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I. INTRODUCTION

HE energy of a sufficiently large ferromagnetic
body can be enormously reduced by its being

subdivided into domains that are magnetized in
different directions. This division is actually observed
experimentally by various techniques. However, it is
not understood how these domains nucleate in a
previously saturated material, since the theory predicts
a very large barrier, which should have practically
prevented the observation of these domains. This
discrepancy between theory and common observation,
known as the Brown paradox, can be stated quantati-
tively as follows.

Consider a single crystal which has the shape of an
ellipsoid of revolution and let the axis of symmetry,
which is assumed to coincide with a direction of easy
magnetization, be chosen as the s axis. Apply a large
enough field in the +s direction so that the sample is

magnetized to saturation, then start reducing the field

very slowly (so that eddy currents and other dynamic
effects can be neglected), reversing it if necessary. In
the course of this process, a certain value of the fieM

will eventually be reached at which the state of magnet-
ization to saturation is no longer stable. At this so-called
"nucleation field, " H„, an infinitesimal additional
change of the field will start some changes across a
certain mode of magnetization reversal. What is most
important, however, for this discussion, is that no
change can occur, in particular no domain can nucleate,
before the field H is reached. In his original papers
Brown did not calculate the nucleation field, but he
could give a lower limit; that is, he could prove that

H„&~2K/I, 1VI,. — —(1)

Here, I, is the saturation magnetization, E is the
constant of anisotropy (both considered constants of
the material), and It/ is the demagnetization constant
along the s axis. Here and in the following, the sym-
metry of the crystal does not enter, and E may be
referred to cubic as well as to undirectional anisotropy,
since at nucleation the material is assumed magnetized
in an easy direction with only small deviation from
this state.

Later, both Brown, ' and Frei, Shtrikman, and
Treves4 calculated the nucleation field for a certain
mode, called the "magnetization curling, " for a sphere

' C. Kittel, Revs. Modern Phys. 21, 541 (1949).' W. F. Brown, Jr., Revs. Modern Phys. 17, 15 (1945).
W. F. Brown, Jr., Phys. Rev. 105, 1479 (1957).

4 E. H. Frei, S. Shtrikman, and D. Treves, Phys. Rev. 106,
446 (1957).

and for an infinite cylinder. Since a certain mode is
assumed, one does not know if the field thus calculated
is numerically the smallest possible, so that their
results can be regarded only as an upper limit, yielding

—H ~&2K/I, 1VI,+—2rrI, h(R/Rp) '. (2)

' A. Aharoni, J. Appl. Phys. 30, 70S (1959).
C. P. Bean and J. D. Livingstone, J. Appl. Phys. N, 120S

(1959).
7 A. Aharoni and S. Shtrikman, Phys. Rev. 109, 1522 (1958).

W. F. Brown, Jr. , J. Appl. Phys. 29, 470 (1958).
s R. W. De Blois and C. P. Bean, J. Appl. Phys. 30, 225S (1959).
' F. E. Luborsky, J. Appl. Phys. 32, 171S (1961).

Here, R is the radius of the ellipsoid in a direction
perpendicular to s, RO=A'I, ', A is the exchange
constant, ' and k is a numerical factor which equals 1.38
for a sphere and 1.08 for an infinite cylinder. They have
a,iso assumed' that (2) holds for any prolate spheroid,
with 1.08&~ k &~ 1.38, a result which was later established

by Aharoni, ' who calculated k as a function of the
elongation of a prolate spheroid. It was also shown'4
that for R(1.1RO in the case of cylinder, and for
R(1.4Rp in the case of a sphere, (2) can be written
with ( instead of &~, since other modes of magnetiza-
tion reversal give numerically smaller values for IJ
than are encountered by (2). This region, however, is
of very small interest since Rs is rather small (60 A

for iron) and for such radii, at least the spherical
particles become superparamagnetic' and the whole
argument behind Eqs. (1) and (2) breaks down. In
this review, therefore, we are interested only in the
region where R is larger than, say, 1.5RO. In this region,
it was proved that for an infinite cylinder7 and for a
sphere, ' the curling is the lowest mode, so that (2) can
be written with the equality sign. Being so at both
limits, the equality sign in (2) probably holds for the
general prolate spheroid, but this has not been proved.

For fine particles, i.e., in the region of sizes where the
last term of (2) is still important, nucleation field was
not measured for spherical or slightly elongated
particles, so that (2) cannot be compared to experiment.
For an infinite cylinder, however, both Brown and
Aharoni and Shtrikman' have shown that the hysteresis
curve is rectangular, with the nucleation fieM identical
with the coercive force. One can, therefore, compare
(2) to the measured coercive force of elortgated, fine
particles. Figure 1 is a plot of (2) taking for iron'

2K/I. = 560 oe at room temperature. The experimental
data for the coercive force of elongated, iron particles
at room temperature in this figure are reproduced from
Fig. 4 of Luborsky. '
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I I I I 1 I I I ical and experimental data available now, the discrep-
ancy is not large and easily understood as far as fine

particles are concerned. This does not give any informa-
tion about domani nucleation, since fine particles are
known' " not to be divided into domains, from mere
comparison of the energies involved, or more simply
because they are smaller than the domain-wall thickness
(which is usually taken' as 10' A for iron). The situation
is quite different when large particles are considered.

If R is large enough with respect to Ro, the last
term in (2) can be neglected, and (1) and (2) can be
combined to read

II„=—2K/I, NI, . — (3)

0OI I 1 I I III
IO

R/R ~
Fxc. 1. Theoretical nucleation field, FI„, for an infinite cylinder

of iron at room temperature as a function of its reduced radius
compared to experimental results for the coercive force of fine
elongated iron particles at room temperature and zero packing:
the circles are wire drawing, the boxes are reduction of acicular
oxides (after Luhorsky'0).

The disagreement between theory and experiment in
Fig. 1 does not seem much worse than between one
experiment and another. The agreement is remarkable
if one remembers that the particles under study were
not single crystals, but a rather poor substitution for
circular-shaped infinite cylinders, and that for a large
proportion of them the field was probably not applied
along an easy axis. %hat is perhaps most striking is
that all the experimental points lie below the theoretical
curve and there are none above it. This can be regarded
as a confirmation of the theory which predicts that, at a
certain field, even a perfectly cylindrical, single crystal
will reverse its magnetization. It should be noted,
however, that the samples studied showed a 1—p
dependence of the coercive force on packing, "whereas
for the curling mode in a circular infinite cylinder there
is no interaction, and, therefore, no dependence on
packing. This is evidently due to the lack of cylindrical
symmetry in the particles (see Fig. 13 of Luborsky"),
which is essential for the ideal curling mode. When this
symmetry is absent, it is reasonable to assume one has
to deal with different modes than the curling, for which
there is a packing dependence, yet the nucleation field
does not differ much from that of the curling. It would
be very interesting in this respect to study the sub-
stitute for curling in an elliptical infinite cylinder and
the packing dependence it implies, but this has not
yet been done. Additional data seem also desirable for
the comparison, both from experimentalists (e.g. ,
measurements on elongated particles of hard materials)
and theoreticians (in particular the calculation of
coercive force of spheres, for which there are some
experimental data).

It can, therefore, be concluded that, for the theoret-

"F.P. Levi, J. Appl. Phys 31, 1469 (1960. ).

For soft materials (i.e., those for which K&(Is) of
almost spherical shape, there is again no discrepancy
simply because there are no data to compare. The
coercive force or other details of the magnetization
curve were not calculated, and the nucleation field
was not measured, except for one recent pulse-technique
experiment of De Blois," who measured (with a
doubtful accuracy, see Sec. II) a nucleation field of
+6.4 koe in a single-crystal iron cube at 77'K. The
theoretical value for an iron sphere is, according to (3),
about +6.6 koe, which shows a remarkable similarity
to the De Blois figure and is at least in no possible
contradiction to any other measurement of hysteresis
curves.

However, if the soft materials are in a form of
elongated particles, N becomes small, and (3) predicts
an extremely negative, nucleation field. For iron, for
example, —H should be' 560 oe, whereas domains are
observed in positive fields, and even the coercive force
of iron whiskers (which are very good single crystals
and with N practically zero) is of the order of 0.1 oe.
(except in the De Blois and Bean experiment' which

is described in the following).
For hard. materials, in which K)&I,', the second term

in (3) does not contribute much in any way. Since
the maximum value of E is 4x, this can be taken as
the best possible value for co~parison. For manganese
bismuth, K is" 8.9)(10' erg cm ' and ~I, is" 2200 gauss
at room temperature, giving for the right-hand side
of (3) about 29 koe, whereas the experimental coercive
force, which should certainly exceed the nucleation
field, ranges' from 12 koe for 5-p particles to 0.6 koe
for 100-p particles. Not only is there a large discrepancy,
but it increases with particle size (Rs for Mn Bi is
about 140 A so that at Sp the contribution of the last
term of (2) is very small indeed). Another example of
a hard material is BaFe~20~9, for which the theoretical
value (with, IV=4z-) is" —12 koe, which exceeds the

I2 L. Neel, Compt. rend. 224, 1488 (1947).
"R.W. De Blois, Rev. Sci. Instr. 32, 816 (1961)."R. M. Bozorth, Ferromogaetisra (D. Van Nostrand Company,

Inc. , Princeton, New Jersey, 1951),p. 575.
"W. C. Ellis, H. J. Williams, and R. C. Sherwood, J. Appl.

Phys. 28, 1215 (1957).' C. Kooy and U. Enz, Philips Research Repts. 15, 7 (1960).
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|'xperimental, coercive force'~ of 3 koe at room tempera-
ture. For this material, there is even an observation of
nucleation fields" of a single crystal, ranging from
+500 to +2000 oe.

In contradistinction to these order-of-magnitude
discrepancies which constitute the Brown paradox,
De Blois and Bean' have measured nucleation fields
approaching the theoretical value in certain parts of
most-perfect iron whiskers. This and the fair agreement
between theory and experiment for fine particles suggest
that the theory might be essentially correct, but it is
based on too idealistic a model to be realized in practical
experiments. Three fundamental assumptions of the
theory are immediate sources of doubt as to whether
they actually hold for the usual experiment: that one
starts from a complete saturation, that the material is
a single crystal, and that its shape is an ellipsoid. In
the following three sections, the present knowledge of
the possible importance of these three parameters is
reviewed, some preliminary results of new theoretical
developments are given, and an attempt is made to
outline how to determine finally whether they are
actually the cause of the Brown paradox. There are
also other possible Aaws in the theory that might be
important for its failure to account for the experimental
results. Two of these are briefly discussed in Sec. V,
namely, the possibility of using a wrong expression for
the exchange energy, or wrong boundary conditions.
Finally, temperature effects are neglected in the theory.
A justification for this is to be published elsewhere.

II. INCOMPLETE SATURATION

Starting from a completely saturated sample is an
essential part of the theory. Only for a highly idealized,
one-dimensional case have some calculations been
recently drawn without using this assumption. "Until
techniques are developed to deal with the nonlinear
equations involved, which are very complicated
mathematical problems, one should be careful to
compare with the experimental results only in cases
where saturation was initially reached. It has already
been mentioned as a possibility in Brown's original paper'
that the measured crystals "were never really saturated,
but always contained vestigial domains. " and that the
samples should be initially subject to a field of 10'
gauss.

That large fields, above technical saturation, are
necessary, has been demonstrated by Shur, Shtoltz,
and Margolina. "They observed a polydomain structure

"G. W. Rathenau, J. Smit, and A. L. Stuyts, Z. Phys. 133, 250
(&952).

"A.Aharoni, Phys. Rev. 123, 732 (1961).After the publication
of this article, I have found out that the solution reported there
is unstable. Actually, Brown has recently shown that all one-
dimensional solutions are unstable (private communication).
However, the technique of starting from values other than
saturation is worth extending.

' I. S. Shur, E. W. Shtolz, and W. j. Margolina, J. Exper.
Theor. Phys. (U.S.S.R.) 38, 46 (1960).

on MnBi particles of 10- to 15-y size. The domains
disappear completely at a field of 5 koe, so that satura-
tion can be assumed to take place at this field, and the
coercive force is a few hundred oe. However, once such
a particle is subjected to a field of 20 koe, the domains
disappear and do besot appear agaie at any field, even
though the hysteresis cycle is transversed many times,
the coercive force becoming an order of magnitude
larger than before. The polydomain structure can be
obtained again by applying a decaying ac field or
by cooling the crystal to liquid-air temperature and then
heating back to room temperature (near liquid-air
temperature, E of MnBi happens to pass through zero).

Fowler, Fryer, and Treves" found domains still
persisting at fields in which the crystal is considered
normally completely saturated. By improving the
resolving power of the Kerr-effect technique, they
could see reversed domains at the tip of iron whiskers
in a field as high as 6 koe (which was evidently the
largest field at their disposal).

The fact that domains remain at the tip of the
whiskers is definitely connected with the problem of
surface roughness. Shtrikman and Treves" noted that
the demagnetizing field at a sharp corner is infinite, so
that in principle no saturation can be achieved in any
finite field. Nevertheless, this infinity, being logarithmic,
is not very serious in itself, since the corner can be
smoothed out by a radius of curvature of the order of
atomic distance. After all, on an atomic scale there can
never be an absolutely sharp corner, just as there
cannot be an absolutely smooth surface. Consider, for
example, a circular finite cylinder, with its bottom
plate on s =0 and the s axis along its center of symmetry,
magnetized to saturation in the +z direction. The
surface charges of the circle at s=0 give a potential
V, which implies a demagnetizing field with BV,/'Bq =0,
r')U/r)z finite everywhere, and ciV/r')r infinite at s=0,
r =R (where R is the radius of the cylinder). Now, if
one allows s at r=E to reach only a value u, the field
at this point is approximately

rl V/Br =2I,(E(Ie) 2}, —

where E is the complete elliptic integral of the first
kliid) aild

k' = 1—(a/2R)'

One obtains an infinite field from (4) if a~0, but,
if a/R is as small as 10 ', the field is only about 47rI„
the maximum VI, value for an ellipsoid, and reaches
18.5I, when u/R= 10 4. Even if a is taken to be of the
order of interatomic distances, 10 4 is the smallest value

"C. A. Fowler, Jr., E, M. Fryer, and D. Treves, J. Appl. Phys.
32, 296S (1961)."S.Shtrikman and D. Treves, J. Appl. Phys. 31, 72S (1960)."P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals
for Engineers and Physicists (Springer-Verlag, Berlin, 1954).' For z =0 and r =R—a, the value of k is somewhat smaller than
that of (5),
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for a/R when whiskers are concerned, and for larger
samples it is certainly not difficult to round off corners
to this accuracy. The actual fields are thus seen to be
not very large and to be restricted to a very short
range from the corner. One might, therefore, still
assume that complete saturation is possible in practice,
although it takes fields of about 30 koe to saturate an
iron whisker, preferably larger to allow for possible
barriers. The theory can thus be in no contradiction to
experiments in which suKciently large fields are not
used, since once the domain wall is there, its movement
does not imply as high a barrier as its formation.

The main problem now is whether the large de-
magnetizing field at sharp corners would be sufficient
for domains to be nucleated at these points, even after
the whisker has been completely saturated once. Some
theoretical aspects of this problem are discussed in
Sec. IV, but because infinities, even though they are
logarithmic, are very inconvenient for approximation,
such as perturbation theory, it does not seem likely
that a complete theoretical answer to this important
problem can be given. On the other hand, its experi-
mental solution does not seem particularly difficult, in
view of the following discussion.

As mentioned in Sec. I, De Blois and Bean' obtained
values more negative than 500 oe for the nucleation
field at some parts of iron whiskers, thus approaching
the theoretical value of —560. At other parts, the
field was numerically much smaller. Later, De Blois'4
observed that electropolishing could increase

~
H„~ in

places where it was rather small before, and that
corrosion due to water droplets on the surface reduced
considerably a high peak of

~
H„~ . Of particular

significance with respect to the above-mentioned work
of Fowler, Fryer, and Treves" is that De Blois could
extend the region of high ~H„~ even to the tip for
electropolished smoothly tapered whiskers. '4

Although he could not give quantitative results for
the dependence of the nucleation field on surface
roughness, De Blois thus proved that surface roughness
is the major effect in the case of iron, reducing the
theoretical H„ to its experimental. values. However,
the fields he used were rather small, so that one cannot
tell if the theoretical value is obtained in previously
magnetized regions and the low values for H„ in regions
where the field was not sufficient to saturate, or if
nucleation is actually that much easier because of
the demagnetizing field. In the De Blois experiment,
these two effects are evidently superimposed, but the
problem could be settled by applying a large enough
field in studying the "bad" regions and by measuring
the nucleation field at these spots. It actually means
combining the techniques of this experiment with the
De Blois minature coil for high fields. "The other way
is to try to calculate, as in Sec. IV, the effect of the
demagnetizing field, assuming previous saturation and

"R.W. De Blois, J. Appl. Phys. 32, 1561 (1961).

to see whether it checks quantitatively with the
De Blois experiment.

There is at least some indication that, once a sample
is actually completely saturated, the infinite demag-
netizing field at the sharp corners is not as important
for domain nucleation as assumed by Treves and his
co-workers. "" This might be concluded from the
experiment of De Blois" (mentioned in Sec. I), who
obtained for an iron cube, practically the theoretical
nucleation field of an iron sphere, leaving a negligible
contribution to the sharp edges of the cube. One should,
however, be rather careful in drawing conclusions from
this experiment, because of the stated, " possible zero-
level error; because of the extraneous noise in the
output coil, which comes much before the main signal
but in principle could have obscured a signal of pre-
viously started magnetization reversal; because the
technique measures the changes in the bulk magnetiza-
tion and could hardly be expected to reveal domain
nucleating or disappearing over a small portion of the
volume; but mainly because at a highly positive fields
many effects can superimpose, all yielding practically
the same nucleation field. If this experiment were
performed on a whisker, where even in relatively
"bad" parts the nucleation field is negative, the
conclusions would be more reliable. It is a pity that
this has not been done yet. A most interesting experi-
ment would, of course, be the comparison of a cube to
a whisker tip.

In hard materials, where the demagnetization field is
negligible, surface roughness cannot be expected to be
very important. In these materials, on the other hand,
crystalline imperfections (of which a whisker is prac-
tically free) can be very important factors. Dislocations,
in particular, involve mechanical strains which change
locally the magnetocrystalline anisotropy through
magnetostriction effect. In Sec. III, a somewhat
idealized model of this effect is discussed, but again
with a previous complete saturation assumed. However,
in this case too, one can devise relative directions for
the dislocation axis and the ellipsoid axis, so that it
takes an infinite field to saturate the material. " In
practice, this means again the necessity of using
rather large fields. The author tends to interpret the
results of Kooy and Enz" on this basis of incomplete
saturation. They observed the domains nucleate always
at a well-defined spot in a single crystal of BaFe»O».
In each sample, there were two to four such nucleation
centers, but only one of them was active in each single
experiment. Each of these centers had a characteristic
nucleation field ranging from +500 to +2000 oe.
Usually, there was an increased or decreased local
transparency to light at these spots, " thus indicating
certain imperfections. It is possibl, of course, that
domains nucleated at these centers in a way discussed

25 W. F. Brown, Jr. (private communication)."U. Ens (private communication).
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in Sec. III. But, because the domains did not always
nucleate at the centers having the largest nucleation
field, in spite of the large difference in these fields, it
seems to me that the field used was barely large enough
to saturate the imperfect spots, and at different cycles
somewhat different "saturating" fields were used.
The 2000-oe field nucleation pertained thus to samples
net previously saturated at the point of "nucleation, "
whereas only the 500-oe field nucleation probably per-
tained to a previously saturated sample, if this was
reached at all. After all, they assumed the sample to be
saturated only because they did not see any more
domains, but we know from results of Shur et at." that
this is a rather poor indication. Repeating this experi-
ment with the use of high fields can settle the problem of
domain nucleation in hard materials. One could also,
at the same time, determine the possible effect of
surface roughness in hard materials by electropolishing,
as De Blois did for whiskers, or by introducing a scratch,
mechanically or by etching, and see whether this point
can serve as a nucleation center. Theoretically, too,
all the calculations were carried out for an easy axis
(or hard axis, for a ferroxplama-type material, ""
which is essentially a similar matkemaHcat problem)
which coincided with the ellipsoid axis and the direction
of the field, except for some rough estimation for an
infinite cylinder inclined to the field' " but not to an
easy direction. It would be interesting to try to calculate
the nucleation field for an easy axis inclined to a
perfect-ellipsoid axis, even with the assumption of
previous saturation (which is doubtful in this case)
to see what difference it makes.

In spite of all the foregoing, it is still possible that,
because of the angles between easy-direction axis and
fieM, or because of crystalline imperfections, or because
of surface roughness, saturation is unattainable in
principle in a finite field, at least for large enough
particles, for which subdivision into domains is favorable
energetically. After all, Shur, Shtoltz, and Margolina'
could remove the domains by a large field only when
10- to 15-p particles were studied, i.e., close to the
classical "critical size. " Fifty-micron particles were
always polydomain with a positive nucleation field.
This might be explained, as in Secs. III or IV by
imperfections, but it might also mean that one cannot
saturate a large enough particle. Such a point of view
implies leaving out aH linearized-nucleation problems
and dealing with Brown's nonlinear equations. ""It
means much more tedious computation, but might be
unavoidable if the nonlinearity is proved to be an
essential feature for domain nucleation, i.e., if the
other possibilities to resolve the Brown paradox fail,
or if additional experimental results are accumulated.
In view of the present state of theory and experiment

"M. W. Muller, Phys. Rev. 122, 1485 (1961).
's M. W. Muller and A. Wehlsu, J.Appl. Phys. 32, 2448 (1961).
'9 S. Shtrikman and D. Treves, J.phys. radium 20, 286 (1959).
"W. F. Brown, Jr., J. Appl. Phys. N, 62S (1959).

discussed in the foregoing, the author does not regard
this as a serious possibility. Therefore, in the following
two parts, the effects of crystalline and surface imperfec-
tions are studied by the linearized theory, i.e., by assum-
ing previously saturated samples.

Also connected with the problem of complete
saturation is the question of whether I, can be regarded
at all as constant over the material. This constant is a
function of temperature and is calculated as such"
by averaging over an infinite body the contributions of
spin waves excited by the temperature. To take this
space average and consider it as independent of the
coordinates for the other calculation can hardly be
justified without a detailed study. It evidently is not
true when the Curie temperature is approached, but
even at room temperature it might be possible that, by
assuming I, a constant, the theory is affected and some
justification seems necessary. A simple assumption,
therefore, was tried, namely, that I, is given by a
standing spin wave of the form

I.,=JQ(1+e cost k (r—rs)7}, (6)

with e assumed small (low temperature). If the magnet-
ization vector I is assumed everywhere to have the
magnitude I, and if one follows Brown's derivation' "
of his equations with this I, to a first order in e, it turns
out that this is equivalent" to substituting (6) in the
final Brown equations. An important implication is
that the state in which I is everywhere directed along
the s axis is a solution of the equations for an ellipsoid.
Although this is not saturation in the usual sense, one
can regard it as such and work out the nucleation
problem with the linearized equations. At least for an
infinite slab, assuming one-dimensional dependence, this
does not give any appreciable change in the nucleation
field with respect to the case &=0.

III. CRYSTAL IMPERFECTIONS

Since the Brown paradox comes mostly from the
large values of E, it seems reasonable to assume that
local reduction in E will enable domains to nucleate.
This has been suggested by Rathenau et at." as a
possible explanation to the paradox, but without any
calculations. As a first approach to this problem,
Aharoni' " studied a one-dimensional model in which
K=O in a certain part of an infinite crystal. This did
not make the nucleation as easy as one might expect
from the fact that, at the region where E=0, there is no
barrier at all. The barrier is provided by the exchange
interaction on the boundary of this region, with the
outside spins which are held by the magnetocrystalline
anisotropy. The result was that the 2E/I, term is
reduced by one order of magnitude at most. He has

F. J. Dyson, Phys. Rev. 102, 1217 (1956).
s' W. F. Brown, Jr., Am. J. Phys. 28, 542 (1960).
' The exchange energy is taken as' proportional to J V'J

rather than the expression used by Brown.
'4 A. Aharoni, Phys. Rev. 119, 127 (1960).
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later shown that a linear decrease of E into the value
zero affects considerably the coercive force but not the
nucleation field, " and that the results are practically
the same if more than one such "defect" is present. "
According to Sec. I, one order of magnitude will not
help at all in the case of elongated particles of soft
materials, whereas for spherical particles of these ma-
terials there is no paradox. In the case of hard materials,
if they are almost spherical, it is seen from (3) that one
order-of-magnitude reduction in the first term is suffi-
cient to make H„positive. It is not so in elongated
particles, but no data are available for measurements
on elongated particles of hard materials. It seems,
therefore, that for hard materials the resolution of
the Brown paradox lies mainly in crystal imperfections,
most probably dislocations at which K is reduced by
the mechanical strains through magnetostriction. To
support this assumption, it is desirable to measure
nucleation fields of elongated particles and to extend
the theoretical treatment to a more physical model of
the dislocation, which can essentially be an adaptation
of Brown's approach to saturation study. '~ Until this
is done, it is interesting to see whether the one-dimen-
sional calculations hold for three dimensions. The
region with E=O is, therefore, taken in the following to
be an infinite cylinder, rather than a slab.

More specifically, a ferromagnetic material infinite
in all directions is assumed which has a uniaxial,
magnetocrystalline anisotropy K(r), where in cylin-
drical coordinates

K(r) =0, for r~(R
=E, for r&~ R.

The external field is applied along the s axis, which
is assumed to coincide with a direction of easy mag-
netization.

The differential equations for the nucleation problem
are identical with those for an infinite cylinder' for
r&~R, whereas for r&~R the only change that should be
made in them is to replace h by h+g, where

g =K/(mI. ').

for t~&1, and, similarly,

.~l,.—A„= Q b„H r&')(in t), (10a)

~75+71

U, =2iS Q H (o(i n, t), (10b)

A,.+A„= P (—1)""i""b„H r'"(in t), (10c)
n=1

for t&~ L. Here, the notations are the same as in Aharoni
and Shtrikman. ' In particular,

t= r/R, h=H/(27rI, ), S=RI,A

p, g
——(k'+m 5'h) ',

(11a)

(11b)

ps, p
——Dp'+7rS'-(-', h+1)

%5(27rk'+~'5'(-'k+1)') '*]'. (11c)

A is the exchange constant and the n's are same as
the p's with h+g substituted for h. The changeover from
the Bessel function of the first kind J, in the region
t &&1 to the Bessel functions of the third kind H ('),
in the region t &~ 1 is necessary to insure zeros at infinity,
since in this instance the material extends to infinity.

The boundary conditions in this case are that the
three functions A„, A„, and Ut, will be continuous and
have a continuous derivative at t=1. This implies six
linear homogenous equations for the six coefficients,
a„, b„of Eqs. (9) and (10).Jn order that a, nonvanishing
solution exist, the determinant of the coefficients of
a„and b„must be zero. This condition implies a rather
complicated relation between h, g, k, and S. For each
value of the radius, the parameter k should be chosen
so that the said relation implies the least-negative value
for h, and this computation should, in principle, be
carried out for every non-negative integral value' of m.

Only for m=0 is the computation rather simple,
since the determinant breaks down into a product of two
determinants, one of which involves the coefficients of
A„only and implies

One can, therefore, use the analytic solution' " for
these equations and write

ip~Jp(ipse) ingHp" l (in')

Jr(i i) Hr"'(inr)
(12)

A,.—A„= Q a„J,„,(itr, „t),
n=l

(9a)

U, =2iS Q J„,(ip„i),
2/2 ~ 2

3

A*+A.= 2 (—1)""' "~-I-+r(it.t),
n=l

(9b)

(9c)

"C.Abraham and A. Aharoni, Phys. Rev. 120, 1576 (1960)."A. Aharoni, J. Appl. Phys. 32, 245S (1961)."W. F. Brown, Jr. , Phys. Rev. 58, 736 (1940).' A. Aharoni, E. H. Frei, and S. Shtrikman, J. Appl. Phys. BO,
1956 (1959).

The other one need not be calculated, since it reduces
to (12) if the self-magnetostatic energy is neglected,
which means that it will give more-negative eigenvalues
h than (12).One can therefore, conclude that A „=U& ——0
for m =0, and this is the curling mode. 7 The values of
the nucleation field as a function of the cylinder radius
R were calculated numerically from (12) and are
plotted in Fig. 2, labeled "curling. "

For m/0, if the self-magnetostatic energy is neg-
lected, one obtains a fourth-order determinant which
can be written as a product of two second-order
determinants, yielding relations somewhat simil. ar to
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Fzc. 2. Theoretical nucleation field H„ for an infinite, ferro-
magnetic material which has a defective region with X=O, in
the form of an circular infinite cylinder of radius R (full curves)
or of an infinite slab of width 2R (dashed curve). The "approxi-
mate buckling" is obtained for the cylinder by neglecting the
self-magnetostatic energy in the buckling mode. Only the exact
buckling mode depends on the additional parameter g=K/(irI. ').
Here, E is the magnetocrystalline anisotropy. , A the exchange
constant, I, the saturation magnetization. The nucleation field
is plotted in terms of 2K/I, which is the nucleation field for
perfect, infinite material.

(12). Computations showed that, for each of these
branches, the values of H„becomes more negative as
nz was increased and that they all were more negative,
than for the curling, except for one of the branches of
m= 1. This branch is plotted in Fig. 2 labeled "approx.
buckling. "For the case ns = 1 only, the complete compu-
tation from the six-order determinant therefore, was
carried out, with the values from the aforesaid branch
used as starting values, carrying out the maximum with
respect to k. The final results are plotted in Fig. 2
under the label of "buckling" for 2 values of the
parameter g defined in (8), which correspond to
barium ferrite and manganese bismuth, respectively.

For comparison, the results'4 for the nucleation in
the case where the "defective" region is an infinite
slab of width 2R, are also plotted in Fig. 2. It can be
seen that the slab one-dimensional results yield con-
siderably easier nucleation than in the case of the
infinite cylinder, which is certainly a better approxima-
tion to a dislocation. The form of the curves, however,
is not much different, especially for hard materials, and
the final conclusions with respect to the one-dimensional
case can still be adopted. In particular, if one subtracts
the demagnetizing field as in (3), the nucleation field
for spherical particles of hard materials becomes positive
when dislocations are present.

To justify the subtraction of the demagnetizing field
consider an infinite plate with the region at which X=0
a circular fi'vite cylinder in this slab. It is readily seen
that the treatment of an infinite material in this section

holds, if instead of the s dependence coskp one writes
a trigonometric function that will fulfill the additional
boundary conditions Bn~/tip=0 at p=+a, say. That
means cos(nm p/a) or sin{ (n+ is)m p/a}, with n an
integer. One can, therefore, use the same transcendental
equation for the eigenvalue h merely by substituting
the internal field H 4rrI—, for H and by taking tt =Xir/a,
where E takes integral or half-integral values.

For the curling mode of Kq. (12) and Fig. 2, k=O,
i.e., E=O, and no change need be made except to
subtract the demagnetizing field. For the buckling
mode, on the other hand, k takes an optimum value,
which might not be an allowed value for cP. The
buckling graph in this case is in principle higher than
in Fig. 2. However, the minimum with respect to k is
rather Rat, and, if the width of the slab is large compared
to R, the radius of the "defective" region (as is prac-
tically always the case), the allowed values for k are
closely spaced and the correction in Fig. 2 is negligibly
small. One can, therefore, say that Fig. 2 gives the
correct result for a material in the form of a slab if
H +4rrI, is substituted for H„.

Taking BaFei20i9 as an illustration, one obtains
from (2) the nucleation field of +500 oe observed in
certain cases for a thin-plate single crystaV' if the
2K/I, term is multiplied by about is. According to
Fig. 2, this corresponds to a defective region having a
radius of about 350 A, which is not unreasonable for
a dislocation.

It can be concluded that for hard materials the
solution to the Brown paradox lies mainly in disloca-
tions, and that these are important only if the particles
are almost spherical in shape. If this assumption is
true, one can expect very elongated particles of
reasonably good crystals to have a coercive force of the
same order or of only one order of magnitude smaller
than 2K/I„even if the particles are rather large.
This means that there is an enormous increase in the
coercive force of MnBi for example, where the reported
coercive force for 100-p particles is only 600 oe and
should be at least an order of magnitude larger were
the particles elongated. It would consequently be very
interesting to test this conclusion experimentally.
Another possible experiment is to try to observe the
domains nucleating on a cobalt whisker (provided a
large enough field is used to saturate it). This would also
settle the point of a possible surface-roughness effect
in hard materials. One can also determine by conven-
tional experimental techniques if the nucleation centers
in the experiment of Kooy and Enz are dislocations.

IV. SURFACE ROUGHNESS

Nobody has ever tried a detailed calculation of
nucleation modes in anything but a perfect ellipsoid
(except for the rotation in unison, which is not actually
an eigenfunction, for which mode it has been shown"

"W. F. Brown, Jr., and A. H. Morrish, Phys. Rev. 105, 1198
(&9&7).
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that any particle is equivalent to an ellipsoid). It is
mainly because the internal field is not homogeneous
once the form is anything but an ellipsoid, and math-
ematical difficulties arise. Nevertheless, after the
experiment of De Blois'4 has proved that surface
roughness is at least an important factor in determining
the nucleation field, one cannot avoid studying the
nucleation modes theoretically. In accordance with
the discussion in Sec. II, previous saturation is assumed
here, so that a model is chosen which does not imply an
infinite demagnetizing field anywhere inside the
material. Another assumption is made to make the
mathematics less formidable, namely, to take a model
which has a cylindrical symmetry, so that one has to
deal with two dimensions instead of three. Moreover, in
the case of cylindrical symmetry, there is a mode for
which the equations for the two components of the
magnetization vector are separated and can be solved
individually.

To prove this, consider a ferromagnetic particle of
any shape that has a cylindrical symmetry about the
s axis, which is also assumed to be a direction of an
easy magnetization, and the direction of the external
field IIO. Suppose that it is possible to saturate it in a
finite field, and let the potential of its surface charges
in the saturated state be denoted by Vo. In cylindrical
coordinates, this Vo will always be a function of r and s
only, since the surface and, therefore, the charges
themselves do not depend on y. Assuming now a small
variation of the magnetization from the saturated
state with direction cosines n~ and o.„and writing
Brown's equation" in the cylindrical coordinates, it is
seen that the equation in o.~ contains only derivatives
with respect to q of n„and the potential, whereas in the
other equations n~ is contained only as its derivative
with respect to q. Therefore, if one is interested in a
mode that has a cylindrical symmetry, i.e., if o.„and
o.„are assumed to be independent of p, the equation
for o.„turns out to be

2A (V' —r 2)a =I,(HO+2K/I, BUp/Bs)n„(1—3)

with the boundary conditions

Bn„/Bn =0.

Here A is the exchange constant' (=-',C of Brown'")
and e is the normal to the boundary surface. The
equation for n„, which should be solved in connection
with the Poisson equation for the potential of surface
and volume charges of the charge in magnetization,
might also give another mode for nucleation but is
disregarded here.

Equation (13) is thus the general equation for the
curling in cylindrically symmetric particles. For the
special case in which the particle is an ellipsoid of
revolution, cjVO/Os= X, the demagnetizing factor and
the coefficient of n~ on the right-hand side is a constant.
This yields then a solution in terms of tabulated

r~r
/

I
I
1

\

Pro. 3. Model used for a theoretical study of a scratch on the
surface of an circular infinite cylinder.

= —R'aI,
x/2

sing(1 —a cosg)(r +s'+R'(1+a')

—2R'u cos9—2rR(1 —a cos0)cosy

—2sRa sing) ld9d p. (15)

Since one is interested only in a a((1, this expression is
expanded in a Taylor series in a. Now both Vo and
BVO/Ba vanish for a=0, while O'Vo/Ba' gives a finite
expression for a=0, which can be expressed in terms of
complete elliptic integrals of the first and second kind.
Multiplied by —,'a', this expression is, therefore, taken
as an approximation for Vo. It turns out that both Vo
and its derivatives with respect to r and s are finite
everywhere within the materials (there is a logarithmic
infinity at r= R, s= 0, but this is outside the material
and, therefore, is disregarded), which justifies the choice
of this particular model from the point of view of
convenience. Whether the choice is justified for the
physical case is quite a diferent question. It seems,
nevertheless, a rather good first approach and will
certainly justify itself if the calculated nucleation as
a function of a (and R) will check with a, De Blois-type
measurement'4 of the nucleation field as a function of
scratch dimensions on a whisker. It should be noted
one is fully justified to assume just one scratch and
that the cylinder is infinite, since, in the experimental

functions. ' In other cases, 8 Vo/Bs is a function of space,
which is known in principle, since it is a solution of
Laplace equation with the appropriate boundary
conditions.

The model of scratch on the surface chosen here for
detailed calculations is shown in Fig. 3. It consists of
an circular infinite cylinder with a semitoroid removed.
When the particle is saturated in the s direction, Vp
caused by the surface charges on the semitoroid is
given by

Vo(r, s,R,a)

2x m/2
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arrangement of point-to-point measurement, the rest
of the material is held saturated so that it can well be
assumed to extend to infinity and have no other surface
roughness, which have no effect on the measurement.

To solve (13), n„ is expanded in a Dini series4'

(16)

where q„are the zeros of the derivative of J&, which
takes care of (14) for

l
s

l )aR, and f„are functions to be
determined. Substituting (16) in (13) and expanding
again in Dini series the following expression

BUp)
II 4. /R)= 2 I ()J(V /R),

cjs i m=1
(17)

the r dependence can be eliminated and one ends up
with a set of linear equations for f„, namely,

= Q g. (s)f (s), m=1, 2, 3.
d2

(18)

Here, g „can be calculated from (17) by the usual
way of calculating the coefFicients of Dini series, "
i.e. , by certain integrations involving ctVp/Bs. All the

g „are, therefore, known in principle once BVp/Bs is
known, except that they also contain (linearly) the
unknown eigenvalue Hp.

The general solution of the set of linear equations
(18) can always be written as a linear combination

where, for 2, =0,

f„"'(0)=0, (d f„"'/dz), p 1, (20a——)
f„"'(0)=1, (d f„@~/ds), p=O. (20b)

Let 2S equidistant points be chosen in the region
0&s&aR and let the summation in (18) and (16) be
stopped at N. For any value of Hp, the values of the
2X functions f„&", f„t'& at the 2X discrete points can
be evaluated from (18) and (20) by the Runge-Kutta
method, yielding a Nniqge solution. Substitution of
(16) and (19) into (14) then implies 21V relations
between the constant A„and 8„. If the determinant
of their coe%cient is computed as a function of the
previously selected value of Hp, the zero of this deter-
minant will determine the eigenvalues Hp of the
problem. The least-negative eigenvalue Hp is then the
nucleation field, and the computation can be repeated
for various values of a.

Although this scheme is straightforward in principle,
it is rather cumbersome, especially as S becomes large.
C. Abraham and I plan to put it on the electronic
computer of this Institute in the near future in order to

G. Ã. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Press, New York, 1958), p. 577.

h =Hp/ (2vrI, )+E/ (vrI, s) —ss,

S=RI,A *, T=p/R (21)

and writing (13) in spherical coordinates, the differential
equation for the curling mode becomes

8 2 8 cosO 8 1
+ + +

BT' T BT T'- 00' T' sin8 00 T' sing

2 cos'0 —sin'8
7rS'h+ ',ms'a'—-n„=O, (22)

"L. F. Bates and D. H. Martin, Proc. Phys. Soc. (London),
69, 145 (1956).

"W. D. Nix and R. A. Huggins, Phys. Rev. 121, 1038 (1961).

try to relate the results to De Blois-type measurements,
as mentioned in the foregoing. The same numerical
approach will also be used to study the effects of
cavities, which is mathematically exactly the same
problem.

Cavities or nonmagnetic precipitates are known' to
be important factors in determining the shape of
domains around them. They might also change the
nucleation field by their demagnetizing field to the same
extent that surface imperfections do it. This has actually
been suggested, without detailed calculations, as a
solution of the Brown paradox. " Theoretically, the
effect of cavities is usually calculated by assuming the
wall to be already there and a comparison of energies
(for a recent publication see Nix and Huggins4'), so
that it yields no information about nucleation fields.
For the rotation in unison mode, it was shown" that,
for a prolate spheroidal particle containing a spheroidal
cavity, the nucleation field is sometimes smaller and
sometimes larger than when the cavity is absent,
depending on relative directions and eccentricities. In
particular, for a cavity of the shape of a sphere centrally
located within a spherical particle (or actually, when-
ever the polar axes of the ellipsoids are parallel and
the eccentricities are equal), the cavity implies no change
in the nucleation field for the rotation in unison mode. "
For this simple case, the nucle'ation by the curling mode
can be easily studied analytically by the perturbation
theory, and it is shown in the following that the
nucleation becomes somewhat mere dQ6cult because of
the presence of the cavity. Other cases which have
cylindrical symmetry can be studied by means of a
technique similar to the one described using spheroidal
wave functions instead of Bessel functions for ellipsoidal
particles.

In the case of a spherical cavity centrally located in
a spherical particle, Vp consists of (4~/3)I, s due to the
surface charges on the outer sphere and —(4w/3)
)(a'R'p 'I, cos8, due to surface charges on the inner
sphere of radius uR. Here p and 0 are the spherical
coordinates and R is the radius of the particle. Using
the notations
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with the boundary conditions

(Bn„/8T)r . (B——n,/BT)r=i 0—— . (23)

Consider the last term (with ao) as a perturbation. The
unperturbed equation can be solved by separation of
variables yielding

obtains 2 linear equations in A and 8, which determine
A/B and yield a transcendental equation for p. The
smallest value of p is presumably obtained for v=1,
in which case the transcendental equation is

~(1—n) (2+v'~)+(~'(1 —n)' —2 —-'u'n')

Xtan{p(1—a)) =0, (25)

p, = —7lS9LO (24b)

n„&o&=T &(AJ„+~(pT)+BJ„;(pT=))P„'(cos9). (24a)

Here,
p,
' cosp —2p sinp, —2 cosp

B p' sinp+2p cosy —2 sing
(26)

is the unperturbed eigenvalue, and oo is a positive Using now first-order perturbation theory in (22), one
integer, to insure regularity at 0=0. By substituting the can write, after carrying out the integration with
boundary conditions (23) into the solution (24), one respect to the angles, for the change in the eigenvalue:

4a'p'
h ho=

i ~ ~ ri—~(x -" sinx —x l cosx) —x '* sinx —x i cosx dx
Bi

~ pA
(x ' sinx —cosx) —sinx —x 'cosx dx

,„kB

(27)

for x=pT. Carrying the integrations, using A/B from (26) and using (25) to shorten the expressions, one obtains
finally for the nucleation field

p2 p 'Q3 4p'(1+ a') —4+p4a'
h.= — — (1+a)—

7rS' 15 2(y' —2)(1+a+a')+p'a'[p'(lp'a+1)+2( +a)]

For a=0, the nucleation field is —po'/(orS'), with po
the root of

(po' —2) tanpo+2po=0 (29)

yielding po ——2.08. For small values of u, Eq. (25) yields
p= po. Actually, for u& 10 ', p equals pp to 4 significant
digits. For small values of c, therefore, it is seen from
(28) that

I
&-

I
&~'/(~S') =~o'/(xS'),

and the nucleation by the curling mode is more difficult
for a hollow than for a rigid sphere in spite of the
demagnetizing field. The difference, however, is ex-
tremely small, being of the order of u'.

V. OTHER POSSIBILITIES

In this section, we discuss briefly some possible,
more-fundamental Raw s in the micromagnetics
approach. Very difficult problems are involved and no
attempt is made actually to solve them. It is not felt,
however, that they can be important to the Brown
paradox in its present state, for reasons discussed under
each section.

Brown"" has already mentioned the difficulty in
writing the self-magnetostatic energy, since the internal
field cannot be defined in places where the magnetiza-
tion changes rapidly. When the change is gradual (it
should actually be linear over small distances) and the
crystal is cubic, it can be shown that the internal field

f

is I'+(4or/3)I in which the last term does not con-
t.ribute to the energy since I.I is constant. If inside a
domain wall the change is too rapid, the use of this
I,orentz-field approximation might be doubtful. ' "
(The second complication mentioned by Brown" is of
quite different nature in principle. It is just the difhculty
of visualization, but the problem is well defined
mathematically with the Poisson equation. ) A much
more difficult situation arises when one considers
under the same basis the term for the exchange energy.
Therefore, . this is considered here first.

A. The Exchange Energy

This energy is of quantum-mechanical nature. For
obtaining the Brown equations, this energy is used' in
a classical-type expression which is obtained by taking
the first term of an expansion in Taylor series, assuming
neighboring spins to be almost parallel. This argument
certainly fails if the spatial change in orientation of
magnetization is rather rapid. In particular, it definitely
excludes from the calculation functions which do not
have a continuous first derivative (at least). This might
be a rather severe limitation.

It has been argued' that the Taylor-series expansion
is justified because the Bloch wall extends over many
atoms such that the change in magnetization is quite
gradual. It is not a very convincing argument, since
even an over-all gradual change can be rather abrupt
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in certain parts of it, especially as improved techniques
reveal4' a rather complicated structure for a domain
wall. Also, this assumption, when used to estimate
the wall thickness, ' actually gives an infinite thickness
for simple models, a difhculty overcome by a rather
doubtful technique. ' But even if it were true that
smooth functions describe the stable state after walls
have settled, it could still be argued that when domains
start to nucleate they can do it through sectionally
smooth functions which possibly reduce the barrier
for nucleation. It is true that such an argument does
not affect the original statement of the Brown paradox, '
since all one needs there is the existence of an energy
which opposes a change from the saturation magnetiza-
tion, its magnitude being neglected anyway. For the
treatment of crystal imperfections (Sec. III), this
makes a lot of difference, since at the region where
E=O magnetization is held only by the exchange
interaction with the outer part, mathematically ex-
pressed as the boundary condition that the magnet-
ization should be smooth on the boundary.

Dreyfus remarked in the discussion to Brown's
Grenoble paper44 that the variational calculation might
exclude the domain walls because it deals with functions
having a continuous derivative. Brown answered44 that
a wall according to Landau and Lifshitz is such a
function and that the discontinuities imply an infinite
exchange energy. This really means going in circles,
since at the discontinuities the expansion in a Taylor
series is not allowed and one cannot use the expression
which implies infinity for the energy. The quantum-
mechanical original expression will not lead to infin-

ities, or even its approximation as Eq. (2.1.5) of
Kittel. '

Nevertheless, it seems that discontinuous functions
can be excluded, because on a microscopic scale it
means certain pairs of spins have an energy larger by
orders of magnitude than other pairs, and this does not
seem a reasonable distribution for an energy minimum.
The continuum approximation is, therefore, most
probably justified, except for a possible discontinuity
in the derivative. In this case, neighboring spins at the
discontinuity are parallel and there is no loss of energy.
It seems to me, although I cannot prove it, that
appropriate smooth functions can always lower the
energy of sectionally smooth ones. Yet sectionally
smooth functions should definitely be allowed modes,
when one needs an estimation and not the lowest-
eigenvalue mode.

The possibility of using sectionally smooth functions
can find important implications in cases when the
calculation of the exact modes is complicated and of
no special interest. For example, an estimation can be
readily given for the nucleation field in an infinite
cylinder of any cross section. Let R be the radius of the

4' S. Methfessel, S. Middelhoek, and H. Thomas, IBM J.
Research Develop. 4, 96 (1960).

44 W. F. Brown, Jr., J. phys. radium 20, j.01 (1959).

largest circle that can be drawn inside this cross
section. Let the magnetization be held in the s direction
outside the circular cylinder, and be changed by the
curling mode inside it. One can then use the solution for
a unidirectional cylinder" (the boundary conditions
thus insuring continuity of the function but not of the
derivative), and get for the nucleation field in the
inequality (2) with" k=4.67. Together with (1), this
implies (3) for the large enough radius R without any
detailed calculation of the actual-nucleation mode.
It is thus proved than an elongated particle of any
cross section, provided the latter is large enough,
should have a nucleation field that equals 2K/I, to a
good approximation. Even for a small cross section,
the estimation is not too bad and it can explain why
Eq. (2) was found in a rather good agreement with

experiment for fine, el.ongated particles, which yet
showed dependence on packing. The actual mode
evidently depends on packing, but the nucleation field
is at least easier than given by (2). Preliminary study
of the nucleation fieM in a rectangllar cylinder shows
that the approximation discussed here holds and that,
at least in this case, the actual smooth modes are
easier than this unsmooth one.

Another implication is in the interpretation of the
experiment of De Blois and Bean.' They have sub-
tracted from the measured nucleation field a demagnet-
izing field of a prolate ellipsoid whose major axis was

2so, i.e., the length of the coil, and whose minor axis
was the average diameter of the whisker. Thus, for a
reversing field of 496 oe (after subtracting the bucking
field), they took the nucleation field as 483 oe. To show
that this correction is not necessary, consider a magnet-
izing coil to apply a field over a distance 2so of a
circular, infinite cylinder, and let the rest of the
cylinder be held magnetized to saturation. Again, if
one looks for a continuous function, but allows a
discontinuity in the derivative (with respect to z), the
solution of Aharoni and Shtrikman~ can be used with
the additional boundary conditions

~.(so) =~.(—«) =~.(«) =~.(—«) =o (3o)

These conditions determine k and ps in (11) of
Aharoni and Shtrikman, ' which are not arbitrary any
more. The smallest value for k is thus rsvrR/se, which

yields for the curling mode

~

H
~

= 2K/I +7rI f 2.16(R/Rs) + 7r(ss2/Rp) ). (31)

Here, the last 2 terms are definitely negligible, so
that the "demagnetizing field" does not come in.
The correction was, therefore, left out in De Blois'
later experiments. "

Even when the Taylor expansion of the exchange
energy is allowed, the expression used in the derivation
of Brown's equations' is based' on the assumption of
cubic symmetry. Herring and Kittel4' remarked that
for hexagonal crystals the exchange constant 2 should

"C.Herring and C. Kittel, Phys. Rev. Sl, 869 (1951).
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be replaced by two constants. Again, this would not
affect the derivation' of (1) but might make quite a
diff erence in more-detailed calculations for hard
materials which have usually very elongated unit cells.
However, Brown" showed that one obtains just one
constant for the ideal, close-packed, hexagonal lattice.

One can also question the basic, quantum-mechanical
expression which is based on the assumption that the
3d electrons with unpaired spins are fixed to individual
atoms, a model which can hardly account for the
nonintegral, effective number of electrons per atom
which contribute to the magnetization. ' One of the
arguments in favor of this model' is that it accounts for
domain-wall energy, but, if the other possibilities
discussed in this paper do not resolve the Brown
paradox satisfactorily, this argument would fail since
the model would not account for the domain nucleation.
The model gives a temperature dependence of I,
which is in agreement with experiment in contradis-
tinction to the Stoner's school model of collective
electrons, but even this has been questioned in certain
cases."It seems, therefore, that the models should be
combined, but the mathematics involved does not raise
any hope of even an estimation on how a contribution
from collective-electron ferromagnetism can affect the
domain nucleations.

B. Boundary Conditions

In Brown's equations, the boundary conditions are"
ct I/rite =0. They should probably be replaced by"

46 E.P. Wohlfarth and J.F. Cornwell, Berichte der Arbeitsgemein-
schaft Ferromagrtetismsts 1959 (Verlag Stahleisen G. m. b. H. ,
Dusseldorf, Germany, 1960), p. 9.

r)I/c)tt+XI=O, where X is a tensor of some kind, which
originates from surface anisotropy. In the first place,
in the Taylor expression of the exchange energy, '
one is left with second derivatives only because the
first derivatives cancel out due to symmetric contribu-
tions from the neighbors. This is true for an interior
spin, but is no longer true on the surface. 4' However,
Brown" derived the same expression by summing over a
single line of spins, then over parallel lines. There is
again some doubt about the end, but it does not look
as bad in the Kittel' derivation. There are also other
possible contributions to surface anisotropy4' the most
obvious of which is an antiferromagnetic-oxide layer
on the surface, ""and the question certainly needs
looking into in detail. It should be remarked, though,
that at 1east for infinite cylinders with large-enough
radii the boundary conditions cannot change the state
of the Brown paradox as discussed here. Since an
analytic solution of the equations is known, 7 different
boundary conditions can easily be substituted in the
in6nite-cylinder case, and it is readily seen that they
affect only a term which is negligible for large radii,
leaving the disagreement with experiment as it is.
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