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INTRODUCTION

KNOWLEDGE of internuclear potential curves

is of fundamental importance in a wide variety
of fields ranging from gas kinetics to stellar structure.
In particular, the recent increased interest in astro-
physical problems has emphasized the need for accurate
potential curves governing the interaction of two atoms
in either their ground or excited states, i.e., the potential
curves for the different electronic states of diatomic
molecules. The interaction potential arises, for various
nuclear separations, from the change in interaction
of all the charged particles in the system from those
existing at infinite separations of one or more of the
atoms from the remainder of the system. For a diatomic
system, the energy levels are determined from?!

(H.+H)v=EY, ¢y

where H, and H, depend, respectively, on nuclear
coordinates alone, and electronic coordinates alone and
are given by

ﬁn= it Za (h2/87"2Ma) V2t V'rmy (2)
A== (1®/8em)VE+ Vet Veo, 3)

where Vo, Ve, and V., are the internuclear, nuclear-
electron, and electron-electron-potential operators,
respectively.
If the Born-Oppenheimer approximation is wvalid
¥ =y, and .
Hype=E., 4

(A +EJYn=En. (5)

Here, ¢, depends only on the nuclear coordinates. E, is
the electronic energy which is a function of the inter-
nuclear distance 7. According to Eq. (5), the potential-
energy term appearing in the Hamiltonian for the
nuclear motion is just the sum of E, and V.. The
problem of solving Eq. (4) for E. is a highly complex

then,
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1 H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry
(John Wiley & Sons, Inc New York, 1944), p. 190-192.

one, incapable of exact solution at the present stage
of mathematical advancement, except for the simple,
triparticle systems Hst, etc. The difficulties are well
exemplified by the calculations of Kolos and Roothaan?
on the X'=,* and B'Z,* states of the hydrogen molecule.
To calculate E, for the X'Z,+ state by a self-consistent-
field procedure, 40- and 50-term wave functions were
used. Excellent agreement with curves from experi-
mental data was obtained at small displacements of
the nuclei from the equilibrium position 7.. However,
at bondlengths greater than 1.0 A, deviations occurred
despite the complexity of the wave function used.® The
reason, in this case, is that the wave functions are of
the polynomial type which requires more and more
terms, for increasing 7, to approach the correct asymp-
totic form. Their results on the B'Z,* state are not in
as good agreement with the curve obtained from
experimental data as in the case of the X'Z;* state, but
here only a 34-term wave function was used. Actually,
the Kolos and Roothaan curves are in remarkably good
agreement with the curves based on experimental
data near r=r, and offer some hope that accurate
calculated curves will soon be forthcoming for simple
systems.

As the number of particles increases, however, the
difficulties mount extremely quickly. At present, there
does not seem to be much hope of obtaining accurate
curves except for the simplest of systems. Furthermore,
as the interacting atoms become more complicated, the
number of electronic states arising from their interaction
increases rapidly, thus compounding the difficulties.

Clearly, alternative procedures for obtaining potential
curves are desirable, indeed essential at the present
time. Potential curves for diatomic systems fall mainly
into two categories, ones with appreciable minima
(bound states) and ones which exhibit a very shallow
minimum or none at all (repulsive states); we are
concerned with the former. Three general methods
exist for obtaining curves for the bound states of
diatomic molecules. The first and perhaps most satis-

( 2 W. Kolos and C. C. J. Roothan, Revs. Modern Phys. 32,7219
1960)

( 31. Toblas and J. T. Vanderslice, J. Chem. Phys. 35, 1852
1961

239



240

factory of these is the calculation of the curve from the
experimental energy levels using the method of Rydberg,
Klein, and Rees (RKR).*7 This is a WKB method
where one starts with the observed-energy levels E
and from these calculates the maximum and minimum
points of the vibration. Since this is a WKB method,
one might expect this to be somewhat in error near 7..
However, the results near the minimum agree with
the curve calculated by the Dunham procedure which
is known to be accurate in this region.” Indeed, Jarmain?®
has shown that the two are equivalent for the lower-
vibrational-energy levels. One major disadvantage of
the RKR method is that the potential curve can be
constructed only in the region for which sufficient
spectroscopic data exist. For this reason, other reliable
techniques must be found.

The second general method is due to Dunham.? He
used the WKB method to show that the energy levels
have the form

E, ;= {‘: Vi(v+3)J (T +1)5, (6)
Yl

where / and j are summation indices and v and J are
the vibrational and rotational numbers, respectively,
and where the V;; are coefficients which can be deter-
mined from the experimental rotational and vibrational
levels. Here, the energy zero is taken at the minimum
of the potential curve. If the potential is assumed to be
of the form

Ar Ar Ar Ar\3
V= ao<—> [H—al( )+a2< ) +a3<—-) +-- ]
7e e Te 7e

+BeJ(J+1)[1—zéf+3<éf)2—4<f‘—r)3+ . ] 0

Te 7e Te

where Ar=7r—r7,, then the a,’s can be related to the
Yii’s. Since the Vs are determined from the experi-
mental data, the potential function based on this
data can be determined from Eq. (7). The most serious
drawback of the Dunham method is that it diverges
as the energy approaches the dissociation limit and,
hence, must be used with care at the higher-vibrational
levels.

The third general method is based on empirical
potential functions. The assumption is made that all
bonding-potential curves can be fitted to a certain form
of algebraic expression when the parameters in the
expression are evaluated from the known spectroscopic
constants. Numerous attempts to find suitable functions
have been made. The parameters of these proposed

4R. Rydberg, Z. Physik 73, 376 (1931); 80, 514 (1933).
5 0. Klein, Z. Physik 76, 221 (1932).
6§ A. L. G. Rees, Proc. Phys Soc. (London) 59, 998 (1947).
7J. T. Vanderslice, E. A. Mason, W. G. Malsch and E. R.
Llppmcott J. Mol. Spectroscopy3 17 (1959); 5 83 (1960)
8 W. R. Jarmain, Can. J. Phys. 38, 217 (1960
9 J. L. Dunham, Phys. Rev. 41, 713 721 (1932)
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functions can be related to the spectroscopic constants
and also to the dissociation energy. For example, the
vibrational frequency w. and the dissociation energy
D, are given by the classical expressions

V' (re) =ke=4n2%wlu
V(r)—V(e)=D, @

and these enable one to determine two parameters in the
assumed-potential expression. By solving the Schro-
dinger equation with the assumed form for V(r), the
other parameters in the expression can be related to the
higher-order spectroscopic constants. The whole pro-
cedure of relating the parameters in the assumed-
potential expression is greatly simplified by expanding
the assumed potential and putting it in the form given
by Eq. (7). Then, the parameters are given directly in
terms of the Vs as determined by the Dunham
method.? However, since the fit of all potential curves
to a given algebraic expression must be considered as
approximate, the only useful parameters are the
harmonic and the first-order correction terms. This
limits the number of paramters in the function to five
for them to be determinate. Therefore, if the potential
function contains fewer than five parameters, internal
relationships among the spectroscopic constants exist.

The performance of a given function in correlation of
these spectroscopic constants may be used as a first
criterion for reliability of the function. Varshni® has ex-
amined a selection of the better known three-parameter
functions on this basis, expressing the results graphically
by plotting G= (8wex./Bs) and F= (a.w./6B?) against
A= (ks2/2D,) and comparing with the experimental
plots.

A far more stringent test of an empirical potential
function lies in the comparison of the V' (#) vs » depend-
ence with the curves for the different states of different
molecules as determined from either the RKR or the
Dunham method. The only published work known to
the authors in which this has been done is the original
work of Rydberg? and the work of Vanderslice ef al. on
the ground state of the hydrogen molecule.’

In view of the considerable importance of the
empirical functions in supplementing curves obtained
from the RKR and Dunham methods, and in view of
the fact that for many highly excited states of diatomic
molecules, it is the only way at present of obtaining
anywhere near reliable potential curves, a systematic
and thorough comparison of a number of the better-
known and more widely used functions is believed to
be useful. Two criteria exist for testing the validity of
a given expression, as indicated in the foregoing. The
first is the testing of internal correlations resulting from
the use of less than five parameters in a function.
Although Varshni® has carried out fairly extensive
comparisons of this nature, a quantitative reassessment
in terms of average percent deviation is felt to be a

Y, P. Varshni, Revs. Modern Phys. 29, 664 (1957).
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very useful addition to the problem. This is a strict
test of the validity of the function close to the equi-
librium configuration, but good results here do not
necessarily mean that the function accurately represents
the potential at small or large internuclear distances.

The second criterion is a comparison of the calculated
curves with those given by the RKR method. Although
the basic procedure, as enunciated by Rydberg,* was
published in 1931, no extensive comparisons have been
made. The quantity of experimental data now available
is considerable, thus allowing for such comparisons.
This is a more thorough and satisfying test of the
long-range validity of the function.

The choice of ground states and excited states of
diatomic molecules for which a test of this second
criterion may be carried out is of necessity limited to
molecules to which the RKR method has been applied.
The following 19 examples are used in this comparative
study. These are: the X'Z;* state of Hy;? the X2+
state of Ip;" the X'=;+, A%2,*, a'll,, and B, states
of Nj;2 the X32,~, B%Z,~, and 432,* states of Og;®
the X2+, @®A, AT, 82—, and a*Z+ states of CO;*
the X?II; and B?II states of NO;!® the X?II; and 4%Z+
states of OH ;!¢ and the X'=+ states of HF.7

EMPIRICAL FUNCTIONS FOR
COMPARATIVE STUDY

Since Varshni'® has given a discussion of the different
empirical potential functions as well as of the criteria
which should be satisfied by the functions, we emphasize
only a few salient points.

Most of the proposed potential functions have been
given in closed analytical form and make use of three
parameters. Four- and five- parameter functions have
also been proposed which usually are extensions of
known three-parameter functions. All parameters must
be evaluated in terms of known spectroscopic constants.
Three-parameter functions can be evaluated by the
quantities: equilibrium-bond length 7., vibrational
frequency for zero displacement of the nuclei w,, and
bond-dissociation energy from the bottom of the
potential curve D,.. The first two of these quantities
are usually known if the state in question has been
studied experimentally whereas the third D, may or
may not be well known, in which case a three-parameter
function cannot be used to construct the potential curve
unless a reasonably reliable method is available for
predicting D, from interrelations among the spectro-

1R, D. Verma, J. Chem. Phys. 32, 738 (1960).

27, T. Vanderslice, E. A. Mason, and E. R. Lippincott, J.
Chem. Phys. 30, 129 (1959).

18 J. T, Vanderslice, E. A. Mason, and W. G. Maisch, J. Chem.
Phys. 32, 515 (1960): 33, 614 (1960).

141, Tobias, R. J. Fallon, and J. T. Vanderslice, J. Chem. Phys.
33, 1638 (1960).

15 J, T. Vanderslice, E. A. Mason, and W. G. Maisch, J. Chem.
Phys. 31, 738 (1959).

16 R, J. Fallon, I. Tobias, and J. T. Vanderslice, J. Chem. Phys.
34, 167 (1961).

17 R. J. Fallon, J. T. Vanderslice, and E. A. Mason, J. Chem.
Phys. 32, 698 (1960); 33, 944 (1960).
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scopic constants. This has been done with varying
degrees of success for some of the proposed functions.
Five-parameter functions must be evaluated with the
aid of two additional spectroscopic quantities. They
usually are taken as the vibrational anharmonicity
w.x, and the vibrational rotational-coupling constant
a.. These quantities are usually not as well known for a
given state as 7. and w. and, unless a state has been
extensively studied spectroscopically, they may be
unknown or known only with rather doubtful accuracy.
For three-parameter functions, conditions (8) along
with
(@V/dr),=0 )

are used with 7., w., and D, to compute the three
parameters. The higher derivatives (d*V/dr),, and
(d@*V/drY),, can then be used to predict or correlate the
quantities w.x, and a,. For five-parameter functions, the
higher derivatives must be used along with wx, and a,
to compute the parameters of the function.

In order to demonstrate the relation of the various
spectroscopic constants used in describing the observed
energy levels of a mnonrigid, rotating, anharmonic
oscillator to the parameters of any empirical function
which may be expanded in a power series in (r—7.),
it is sufficient to use the method of Dunham.? If B,/w,
is sufficiently small, which is the usual case, with the
possible exception of hydrides, the ¥;s in Eq. (6) are
related to the experimentally determined, molecular
constants as follows:

Yie=w. Vao=—wx: Vie=wsy. Yie=wcz,
YVu=B. Vi=—a. Voa=+. (10)
Yop=—D, Vie=8.

Vos=H,

Here, the experimentally determined, molecular levels
are given by

Eyr=we(v+3) —wwe(v+5) oy (v+3)?
Fweze(v4+3)4 - - -+ B, J (J+1)— D, J2(J+1)2
FHPTHD+---, (1)

with B,=B,—a.(v+3)+7v.(v+3)? and B.=h/8x%ur2.
Dunham’s method shows that

wl=4aB, or D,=a¢/A (12)
wete= (Be/2)[3(az—5a:2/4)]
or G=12(as—35a:2/4) (13)
wye=(B&/2w,)[10as— 35a1a3— 17 (a2/2)
+ (225a:2a5/4)— 705a:4/32]  (14)
—a,=(BYw)[6(1+a)] or F=1+a (15)
Ye= (6363/(0.;2) [5—!" 10(11'—' 3a2+5a3— 1301(12
+15 (a12+a13)/2] (16)

D.=(4B3/wd), @an
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TasBLE II. Molecular constants used in calculations.®
Molecule State w, (cm™) 7e (4) B, (em™) wete (cm™1) @, (cm™) D, (ev)
H, Xzt 4400.39 0.74173 60.8407 120.815 3.0177 4.7467
I, Xzt 214.518 2.668 0.03734 0.6127 1.208X 10 1.5571
N2 Xz, 2358.07 1.0976 1.9987 14.188 0.0171 9.902
A3z, 1460.60 1.2867 1.4545 13.851 0.01798 3.690
A, 1693.7 1.2197 1.6181 13.825 0.0183 6.07
B, 1735.42 1.2128 1.6375 15.198 0.01794 4.90
0. X33, 1580.36 1.20740 1.44566 12.0730 0.01579 5.2129
Bz~ 700.36 1.604 0.819 8.0023 0.011 1.005
A=, T 801.0 1.5183 0.9142 13.81 0.0165 0.8239
Co Xiz+ 2169.829 1.12822 1.9312 13.295 0.0175 11.245
d3A 1137.79 1.3770 1.296 7.624 0.0171 3.516
AT 1515.61 1.2351 1.6116 17.2505 0.02229 3.175
om 1093.99 1.3933 1.2663 9.578 0.0179 3.147
a3zt 1230.65 1.3518 1.3453 11.0130 0.01872 4324
NO X1, 1904.03 1.1590 1.6809 13.97 0.0174 6.609
BI 1036.96 1.4176 1.1226 7.603 0.0121 3.29
OH X1, 3734.09 0.9705 18.867 82.665 0.708 4.624
At 3203.28 1.0117 17.358 113.85 0.7868 2.53
HF Xiz+ 4137.25 0.91717 20.946 88.726 0.7888 6.114

a These constants are consistent with the data used in the calculation of the experimental-potential curves by the RKR method. The references to the

original data are given in references (7), (11)-(17).

where, following Varshni,*® we define
F=aw,/6B2 G=8w:x./ B (18)

and A=*kgz2/2D,. Additional relations are available
relating higher-order terms.

By expanding any proposed function in a power
series of the form of (7), one has a convenient method
of relating the parameters of the function to the known,
spectroscopic constants. Also, it is convenient to
use Egs. (12) to (17) to evaluate any additional
spectroscopic quantities not used in determining the
parameters.

We have chosen nine empirical functions for this
comparative study of internuclear potentials. Each
function is evaluated for its ability to reproduce the
potential curve as determined by the RKR method and
for its ability to predict w.x, and a, or other spectro-
scopic quantities such as bond-dissociation energy.
After careful consideration of all proposed functions
known to us, we have selected the following for con-
sideration: Morse'®; Hulburt-Hirschfelder’®; Rosen-
Morse®; Rydberg?; Poschl-Teller?; Linnett?; Frost-
Musulin?®; Varshni®; and Lippincott.2*?® Several

18 P, M. Morse, Phys Rev. 34, 57 (1929).

19, M. Hulburt and J. O. Hirschfelder, J. Chem. Phys. 9,
61 (1941).

20 N. Rosen and P. M. Morse, Phys. Rev. 42, 210 (1932).

2 G. Poschl and E. Teller, Z. Physik 83, 143 (1933).

22 ], W. Linnett, Trans. Faraday Soc. 36, 1123 (1940); 38, 1
(1942).

2 A, A. Frost and B. Musulin, J. Chem. Phys. 22, 1017 (1954);
J. Am. Chem. Soc. 76, 2045 (1954).

% E. R. Lippincott, J. Chem. Phys. 21, 2070 (1953).

% E. R. Lippincott and R. Schroeder, J. Chem. Phys. 23, 1131
(1955); _]7 Am. Chem. Soc. 78, 5171 (1956); J. Phys. Chem. 61,
921 (1957).

26 E, R. Lippincott and M. O. Dayhoff, Spectrochim. Acta 16,
807 (1960); E. R. Lippincott, J. Chem. Phys. 26, 1678 (1957).

27 E. R. Lippincott, D. Steele, and P. Caldwell, J. Chem. Phys.
35, 123 (1961).

28], Steele and E. R. Lippincott, J. Chem. Phys. 35, 2065
(1961).

factors affected this selection, including: known
performance, form of the function, ability to correlate
spectroscopic quantities, number of parameters, etc.
The selection covers a sufficiently wide range of types
so as to make an effective comparative study of
empirical potential functions.

Table I summarizes the necessary information on
these potential functions. The relations between the
parameters and the spectroscopic constants were
obtained from Eqgs. (8) and (9). The predicted expres-
sions for a, and w.x, for each potential function were
obtained from Eqs. (12) to (17). The results in Table I
agree with those of Varshni® except for the Linnett
and Lippincott functions.?

Varshni’® has proposed a number of functions for
consideration as empirical internuclear potentials. We
have used his III function in the comparison study here
since it appears to be the best over-all function of
those he proposed.»

The spectroscopic data needed for the evaluation of

the parameters of the potential curves are given in
Table II.

RESULTS

The results of this comparative study are shown in
Tables IIT to XXIV. Tables III to XXI show the
comparison between the RKR and various empirical
potential curves for all the molecular states considered.
Tables XXII and XXIII give a comparison between
the calculated and observed values of we, and a,
for the various functions. Table XXIV gives a summary
of the results showing the average percent errors from
the experimental values for wqx. and a. and the average
percent error for the quantity (|V—Vgxr|)/D. for

» Varshni’s expressions for «, in the case of the Linnett and
Lippincott functions differ from the ones given above. Varshni

(private communication) agrees that the above expressions are
the correct ones. [See also Revs. Modern Phys. 31, 839 (1959)].
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TasiE III. Results of potential-curve calculations for X1=* state of Hj.®

Hulburt- Poschl- Rosen- Frost-
r (A) RKR (ev) Morse Hirschfelder Rydberg Teller Linnett Varshni Morse Lippincott Musulin
0.4109 4.729 3.868 4.652 3.680 4.854 6.918 5.787 3.189 4.187 4.946
0.4319 3.880 3.243 3.823 3.097 3.950 4.745 4.629 2.721 3.498 4.038
0.4597 2.935 2.533 2.913 2.435 2.982 3.930 3.421 2.172 2.716 3.054
0.5088 1.730 1.558 1.724 1.508 1.745 2.154 1.938 1.384 1.648 1.790
0.6337 0.269 0.259 0.268 0.256 0.269 0.291 0.279 0.248 0.264 0.272
0.8833 0.269 0.275 0.270 0.279 0.269 0.250 0.261 0.287 0.273 0.264
1.2186 1.730 1.734 1.724 1.790 1.687 1.450 1.608 1.869 1.757 1.608
1.5148 2.935 2.870 2.902 2975 2.815 2.395 2.721 3.084 2.959 2.667
1.8524 3.880 3.715 3.782 3.838 3.672 3.183 3.628 3.924 3.846 3.500
2.3748 4.522 4.358 4413 4454 4.339 3.931 4371 4.489 4.467 4.205
2.2835 4.729 4.679 4.690 4712 4.676 4491 4.712 4.714 4.714 4.626
4.23 4.745 4.736 4.737 4.743 4.735 4.673 4.745 4743 4.743 4.722
6.35 4.747 4.747 4.747 4.747 4.747 4.744 4.747 4.747 4.747 4,747

s The energies given in Tables III-XXI are in ev.
TaBLE IV. Results of potential-curve calculations for X'Z,* state of I,.

Hulburt- Poschl- Rosen- Frost-
r (A) RKR (ev) Morse Hirschfelder Rydberg Teller Linnett Varshni Morse Lippincott Musulin
2.288 1.500-1.556  1.637 1.521 1.548 1.634 1.285 1.458 1.603 1.451 1.593
2.292 1.493 1.589 1.475 1.504 1.587 1.251 1.417 1.561 1.412 1.545
2.309 1.245 1.399 1.297 1.328 1.398 1.114 1.256 1.372 1.255 1.363
2.336 0.977 1.131 1.048 1.080 1.130 0.919 1.027 1.107 1.029 1.105
2.423 0.465 0.517 0.482 0.500 0.517 0.446 0.483 0.503 0.487 0.507
3.056 0.465 0.411 0.452 0.422 0411 0.506 0.436 0.404 0.445 0.417
3.389 0.977 0.848 0.951 0.879 0.848 1.204 0914 0.840 0.945 0.866
3.671 1.245 1.111 1.231 1.151 1.111 1.732 1.194 1.104 1.216 1.135
4.448 1.493 1.445 1.501 1.475 1.445 2.598 1.502 1.438 1.474 1.464
6.522 1.551 1.555 1.555 1.556 1.555 2.602 1.557 1.55 1.555 1.556
8.814 1.556 1.557 1.557 1.557 1.557 2.106 1.557 1.55 1.557 1.557

TABLE V. Results of potential-curve calculations for X1Z,* state of No.

Hulburt- Poschl- Rosen- Frost-
r (A) RKR (ev) Morse Hirschfelder Rydberg Teller Linnett Varshni Morse  Lippincott Musulin
0.896 5.021 5.128 4.925 4.926 5.166 5.181 4.801 4.950 4.854 5.207
0.919 3.865 3.764 3.624 3.634 3.784 3.791 3.551 3.673 3.597 3.809
0.942 2.618 2.673 2.582 2.595 2.685 2.684 2.543 2.618 2.576 2.704
0.983 1.280 1.290 1.256 1.263 1.294 1.289 1.244 1.272 1.258 1.302
1.027 0.435 0.433 0.426 0.427 0.434 0.431 0.424 0.432 0.426 0.429
1.185 0.435 0.434 0.443 0.439 0.435 0.436 0.445 0.432 0.444 0.430
1.261 1.280 1.252 1.297 1.277 1.251 1.267 1.305 1.267 1.303 1.245
1.358 2.618 2.510 2.639 2.580 2.507 2.573 2.662 2.559 2.678 2.503
1.447 3.865 3.675 3.893 3.795 3.671 3.811 3.941 3.740 3.988 3.668
1.528 5.021 4.656 4.949 4.820 4.651 4.883 5.025 4.742 5.102 4.653

TasLE VI. Results of potential-curve calculations for the 432, state of No.

Hulburt- Poschl- Rosen- Frost-
7 (A) RKR (ev) Morse Hirschfelder Rydberg Teller Linnett Varshni Morse Lippincott Musulin
1.046 2.257 3.181 2.968 3.023 3.194 2.973 2.878 3.066 2.910 3.178
1.089 1.564 1.886 1.772 1.813 1.892 1.780 1.741 1.838 1.771 1.884
1.145 0.780 0.822 0.783 0.800 0.824 0.784 0.778 0.804 0.791 0.821
1.203 0.268 0.243 0.236 0.239 0.244 0.235 0.236 0.233 0.238 0.242
1.405 0.268 0.281 0.291 0.285 0.280 0.291 0.291 0.286 0.290 0.279
1.503 0.780 0.733 0.778 0.752 0.733 0.784 0.775 0.745 0.779 0.736
1.633 1.564 1.379 1.486 1.424 1.378 1.533 1.483 1.399 1.507 1.389
1.756 2.257 1.924 2.082 1.994 1.923 2.210 2.086 1.950 2.129 1.942
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TasLE VII. Results of potential-curve calculations for I, state of Na.
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Hulburt- Poschl- Rosen- Frost-
r (A) RKR (ev) Morse Hirschfelder Rydberg Teller Linnett  Varshni Morse Lippincott Musulin
1.013 2.686 2.69 2.70 2.59 2.70 2.69 2.52 2.61 2.55 2.72
1.036 2.016 2.00 2.00 1.93 2.00 1.99 1.89 1.95 191 2.02
1.077 1.103 1.08 1.08 1.06 1.09 1.08 1.04 1.07 1.05 1.09°
1.139 0.311 0.30 0.29 0.29 0.30 0.30 0.29 0.30 0.29 0.30
1.325 '0.311 0.32 0.32 0.32 0.32 0.32 0.33 0.33 0.33 0.32
1.445 1.103 1.10 1.11 1.13 1.10 1.13 1.16 1.13 1.16 1.10
1.564 2.016 1.99 2.01 2.05 1.99 2.07 2.13 2.03 2.15 1.99
1.655 2.686 2.63 2.67 2.72 2.63 2.77 2.84 2.69 2.88 2.63

TasLE VIII. Results of potential-curve calculations for B3I, state of No.

Hulburt- Poschl- Rosen- Frost-
7 (A) RKR (ev) Morse Hirschfelder Rydberg Teller Linnett Varshni Morse Lippincott Musulin
0.983 3.500 4.05 3.65 3.85 4.07 3.84 3.67 3.89 3.72 4.06
1.006 2.738 3.05 2.78 2.92 3.06 291 2.80 2.94 2.85 3.05
1.037 1.880 2.01 1.85 1.94 2.01 1.92 1.87 1.95 1.90 2.00
1.082 0.932 0.97 0.92 0.95 0.97 0.94 0.92 0.95 0.94 0.97
1.132 0.319 0.32 1031 0.31 0.32 0.32 0.31 0.32 0.31 0.32
1.316 0.319 0.31 0.32 0.32 0.31 0.32 0.32 0.32 0.32 0.31
1.409 0.932 0.88 0.93 0.90 0.88 0.93 0.93 0.90 0.93 0.88
1.531 1.880 1.71 1.84 1.77 1.71 1.87 1.84 1.74 1.87 1.72
1.644 2.738 2.42 2.61 2.51 2.42 2.73 2.62 2.46 2.67 244
1.760 3.500 3.02 3.25 3.14 3.02 3.49 3.28 3.06 3.34 3.05

TasLE IX. Results of potential-curve calculations for X3Z,~ state of Q..

Hulburt- Péschl- Rosen- Frost-
r (A) RKR (ev) Morse Hirschfelder Rydberg Teller Linnett Varshni Morse  Lippincott Musulin
0.979 3.551 3.623 3.590 3.461 3.642 3.570 3.330 3.483 3.3711 3.656
1.022 2.063 2.108 2.076 2.034 2.114 2.085 1.972 2.037 2.004 2.121
1.067 1.034 1.063 1.046 1.037 1.066 1.067 1.013 1.037 1.028 1.068
1.158 0.098 0.108 0.101 0.102 0.102 0.119 0.101 0.094 0.102 0.104
1.262 0.098 0.095 0.096 0.096 0.094 0.110 0.095 0.094 0.096 0.095
1.422 1.034 0.983 1.021 1.007 0.982 1.035 1.036 0.994 1.039 0.984
1.556 2.063 1.900 2.001 1.961 1.898 2.040 2.040 1.929 2.067 1.905
1.662 2.844 2.561 2.711 2.652 2.559 2.800 2.7711 2.600 2.820 2.573
1.768 3.551 3.125 3.310 3.240 3.123 3.476 3.392 3171 3.447 3.143

TABLE X. Results of potential-curve calculations for B3Z,~ state of O,.

Hulburt- Poéschl- Rosen- Frost-
r (A) RKR (ev)  Morse Hirschfelder Rydberg Teller Linnett Varshni Morse  Lippincott Musulin
1.334 0.956 1.132 0.942 1.069 1.133 0.946 1.003 1.129 1.005 1.110
1.356 0.749 0.895 0.745 0.850 0.894 0.759 0.802 0.893 0.808 0.879
1.405 0.441 0.499 0.423 0.480 0.498 0.436 0.459 0.503 0.465 0.491
1.531 0.043 0.047 0.044 0.046 0.047 0.046 0.046 0.053 0.046 0.046
1.683 0.043 0.037 0.039 0.037 0.037 0.039 0.037 0.041 0.037 0.036
1.962 0.441 0.382 0.460 0.395 0.382 0.467 0.411 0.389 0.421 0.387
2.232 0.749 0.666 0.798 0.691 0.666 0.908 0.720 0.674 0.735 0.679
2.865 0.956 0.938 0.995 0.956 0.938 1.439 0.975 0.945 0.957 1.005

all points considered for all states of all molecules for
each function, along with the same quantity for values
of r>r..

Some functions show an average performance which
is distinctly superior to others. The five-parameter
Hulburt-Hirschfelder gives an average error of about
1.5% in (|V—Vgxgr|)/Ds, while the better three-
parameter functions give average errors of 2%, to 3%,

in this same quantity. However, no one function is
best for all molecular states considered, nor can we
predict a priori which function will give the more
correct potential for a restricted range of r. Furthermore,
it is easy to see from Tables IIT to XXI that no one
function gives consistent positive or negative deviations
from the experimental curves for a given value of 7/7..

The empirical potentials give better average
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TaBLE XI. Results of potential-curve calculations for 432, state of Os.

Hulburt- Poschl- Rosen- Frost-
r (A) RKR (ev)  Morse Hirschfelder Rydberg Teller Linnett Varshni Morse  Lippincott Musulin
1.300 0.783 0.985 0.824 0.929 0.987 0.751 0.872 0.972 0.863 0.954
1.318 0.629 0.775 0.650 0.735 0.777 0.604 0.695 0.763 0.692 0.753
1.350 0.409 0.485 0.413 0.465 0.487 0.394 0.445 0.479 0.446 0.474
1.410 0.145 0.158 0.141 0.154 0.158 0.139 0.150 0.153 0.151 0.156
1.668 0.145 0.130 0.146 0.133 0.131 0.153 0.136 0.130 0.138 0.132
1.823 0.409 0.341 0.404 0.353 0.341 0.462 0.366 0.337 0.378 0.348
1.984 0.629 0.518 0.612 0.538 0.518 0.790 0.559 0.513 0.575 0.530
2.247 0.783 0.690 0.770 0.711 0.690 1.206 0.732 0.688 0.728 0.704

TaBiE XII. Results of potential-curve calculations for X'Z* state of CO.

Hulburt- Poschl- Rosen- Frost-
r (A) RKR (ev) Morse Hirschfelder Rydberg Teller Linnett  Varshni Morse  Lippincott Musulin
0.901 5.428 5.283 5.480 5.086 5.357 5.611 5.059 5.048 5.052 5.439
0.923 4211 4.081 4211 3.945 4.127 4291 3.921 3.930 3.927 4.181
0.952 2.878 2.802 2.873 2.723 2.827 2913 2.706 2.718 2.716 2.856
0.997 1.430 1.392 1.416 1.364 1.401 1.429 1.356 1.369 1.362 1.411
1.054 0.400 0.389 0.392 0.384 0.390 0.393 0.383 0.392 0.384 0.395
1.220 0.400 0.407 0.404 0.411 0.405 0.402 0414 0.413 0.413 0.408
1.322 1.430 1.452 1.437 1.482 1.448 1.431 1.505 1.481 1.507 1.440
1.438 2.878 2.916 2.881 2.998 2.907 2.883 3.074 2.986 3.096 2.889
1.544 4211 4.258 4.207 4.398 4.246 4227 4.539 4.372 4.595 4.218
1.649 5.428 5.475 5.416 5.671 5.461 5.469 5.880 5.627 5.967 5.424

Tasre XIII. Results of potential-curve calculations for the @?A state of CO.

Hulburt- Poschl- Rosen- Frost-
r (A) RKR (ev)  Morse Hirschfelder Rydberg Teller Linnett Varshni Morse  Lippincott Musulin
1.097 2.367 2411 2.715 2.305 2.430 2.443 2.239 2.308 2.265 2.452
1.119 2.000 1.944 2.141 1.865 1.956 1.962 1.815 1.869 1.840 1.973
1.151 1.475 1.385 1.484 1.336 1.391 1.392 1.304 1.343 1.325 1.400
1.204 0.744 0.718 0.744 0.699 0.720 0.720 0.686 0.705 0.697 0.722
1.277 0.209 0.203 0.205 0.201 0.204 0.203 0.198 0.204 0.201 0.204
1.506 0.209 0.207 0.210 0.210 0.207 0.209 0.213 0.213 0.211 0.207
1.657 0.744 0.722 0.754 0.740 0.720 0.738 0.761 0.738 0.764 0.719
1.837 1.475 1.391 1.497 1.437 1.389 1.450 1.484 1.422 1.514 1.388
1.991 2.000 1.893 2.064 1.962 1.891 2.006 2.049 1.934 2.082 1.894
2122 2.367 2.246 2.455 2.328 2.244 2411 2.435 2.299 2.470 2.249

TaBLE XIV. Results of potential-curve calculations for 4T state of CO.

Hulburt- Poschl- Rosen- Frost-
r (A) RKR (ev)  Morse Hirschfelder Rydberg Teller Linnett Varshni Morse  Lippincott Musulin
1.003 2.742 3.276 2.939 3.101 3.285 2.952 2.927 3.227 2.950 3.257
1.021 2.275 2.625 2.369 2.497 2.630 2.384 2.370 2.593 2.399 2.608
1.050 1.591 1.782 1.627 1.709 1.784 1.636 1.635 1.764 1.662 1.773
1.085 0.967 1.045 0.970 1.012 1.045 0.972 0.977 1.041 0.994 1.043
1.148 0.276 0.288 0.276 0.283 0.289 0.275 0.277 0.286 0.280 0.289
1.348 0.276 0.265 0.277 0.269 0.266 0.279 0.275 0.258 0.274 0.266
1.484 0.967 0.887 0.966 0913 0.888 0.988 0.946 0.884 0.957 0.895
1.599 1.591 1.412 1.537 1.461 1.412 1.642 1.525 1.415 1.558 1.428
1.744 2.275 1.957 2.124 2.029 1.956 2.383 2.123 1.967 2.165 1.982
1.867 2.742 2.303 2.475 2.385 2.303 2.894 2.490 2.314 2.515 2.333

percentage deviations from the RKR curves for »>7,,
as shown in the fourth row of Table XXTIII where the
better functions give an average error between 1 and 2%,
in dissociation energy. This is not unexpected since, for
7>7., a small change in  gives a large change in V.
There are not many states for which data are available

for a comparison of the function for large 7, the region
of importance in the calculations of macroscopic
properties that depend on collision phenomena like the
transport properties. Although there are not many
examples in Tables III to XXI where the RKR curves
are available for #>>r,, the indications are that the
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TABLE XV. Results of potential-curve calculations for ¢32~ state of CO.

Hulburt- Poschl- Rosen- Frost-
r (A) RKR (ev)  Morse Hirschfelder Rydberg Teller Linnett Varshni Morse  Lippincott Musulin
1.124 2.014 2.031 2.172 1.944 2.046 2.031 1.882 1.956 1.902 2.059
1.147 1.616 1.609 1.697 1.546 1.618 1.604 1.501 1.559 1.520 1.625
1.176 1.182 1.169 1.216 1.130 1.174 1.163 1.100 1.138 1.116 1.179
1.217 0.710 0.699 0.715 0.681 0.701 0.694 0.666 0.681 0.675 0.705
1.292 0.201 0.194 0.195 0.191 0.194 0.194 0.189 0.189 0.191 0.195
1.527 0.201 0.203 0.205 0.206 0.203 0.205 0.209 0.195 0.208 0.204
1.681 0.710 0.688 0.706 0.706 0.687 0.709 0.730 0.689 0.730 0.688
1.806 1.182 1.114 1.158 1.150 1.113 1.167 1.194 1.124 1.208 1.114
1.924 1.616 1.486 1.557 1.539 1.485 1.582 1.606 1.505 1.631 1.489
2.042 2.014 1.810 1.905 1.877 1.809 1.954 1.963 1.834 1.994 1.815

TaBLE XVI. Results of potential-curve calculations for ¢”3=* state of CO.

Hulburt- Poschl- Rosen- Frost-
7 (A) RKR (ev) Morse Hirschfelder Rydberg Teller Linnett Varshni Morse  Lippincott Musulin
1.075 2.907 2.692 3.044 2.578 2.720 2.775 2.523 2.574 2.534 2.749
1.094 2.397 2.236 2.494 2.149 2.255 2.295 2.104 2.147 2.120 2.279°
1.119 1.829 1.723 1.890 1.663 1.736 1.759 1.630 1.663 1.647 1.751
1.164 1.071 1.013 1.060 0.985 1.019 1.027 0.969 0.986 0.980 1.025
1.257 0.226 0.210 0.216 0.207 0.211 0.213 0.206 0.208 0.207 0.211
1.479 0.226 0.238 0.234 0.241 0.238 0.238 0.244 0.236 0.243 0.238
1.681 1.071 1.078 1.056 1.108 1.076 1.093 1.141 1.095 1.147 1.074
1.846 1.829 1.805 1.778 1.867 1.802 1.854 1.939 1.839 1.965 1.798
1.981 2.397 2.326 2.305 2411 2.323 2419 2.515 2.3711 2.554 2.322
2.122 2.907 2.780 2.770 2.882 27177 2.926 3.011 2.831 3.048 2.718

TaBLE XVII. Results of potential-curve calculations for the X?II; state of NO.

Hulburt- Péschl- Rosen- Frost-
r (A) RKR (ev)  Morse Hirschfelder Rydberg Teller Linnett Varshni Morse  Lippincott Musulin
0.929 4.582 5.116 5.031 4.876 5.149 5.018 4.689 4.907 4.734 5.166
0.949 3.714 4.015 3.937 3.847 4.035 3.934 3.712 3.868 3.767 4.049
0.982 2.485 2.586 2.530 2.496 2.596 2.535 2.422 2.505 2.392 2.599
1.026 1.246 1.282 1.257 1.251 1.286 1.260 1.223 1.258 1.242 1.289
1.113 0.118 0.120 0.119 0.119 0.118 0.117 0.118 0.111 0.118 0.121
1.210 0.118 0.113 0.114 0.114 0.111 0.112 0.115 0.113 0.112 0.112
1.360 1.246 1.188 1.232 1.217 1.187 1.233 1.251 1.198 1.252 1.189
1.486 2.485 2.319 2.440 2.394 2.316 2.469 2.488 2.340 2.518 2.324
1.623 3.774 3.427 3.626 3.552 3.424 3.743 3.713 3472 3.776 3.442
1.725 4.582 4.109 4.342 4.260 4.106 4.563 4.459 4.156 4.525 4.131

TaBLE XVIII. Results of potential-curve calculations for the BT state of NO.

Hulburt- Poschl- Rosen- Frost-
7 (A) RKR (ev)  Morse Hirschfelder Rydberg Teller Linnett Varshni Morse  Lippincott Musulin
1.130 2.184 2.32 2.22 2.21 2.33 2.33 2.15 2.22 2.17 2.35
1.188 1.258 1.29 1.24 1.25 1.30 1.29 1.22 1.25 1.23 1.31
1.239 0.681 0.70 0.67 0.68 0.70 0.70 0.66 0.68 0.67 0.70
1.356 0.064 0.064 0.063 0.064 0.065 0.064 0.063 0.064 0.063 0.063
1.488 0.064 0.063 0.064 0.064 0.063 0.064 0.064 0.064 0.064 0.062
1.690 0.681 0.63 0.67 0.65 0.63 0.65 0.67 0.64 0.67 0.63
1.831 1.258 1.12 1.21 1.16 1.12 1.17 1.20 1.14 1.21 1.12
1.962 1.793 1.54 1.67 1.60 1.54 1.63 1.66 1.57 1.69 1.54
2.068 2.184 1.84 2.00 1.91 1.84 1.97 1.99 1.88 2.03 1.84

percentage errors in the interaction energy V—D,
will be large in this region and that the various func-
tions will retain, for the most part, the same relative
performance.

The average percent errors for a, and w.x. shown in
Table XXIV indicate that a good fit with the RKR

curves may sometimes mean a satisfactory prediction
of a, and w.x,, but this is not general for all functions.
For example, this seems to hold for the Linnett and
Lippincott functions and to a lesser extent with the
Rydberg function, but does not hold for the Varshni III
function which gives good correlation with the RKR
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TasLE XIX. Results of potential-curve calculations for X2II; state of OH.

Hulburt- Poschl- Rosen- Frost-
7 (A) RKR (ev) Morse Hirschielder Rydberg Teller Linnett Varshni Morse Lippincott Musulin
0.702 3.478 3.348 3.550 3.194 3.479 3.931 3.352 3.065 3.182 3.579
0.731 2.580 2477 2.590 2.377 2.553 2.831 2.469 2.299 2.379 2.618
0.777 1.495 1.442 1.482 1.397 1.473 1.589 1.432 1.364 1.403 1.501
0.831 0.672 0.657 0.666 0.643 0.666 0.699 0.651 0.633 0.646 0.674
1.179 0.672 0.668 0.674 0.682 0.664 0.641 0.685 0.682 0.691 0.657
1.329 1.495 1.452 1.482 1.497 1.444 1.379 1.518 1.500 1.541 1.423
1.538 2.580 2.449 2.523 2.538 2.438 2.332 2.601 2.537 2.649 2.398
1.760 3.478 3.235 3.337 3.351 3.224 3.115 3.455 3.337 3.493 3.179
TaBLE XX. Results of potential-curve calculations for 422 state of OH.
Hulburt- Poschl- Rosen- Frost-
7 (A) RKR (ev) Morse Hirschfelder Rydberg Teller Linnett Varshni Morse Lippincott Musulin
0.752 2.394 2.50 2.19 2.37 2.55 2.70 2.35 2.33 2.31 2.60
0.777 1.797 1.90 1.69 1.81 1.93 2.02 1.79 1.78 1.78 1.96
0.809 1.233 1.29 1.18 1.24 1.30 1.35 1.23 1.23 1.23 1.32
0.863 0.565 0.60 0.56 0.58 0.59 0.61 0.57 0.57 0.58 0.61
1.244 0.565 0.54 0.56 0.55 0.54 0.54 0.56 0.55 0.57 0.53
1.428 1.233 1.13 1.19 1.17 1.13 1.14 1.22 1.16 1.23 1.13
1.614 1.797 1.61 1.68 1.67 1.61 1.66 1.74 1.65 1.76 1.61
2.038 2.394 2.21 2.25 2.27 221 2.34 2.34 2.24 2.32 221
TaBLE XXI. Results of potential-curve calculations for the X'=* state of HF.
Hulburt- Poschl- Rosen- Frost-
r (A) RKR (ev) Morse Hirschfelder Rydberg Teller Linnett Varshni Morse Lippincott Musulin
0.623 5.987 5.190 6.015 4.935 5.530 6.578 5.471 4.616 4.930 5.724
0.639 5.079 4.462 5.104 4.258 4.724 5.539 4.667 4.004 4,267 4.879
0.662 3.951 3.549 3.988 3.404 3.722 4.285 3.678 3.225 3.423 3.838
0.716 2.092 1.938 2.100 1.877 1.999 2.210 1.974 1.804 1.893 2.045
0.786 0.745 0.699 0.729 0.685 0.710 0.751 0.703 0.666 0.690 0.721
1.115 0.745 0.772 0.755 0.788 0.766 0.730 0.783 0.795 0.794 0.755
1.317 2.092 2.116 2.074 2.184 2.099 1.962 2.188 2.208 2.240 2.055
1.633 3.951 3.873 3.848 4.015 3.852 3.609 4.086 4.033 4.167 3.767
1.922 5.079 4.870 4.876 5.030 4.855 4.618 5.154 5.026 5.180 4.770
2.555 5.987 5.796 5.811 5.804 5.791 5.695 5.982 5.870 5.935 5.749
TasLE XXII. Comparison of observed values of wex, with calculated values for various functions.
Mole- WeXe Rosen- Poschl- Frost-
cule State  (observed) Morse Morse Rydberg Teller Linnett Musulin Varshni  Lippincott
H, Xzt 120.815 126.545 84.5915  116.00 126.545 197.73 148.78 178.49 117.71
I, Xz, 0.6127 0.9165 0.9039 0.8402 0.9165 0.41521 0.87153 0.84863 0.7016
N. Xzt 14.188 17.4126 15.8476 15.9616 17.4126 15.6394 17.389 17.748 13.810
Az, *F 13.851 17.9278 16.9588 16.4339 17.9278 13.2889 17.527 17.595 13.994
a'Il, 13.825 14.6494 13.3998 13.4287 14.6494 12.9074 14.591 14.864 11.595
B3I, 15.198 19.0633 17.8997 17.4748 19.0633 14.626 18.690 18.814 14.913
0. X3, 12.0730 14.8517 13.7959 13.6141 14.8517 12.240 14.676 14.850 11.682
Bz, 8.0023 15.1264 14.7357 13.8659 15.1264 8.5264 14.475 14.362 11.653
A3z 13.81 24.1387 23.861 221272 24.1387 10.310 18.293 22.476 18.453
(6[0) Xzt 13.295 12.9777 11.3698 11.8963 12,9777 13.099 13.227 13.684 10.458
d°A 7.624 11.4141 10.4383 10.4630 11.4141 10.060 11.369 11.582 9.0343
AT 17.2505 22.4280 21.4432 20.5591 22.4280 15.393 21.762 21.758 17.429
ez 9.578 11.7890 10.8218 10.8066 11.7890 10.240 11.654 11.922 9.3178.
a3zt 11.0130 10.8575 9.7597 9.9527 10.8575 10.115 10.904 11.172 8.6483
NO X1 13.97 17.0042 15.7364 15.5872 17.0042 14.242 16.827 17.059 13.394
BT 7.603 10.1253 9.3063 9.2816 10.1253 8.7464 10.057 10.277 7.9991
OH X 82.665 93.4369 77.545 85.6508 93.4369  105.76 08.429 103.22 77.162
ATt 113.85 125.642 111.419 115.172 125.642 122.92 101.81 131.39 100.75
HF Xzt 88.726 86.8172 69.418 79.5827 86.8172  104.49 91.293 98.993 72974
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TaBLE XXIII. Comparison of observed values of . with calculated values for various functions.

Mole- a, Rosen- Péschl- Frost-
cule  State (observed) Morse Morse Rydberg Teller Linnett Musulin Varshni  Lippincott
H, X1z,+ 3.0177 2.2319 0.9074 1.8156 3.0936 5.4483 3.5831 4.1481 2.7053
I, X1z ,* 0.0001208  0.000154  0.00015  0.000143  0.000154  0.000092  0.001482  0.000131  0.0001334
N, X1zt 0.0171 0.01983 0.01846  0.01812 0.02000 0.01939 0.02020 0.01656 0.01743
A43z,* 0.01798 0.02182 0.02099  0.02007 0.02187 0.01827 0.02161 0.01808 0.01904
all, 0.0183 0.01863 0.01742  0.01703 0.01876 0.01791 0.01890 0.01552 0.01635
BiI, 0.01794 0.02236 0.02141  0.02055 0.02243 0.01922 0.02222 0.01852 0.01953
0. X3z, 0.01579 0.01749 0.01658  0.01604 0.01758 0.01591 0.01756 0.01451 0.01532
B3z,~ 0.011 0.01894 0.01863  0.01753 0.01896 0.01308 0.01835 0.01587 0.01644
A3zt 0.0165 0.02590 0.02572  0.02406 0.02591 0.01496 0.02485 0.02208 0.0224
Co Xiz+ 0.0175 0.01642 0.01471  0.01489 0.01672 0.01796 0.01724 0.01406 0.01452
a3A 0.0170 0.01685 0.01575  0.01540 0.01697 0.015286  0.01709 0.01403 0.01479
AT 0.02229 0.02807 0.02723  0.02588 0.02811 0.02222 0.02760 0.02330 0.02445
oon 0.0179 0.01803 0.01692  0.01650 0.01815 0.01713 0.01825 0.01501 0.01582
a3zt 0.01872 0.01624 0.01497  0.01481 0.01641 0.01641 0.01667 0.01363 0.01429
NO X1, 0.01781 0.01976 0.01867  0.01810 0.01986 0.01821 0.01987 0.01640 0.01731
B 0.0116 0.013851  0.01300  0.01267 0.01394 0.01309 0.01400 0.01152 0.01215
OH X1 0.708 0.70089 0.5881 0.6281 0.7310 0.8806 0.7781 0.6429 0.6269
At 0.7868 0.9539 0.8657 0.8671 0.9681 1.01068 0.9920 0.8091 0.8422
HF Xiz+ 0.7888 0.6590 0.5226 0.5850 0.7040 1.10725 0.7501 0.6478 0.5946
TaBLE XXIV. Average error (%) for the quantities we¥e, ae, [| VRkr— V| /DeJant, and
L[| Vrgr—V|/DeJrsr, for various potential functions.
Hulburt-  Rosen- Poschl- Frost-
Morse Hirschfelder Morse Rydberg Teller Linnett Musulin Varshni  Lippincott
Wee 26.93 21.24 19.71 26.93 14.94 24.29 28.94 12.18
a, 19.67 e 22.33 17.45 18.47 15.55 23.55 15.57 13.80
[l Vrxkr—V|/DeJant 3.68 1.51 3.7 2.94 3.48 4,18 341 2.28 2.17
[Vekr—V|/D.Jssr, 3.20 1.44 2.80 2.27 3.28 5.07 3.30 1.68 1.44

curves but is the poorest of all functions in predicting
weXe. This latter function would then be a poor one to
predict dissociation values using 7., we, and were. On
the other hand, a study of Tables III to XXT shows
that a function which predicts good values of wex,
and a, does not necessarily show good agreement with
the RKR results. This is particularly true of the
Linnett function.

We can summarize as follows. The Hulburt-Hirsch-
felder curve, being a five-parameter function, gives the
best average results and in general gives the best or
near the best fit of the potential for all the cases studies.
However, for values of r>r,, the Lippincott function
gives equally good results. The Morse-Rosen-Morse
and the Poschl-Teller give very similar results. The
Linnett curve (m=3) gives good predictions for
wex. and a, for many states, and, in general, gives a
good representation of the RKR curves for these same
states. Nevertheless, its average performance is the
worst and in many cases it predicts maxima in a
potential curve where none exist or are expected to
exist. The Frost-Musulin potential does not give any
appreciable improvement over the Morse curve, whereas
the Rydberg potential is a distinct improvement. The
Varshni III and Lippincott functions, the best of the
three-parameter functions in fitting the RKR results,
both give good predictions of a,. On the other hand, the

Lippincott function gives fairly reliable predictions of
wexe (or D, from wex,), while the Varshni IIT function
does not.

DISCUSSION

It is desirable to investigate the possibility that an
empirical function can be proposed which will yield
curves for any state of any molecule to an accuracy of
less than 1% in bond-dissociation energy. There seem
to be two justifiable approaches to this problem. One is
to consider the expressions for E obtained from quan-
tum-mechanical calculations of potential curves for
various diatomic molecules. If these expressions were
similar for the various states of different molecules,
then presumably one could arrive at suitable potential
forms which would have some basis in fact. Unfor-
tunately, in order to obtain reliable values of E, for
even the simplest systems, one has to use 40- and
50-term wave functions? which yield very complicated
expressions for E.. There does not seem to be any chance
of obtaining a suitable potential form from this
approach.

A second approach is to consider the relatively simple
expression for the vibrational- and rotational-energy
levels of a diatomic molecule, Eq. (6). It is well known®

% G. Herzberg, Specira of Diatomic Molecules (D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1950).
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1

(4we xe V )E
We?

v = tanh[ (wexe/Be)t (r2—71)/2r.] plotted against

(4wex.V /w2)t. The solid line corresponds to the X!Z,* state of

Nb:; the dashed line corresponds to the o’ 3T+ state of CO.

Fic. 1.

that, for many molecules, the first few terms in this
equation are sufficient to fit the observed data within
reasonable limits. The equation then reduces to the
simple form

E,r=0.(v+3}) —wo(v4+3)*+BoJ (J+1)
—aJ (J+1) (2+3).

In such a case, Rees® has shown that the potential

(19)

. ;
12f .
-
8~ - -
e T
= b T .
~ ’,/”
1oz I .
0 1 12
G(V)

F16. 2. [(#1+72)/27.* vs G(V). The solid line corresponds to
the X'Z,* state of Nj; the dashed line corresponds to the ¢’ 3=+
state of CO.

curve can be obtained from the expressions
2f=(ry—r1)= (Be/wexe)* InW
2g=(1/r1—1/rs)= [1/Bo(were)* 1 (we/7e)

(20)

exe
X[ae(élweer/wﬁ)%—}-(ZLBe—ae>anj| (21)

We

W= (1—dwi.V/w2)/[1— (doxV/w2)¥]. (22)

Here, 71 and 7, are minimum and maximum points of
the vibration. If w,, wete, Be, e are known, then »; and
72 can be obtained for any V from the expression (20)
and the following

(ritr2)/2=(f/g+ )% (23)
Presumably, one could use Egs. (20) and (23) as a

STEELE, LIPPINCOTT, AND VANDERSLICE

basis for an empirical potential curve for “well-
behaved” molecular states whose energy levels are
given by Eq. (19). First, let us put (20) in a more
convenient form. By expanding the logarithms of the
numerator and denominator of W, it is easy to show
that InW =tanh= (4wex.V/w?), and, hence,
4wz V/w2)i=tanh(wex./Be)t(ro—r1)/2r.. (24)
Equation (23), which gives the average value of 7,
cannot be written in simpler form. It is possible to
sidestep this problem by taking B,, which is equal® to

- L L .
oz 03 0.4 T
(4we xe V ) 2

We2

0.5 0.6

Fic. 3. y—vrkr vs (4wx.V/w?2)} for the various potential
functions. The meaning of the symbols is as follows:

M =Morse L=Linnett
FM =TFrost-Musulin HH =Hulburt-Hirschfelder
RM =Rosen-Morse V=Varshni

PT =Posschl-Teller
R=Rydberg.

Lipp = Lippincott

B2/, to be a measure of [ (r1+7,)/2 ]2 If this is so,
then,

C(ritrs)/2 =B/ By=Ba2/[Bo—a.(v+5)].  (25)

ar e/

M

FM -
L ]
o R
S .
[¢] HH vl

Lipp

-2 1 1

1.0 Ll 1.2

G (V)

Fic. 4. =[(ri+r)/2r. P—L(r1+r2)/27. Prxr vs G(V) for the
various potential functions. Symbols are as in Fig. 3.
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This can be written in terms of w,, wx, and V to get

[lritre)/2r P=1/[1— (twe/2Bwexe)

H{ (@ewe/2Bwx,)?—altV/Blwax.} =G (V). (26)
Hence, for a molecule whose energy levels are given by
Eq. (19), plots of

(QwexV/wd)? vs tanh(wewe/Bo)t(ra—r1)/27,

and

Lritre)/20. ] vs G(V)

should be straight lines with a slope of unity. Figures 1
and 2 show such plots. The solid lines are the results
for the ground state of N, whose energy levels can be
reasonably expressed by an expression of the form
(19). The slopes, although close to unity, are not quite
1 since the w,, we., B,, and a, used were determined
from data at the lower-vibrational levels and not from
the complete range of data.

It is now possible to compare the deviations of the
proposed empirical potential functions from the experi-
mental curves in a different manner. In Figs. 3 and 4
are plotted for each empirical function the differences of
tanh (wex./Be)}(ra—r1) /27, and [ (r1-+72)/27, 2 from the
experimental values for the X'Z;* state of N, as a
function of (4wex.V/w2)? and G(V), respectively. In
general, the various functions show the same relative
deviations from the width of the potential bowl and
the midpoint of the vibration as they show for errors
in the quantities |V—Vrgr|, we¥e, and a,. All of the
proposed empirical functions considered predict too
wide a bowl for the potential curve. The empirical
curves generally give too large a value for the midpoint
of the vibrations. The exceptions to this last point are
the Varshni, Hulburt-Hirschfelder, and Lippincott
functions. The Hulburt-Hirschfelder potential curve
gives the best predictions of bowl width and midpoint
of vibration. This is in agreement with the fact that this
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potential gives the best reproduction of the RKR curves.
The Varshni and Lippincott functions predict too large
a bowl and too small a value for the midpoint. The
deviations are relatively small, and the net result
appears to be that these errors cancel somewhat so
that these two functions give the next best average
performance. For all others, the predicted bowl is too
large and the midpoint is shifted to larger values,
leading to poorer average performance.

The above conclusions are based, of course, only on
the X'2,;* state of N,. However similar results should
follow for any state with energy levels represented by
Eq. (19). It would seem that the least one could expect
from any empirical function proposed in the future
would be reliable predictions for “well-behaved”
states like the ground states of Ng, Og, Iy, and Ho.

It may be possible to generate reliable potential
curves by using equations similar to (24) and (26).
Since these are in reduced units, all well-behaved
molecular states should give nearly the same plots as
the ground states of N, shown in Figs. 1 and 2. As a
check, the a/3Z+ state of CO was chosen at random
and similar plots were made. These are shown as the
dashed lines in the figures. As one can see, particularly
from Fig. 2, large errors could be made in the calcula-
tions of the potential curve for the a/*Z* state of CO if
the solid lines were chosen as the standard curves.

In summary then, the comparison of empirical
potential functions given here indicates that the better
3-parameter functions can be expected to give potential
curves with an average error of 2 to 3% in |V—Vgxr|/
D,, whereas the better S-parameter functions should
give average error of from 1 to 29%,. It does not seem
likely that any substantial improvement (errors of
less than 19)) can be made by suggesting new functions
which have no theoretical or experimental basis. The
task of giving a satisfactory theoretical or experimental
foundation for any empirical function appears difficult
indeed.



