.827
10.057
98.429

101.81
91.293

Var shni

178.49
0.84863

17.748
17.595
14.864
18.814
14.850
14.362
22.476
13.684
11.582
21.758
11.922
11.172
17.059
10.277

103.22
131.39
98.993

Lippincott

117.71
0.7016

13.810
13.994
11.595
14.913
11.682'
11.653
18.453
10.458
9.0343'-

17.429
9.3178
8.6483

13.394
7.9991

77.162
100.75
72.974
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TABLE XXIII. Comparison of observed values of 0!cwith calculated values for various functions.

Mole-
cule

H2
I2
N2

02

CO

NO

OH

HF

State

Xix +
XIZ +
Xly +
A'Z„+
a'Hg
83rr
X3Z;
8'z
A3Z„+
Xly+
d'6
A'll
e'Z
tl Z
X2IIg
82II
X2II;
A Z+
XIZ+

(observed)

3.0177
0.0001208
0.01'?1
0.01798
0.0183
0.01794
0.01579
0.011
0.0165
0.0175
0.0170
0.02229
0.0179
0.01872
0.01781
0.0116
0.708
0.7868
0.7888

Morse

2.2319
0.000154
0.01983
0.02182
0.01863
0.02236
0.01749
0.01894
0.02590
0.01642
0.01685
0.02807
0.01803
0.01624
0.01976
0.013851
0.70089
0.9539
0.6590

Rosen-
Morse

0.9074
0.00015
0.01846
0.02099
0.01742
0.02141
0.01658
0.01863
0.02572
0.01471
0.01575
0.02723
0.01692
0.01497
0.01867
0.01300
0.5881
0.8657
0.5226

Rydberg

1.8156
0.000143
0.01812
0.02007
0.01703
0.02055
0.01604
0.01753
0.02406
0.01489
0.01540
0.02588
0.01650
0.01481
0.01810
0.01267
0,6281
0.8671
0.5850

Poschl-
Teller

3.0936
0.000154
0.02000
0.02187
0.01876
0.02243
0.01758
0.01896
0.02591
0.01672
0.01697
0.02811
0.01815
0.01641
0.01986
0.01394
0.7310
0.9681
0.7040

Linnett

5.4483
0.000092
0.01939
0.01827
0.01791
0.01922
0.01591
0.01308
0.01496
0.01'?96
0.015286
0.02222
0.01713
0.01641
0.01821
0.01309
0.8806
1.01068
1.10725

Frost-
Musulin

3.5831
0.001482
0.02020
0.02161
0.01890
0.02222
0.01756
0.01835
0.02485
0.01724
0.01709
0.02760
0.01825
0.01667
0.01987
0.01400
0.7781
0.9920
0.7501

Varshni

4.1481
0.000131
0.01656
0.01808
0.01552
0.01852
0.01451
0.01587
0.02208
0.01406
0.01403
0.02330
0.01501
0.01363
0.01640
0.01152
0.6429
0.8091
0.6478

Lippincott

2.7053
0.0001334
0.01743
0.01904
0.01635
0.01953
0.01532
0.01644
0.0224
0.01452
0.01479
0.02445
0.01582
0.01429
0.01731
0.01215
0.6269
0.8422
0.5946

TAnLE X&pj. Average error (%%uo) for the quantities ~,x„o.e~ D VRKR l'l/D. j.u, and

P~ p'nKa —p
~ /D, g„&„,for various potential functions.

a)c&c

e
(I &RKR p'I/D. gai

r

flvRKR Ul/Degr&r.

26.93
19.67
3.68

3.20

~ ~ ~

1.51

21.24
22.33
3.71

2.80

Hulburt- Rosen-
Morse Hirschfelder Morse Rydberg

19.71
17.45
2.94

2.27

Poschl-
Teller

26.93
18.47
3.48

3.28

Linnett

14.94
15.55
4.18

5.07

Frost-
Musulin

24.29
23.55
3.41

3.30

28.94
15.57
2.28

1.68

12.18
13.80
2.17

Varshni Lippincott

curves but is the poorest of all functions in predicting
~,x,. This latter function would then be a poor one to
predict dissociation values using r„co„and ~,x,. On
the other hand, a study of Tables III to XXI shows
that a function which predicts good values of co,x,
and n, does not necessarily show good agreement with
the RKR results. This is particularly true of the
Linnett function.

We can summarize as follows. The Hulburt-Hirsch-
felder curve, being a five-parameter function, gives the
best average results and in general gives the best or
near the best fit of the potential for all the cases studies.
However, for values of r)r„ the Lippincott function
gives equally good results. The Morse-Rosen-Morse
and the Poschl-Teller give very similar results. The
Linnett curve (m= 3) gives good predictions for
co,x, and n, for many states, and, in general, gives a
good representation of the RKR curves for these same
states. Nevertheless, its average performance is the
worst and in many cases it predicts maxima in a
potential curve where none exist or are expected to
exist. The Frost-Musulin potential does not give any
appreciable improvement over the Morse curve, whereas
the Rydberg potential is a distinct improvement. The
Varshni III and Lippincott functions, the best of the
three-parameter functions in fitting the RKR results,
both give good predictions of o, On the other hand, the

Lippincott function gives fairly reliable predictions of
co,cc, (or D, from co,x.), while the Varshni III function
does not.

DISCUSSION

It is desirable to investigate the possibility that an
empirical function can be proposed which will yield
curves for any state of any molecule to an accuracy of
less than 1% in bond-dissociation energy. There seem
to be two justifiable approaches to this problem. One is
to consider the expressions for E obtained from quan-
tum-mechanical calculations of potential curves for
various diatomic molecules. If these expressions were
similar for the various states of different molecules,
then presumably one could arrive at suitable potential
forms which would have some basis in fact. Unfor-
tunately, in order to obtain reliable values of E, for
even the simplest systems, one has to use 40- and
50-term wave functions' which yield very complicated
expressions for E,.There does not seem to be any chance
of obtaining a suitable potential form from this
approach.

A second approach is to consider the relatively simple
expression for the vibrational- and rotational-energy
levels of a diatomic molecule, Eq. (6). It is well known"

'e G. Herzberg, Spectra of Diatomec Noleclles (D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1950).
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This can be written in terms of co„co,x, and V to get

L (r~+r2) /2r, ]'= 1/L1 —(n,co,/28, M,x,)
+f (n.(u./28, (u,x,)'—n,2V/8. 2(o,x.)'*j=G(V). (26)

Hence, for a molecule whose energy levels are given by
Eq. (19), plots of

(4&v,x,V/a&, ') '*vs tanh (&u,x,/8, ) t (r2 —r~)/2r,

and
$(~i+~2)/2~. ]' vs G(V)

should be straight lines with a slope of unity. Figures 1
and 2 show such plots. The solid lines are the results
for the ground state of E2 whose energy levels can be
reasonably expressed by an expression of the form
(19).The slopes, although close to unity, are not quite
1 since the ~„co,x„B„and n, used were determined
from data at the lower-vibrational levels and not from
the complete range of data.

It is now possible to compare the deviations of the
proposed empirical potential functions from the experi-
mental curves in a different manner. In Figs. 3 and 4
are plotted for each empirical function the differences of
tanh(cu, x,/8, ) l (r2 —rq)/2r, and L(rq+r2)/2r, ]' from the
experimental values for the X'Z,+ state of X~ as a
function of (4~,x,V/co, 2)& and G(V), respectively. In
general, the various functions show the same relative
deviations from the width of the potential bowl and
the midpoint of the vibration as they show for errors
in the quantities

~

V—VzKz, ~, co.x„and n, . All of the
proposed empirical functions considered predict too
wide a bowl for the potential curve. The empirical
curves generally give too large a value for the midpoint
of the vibrations. The exceptions to this last point are
the Varshni, Hulburt-Hirschf elder, and I.ippincott
functions. The Hulburt-Hirschfelder potential curve
gives the best predictions of bowl width and midpoint
of vibration. This is in agreement with the fact that this

potential gives the best reproduction of the RKR curves.
The Varshni and I.ippincott functions predict too large
a bowl and too small a value for the midpoint. The
deviations are relatively small, and the net result
appears to be that these errors cancel somewhat so
that these two functions give the next best average
performance. For all others, the predicted bowl is too
large and the midpoint is shifted to larger values,
leading to poorer average performance.

The above conclusions are based, of course, only on
the X'Z,+ state of N2. However similar results should
follow for any state with energy levels represented by
Eq. (19).It would seem that the least one could expect
from any empirical function proposed in the future
would be reliable predictions for "well-behaved"
states like the ground states of N2, 02, I~, and H2.

It may be possible to generate reliable potential
curves by using equations similar to (24) and (26).
Since these are in reduced units, all well-behaved
molecular states should give nearly the same plots as
the ground states of N2 shown in Figs. 1 and 2. As a
check, the a"Z+ state of CO was chosen at random
and similar plots were made. These are shown as the
dashed lines in the figures. As one can see, particularly
from Fig. 2, large errors could be made in the calcula-
tions of the potential curve for the a"Z+ state of CO if
the solid lines were chosen as the standard curves.

In summary then, the comparison of empirical
potential functions given here indicates that the better
3-parameter functions can be expected to give potential
curves with an average error of 2 to 3'Po in

~

V—VnKa
~ /

D„whereas the better 5-parameter functions should
give average error of from 1 to 2%%uq. It does not seem
likely that any substantial improvement (errors of
less than 1%) can be made by suggesting new functions
which have no theoretical or experimental basis. The
task of giving a satisfactory theoretical or experimental
foundation for any empirical function appears difficult
indeed.


